A QUICK ROUTE TO UNIQUE FACTORIZATION IN
QUADRATIC ORDERS

PAUL POLLACK AND NOAH SNYDER

ABSTRACT. We give a short proof — not relying on ideal classes or the geometry
of numbers — of a known criterion for quadratic orders to possess unique
factorization.

1. INTRODUCTION.

Let D be a quadratic discriminant, meaning that D is a nonsquare integer with
D =0,1 (mod 4). Set D = 4d + o, where o € {0,1}, and let 7 = %. It is easy
to check that 72 € Z + Zr, so that

ZiT\=Z+ 71

_ {u—i—v\/ﬁ

5 tu,v € Z,u =vD (modZ)}.

In what follows, we write Op (for “order of discriminant D”) in place of Z[7].

Our aim with this note is to showcase a simple proof of the following criterion
for unique factorization in Op. We remind the reader that if R is a domain then
m € R is irreducible if 7 is nonzero and not a unit, and if whenever m = af with
a, B € R, either o or § is a unit. The element m € R is prime if 7 is nonzero and
not a unit, and if whenever 7 | o8 (with a, 8 € R) either 7 | & or 7 | 3; equivalently,
a prime is a nonzero element of R for which the principal ideal () is a prime ideal
of R. Prime elements are always irreducible; the converse holds in a UFD (unique
factorization domain), but not in general.

Theorem 1. Suppose that every rational prime number

O )< VIDI/3 if D <0,
= \1/D/5 ifD>0

that is irreducible in Op s also prime in Op. Then Op is a unique factorization
domain.

1.1. Examples.

(i) [D = 73] Since 4/73/5 = 3.8..., the conditions of Theorem 1 concern only
the primes p = 2 and p = 3. Neither 2 nor 3 is irreducible, since
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(It is easy to check that all of the factors listed here are nonunits.) We

conclude that Op = Z[HY="3 {73] is a UFD.
1

2

., while 3= (2V73+17)-(2V73 —17).
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The number 73 is not particularly special.! It is widely believed that
there are infinitely many D > 0 for which Op is a UFD. In fact, Cohen
and Lenstra have precise conjectures predicting, for instance, that Oy, is a
UFD for 75.44...% of primes p =1 (mod 4) (see [2, §5.10] and [3, 4, 20]).

(ii) [D = —163] Since 4/163/3 = 7.3..., we must check p = 2,3,5,7. As
T = @ is a root of the monic irreducible polynomial X? — X + 41,
we have that Z[r] = Z[z]/(X? — X + 41). Hence, for each prime p,

Z[r)/(p) = (Z[X]/(p))/(X? = X +41) = Fpla]/(X? = X +41).

It is straightforward to check that X2 — X + 41 is irreducible modulo p
for each of p = 2,3,5,7. (For the odd primes p in this list, it suffices to
observe that the discriminant —163 of X2 — X + 41 is a nonsquare mod p.)
Therefore, Z[7]/(p) is a field, whence (p) is a prime ideal of Op and p is a
prime element. So the criterion of Theorem 1 is again satisfied and Op is a
UFD. The number —163 is special; as shown by Heegner, it is the largest
(in absolute value) negative D for which Op is a UFD ([9]; see also [5]).

We do not claim that Theorem 1 is new. When Op is the full collection of algebraic
integers inside Q(v/D) (the so-called “maximal order”), basic algebraic number
theory says that Op is a Dedekind domain with finite class group. Furthermore,
results from the geometry of numbers imply that every ideal class is represented by
an ideal with norm bounded by the quantities appearing on the right of (1) (see
[1, Theorem 13.7.10, p. 399] for D < 0 and [2, Exercise 17, p. 300] for D > 0). So
Theorem 1 follows easily (in this case).

It seems of some interest — e.g., for the teaching of basic courses in algebra and
number theory — to give a proof of Theorem 1 requiring as little machinery as
possible. Several close relatives of Theorem 1 have been proved in the literature
without reference to algebraic number theory; see [6, 8, 10, 14, 15, 17, 19, 21, 22].
However, all of these papers either establish results weaker or less complete than
Theorem 1, or their proofs depend on auxiliary results from the geometry of numbers
or the theory of Diophantine approximation. (For example, the beautifully simple
method of Ramirez V. in [17] gives a very satisfactory result when D < 0, but only
a partial result for D > 0.) Apart from a few easy lemmas concerning the “norm”
map (see the Notation section below), our proof of Theorem 1 is self-contained,
resting only on the commutative ring theory seen in a first graduate algebra course.

Notation. We let K be the fraction field of Op, so that K = Q(v/D), and we
denote conjugation in K with a bar. The norm of a € K, denoted N(«), is defined
by N(a) = aa. We recall that N(af) = N(a)N(B) for all o, € K, that the
norm sends nonzero elements of Op to nonzero integers, and that « is a unit of Op
if and only if N(«a) = +1. Readers are invited to prove these results themselves;
alternatively, they may consult, e.g., [11, Chapter 2].

2. PROOF OF THEOREM 1.

Our proof makes crucial use of the following lemma, which also features in the
arguments of [8, 15, 17, 19, 21, 22].

Lemma 2. Let a € Op. If N(«) = £p, where p is a rational prime, then « is
prime in Op.

