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ABSTRACT: It was shown recently that the static tidal response coefficients, called Love
numbers, vanish identically for Kerr black holes in four dimensions. In this work, we confirm
this result and extend it to the case of spin-0 and spin-1 perturbations. We compute the
static response of Kerr black holes to scalar, electromagnetic, and gravitational fields at
all orders in black hole spin. We use the unambiguous and gauge-invariant definition
of Love numbers and their spin-0 and spin-1 analogs as Wilson coefficients of the point
particle effective field theory. This definition also allows one to clearly distinguish between
conservative and dissipative response contributions. We demonstrate that the behavior of
Kerr black hole responses to spin-0 and spin-1 fields is very similar to that of the spin-2
perturbations. In particular, static conservative responses vanish identically for spinning
black holes. This implies that vanishing Love numbers are a generic property of black
holes in four-dimensional general relativity. We also show that the dissipative part of the
response does not vanish even for static perturbations due to frame-dragging.
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1 Introduction

The static response of black holes to external perturbations, captured by the so-called Love
numbers,! has recently attracted significant attention both from the observational and
theoretical sides. On the one hand, black holes’ Love numbers are measurable quantities
that can be probed with gravitational wave observations [2, 3]. On the other hand, they
play an important role in the effective field theory (EFT) of binary inspirals [4-7], where
they determine Wilson coefficients that describe leading finite-size effects.

The tidal gravitational Love numbers of non-rotating Schwarzschild black holes have
been independently computed by Fang and Lovelace [8], Damour and Nagar [9], and by
Binnington and Poisson [10]. Remarkably, they vanish in four dimensions in general rel-
ativity (GR), which poses a naturalness problem from the EFT point of view [6], and
therefore might hint on the existence of a new symmetry of black holes. Intriguingly, there
exist several physical examples where the black holes’” Love numbers do not vanish. In
particular, the calculation of Love numbers has been extended to higher dimensions in
refs. [11, 12], which have shown that their identical vanishing for all multipoles is a unique
result taking pace only in four dimensions. Recently this result has been generalized to the
cases of spin-0, spin-1 and spin-2 perturbations of different parities in ref. [7]: the static
responses of Schwarzschild black holes are generally non-zero for all these different types
of perturbations, but accidentally they vanish in four dimensions. Moreover, black holes’
Love numbers were found to be non-zero in certain modified gravity theories [3, 13, 14].

As of now, it has been firmly established that the Love numbers of all perturbing fields
vanish in four dimensions for Schwarzshield black holes [7-11, 15]. However, the properties
of spinning (Kerr) black holes [16] are still under debate. Tidal deformations of slowly
rotating black holes were studied in refs. [17-22], which have found that the Love numbers
vanish for axisymmetric perturbations. Moreover, Landry and Poisson (2015) [20] have
claimed that the Love numbers vanish for other types of perturbations at first order in
black hole’s spin. However, this result was recently questioned by Le Tiec and Casals [23],
who argued that conclusions of Landry and Poisson (2015) might have been affected by
an uncertainty introduced by the split of the gravitational potential into the source and
response parts. Similar concerns have been earlier raised in the context of Schwarzschild
black holes [11, 24]. To avoid that ambiguity, Kol and Smolkin [11] have used an analytic
continuation of the relevant general relativity solutions into higher dimensions, which is
effectively equivalent to promoting the orbital mode number (multipolar index) ¢ to non-
integer values. Using a similar analytic continuation technique, Le Tiec et al. (2020) [23, 25]
have obtained non-vanishing static response coefficients and have claimed that the Love
numbers do not vanish for general spin-2 (tidal) perturbations around Kerr black holes.

Recently, Chia (2020) [26] and Goldberger et al. (2020) [27] have pointed out that the
“Love numbers” that Le Tiec et al. (2020) have computed actually correspond to dissipative
effects, whereas the conservative tidal response vanishes identically for spinning black holes.
Analogous results have also appeared in refs. [22, 28]. All these works imply that the Love

!The Love numbers are named after the mathematician A.E.H. Love who introduced them to describe
the tidal deformation of the Earth in ref. [1].



numbers defined in the classical sense of conservative tidal deformability are zero for Kerr
black holes.

In this work, we compute analogs of the tidal Love numbers produced by spin-0 and
spin-1 perturbations around Kerr black holes. We will define Love numbers as Wilson
coefficients of local operators in the worldline point-particle effective field theory. This will
allow us to distinguish between the conservative response to external fields, which is related
to static Love numbers, and the dissipative part of black hole’s response. The finite-size
local EFT operators are expected to be present in the EFT on general grounds and they
should have a tensorial structure dictated by the axial symmetry of the Kerr background.
We introduce these couplings in the EFT for static fields and demonstrate how the new
tensorial Wilson coefficients are related to the response coefficients that we have extracted
from the solutions to linearized spin-0, spin-1, and spin-2 field perturbations in the Kerr
background. We show that the structure of these GR solutions is such that the dissipative
parts of scalar and electromagnetic responses do not vanish for the Kerr black holes just
like their spin-2 counterparts. However, the EF'T Wilson coefficients that capture the local
(conservative) responses of spinning black holes vanish for all bosonic perturbing fields.

On the technical side, we demonstrate that the analytic continuation procedure utilized
in refs. [25, 26] allows one to avoid the uncertainty in the source/response split and obtain
consistent gauge-independent results for response coefficients in the spin-0 and spin-1 cases.
We also give an interpretation of this analytic continuation procedure in the EFT context.
We show that the subleading source corrections, which may overlap with the induced
response contributions, are, in fact, produced by interactions between external fields and
gravitational degrees of freedom. This observation allows one to unambiguously identify the
black hole multipole moment induced by external fields. Indeed, the graviton corrections
to the source solution can be computed order by order within the EFT. Thus, given a
full GR solution, one can subtract the graviton interaction contributions from it and hence
robustly extract the Love numbers. This procedure is equivalent to using the analytic
continuation ¢ — R.

Our paper is structured as follows. We start with a recap of the Newtonian response
coefficients in section 2. Then we focus on the scalar response coefficients in section 3,
where we discuss in detail their calculation both in general relativity and in the point-
particle EFT. In section 4 we compute static response of the Kerr black hole to the
external electric field and match this result with the EFT calculation. We repeat the
same procedure for the spin-2 (gravitational) perturbation in section 5. Finally, we recap
the main general relativity calculations for all spins in section 6 and extend them to the
case of non-static perturbations. We discuss our main results and draw conclusions in
section 7. Some additional material is presented in several appendices. Appendix A is a
brief reference to key mathematical relations and conventions. In appendix B we give some
details on the calculation of the Newman-Penrose-Maxwell scalars, which encapsulate the
electromagnetic field around the Kerr black hole and which are required to extract spin-
1 response coefficients. We explicitly compute the spin-1 magnetic response coefficients
in appendix C — they happen to identically coincide with the electric ones. Finally,
in appendix D we comment on the validity of the response coefficients computed in the
potential region approximation.



Conventions. In what follows we will work with the metric with signature (—, +, +, +);
greek letters (e.g. u, v, etc.) will denote the spacetime indices; latin letters from the middle
of the alphabet (e.g. 7,7, etc.) will denote the spatial 3-dimensional indices; latin letter
from the beginning of the alphabet (e.g. a,b, etc.) will run over the coordinates on the
two-sphere S?. We will work in the ¢ = G = 1 units in most of the paper.

2 Newtonian tidal response

In this section we review the definition of tidal response in Newtonian theory [10, 25, 29],
and discuss some important subtleties present for spinning bodies.

Spherical bodies. Let us consider a non-rotating spherical body of mass M and equi-
librium radius rs. Now imagine that we adiabatically apply an external gravitational field
Uext- It is convenient to place the body in the origin of the coordinate system. Then we
can characterize the external source in terms of the multipole moments,

En(t) = —(6_12)!8@1 . --81‘@)Uext‘7,:07 (2.1)
where 7 is the distance from the origin, (...) denotes the symmetric trace-free part, and
L =i;...1p 18 the multi-index. The multipole moments &, are symmetric trace-free tensors
(STFs) that parametrically depend on time ¢. In what follows we suppress this explicit
parametric dependence of the tidal field £7, on time. In response to the external field, the
body will deform and develop internal multipole moments Iy,

I E/ P px)zth (2.2)
R3

where p(x) is perturbed body’s density and ¥ = % ...z%. Summing up the two contri-
butions, we find the following expression for the total Newtonian gravitational potential

M -2 . , (-0t
U:r‘zl I e (2:3)
(=2
where n” = nit...n% is the tensor product of unit direction vectors n’ = x'/|x|, and

we have omitted the dipole moment ¢ = 1 since it corresponds to trivial center-of-mass
translations. At this point, it is convenient to switch to the spherical coordinates and
use an expansion of the external source and induced multipole moments in terms of the
spherical harmonics Yy, (6, ¢). This way eq. (2.3) can be rewritten as follows:

M ¢ (e=2)_ , (20—=DN I,
U=—"-3 % Y [f,&mr — | (2:4)
(=2 m=—{ ' :

where the angular harmonic coefficients &, are related to the STF components via
nLgL = Z g@m}/fm ’ g@m = gL jg2 ds2 nLY;;n ) (25)

and df) = sin dfd¢ denotes the measure on the two-sphere S2.



If the external gravitational field is adiabatic and weak, linear response theory dic-
tates that the response multipoles should be proportional to the perturbing multipole
moments [29-33],

d
IL(t) = )\ggL(t) — I/gfgL(t) +...= )\gEL(t — 7'/) , or
dt
(2.6)
m = NeEtm — Ve—Epm + - - .,
e Ve gy ot +
where we have restored the explicit time-dependence for clarity, and “...” denotes non-

linear corrections and contributions with more time derivatives. Here the coeflicient A,
is referred to as the Newtonian tidal Love number, while v, is the dissipative response
coefficient related to body’s kinematic viscosity [29]. This contribution captures the fact
that dissipation produces a time lag 7/ between the external field and body’s response [33].3
Note that non-zero viscosity triggers various dissipative effects, such as heating of the body
and the transfer of angular momentum between the body and the source, known as “tidal
torque,” see e.g. [34]. Using the frequency-space ansatz £ oc e ! eq. (2.6) can be
written as

Lo, = MeEom, + 1€, + - . . . (2.7)

If the external tidal environment is static in body’s rest frame, the viscosity contribution
disappears.