ISee [13] for a counterpoint to this claim.
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Proof. Since a@ = +p, there is a canonical surjection Op/(p) - Op/(a). Since
@ is not a unit, the corresponding kernel is nontrivial (containing, e.g., & mod p).
Thus, #Op/(a) is a proper divisor of #0p/(p) = p*. (The last equality comes from
noting that a + br, for 0 < a,b < p, form a complete residue system mod p.) Since
a is not a unit, #Op/(a) > 1. Therefore, #Op/(a) = p, and so Op/(a) = F,,.
Hence, () is a prime (in fact, maximal) ideal of Op, so that « is prime in Op. O

We turn now to the proof of Theorem 1. A simple induction on |N(a/)| shows that
every nonzero, nonunit a € Op has a factorization into irreducibles. So it remains
only to prove uniqueness. We reduce this (as in [15, 19, 22]) to the following claim.

Claim. FEvery prime in Z factors as a product of primes in Op.

To see why this suffices, recall that an element with a factorization into primes
necessarily has this as its only factorization into irreducibles (up to order and unit
factors). This is clear from the usual proof of unique factorization in a Euclidean
domain or PID (compare with the proof of Proposition 12.2.14(a) in [1]). Since every
rational integer larger than 1 factors as a product of rational primes, our claim implies
that all those integers factor uniquely in Op. But this implies that every a € Op,
not zero and not a unit, also factors uniquely: If o had two factorizations, we could
cook up two factorizations of |[Na| = aa by concatenating our factorizations of «
with a fixed factorization of +a.

Proof of the claim. Assuming the claim to be false, let p be the smallest prime for
which it fails. Then

) . {\/|D|/3 when D < 0,

D/5  when D > 0.

Indeed, suppose otherwise. Since p does not factor as a product of primes, it itself is
not prime. But then the hypothesis of Theorem 1 tells us that p factors nontrivially
in Op. Write p = my -+ -, with £ > 2 and all the 7; irreducible. Taking norms,
p? = N(m)--- N(m), and so k = 2 and N (1) = N(m2) = +p. By Lemma 2, both
w1 and 7o are prime, and so p factors into primes after all, an absurdity.
Let
m(X) = X% - oX + % € Z[X]

be the minimal polynomial of 7. Then Z[r] = Z[X]/(m(X)) and Z[7]/(p) =
F,[X]/(m(X)). Since p is not prime in Op, the quotient ring Z[r]/(p) is not a field,
and so m(X) factors nontrivially over F,. Thus, for some integers = and 2,

(3) m(X)= (X —2)(X —2') (mod p).
Comparing coefficients of X on both sides, we find that  + 2’ = ¢ (mod p), and so

we can assume that
pto p+o

Tgmgp if D >0, and c<z< 5 if D < 0.
By (3), m(z) =0 (mod p). Moreover, our inequalities for = guarantee that
m()] < p.
Indeed, if D > 0, then (keeping in mind (2))
2
2 _ 7{)272>P*D 9
p° > m(x) (x 5 121 P
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while if D < 0, then

o\ Dl _p*+ID] _ ,

0< =(z-2) + < B <t
m) =z -3 1= 1 P

Write m(z) = pr, where |r| < p. By the minimality of p, every prime dividing r

factors into primes of Op, and so r itself factors, up to sign, as a product of primes

of Op. Thus, for some primes 71, ...,7n¢ of Op,
(@—7)(@—7)=m(x) =pn -

Since 7 is prime, 77 divides either x — 7 or « — 7. Divide both sides of the equation
by m1 and continue the process with 7. Eventually we are led to a factorization of
the form

rT—T T —T
. = 4p, where II; = i, 1l = i

for some T C {1,2,...,k}, where Z¢ = {1,2,...,k} \ Z. Multiplying by =+1 if
necessary, we obtain a factorization of p as af, say. If a or § is a unit, then the
other is a unit multiple of p. But that implies p | x — 7 or p | x — 7, which is absurd.
(Both {1,7} and {1,7} are Z-module bases of Op, and so when a multiple of p
is written as a + b1 or a + b7, both a and b must be multiples of p.) So «, 3 are
nonunits. Now taking norms shows that Na = N3 = +p, so that «, 8 are prime by
Lemma 2. Thus, p has a factorization into primes of Op after all, contradicting the
choice of p. O

Remark. In 1912/1913, Frobenius [7] and Rabinowitsch [16] (independently) pub-
lished the following striking result: For each integer ¢ > 2,

x? — x4 ¢ is prime for all integers 0 < z < ¢

if and only if Z[$(1 + /1 —4q)] is a UFD;

see [12, Chapter 11] for an exposition. For example, since Z[1(1 + +/=163)] is a
UFD, the polynomial z? — x + 41 assumes prime values for x = 1,2,...,40. The
“only if” half of the proof is the more difficult of the two, and for this most modern
treatments fall back on the theory of the class group. Theorem 1 allows one to
fashion a completely elementary proof (apply Theorem 1 in place of Proposition
11.13 in [12]; alternatively, Ramirez V.’s Theorem 3.1 from [17] can be used). Indeed,
these arguments prove a sharper version of the forward direction, which has the
following consequence: 22 — z + 41 being prime for just = = 1,2, 3,4 implies that
22 — 2 + 41 must continue being prime all the way to 2 = 40. Certain relatives of
Rabinowitsch’s theorem for real quadratic orders can be given elementary proofs in

a parallel way (compare with [18]).
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