Spinning bodies. If the test body is rotating, the definition of response coeflicients is
more intricate. The rotating body will generally depart from spherical symmetry and hence
it will have internal multipole moments even in the absence of an external perturbation. For
a moment, let us assume that the body’s equilibrium configuration can be approximated as
a rigidly rotating sphere. If the rotation is sufficiently slow, the linear response in the body’s
rotation frame takes the same form (2.6) as for the non-rotating body [29]. However, an
important effect appears when we switch to an inertial frame. Let us focus on the leading
frequency-dependent contribution o %5 . Because of rotation, the total time derivative in
the body’s rotation frame takes the following form

d 8 0 /
%82'1-.&'2 8t 11 K7 Z QZnJ 11t —1J%n+1.- agiu-iz +H£ gL’v (2'8)

where 8t8 is the time derivative in a fixed inertial frame. Here we introduced the angular
velocity tensor €;; = —);; and defined

11 Ry i1 Zn+1 in—1 )
= Zgwa 5yt o

-/
z1 2y n+1 i

2Note that the coupling between different orbital and azimuthal modes is absent by virtue of linearity,
i.e. weakness of the external perturbations.

3This is true for small adiabatic perturbations of the body’s equilibrium configuration. In the case of weak
friction this description holds for an arbitrary equation of state. Beyond the weak friction approximation
it was formally derived for a homogeneous incompressible body [33].



Note that the matrix m%l is odd w.r.t. L <+ L. We see that in the case of a spinning body
the dissipative response contribution may not vanish even if the external perturbation is
purely static in a non-rotating frame, i.e. 9, = 0. Physically, this can be interpreted as a
result of frame-dragging, i.e. the fact that the static sources are viewed as time-dependent
by locally rotating observers [35].# In this case, eq. (2.6) takes the following form

IL = (AZ(SLL’ — Vg((sLL/at + KJLL’))EL’ s where RLL = —R[/[, - (2.9)

We see that rotating bodies can generate an antisymmetric tensorial response even for static
external perturbations. Switching to spherical harmonics and using the frequency-space
wt

ansatz £ o "' we can recast eq. (2.9) in the form similar to eq. (2.7)°

Iy, = ()\g + iyg(w — mQ)) Eom , (2‘10)

where Q is body’s angular velocity and m is the azimuthal (“magnetic”) harmonic number.
Note the appearance of the term w—Qm is generic for rotating bodies [37], it is reminiscent
of superradiant scattering [38]. Also note that this term is clearly of non-conservative origin
because it is odd under the time reversal transformation w — —w, m — —m. If body’s
viscosity is not negligible, the dissipative contribution can survive even if the external tidal
environment is static, i.e. w = 0. It is well known that vy # 0 for both static and spinning
black holes, which manifests itself e.g. in graviton absorption and superradiance [4, 5, 38—
40]. Hence, non-vanishing of the dissipative response in eq. (2.10) for spinning black holes
is to be expected.

The upshot of our discussion is that a rigidly rotating spherically-symmetric body
develops an antisymmetric tensorial response to weak static external perturbations. These
responses correspond to the imaginary part of harmonic-space response coefficients. We will
see that a similar picture also holds in a more general case when the body’s equilibrium
configuration is not spherically-symmetric. In this situation it is convenient to use the
following general ansatz for the static response in a non-rotating frame [25],

I, = A€y Lom = MemEom - (2.11)

Using the point-particle EFT [27], it can be shown that the part of Ay, which is even under
L < L' corresponds to conservative tidal deformations, whereas the antisymmetric part
of A\p;s captures non-conservative effects such as tidal dissipation. This will be discussed
in detail in section 3. Using the isomorphism between the STF tensors and spherical har-
monics, one can also separate conservative and dissipative responses at the level of relevant
harmonic coefficients Iy,,. In this case dissipative effects are encoded in imaginary parts
of harmonic-space tidal response coefficients, which map onto the antisymmetric w.r.t.
L < L' response tensors, whereas the real part of harmonic coefficients captures the tidal

4See also ref. [36], which shows that a slowly rotating body affected by a stationary external field produces
a dynamical response.

5To get this one has to use that Q;; = Qeir; 2k, (€i5% is the Levi-Civita symbol, 2, = 5,‘2’)7 then contract
/iflz‘:y with ‘% | expand n‘*? and &,/ over the STF tensor basis and use identities (A.16) from appendix A.



Love numbers and maps onto the response tensors that are even w.r.t. L <+ L’. This sug-
gests that it is more appropriate to call quantities A, defined in eq. (2.11) “tidal response
coefficients”, and reserve the term “Love numbers” only for its conservative real part.

All in all, the aggregate potential produced by an external static perturbation (2.4)
takes the following form®

(—2)! d
Upert = _u Z Z Yzm&m?“e

|
o (=2 m=—/

1+ kg (r> 2“] : (2.12)

Ts

where “pert” means that we have subtracted the body’s internal multipole moments,”
rs is body’s equilibrium radius (in our context this will be black hole’s Schwarzschild
radius rs = 2M )8 and ky,, are dimensionless tidal response coefficients in the Newtonian
approximation, defined as

— 92!
Nom = —kgm(éi — i))'”rgm . (2.13)
Relativistic picture. So far our discussion has been entirely in the realm of the New-
tonian approximation, which is only a long-distance approximation to the full general
relativity picture. In this more general case, it is convenient to look at the temporal metric
component gog = —1 + 2hgo in body’s local asymptotic rest-frame [34, 42], which general-
izes the Newtonian potential in general relativity. In the case of perturbations around the
Schwarzschild and Kerr black hole solutions, it can be written as [10, 20, 25, 43]°

(1 Fa 2 )
T
—20—1
+k4m<r> (1+b1r5+...>],
Ts r

where a1 and b; are some calculable spin-dependent coefficients whose exact expressions are

l
ert (E B 2)'
hg() == /) g Zgnmgimre

(2.14)

omitted for clarity. This expression asymptotes eq. (2.12) for the Newtonian potential in
the long-distance limit and hence, at first glance, provides us with a practical prescription
to extract the tidal response coefficients from a given gravitational potential produced by
an external source in full general relativity. Indeed, apparently, we only need to Taylor
expand this potential at spatial infinity and read off the coefficient in front of the r—¢~!
power in the expansion. In what follows we will denote this procedure by Newtonian
matching. It is important to stress that the response coefficients that we have discussed
so far, and which can be extracted by means of the Newtonian matching, are referred to

as the electric type Love numbers [10]. There also exist so-called magnetic-type response

®Note that our response coefficients differ from those of refs. [10, 25] by a factor of 2.

"For black holes these multipole moments can be straightforwardly extracted from the Kerr metric,
see e.g. [41].

8This choice is only a matter of convention. We could have equally chosen this scale to be, e.g. the
difference between the outer and inner horizons of Kerr black holes r4 — r_. This would only lead to a
trivial rescaling of response coefficients by a constant factor.

9The fact that the gravitational potential of the Kerr metric reduces to the flat space expression (2.12)
follows from the fact that the Kerr spacetime is asymptotically flat.

—7_



coefficients, which do not have counterparts in the Newtonian approximation [10, 20]. We
will discuss them in section 5.

Newtonian matching for electric response coefficients was justified in refs. [10, 11],
which showed that it gives a gauge-independent result for the Schwarzschild background
in four dimensions. However, from the expression (2.14) we see that in the physical case
¢ € N/{1} there may be some ambiguity if the subleading corrections to the source appear
to have the same power exponent as the response contribution, i.e. the source and response
series overlap. We will see shortly that this ambiguity indeed takes place in the case of the
Kerr background when the perturbations are studied in the advanced Kerr coordinates.
A similar ambiguity takes place for Love numbers of Schwarzschild black holes in certain
higher dimensions. To avoid this ambiguity, Kol and Smolkin [11] have suggested to use
the analytic continuation into higher dimensions, where generically the overlap between
the source and response series does not happen [11]. Recently Le Tiec et al. (2020) [25]
have applied a similar analytic continuation in four dimensions. To that end, it is enough
to treat £ as a generic rational number ¢ — R. In our work, we show that this approach
indeed allows one to avoid the ambiguity and moreover, is motivated from the EFT point
of view. We will also show that the EFT itself provides us with an unambiguous way to
define the conservative part of the tidal response, i.e. the actual Love numbers.

Finally, a comment on the role of the no-hair theorems [44-47] is in order. In our
context these theorems essentially state that external perturbing fields cannot smoothly
generate a non-vanishing static profile on top of the Kerr metric. This means that when
the external source is adiabatically turned on, the generalized gravitational potential in
eq. (2.14) should be uniquely defined by the source itself and body’s response. In other
words, the no-hair theorems guarantee that black holes’ response is analytic in the vicinity
of w = 0, there is no gravitational hysteresis (apart from a possible change of black hole’s
mass and spin) — once the source is turned off, the relevant solution will tend to the Kerr
metric again. Thus, it is only because of the no-hair theorems that the decomposition (2.14)
is unique and the definition of the response coefficients for black holes is meaningful.

3 Scalar response coefficients

In this section we will compute the response of a Kerr black hole to an external spin-0
perturbation. In analogy with the tidal response, it will be referred to as a scalar response
coefficient (SRC). First, we will discuss the definition of SRCs in the Newtonian approxi-
mation and in the point-particle EF'T. Then we will compute the SRCs by solving the scalar
field equation of motion (i.e. the spin-0 Teukolsky equation [48-51]) in the Kerr background.
We will do so in two different coordinate systems and show that the results agree only if
we analytically continue the orbital number of relevant scalar perturbations to non-integer
values. We also justify this procedure from the EFT point of view. Finally, we present an
explicit matching between the EFT and general relativity calculations. We will show that
the dissipative response is captured by complex tidal response coefficients, whereas their
real part describes conservative deformations that are natural to associate with classic Love
numbers. The scalar response coefficients happen to be purely imaginary, and hence we
can conclude that the scalar Love numbers are identically zero for Kerr black holes.



3.1 Definition from Newtonian matching

The response coefficients for a free scalar field can be defined in analogy with the Newto-
nian gravitation potential outside a generic static body tidally deformed by a weak external
gravitational field. Indeed, the fully relativistic Klein-Gordon equation for a static mass-
less scalar field ® reduces to the Poisson equation on very large scales. Therefore, in the
asymptotic limit 7 — oo the static scalar field takes the standard expression of the New-
tonian potential, which can be split into contributions from an external source and body’s
response similarly to eq. (2.12),

L
=3 3 Yl

T i im——t

)

—20—1
1+ k) (:) 1 . (3.1)

S

Note that unlike the gravitation potential, whose multipole expansion can only start with
¢ = 2 by virtue of the equivalence principle, a generic scalar field is allowed to have a
non-trivial dipole moment. For this reason we have omitted the normalization factors used
in eq. (2.12).

It is known that the full solution to the static Klein-Gordon equation in the Schwarz-
schild and Kerr backgrounds factorizes in the spherical coordinates, and hence it can be
written in the following form [11, 52, 53]

, (32)

4 —20—1
=3 Znm£§gjrf[<1+alf+...)+k§2<:> <1+b17;f+...>

(=1 m=—/¢ s

where a1,b; are some calculable constants, which depend on black hole’s spin. At face
value, this gives us a tool to extract the SRCs from the full GR solution: we just have to
Taylor expand this solution in 74/r and read off the coefficient in front of the =1 term.
However, at this point it is not clear if the Newtonian definition of SLNs is unambiguous.
This disadvantage can be avoided if the Love numbers are defined within the point-particle
effective field theory.

3.2 Static response in the EFT

In what follows we will use the point particle effective field theory that includes our test
scalar field ®, along with the long-wavelenght metric field gﬁu, and the position of the
compact object x# (see [4, 5, 7]) for further details). Our goal here is to focus on three
particular aspects: the EFT definition of Love numbers, a possible ambiguity between the
source and response contributions that may appear during the matching of the EFT and
microscopic (GR) calculations, and the EFT extension in the presence of spin.

The core idea of the point particle EFT is that any object acts like a point particle
when viewed from large enough scales. As we get closer to that object, or as measurement
precision becomes better, corrections to the point particle description become important.
These finite size effects are captured by higher derivative operators in the context of EFT.

We will start with the non-spinning case, which is sufficient for our purpose to define
the Love numbers in a way free of the arbitrariness produced by the response/source split.



We will re-introduce the Planck mass Mp in order to keep track of mass dimensions of the
EFT operators. Let us write the following action for a static scalar field coupled to gravity

S = S<(I>2) + Sf(?) + S@h + Spp + Sﬁnite—size ) (33)

where S((;) and 5’,52) are the bulk quadratic terms for the scalar field and gravitation, Sgp
describes the leading interaction between them, Sy, is the point particle worldline action,
and the part Sgnite_size Captures finite-size effects. Let us describe each term separately.

Bulk action. The kinetic term for the bulk scalar field in flat space is given by
1 1
s = =5 [d'e gu0000 = - [d's (@), (3.4)

where in the last equality we took the static limit. Now let us focus on the gravitational
sector. It is described by expanding the Einstein-Hilbert action in graviton perturbations
around the flat background (see e.g. [54]),

G = N + 20y -

For the purposes of this section it will be enough to work in the gauge that reproduces
the Schwarzschild solution from GR. To that end, we consider the following isotropic
perturbations

goo = —(1+2Ho(t, 7)) grr = (1 4+ 2Ha(t, 7)), (3.5)

with all other components given by the unperturbed Minkowski metric. The kinetic term
can be extracted directly from the Einstein-Hilbert action

M? M?
S = - / d'ey/=gR = =" / dtdgd cos 0dr (2H3 — 4r(0, Ho) Ha) - (3.6)

The leading interaction term between the gravitons and the scalar field stems from the
scalar field kinetic term,

Sop = % / dtdgd cos Odr % (Hy — Hy) (0,®)? C —% / d*z\/—gg"" 0,90, . (3.7)

Point particle action. Finally, we include the worldline action for the black hole. It
starts with the point particle part

Spp = —M/ds = —M/dT(ng:”:b”)l/2

(3.8)
= —M/d4m/d7' (1+ Hy) 5(4)($—$(7))7

where M is the black hole mass, ds is the infinitesimal proper worldline interval, and 7 is
the worldline parameter (proper time); the overdot denotes d/dr.

~10 -



Finite-size effects. As far as the finite size effects are concerned, it is instructive to recall
some details of linear response theory [4, 5, 27, 39, 40]. The worldline action describing
the coupling of a source multipole I, and the tidal field £ (z) (which can be either the
gravitational tidal field or its scalar field analog £, oc 9y ®) is given by [5]

S = % / ir / P26 ® (@ — 2(P) Iy (DE (). (3.9)

The tidal field £, acts like a source for I;. Hence, in the linear approximation we can
write!?

(In(+ / dr' G Y (7,7 Ep ((7) | (3.10)

where (...) denotes ensemble-averaging w.r.t. internal degrees of freedom and short-scale
modes, and we have introduced the retarded Green’s function as follows:

G (7, 7') = —i([I*(r), I (T))o(r — '), (3.11)

where 0(z) is the Heaviside theta-function. Now we switch to frequency space and use that
causal Green’s function are analytic around w = 0. Then, the spherical symmetry of the
problem dictates the following general expression for the causal Green’s function

G (W) = YW (Mt +idgefw) (3.12)
n=0
where the tensors )xloc +/non-loc. f must be symmetric under exchange L <+ L', i.e
Xg’c'/no“'loc'%l = const - 5<<£,>> . (3.13)

The terms in the expansion (3.12) that are symmetric under time-reversal symmetry (i.e.,
are even under w — —w) are dubbed local (“loc.”). We will see shortly that they correspond
to local terms in the effective action for small-wavelength fluctuations. These terms are
manifestly time reversal invariant, and hence they correspond to conservative dynamics.
However, the terms dubbed non-local (“non-loc.”) are not time reversal invariant and hence
they describe dissipative effects. Importantly, in the case of the Schwarzschild metric they
disappear in the limit of static perturbations w — 0.

The physical response also receives contributions from local operators in the worldline
action. Effectively, this leads to a renormalization of the conservative response coefficients.
All in all, the total conservative response can be described by a set of the following local
wordline operators involving only the long-wavelenght degrees of freedom,

St = oo / drd'z6® (@ — o(r)) (A ELE" + My ELEV +..) . (3.14)
This action can be rewritten in the covariant form by using covariant derivatives along
body’s 4-velocity v* = % and the projector onto directions orthogonal to v*

Pl =60 +vt'v,, D=v"V,. (3.15)

OFor clarity, we have omitted the background multipole moments. These are absent for Schwarschild
black holes, but are present for Kerr black holes. These moments can be easily taken into account (see
e.g. [40]), but they do not contribute to the tidal response and hence are irrelevant for our discussion.
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As a result, the leading worldline interaction term describing finite-size effects in the static
limit is given by [5, 7]

Stove = % / d'z / dr 60 (@ — (7)) [P . P20, 0] [Pl PRIoroia]
(3.16)
where we have introduced the multi-derivative operator 0,,. ., = Hle 0Oy, , whereas (...)
stands for the symmetrized traceless component. The leading non-static effects are cap-
tured by the following action

A
Se = 2He) /dT D[Pl ... PY0y 0, ®| D [P P o710 (3.17)

20! ( pe)

z=x(T)

The coupling Ay will be referred to as the EFT Love number in what follows. Eq. (3.16)
can be viewed as a gauge-independent definition of the Love numbers, as the corresponding
worldline operator is manifestly covariant. We will see momentarily that it is precisely this
operator that generates the 7~¢~! term in the Newtonian expansion. Importantly, we will
see that the coupling A; does not exhibit logarithmic running in general relativity in four
dimensions. This will guarantee that result of the Newtonian matching is meaningful. The
situation is different for frequency-dependent Love numbers, which generically depend on
distance, and hence introduce some ambiguity in the direct application of the Newtonian
matching. We will discuss this in section 6.

In what follows we will work in the body’s rest frame where v* = §f, hence P}’ = 0,
P; = 5;-, which removes all operators with time derivatives in eq. (3.16). This gives us the
following action relevant for the study of local static response

Stove = 2% / Az / dr 6D (z — 2(1))0y,.0y @ O (3.18)

Static response in the EFT. Our goal here is to compute the static scalar field profile
® in the presence of interactions with gravitons and an external source ®. As a first step,
we need to compute the leading order graviton field, which describes the gravitational
potential of the black hole on large scales. In the EFT context, the black hole solution
is recovered perturbatively order by order in the long-distance expansion controlled by
2M/(M3r). Let us start with the first order. The equations of motion for the graviton
modes are given by

M
Hy=rd,Hy, AHy=—— / dr6® (z — (7). (3.19)
2M3
Let us work in the black hole’s rest frame, where the unperturbed center-of-mass position

is given by x%(7) = 0, 2° = 7, such that

M
2M?%

M T

AHy = = s
0 87rM]237" 2r’

¥ (x) = Hy=-— (3.20)

where we have introduced the Schwarzschild radius rs = M/(47M%). The second metric
perturbation is given by
TS

Hy=—Hy= 3" (3.21)
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Now we have to compute the scalar field profile. The total static equation of motion for
the scalar field, which includes the leading interaction with gravity and the tidal response
is given by

(A

2
AD — ﬁar(T2H287a)q> + (=)'

Oiy...py (905 (x)) = 0. (3.22)
In order to compute the black hole response, we introduce an external scalar field source
®, satisfying the free Poisson equation A® = 0 in the r — oo asymptotic. Assuming that
® has an orbital number ¢, we find

AP =0 = &= a0 . g, (3.23)

21...0¢

where 51'(10.)..1' ’

to @ = >, Se(gzrewm(ﬂ,gb) in the spherical coordinates. We want to solve eq. (3.22)
perturbatively expanding in 7s/r, but keep the explicit \;-dependence,

is a symmetric trace-free tensor. Note that the solution (3.23) corresponds

o=0+0) 4ol 4 (3.24)

Love

We will formally retain corrections linear in Ap, but Ay itself does not need to be small. Let
us first compute the correction to the source coming from the interaction with the graviton.
We have

ADY = T%aT(TQQHQ&)é. (3.25)

Expanding <I>§II) over spherical harmonics and using the solution from eq. (3.21) we obtain

2 /(0 +1 1 r -

(83 +20, - (2)> o), = 20,(r0,). (3.26)
r r r

Note that in the above expression we can lift all restrictions on ¢ and treat it as a generic

number. Plugging our source from eq. (3.23), this equation can be easily solved. The full

solution including the source plus the leading graviton correction is given by

¢
o= 3 &0, (1 - 5“) =0, 2. 2 (1 - “8) . (3.27)

—— s r 2r

We observe that the interaction with the graviton induces the sub-leading corrections to
the source. Note that this correction is calculable, i.e. its strength is fixed in the EFT
itself. Importantly, because the graviton propagator scales like 1/r, these corrections are
naturally organized as the following power series

2
o7t (1—1—017:—}—02 (rS) —i—) , (3.28)

r

for any ¢ € R. This gives an interpretation of the subleading source corrections: these are
just generated by the coupling between the source and perturbative gravity. Our result also
justifies the use of the analytic continuation £ — R for the source-response split, because
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this indeed allows one to isolate the series eq. (3.28) and avoid a possible overlap with
corrections induced by finite-size effects.

Now let us compute the correction to the source coming from the Love interaction,
which corresponds to induced multipoles. We have

A = (C1)ir, Oy, L 53 (x) . (3.29)

Love

This equation can be easily solved in Fourier space,

3 ke -
q)il) _ (_Z)f)\gg(o)uw/ d’k ezk_x kzl . .2. kzg
ove (27T)3 k (330)
_ Be)\eg(o)h---iex Loz ém )

where we have introduced the following normalization constant

¢ 2[*2
B=(-1)——————. 3.31
The total solution including linear order correction in Ay and rs/r is given by
) ) {r 1
o = S(O)ilnizl‘“ e [L’lf \1// — 5?5 + Bf/\fm . (332)
source SN~ N——

graviton interaction  induced multipole

Comparing this to (3.2), we can see that the EFT provides a tool to define the response
coefficients and avoid ambiguity in the source/response split. The subleading corrections

" x 7, naturally correspond to diagrams

in the source expansion, which scale as (rs/r)
produced by the interaction between the source field and the graviton. These diagrams
are fixed by the structure of Einstein-Hilbert and the Klein-Gordon actions. Thus, all
graviton corrections can be unambiguously computed by expanding the Einstein-Hilbert
equation in higher order operators involving the graviton field. Hence, in principle, during
the matching procedure, one can identify all corrections coming from the graviton vertices
and subtract them from the microscopic solution obtained in GR. The remaining piece
will correspond to the response coefficients. In practice, however, the number of diagrams
to be computed can be very large. From the practical point of view, it is more convenient
to do the analytic continuation ¢ — R, which allows one to easily achieve the same goal of
isolating non-linear corrections to the source from those generated by the finite-size effects.

Inclusion of spin. In order to reproduce the GR solution in the EFT, one has to
perturbatively recover the Kerr metric at order a?/r?, where a = J/M is the normal-
ized black hole’s spin. To that end one has to introduce vector degrees of freedom of
metric perturbations and consider their coupling to black hole’s spin via the Mathisson-
Papapetrou/Routhian formalism [5]. This procedure has been recently presented in ref. [27],
see also refs. [55, 56]. In order to obtain the a?/r? corrections, we need to take into ac-
count the cubic interaction between the scalar and vector graviton modes. The details of
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this calculation are not essential for our discussion. Once we obtain the following graviton

perturbation!!
2
a
hos = —5 1 sin’ 0, (3.33)
r
it can be coupled to the scalar field through the kinetic term,

a’m?

/ d*z\/~gg"" 0,20,® > / d*zh??(05®)? o / dtdgdfdr r*sin 0 [ - @21 . (3.34)
T

where in the last equation we used the expansion over spherical harmonics ® o ¢™?. Then,
we can easily account for perturbations that are produced by the interactions between the
source and the gravitons at the leading order in spin. Varying the action (3.34) over ® and
using the perturbative expansion

=30+ 4o, (3.35)

o

we obtain that the correction due to black hole spin ®,’ satisfies the following differental

equation

2 Ll+1) a? o=
92 %) d 1 92(1)
( " ro r2 > ((1) 4 (R (3'36)

Using our ansatz for the source (3.23), we obtain the following net expression for the source
interacting with the Kerr black hole at the leading orders in black hole’s mass and spin

2M 26 1
o= 5O, Vit <1 _t2M | m7a ) . (3.37)

Iterating this procedure at higher orders in r,/r, we can reconstruct all power series re-
sponsible for the interaction between the source and the graviton.

Finite size operators in the presence of spin. The structure of finite-size operators
becomes more complicated due to the spin, because now we can produce new tensor struc-
tures using the spin vector s and the Levi-Civita antisymmetric symbol €;jk- Therefore,
now we can write the following general expression [27] for the causal response function
introduced in eq. (3.10)

G (@) = 3w (ABE + e b + S AP ) (3.38)

n=0
Let us now specify symmetry properties of different response tensors in this expression.
From the axial symmetry of the problem, the tensors that are even and odd w.r.t. L <+ L'
must be constructed from even and odd numbers of spin vectors, respectively.!? The local
terms in eq. (3.38) must be symmetric w.r.t. time reversal invariance (which includes the
spin flip), which now corresponds to simultaneous exchange L <> L',w — —w. These terms

"We assume a gauge consistent with the Boyer-Lindquist coordinates [57].

"?The only available tensor structures are dj, €;;5 and s; = sz;, where z; = §;. Hence, any tensor that
is odd w.r.t. L <» L’ (but is still STF w.r.t. multi-indices L and L) has to look like €;;/1 s, times a tensor
that is even w.r.t. remaining multi-index exchange (L — 1) <> (L —1)".
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correspond to local operators in the point-particle EFT in the body’s rotation frame. In
contrast, the non-local terms correspond to internal (gapless) worldline degrees of freedom
that capture dissipation [27] and hence they must be odd w.r.t. exchange L <> L', w — —w.

3 loc./non—loc. E and g;)oc./nonfloc.[/

This implies that tensors A, 7 in eq. (3.38) must be even and

odd w.r.t. L <+ L', respectively. Going back to proper time we get,
n [ {loc. L’ ~loc. d ~non-loc. L’ ynon-loc. L d d2n
Iy => (=)™ (Asf +é 2n+1L’d +éon UL F AT v ) ar ——n L (3.39)
n
Unlike the Schwazschild black hole, the terms with time derivatives here do not vanish in
the static limit (w.r.t. a fixed inertial frame) because of the rotation of the body. Hence,
if we want to capture the effects of spin to all orders, we need to keep track of all powers

of frequency here. This problem can be solved if we rewrite eq. (3.38) in a fixed inertial
frame. To that end we can expand time derivatives in body’s rotation frame as

d
—Eu = 0L — Q€

q ily.il) s (3.40)

-/
Zlq

where 0 is the time derivative in the fixed inertial (source) frame, ;; is the antisymmetric
angular velocity tensor, and we have symmetrized the rightmost term w.r.t. its free indices.
To simplify the argument, let us neglect terms with partial time derivatives J¢, which is
reasonable since we are interested in the static limit.

In this limit, applying an even number of time derivative in the body’s local rotating
frame will produce a tensor built out of the same even number of the angular velocity
tensors. Multiplying an original response matrix by this tensor will not change its parity
properties w.r.t. multi-index exchange,

2n
5\100.[/ d
2n L dr2n

, , d2
S AL (even L L), eponlocL T eqor-loe L (6dd L L), (3.41)

where A9, and €, are response tensors written in the inertial frame. However, applying an
odd number of time derivatives produces a tensor that contains the same odd number of
the angular velocity tensors. This tensor is odd w.r.t. to the exchange of its multi-indices,
and hence it will change the parity of the corresponding response matrices w.r.t. exchange
L+ L,

2n—+1 2n—+1
d d loc.

= A (0dd Ls L), &0 TS esviaf (even L+ I'),
(3.42)
where Aop+1 and e2,11 are again response tensors in the inertial frame. We see that

jnon-loc. L’
A —_—
2n+1 L dT2n+1

after we have changed the frame, all terms of non-local origin can be collected into a
new antisymmetric response matrix /@fl, whereas all local terms effectively sum up into a
new symmetric matrix )\E. Importantly, the transition to the inertial frame did not mix
the properties of the response matrices written in eq. (3.38) — the local response is still
captured by a matrix that is even w.r.t. L <+ L',w — —w. All in all, we can write

< > ()‘L +/€L)SL/+ (Ag—i—[\/%,) 0 + ..., where ( )
3.43
MNo=2L, kE =Rk, A =AY, NP =L
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”

and “...” stands for operators that involve more than one partial time derivatives. We
stress that the instantaneous contribution proportional to H%/, in fact, stems from non-local
operators, which was nicely explained in ref. [27]. The corresponding induced multipole
I1, oc k¥ &/ describes dissipative effects such as tidal torques or mass loss/accretion [25, 27].
In contrast, the part of the response proportional to )\f, in eq. (3.43) captures the local
static deformation produced by external fields, it is indistinguishable from the effect of
local operators in the point particle action.

All in all, the leading-order local finite-size effects are described by the following gen-

eralized response operator (3.16),
St = g [ 4t [[dr 80 = a()AOL oy, 0 00 Pe, (G

which accounts for the violation of the spherical symmetry by the spinning black hole
background. The coupling eq. (3.44) can always be recast in the manifestly covariant form
by means of the projection operator (3.15). Note that A is a symmetric trace-free tensor
w.r.t. upper and lower sets of indices,

/\(o)jl---jz _ )\(0)<j1~~-je) (3.45)

’L'l.A.ié <leg> )

but its trace w.r.t. the contraction of lower and upper indices does not vanish. We will
refer to A(©) and its analogs for higher spins as “Love tensor” in what follows.

The calculation of the response of the scalar field induced by this operator is identical
to one presented above, and it yields

o) — By t1g0) a0 (3.46)

Love

where the constant By is given in eq. (3.31).

3.3 Microscopic computation

To find the SRCs kég}b, we need to solve the vacuum Klein-Gordon equation in the Kerr
background, assuming that the scalar field varies very slowly in time. It is instructive to
carry out our microscopic (i.e. general relativity) calculation in two different coordinate
systems. Let us start with the advanced Kerr coordinates, which are manifestly regular at
the horizon.

Advanced Kerr coordinates. The interval of the Kerr spacetime in the advanced Kerr
coordinates is given by [58]

2M 4M ~ ~

ds? = — (1 -5 r) dv? + 2dvdr — Zm sin? Odvdp — 2a sin® drdd
i (3.47)

+ 2do? + (7"2 +a®+ TGQ sin? 0) sin? 0d$?

where a = J/M is the reduced spin parameter and ¥ = r2 +a? cos? 0. It is well known that
in the static case (w = 0) the Klein-Gordon equation for the massless scalar field factorizes
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into usual scalar spherical harmonics in the Kerr background [52, 59]. In the advanced
Kerr coordinates this decomposition takes the following form

Z D Rign (1) Yin (0, 8) (3.48)

To match the source boundary condition at infinity, we impose Rgn — 7 at 7 — oo
and demand this function to be smooth at the external black hole horizon. The equation
defining the radial mode function Ry, takes the following form

x(1+x) Ry, (x) + [(1 +22) 4+ 2imA] R}, (x) — £ (£ + 1) Ry (z) =0, (3.49)
where ' = 9/0x and we have defined

=L =Y e —M+VMZ_2. (3.50)

T+ —T— T —T—

Note that r4 and r_ are the outer and inner horizons of the Kerr black hole, respectively.
In what follows we will be mostly focusing on r and we will refer to it simply as “black
hole’s horizon.” We will also use the following notation

Tsa =T+ —T—. (3.51)
The solution of eq. (3.49) regular at the horizon (x — 0) is given by
Rym = const - oy (0 + 1, —0; 1 + 2imry, —x) | (3.52)

where 9 F} stands for the Gauss hypergeometric function (see appendix A for more detail).
In the physical case £ € N, the function Ry, is a polynomial in 2 o r and hence it does
not contain any decaying power of r. Thus, by looking at eq. (3.2) one may be tempted
to conclude that the SRCs are zero for the Kerr background. However, we have to ensure
that this is not a result of a cancellation between body’s response and the subleading
source contributions due to graviton interactions. To that end, let us consider an analytic
continuation ¢ — R, in which case the solution eq. (3.52) can be Taylor-expanded at spatial
infinity as (see appendix A)

I(1+ 2imy)I'(20+ 1)
L+ 1)1+ £+ 2imy)

Ry = const - < 2’ 9P (—E, —0 — 2imry, =24, —afl>
(1 + 2imy)I'(—2¢ — 1)364
D(=OT(—£ + 2imry)

D(=20 = DI+ DI(L+ £+ 2imy) oy
g (1 TR YN ) e 20 1> .

T—00

Y3l (5 + 1,041 —2im~y, 20+ 2, —x1)> (3.53)

Since the first distinctive contribution in eq. (3.53) scales as ¢ at infinity, it is natural to
associate it with the external source and its corrections produced by non-linear gravitational
interactions. The second distinctive contribution in eq. (3.53) scales as 7~*~! at infinity,
and hence it is natural to interpret it as black hole’s response. Comparing eq. (3.53) with
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the (post-)Newtonian expansion formula (3.2), we find that for a general multipolar index
£ the response coefficients are given by

L0 _ T(=20 = 1T(¢ + 1P (1 + £+ 2imy) ( )2“1
fm = (204 D)T(=O)T(—£ + 2imy) T '

The scalar tidal response coefficients extracted by means of the analytic continuation do

(3.54)

not vanish even in physical limit £ — N. In this case eq. (3.54) can be simplified

)2 ¢ 20+1
(0) . ( T'sa
Ky, szy( TSN Il n? 4+ 4m2~ <)

Ts

_z (3.55)
imy ()2 H )+ 2.
S m?
2 @O+ 1)L X
where in the last line we have introduced the dimensionless spin x = a/M and used

eq. (A.18). Note that the expression (3.55) vanishes in the limit x — 0, reproducing
the well-established result that the scalar response coefficients of non-spinning black holes
are zero [7, 11]. Importantly, the response coefficients (3.55) are purely imaginary. As
discussed before, they correspond to dissipative effects and not to the classic conservative
static response coefficients which we will refer to as scalar Love numbers.

All in all, we have obtained that the radial solution (3.52) in the advanced Kerr co-
ordinates is a polynomial without any decaying power of r, and, at the same time, the
response coefficients are non-zero. The only possibility to reconcile these two facts is that
the GR corrections to the source and the induced response happened to exactly cancel one
another in the advanced Kerr coordinates in the physical limit £ — N. This is exactly what
happens. To see this, we expand the relevant source solution at infinity as follows

' Fy (—E —0 — 2imry, —24, —:L'_l)

e + n)D(—f — 2im~y +n)0(=20),  a" (3.56)
4 Z T(—£ — 2imy)T (=2 +n) =0

n!

Let’s focus on the n = 2¢ 4 1’th term in the hypergeometric series above. This term scales
like 71 just like the response contribution. We have

2L B (_g’ —0 — 2imry, =20, —3371)

(=20 -1+ DI+ £ —2imy) (01)2 (3.57)
L(20+ D)I(—O)T(—4 — 2imy) ZmWW H n? + 4m?4?),

where we took the physicacl limit ¢ — N in the second line. This exactly equals minus
the coefficient in front of the response part in eq. (3.53), hence the subleading source
contribution exactly cancels the response in the advanced Kerr coordinates.

The upshot of our discussion is that the naive identification of the response coefficients
from the solution to the Klein-Gordon equation may be ambiguous due to uncertainty
in the source/response split. This ambiguity can be removed by means of the analytic
continuation ¢ — R [25]. This is explicitly confirmed by a calculation in the Boyer-Lindquist
coordinates, to which we proceed now.
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Boyer-Lindquist coordinates. The line element of the Kerr spacetime in the Boyer-
Lindquist coordinates [57] is given by

2Mr AMar sin? 0 )
2 _ e 2 e e v “~ 2 2
ds® = <1 > ) dt ( > ) dtdp + —dr= + Xdb

(3.58)

2Ma?r sin? 0
ey ( vy E) a6
where A = 72 — 2Mr + a?, ¥ = 2 + a® cos? §. The Boyer-Lindquist and advanced Kerr

coordinates are related via

2Mr
A

dv=dt+dr(1
U +r<+ A

) . dd=do+dr . (3.59)
The static scalar field equation factorizes in these coordinates as follows [52]

25(0 R (r) Yo (6, 8) , (3.60)

where the radial mode function Ry, satisfies the following equation:

2,2
2(x + DR, (x) + (22 + 1) R, (z) + (— (2+0)+ %) Rem =0. (3.61)
We are looking for a solution which is smooth at the black hole’s horizon and has a sin-
gularity at spatial infinity. Identifying this solution in the Boyer-Lindquist coordinates is
not evident, as these coordinates are singular at the Kerr horizon. Nevertheless, it can be
shown that the regularity at the horizon in the Boyer-Lindquist coordinates corresponds
to the following condition, obtained by Press (1972) [53] and Teukolsky (1973) [49]

Ryp = const - (r —r )™M as -y (3.62)

The constant should be chosen such that Ry, /r’ — 1 at » — oco. The solution satisfying
these boundary conditions is given by

T imry
Ry = const - <1+x> oF1 (0 +1,—¢,1+ 2imy, —x) ,

[(—20 — DD+ 1D+ £+ 2imy) ., ,
T20 + DD(—OT(—0 + 2imy) > ’

(3.63)

¢ (¢
e s <f” +
where in the last step we used an analytic continuation of the hypergeometric function at
spatial infinity and retained only the leading asymptotics. Assuming that ¢ € R, we can
extract the SRCs just like in eq. (3.53) and find the same expression (3.55). However, in
contrast to the advanced Kerr coordinates, the part of the solution containing the power

r~¢=1 does not get canceled by the graviton corrections to the source even in the physical
my
case £ — N. This happens due to the presence of the prefactor (1%@) .
We see that the coefficient in front of the power ‘=1 depends on a choice of coor-

dinates in the physical case £ — N. If we were to use the naive Newtonian matching, we
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would find coordinate-dependent SRCs. The agreement between the different coordinate
systems is restored if we use the analytic continuation ¢ — R.

Finally, we note that non-vanishing of SRCs for Kerr black holes was, in fact, first
discovered by Press in 1972 [53], who also argued that they had to be purely imaginary
in order for the solution to satisfy the complex regularity condition at the black hole
horizon.'> Moreover, Press (1972) has also shown that the SRCs capture the spin down
produced by the perturbing scalar field. A similar connection was recently discussed in Le
Tiec et al. (2020) [25] in the context of gravitational perturbations.

3.4 Matching to the EFT

To match the microscopic and the EFT calculation we need to compare the coefficients in
front of the 1/7**! power from the two calculations. We have

Bn!DAY £, = p2H1 Z €0k (3.65)

m=—/{

Rewriting the r.h.s. of this equation in the basis of the constant STF tensors %ﬁl on
S? as [41]

470 r (0
Z gemYL’mkzm Z kzm% L>m%fn5£,), (3.66)

m=—/{ m=—/

we arrive at the following equation

)\(0) 1 ’z . T§€+1 47!

(0) wit.i iy 4 O
1.4 By 254—1 Z k tm Ny -1 il 0, (3.67)

7
Im 1 0) 1.0y

where we have restored the explicit tensorial indices. In what follows we will refer to the
constant STF tensors #,% as “Thorne tensors” [41]. They allow us to write the following

13Note that the results presented in that work seem to be affected by an insignificant typo ref. [53]
presents the following solution to the radial models of Klein-Gordon equation in the Kerr background (their

eq. (10))
Press'72:  Rym = (r—r_) """ (r —ry ) ™o F (0 + 1, —£,1 + 2imry; (r —r_)/(re — 7)), (3.64)

which, in fact, does not satisfy the radial Teukolsky equation [49]. The actual solution may be written in
one of the following equivalent forms

Rim = (r —r_) """ (r —ry ) ™o F (041, —£,1 — 2imey; (r —r_) /(r — 7)),
= (r=r) T =) P+ 1~ L 2imey; (g = 1)/ (ry = 70)

which differs from eq. (3.64) either by the argument or by the sign in front of the complex part of the third
order parameter of the hypergeometric function. This typo has resulted in a sign difference for response
coefficients compared to our result. Correcting this typo, egs. (10), (15c) of Press (1972) imply

M 2
Press'72:  ImRem - ¢ <7> as T — oo,
=1,m=1 3 r

which coincides with our expression (3.63) at linear order in a.
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expression for the scalar response tensor

)\(0)1/17,/[ . T3£+1 47!

bt TR, (20 D

Z kO gyitegy it (3.68)

which is valid up to terms antisymmetric in 4} ...4, and 4 ...7;, and up to a Kronecker
delta in any combination of i, and i’ Note that the expression (3.68) does not impose

any restrictions on the symmetry properties of \(© ) 1 w.r.t. multi-index exchange L «+» L'.
Hence, our matching procedure based on the expression (3.65) computes both dissipative
and conservative responses.

If the Newtonian SRCs kég}b do not depend on the magnetic number m, i.e. k:g]r)L = k‘éo),
which is the case for Schwarzschild black holes, then the sum over the STF tensors can be
explicitly taken, (2@1? m Zz — Yy L % = d1,1/. In this case we reproduce the expression
for SLNs obtained in Hui et al. [7] for the Schwarzschild black holes (upon identification

L — ¢and D — 4)

2D(1/2 — ) T(=2¢ — D)D(€ + 1)
(O)L _ L/ _(_ ¢ 20+1
AV =M, A= (1) 5l—2 T20+10(—02 '

(3.69)

These response coefficients vanish identically in the physical case £ € N.
Let us now explicitly compute the response matrix (3.68) for the ¢ = 1 and ¢ = 2
sectors. Using formulas from appendix A, we obtain the following expression for £ =1

o (010

O _ s | _

A0 = 1231 100 |, (3.70)
000

where for simplicity we have retained only the terms linear in black hole’s spin a. This
matrix is antisymmetric, which means that the corresponding dipole worldline coupling
vanishes because it contracts two gradients of the scalar field. Hence, the EFT Love tensor
is zero in this case even though the Newtonian response coefficients are not. Thus, the
Kerr black hole’s response is purely dissipative.

Now let us consider the quadrupolar sector ¢ = 2. The corresponding Love tensor
computed from eq. (3.68) takes the following form

5

ij xM 1 3 5
X0 = —(am) A (40— P00 + 5 =X I+ X TG . 67D

where we have introduced the dimensionless black hole spin x = a/M and used the following
real-valued tensors (defined for any n)

gepl L 1 —2°"" 1My 22" My —Mas
122271)57'., > m Mm@ = o | 22 IMyy 22 M, Mg |
: SIS 2\ 7 My o
(3.72)
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which are composed of the STF basis matrices given by [23, 25]

100 010 001 000
My=|0-10], Mp=[100], Muz=[000]|, My=[001], (3.73)
000 000 100 010

and 0 is a trivial 3 x 3 matrix. For small spin the response matrix takes the following
simplified form:

4xM5 I(l)

ij 47 'yrg’ 1
)\(O)kl = —— I( ) + 0(72) - —(47'(') 135 ij7kl

2

We observe that the tensor )\(o)le is antisymmetric w.r.t. the upper and lower groups of
indices, i.e. )\(O)Z = —)\(O)Z . This means that the local quadrupole worldline operator
vanishes as well. This result can be extended to higher order multipoles.

The antisymmetry of the corresponding matrices stems from the fact that the scalar
response numbers are purely imaginary. To see this, let us consider the following general
ansatz for response coefficients consistent with the reality requirement for the scalar field
multipole expansion (3.1) [25]:

kO = ko 4+ x 3 ke () (im)”, (3.75)

n=1

where kg, are real spin-dependent functions. Plugging this into eq. (3.68) we obtain:

(o)L TEKH L - n (2n—1) (2n)
NOE == kwodL + X D (=1) een—n I + ke RED)] ) (3.76)
1 n=1

where Iy, 1/ are the antisymmetric tensors (w.r.t. exchange L+« L') introduced in eq. (3.72),
whereas Ry, ;s are new fully symmetric tensors defined as follows [25]:

) ! ¢ 1 2"My; 22"Mi2 My
RPY = 2 S° mPRe(Z ) = o | 22"Myy —22"Myy Mas | . (3.77)
: 20+t ~, 2 My Moy 0

Comparing eq. (3.75) with eq. (3.76) we see that the real part of the response coefficient
generates a symmetric part of A\ (i.e. even w.r.t. L «» L'), and eventually contributes
to the symmetric Love tensor implying non-trivial local EFT operators. However, the
imaginary part of the response coefficients generates an antisymmetric part of the response,

Iy < k€, Ky = —Kro (3.78)

which can be identified with a quasi-local contribution given in eq. (3.43). Since the
response that we have found is purely imaginary, we conclude that (a) the Love numbers
vanish identically, (b) the tidal response of Kerr black holes to static scalar perturbations
is entirely dissipative. Note that our antisymmetric quadrupolar response tensor (3.71)
coincides (up to a numerical factor) with the tensors that describe the black hole’s torque
obtained in refs. [25, 27].
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Finally, we compare the first corrections to the source due to the graviton interaction.
We will focus on the first r4/r correction and the first non-trivial spin contribution. Taylor
expanding eq. (3.63) we obtain

2,2

{r a“m
i} blr1—2=2y — 4 .
Cr( 2r+(4£—2)r2+ >, (3.79)

which agrees with the EFT calculation (3.37).

4 Spin-1 response coefficients

In this section we extend our static response calculation to the spin-1 field and compute the
response of a Kerr black hole to a long-wavelength electromagnetic perturbation. Similar
calculations were done for Schwarzschild black holes in four dimensions in ref. [60] and in a
general number of dimensions in ref. [7]. We will start with the definition of spin-1 response
coefficients and Love numbers. Then we will compute the electromagnetic field around
the Kerr black hole by means of the Newton-Penrose formalism [61, 62], and extract the
vector response coefficients from this solution. Finally, we will match our general relativity
calculations to the EFT, which will help us fix the relevant tensor Wilson coefficients. As
in the scalar field case, our matching procedure will imply the vanishing of the EFT Love
tensor, and hence the spin-1 response will be identified to be purely dissipative.

4.1 Definition

EFT Love numbers. The local worldline EFT for the electromagnetic field to zeroth
order in metric perturbations is given by the following action [7]

1
E%T:Spp_z/d% F F*

1 L i il il
+§:ﬂi/fg/wﬁ®@—xﬁnﬂnywm“iMAE”ﬂﬁ1“0L4Eﬁ) (41)
=1
]. g i i IAY]
+;:Mm/&g/ﬁﬂ®@—xﬁnﬂnﬁwm”iMABmﬂ@U”iNABﬁU,
=1

where Fy,, = 20,4,) is the Maxwell tensor, A, is the U(1) gauge potential, Sy, is the
usual point-particle action (3.8), and we have introduced the electric field vector and the
magnetic tensor as

Ei = FOZ' s Bij = Fij . (42)

They can be defined in a manifestly covariant way by means of the body’s 4-velocity and
the projector P; = 4, + v, v”,

B, = Fu", B = PIP0F,,. (4.3)

The Wilson coefficients )\(1)5 and 5\(1)5 are the electric and magnetic Love tensors, re-
spectively. In the static limit in the particle’s rest frame

Ei == Fuﬂ)'u == —&-Ao, (44)
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which implies that the EFT for the electric field only depends on a scalar field Ay, and
effectively it reduces to the EFT for a massless scalar field that we have studied in the
previous section. In order to study the magnetic field it is convenient to employ the
transverse gauge 0;A; = 0, in which case the kinetic term for the electromagnetic field
takes the following form in the zero-frequency limit

- % / d*cF"F,, — % / dix [(6Z-A0)2 - aiAjaiAj} : (4.5)

Definition a la Newtonian matching. It is also useful to introduce a definition of
electromagnetic response coefficients in the way similar to the gravitational potential in the
Newtonian approximation. This will prove convenient to extract the response coefficients
from the general relativity solution that we will obtain in the harmonic space. To that end
we can use the fact that in the static limit the electric field is fixed by Ag. The equation
of motion for Ay reduces to the Poisson equation in the long-distance limit,

V4 =0. (4.6)

In the static limit Ay becomes gauge-independent,'*

and hence we can use it to define
response coefficients just like in the case of the Newtonian gravitational potential. Since
Aj transforms as a scalar under rotations, it can be written as a series over the scalar

spherical harmonics'®

Ay = Z Z nmo%mr

l=1m=—4

1+ kY < - )2“] : (4.7)

S

where ayy,, are source harmonic coefficients, which satisfy oy, = (—1)™ay_y,) such that
Ap is real. Hence, we can use an analog of the Newtonian matching supplemented with
the analytic continuation / — R to extract electric response coefficients. Note that we
have neglected the background electric monopole contribution because we consider neutral
black holes in this paper.

One can define the magnetic response using an expansion for the vector part of the
gauge potential similar to (4.7). It is easiest to do that at the level of the angular component
of the electromagnetic tensor [7]

/Bfm g _ —20—1

l=1m=—4

where [a,b] denotes antisymmetrization, Bem are magnetic source coefficients, satisfying
B = (=1)"Be(—m), and Yb 7, are the Regge-Wheeler transverse vector spherical harmon-
ics [63], see appendix A for detail. The normalization factor —(¢ + 1)/¢ is inserted for

Tndeed, the relevant U(1) gauge transformation A, — A, + d,a does not alter Ag in the stationary
limit 9y — 0.

5Recall that Ag and A, transform as scalars under the SO(3) group transformations, whereas the vector
Aq (a = (0, ¢)) has two distinctive contributions, which transform as a scalar and as a vector under SO(3) [7].
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convenience. With this factor the multipole expansion for the magnetic field B* = %eij kR ik
and the electric field E? take very similar forms, e.g. for the radial component we have

E" £ oy . 01 (RN [y 2660
g E E m Ymr 1 . ~€m <8) ) 4.9
<Br ) =1 m——t ( Bem ) ¢ / A r (4.9)

m

From this expression our convention becomes natural as we expect the magnetic and electric

response coefficients to coincide in 4 dimensions due to the electric-magnetic duality [7, 40],
k(l) — ]}(1)

Im m*
present an explicit calculation of the magnetic response in appendix C.

Hence, we will focus on the electric field in the main body of the paper and

4.2 Newman-Penrose formalism

To compute A, in the Kerr black hole background, we will work within the Newman-
Penrose (NP) formalism [61, 62]. In this formalism, the electromagnetic tensor is repre-
sented by 3 complex scalars &g, P, Po as

Fu =2 [<I>1(n[“ly} + mpmyy) + Palym,) + <I>0mr#nl,ﬂ + c.c., (4.10)

where [,,,n,,m, (mz is the complex conjugate of m,,) are the so-called Newman-Penrose
null tetrades. Their explicit expressions in the Boyer-Lindquist coordinates are given in
Kinnersley (1969) [64],

o — MIOE nt — r? +a? _éoﬁ
A A 2y, 7 2% 772y (4.11)
1 i '
B = iasinf, 0,1, — | .
" V2 (r +iacosf) <m e Siﬂ9>

The quantities ®g, ®1, P2 will be referred to as Maxwell-Newmann-Penrose (MNP) scalars
in what follows. The components that we will need for the Newtonian matching are Fy,
and Fpy. They are given by

asinf(acosORe®q+rImPg) asinfy/2(acosRe®y —rImdy)

V2% " A ’

arRe®gsin? A
V2%

a?Im®gsin?  cos A

V2% ’

where A =12 — 2M7r + a2, ¥ = 2 4+ a2 cos? . The quantities Dy and P9, defined as

FOT‘ = *2Req)1 +

Fyy =20md; (a>+1?)sin0+ —V2arRe®ysin? 0 (4.12)

— \/§a21m<1>2 sin? 6 cos 6 —

~ (r —iacosf)?
By = L MACBT)
’ (ry —r-)?

are separable solutions of the Teukolsky equations for spin weights s = 41 and s = —1,
respectively [48, 49] (see also refs. [65-67]). Assuming that the external source is located at
spatial infinity, the leading asymptotic behaviors of these MNP scalars are given by [49, 65]

2,

By ~ Dy ~ Dy ~ 71 4 const -2 (4.13)
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where “const” is some calculable constant. Hence, in the asymptotic limit » — oo both the
magnetic and electric response coefficients can be extracted from a single MNP scalar &4

= 2Im®r?sinf, Fy, = —2Red; . (4.14)

r—00 r—00

4.3 From Maxwell-Newman-Penrose scalars to response coefficients

In order to compute ®; for the Kerr metric, we will follow the algorithm proposed in
Bi¢dk and Dvorak (1976) [65]. We will use the Maxwell equations rewritten in terms of
the Newman-Penrose quantities, which are presented in appendix B. As a first step, we
compute ®. In the Kerr background it factorizes as

00 ¢
q>2 = Z Z angéfr)L(r) —1Y£m(97 (b) ) (415)
l=1m=—¢

where _1Yy,, are the spin-weighted spherical harmonics with weight —1, and ag,, are the
source-dependent constant harmonic coefficients. Note that we do not impose any restric-
tions on ag, — they are generic complex numbers because ®- is complex. The radial
function (®) Ry, (r) satisfies the s = —1 Teukolsky equation [48, 49,

9 ym(ym —i(2x + 1)) @ 9
(-e - T R (2) + 2(z + YR/ P (2) = 0, (4.16)
supplemented with the following smoothness boundary condition at the horizon
(T — T+) [49]

Rg@) (z) = const - z1T™ | as x — 0. (4.17)

m

The relevant solution is given by

2) z
RP(2) = ( +1> 2@+ 1) oFi(l+ 2,1 — 0,24 2iyms —x),  (4.18)
x
—iym
which can be conveniently written as Ry, () = (ILH) Yo (x) with
T 2iym
Yo = < +1> x(x+1) oF1(L+2,1—4,24 2iym; —x). (4.19)
x
Now we can compute the second MNP scalar ®y, which also factorizes in the spherical
coordinates
) l )
(I)O = Z Z aéngm(T) +1Y€m(07 ¢) ) (420)
=1 m=—¢

where 1Yy, are the spin-weighted spherical harmonics with weight s = +1. The radial
part RY) can be extracted from R\

i i, using the Maxwell equations in the NP formalism

(see appendix B for more detail)

2 : 2 ym 2
0 _ _27s (d m) <2>:< z ) 2 & 421
B 00+1) dr+ A B l+z E(E—I—l)dﬂyzm' (4.21)

_97 —



Once &y and ®5 are determined, we can use the remaining two Maxwell equations in the
NP formalism to extract ®;. This quantity does not fully factorize in the Kerr background

\fr r_ Aom x O\ O™
i i (75

(r—iacos)?
(4.22)

Tsa

r—iacosf) d d
{[(€+1)€]1/2 [Hw(yém) yém‘| ng—ZCLSlIled (yﬂm) +1}/€m}’

where we have neglected the monopole contribution that corresponds to a shift of black
hole’s charge. The leading asymptotic in the limit x — oo, which is relevant for the
Newtonian matching, reads

l
d
Z Z 1/2 ’ w%(yfm) — Yem | Yom - (4.23)

T—00

As anticipated, ® factorizes in the asymptotic limit » — oco. Recall that we are eventually
interested in Ay, which is related to ®; via

8TA0 = —FQT = 2Re<I>1 .

At this point we can rewrite ag,, as,

2v2

@@ s yytinTe = (@om +8m) (424

where oy, and [y, satisfy the reality conditions o, = (—1)ma’g(_m) and g, =(—1)" B;(_m
The harmonic coefficients oy, and By, capture electric and magnetic parts of the Maxwell
tensor, respectively. To obtain Ag, we integrate eq. (4.23) as follows

V4
r 2\[a€mrsa e da’ d
Ao =28e [ dr'e(r SR 3 Y [ 5% | 2 win@) = wan(a?)

_Z Z nmalmyem Z Z aZm Zm }/Zma (425)

{=1m=—¢ l=1m=—¢

where in the last line we used that the sum ) ,,,, @ Ysmyem is real, which is a consequence
of aj,, = ay—m), Yo, = (=1)"Yy_m), and y;,,, = yg—m) (see eq. (4.19)). Expanding the
radial mode functions at spatial infinity we obtain

AE%(T) =const - (x + 1)2F1(£+ 2,1 —{,2+ 2iym, —x)

T(—20 — D)0+ 2)T(L + 2imy +1) o, (4.26)
T(1— 0020+ 1D(—0 + 2imy) > '

—>rZ z’ <1+
T—00
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Now we can compare this result with the large-distance approximation (4.7) and read off
the following electromagnetic response coefficients

1 _ T(=20-1D0O0E+2imy +1) (1sa 20+1
e ()

(=1 =020+ 1)1 (=€ + 2imy
B ( 1 '(g )' V4 <,’nsa)2£+1
= G20 1 1)! nl]l n® +dm'y e (4.27)
_ imy (£ +1)! ﬁ )+ m2y )

2 (20))( 2£+ 1)!

where we replaced I'(¢ + 2)/I'(1 — ¢) — I'(¢) /T'(—¢ — 1) in the first line, then assumed the
physical values ¢ € N, and finally used eq. (A.18). As in the scalar case, the electromagnetic
response coefficients are purely imaginary, which means that the static Love numbers must
vanish. We will confirm that shortly.

It is instructive to take the limit v — 0 and compare our resulting expression with the
Schwarzschild black hole electromagnetic Love numbers kg computed in ref. [7]. This work
defined electromagnetic Love numbers w.r.t. the scalar mode Wg, defined as

r2

= O (4.28)

)
|

in four dimensions. This means that we need to differentiate Ag w.r.t. the radial coordinate
r to obtain g, which produces an additional factor —(¢+1)/¢ in front of the Love number.
With this factor taken into account, we have
ks = — (L+1) k;(l)’ _ L+ T (20— +2)T(£+1)
¢ =0 [ I'(1— 0204 1)T(—¢)
(=20 -1I'(¢+2)I(¢)
T -T2+ DI (=4 —1)°

(4.29)

where we have used I'(z)z = I'(x + 1). This expression exactly coincides with the elec-
tromagnetic Love numbers given in ref. [7] after the identification L —s¢and D —4. It
vanishes once we take the physical limit ¢ — N.

4.4 Matching to the EFT

In this section, we perform an explicit matching of the worldline point-particle effective
field theory that includes electromagnetism to the results of the full GR calculation. This
will allow us to extract the electric polarizability operator in the EFT from the electric
response coefficients that we have previously found in this section. The calculation of the
magnetic susceptibilities can be easily performed in the same fashion. We present this
calculation in appendix C for completeness.

The calculation of the electric Love numbers is identical to the scalar field Love number
matching. Introducing an external background source as

/_10 = &il.,,igdiil . ..%’ie , (430)
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where o, 4, is an STF tensor, and solving the equation of motion for Ay just like in the
scalar field case we obtain

2[—2

AT g)r*H : (4.31)

L ’
A() = Z dgerng + )\(1)L/0_4LHL (—1)€+1

Im

In principle, we could match directly eq. (4.25) and eq. (4.31) as Ay is gauge-independent in
the static limit. However, generally it is more appropriate to match the components of the
electric tensor, such as E,., in order to ensure that the result in gauge-independent. Acting
on egs. (4.25) and eq. (4.31) with one derivative w.r.t. the radial coordinate r, matching
the two results, and rewriting the sum over the spherical harmonics in terms of the Thorne
STF tensors we obtain the following expression for the electromagnetic response matrix

) 26+1 47l
PO FDayriniegy it 4.32
e = TR @04 )1 Z (4.52)

where By is a constant given in eq. (3.31). As in the scalar case, we see that the requirement
that )\(1)%/ is even w.r.t. exchange L <> L’ has disappeared in the expression (4.32), and
hence we can interpret it as a general expression for response coefficients that includes
conservative and dissipative effects on the same footing.

Plugging v+ = 0, we find that this expression reduces the Love numbers for the
Schwarzschild black holes given in eq. (5.30) of ref. [7] (upon identification L — ¢, D — 4,
and up to a sign),

)\(1)5 = )\EE)éfl ,  Where
e T2T(1/2 = £) T(=20 — DT (L + 2)T (L + 1) ar1 (4.33)
202 L(1—Or@e+1r(—6 °

N = (=)

This Wilson coefficient vanishes for physical values of the orbital number ¢ € N.

Now let us get back to the expression for the electromagnetic response tensor (4.32).
As in the scalar case, we see that the electric response tensors are antisymmetric for all
0’s as a result of vanishing of the real part of k:( ). For instance, in the quadrupolar sector

we have
i M°1
AV = —(4m) X [0 = 2 + 530 = x2S + X TS
4 545 2 o 115 (4.34)
= _ AT (1) 2y = _(4 X I( ) 2

where we used the dimensionless spin x = a/M and took the v — 0 limit in the last line.
The STF basis tensors IV, 1) 165) are defined in egs. (3.72), (3.73). We see that just like
in the scalar case, the local electromagnetic worldline EFT couplings vanish even though
the imaginary electric response coefficients do not. We conclude that the spin-1 response
is purely dissipative.
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5 Spin-2 response coefficients

For completeness, in this section we present the computation of the static response of Kerr
black hole to the external gravitational perturbation. This calculation has been discussed
in detail in refs. [25, 26], and some important technical results were previously obtained in
refs. [43, 68]. Our main novel result here will be an explicit matching of the spin-2 Kerr
black hole response coefficients to the worldline EFT Wilson coefficients along the lines of
the previous sections.

5.1 Definition

EFT Love numbers. The local worldline EFT of gravitational perturbations is built
out of various operators constructed from the Weyl tensor [5, 7]. In four dimensions this
tensor has two distinctive components,

Euo = Cuvopv”v”,  Bue = P PJ Pl Cpuryrorv” . (5.1)
In the body’s rest frame these components reduce to

Ez(jz) = Coioj » Bff;l = Coijk (5.2)

Note that magnetic tensor can also be dualized as B, = %euaﬁ,,Co‘ﬁwv”vp, but here we
will not do that in order to match the convention of ref. [7]. The most generic quadratic

action for Ez(f ) and Bl(f,i is given by

SER 5,0+ / d'z hD2h (5.3)

1 r 2 i i’ i, i)
+€§ﬁ / d*z / drd (@ —a(r)AD ] 0y, .05, LB 00§ @

e

+Zi / 'z / dr6@ (@ —a(r)ADY 8, .0, ,BP . o gl p@
(=2

ig_1%¢)] ’

where [ d*z hD?h denotes the graviton kinetic term, whose explicit expression can be found

e.g. in refs. [7, 54]. The tensorial Wilson coefficients )\(2)2 and 5\(2)2 will be referred to as

the electric and magnetic spin-2 Love tensors, respectively.

Response coefficients in the Newtonian limit. The general spin-2 tidal response
coefficients can be related to the harmonic expansion of the Newtonian potential in the
large distance limit. Their calculation relies on the curvature Weyl scalar, defined as

Yo = Cagysl®mPIIm?, (5.4)

where Cyp,5 is the Weyl tensor projected onto the Newman-Penrose null tetrades [61, 62].
In the Newtonian limit the Weyl scalar takes the following form,

Yo = —2m'm?V;V,U , (5.5)

~ 31—



where U is the Newtonian potential, and V; is covariant derivative of the 3-dimensional eu-
clidean spacetime. Plugging the expression for the Newtonian potential (2.12) into eq. (5.5),
we find

4

—Z Z £+2 £+1) -2

20+1

where ;9Yy,, denotes the s = +2 spin-weighted spherical harmonics. In the relativistic
regime this expression can be generalized as follows [25, 43, 68]:

_Z Z w <5em+lf Bgm) [1+k€m (f)ﬂH] +2Yem(0,9),

T-}OO f 2m— )

(5.7)
where &y, Bem are the spherical harmonic coefficients of the electric-type and magnetic-
type tidal tensors, defined by means of the Weyl tensor as follows:

1 3
& = Mv<i3..,igcoli1‘0|i2> , Bp= 200 —2)1(0 + 1)!v(ig...igejk|i1ci2|0jk> . (5.8)

The electric-type tidal tensor is a relativistic generalization of the Newtonian tidal tensor
discussed in section 2. Note that the response coeflicients are the same for magnetic-
type and electric-type perturbations as a consequence of the gravitational electric-magnetic
duality, which takes place for fluctuations around Kerr black holes in four dimensions [40].

5.2 From Weyl scalar to response coefficients

Eq. (5.7) can be used to extract the Newtonian response coefficients from the full general
relativity calculation. Indeed, the Weyl scalar 1)y factorizes in the Kerr background as [25]

4

(L+2)(+1 +1 3
P> W(gfm B ) R 0)aYin0,0), (59)
(=2 m=—/

where the radial function R; +2 satisfies the following differential equation

d?
dz?

[(_gg 46+ ym(ym+i2(2z+1))

NETR) >+3(2x+1)dd +z(x+1)——

]RS *2(2)=0. (5.10)

The solution smooth at the black hole horizon must satisfy the following boundary condition
in the Boyer-Lindquist coordinates [49],

Rt =const- 2 2" as r—ry (z—0). (5.11)
The desired radial function is given by
RiH? = const - (1+2) "™ 2172 3 Fy (=0 — 2,0 — 1; =1 + 2iym; —x) . (5.12)

Taylor-expanding this function at spatial infinity we find

_ —op 1 T(=20 =D — DT (L + 2yim + 1)
e v < T D(—¢—2)T'(2iym — OT(20 +1) )’ (5.13)
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which provides us with the following gravitational response coefficients

@  F(=20-DI( -1+ 2vim+1) (15

20+1
Fem = K = [(—f — 2)T(2iym — O)T'(20 + 1) ( Ts ) '

(5.14)

Note that this expression coincides with egs. (4.29, 4.40) of ref. [25]. For the physical case
¢ € N we have

¢ 20+1
2 _ (€ —2)!(€ +2)! 2 2 2 (Tsa>
Fom = = M 20 1 1), }]ﬁ” Fam) (4

(5.15)
_amy (0 —=2)1(0 4 2)
T2 20120+ 1)!

l
! [1(n°(1=x?) +m*x?),
n=1
where in the last line we expressed the result in terms of the dimensionless black hole
spin x = a/M. Importantly, the spin-2 response coefficients are purely imaginary just like
their spin-0 and spin-1 counterparts. This means that the tidal spin-2 Love tensors must
vanish identically.

5.3 Matching to the EFT

(2)

We will focus on the electric part of the spin-2 perturbations captured by EZ]2 = Cpio; in

what follows. The calculation of the magnetic part can be carried out in a similar fashion.
To match the electric-type Love numbers, it is sufficient to consider only the following
scalar graviton modes

goo = —1+2hgo,  gij = 0;5(1 + 2hoo) (5.16)

which corresponds to Newtonian gauge. In this gauge the gravity kinetic term takes the
following form

1 - - -
/ d'e hD*h = - / d'z [4hoo Ahao — 2hooAhoo | - (5.17)

The field hgo does not appear in Spp at zeroth order in particle’s displacement from the
center of mass position. Thus, in this approximation it can be integrated out from the
action by means of its equation of motion hgg = hgg, which gives us

1
/ d*z hD?*h = o / d*zhooAhg - (5.18)
T
Then the electric part of the Weyl tensor takes the following form
2
B = ~0,0;ho - (5.19)
All in all, in the static limit the EFT takes the same form as the EFT for a scalar field,
modulo a factor 47 in the graviton kinetic term

1
S%?&:: pp+87r/d4$ hooAhoo

1 i1 % i’ (5.20)
+D_ o / d'x / dré™® (@ —z(r) APy T (0, -0y hoo) (911 ... 0% hoo),
0=2""
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where Sy, is the standard point-particle action (3.8). Repeating the scalar field calculation
for a fixed multipolar index ¢, we can easily obtain the following static response

¢ 87T 2Z_2

1
—_—— 21
2 7l/20(1/2 — z) ’ (5:21)

l
h()o = Z c‘fgmrngm + )\(Q)E/HLISL . (— )
m=—~

where &, are spherical modes of the background source and &y is the corresponding

constant STF tensor. In order to be rigorous and ensure that the result for response

coefficients is gauge-independent, we need to match gauge invariant quantities from both

sides. The simplest such quantity is the rr component of the electric part of the Weyl
tensor [7],

Coror = E?) = —92hg . (5.22)

Taking two derivatives w.r.t. r in eq. (5.21) and in the formula for the Newtonian poten-
tial (2.12), and matching the two expressions we obtain

@it _ 2r26HL 4gp!

¢
*A .“A' ,i/ .“i/
ilodg = $7B, (20 +1)! Z klm@/ Enw%nlm ¢ (5.23)

where kﬁz are given in eq. (5.15), By a constant is given in eq. (3.31).16

Plugging v = 0, we find that expression (5.23) coincides with the Love number for the
Schwarzschild black holes given in eq. (5.50) of ref. [7] for generic £ € R (upon identification
L— ¢, D — 4, and modulo the conventional factor 87). However, this expression vanishes
in the physical case ¢ € N/{1},

A _ 3\ (Cr) g0 10) (5.24)

1.2 (i1...5¢) °

\C) _ 2 pyemB0/2 P20 =P DT+ 1) oy
¢ T 8 9r-2 T(—¢—20(—Or(20+1) &

if ¢eN/{1}.

Using explicit formulas for the Thorne tensors from appendix A, we obtain the following
expression for the EFT quadrupolar worldline tensor coupling in terms of the dimensionless
spin parameter x = a/M:

ij 2 M°P 1 3 5
AP = == (40 =X+ 53 = VI + X (5.25)
where the STF basis tensors I(V), I3 1®) are defined in egs. (3.72), (3.73). For small spin
this expression simplifies as,

SXM ( )
45 7’]»

4 77"5 (1)
3(87) 30 Liji

ARV — L+ 03 = w+O0A). (5.26)

Just like in the case of spin-0 and spin-1 perturbations, the worldline finite-size operators
vanish even though the Newtonian response coefficients do not. Note that our expres-
sions for the response matrices (5.25), (5.26) coincide with those presented in Le Tiec

16Note that the same result can be obtained by a direct matching of hoo from (5.21) and the Newtonian
potential (2.12) because our choice of Newtonian gauge (5.16) is precisely the one that reproduces the
Newtonian limit at large distances.

~ 34—



et al. (2020) [25] and those obtained in Goldberger et al. (2020) [27] (up to a conventional
numerical factor). The antisymmetric response captured by these matrices is responsible
for the dissipative effect of tidal torques.

6 Master formula for black hole response coefficients

In this section we demonstrate that black hole’s response coefficients for any perturbing bo-
son field can be extracted directly from Teukolsky equations for relevant Newman-Penrose
scalars. Then we will present the response coefficients for time-dependent perturbations.

6.1 Static responses

An important observation is that the Kerr black hole response coefficients for all fields can
be extracted directly from the solution to the radial Teukolsky equation for a generic spin
weight s [49],

(ym)? 4 iyms(2z + 1)
x(x+1)

s*+s— 02— 0+
+(s+1)(2zx+1) d +x(z +1) & R(z) =0
S x oy Tl o z)=0.

This solution needs to satisfy the following boundary condition at the future horizon

R=const X (r —ry )™ as r—ry, (6.2)

which ensures that the in-falling observes sees only the so-called “non-special” fields
(= fields that are not singular and not identically equal to zero). Moreover, these bound-
ary condition guarantees that the energy momentum flux flows strictly into the black
hole [48, 49, 51]. The desired solution can be easily constructed [69, 70],

R = const - (1 4+ 2) "7 5"V S g Fy (€ — 5,0 + 1 — 5;1 + 2iym — s;—x) . (6.3)

Taylor-expanding this solution at spatial infinity  — oo (see appendix A for the relevant
analytic continuation formula) we find

_ oy (=20 = DIl — s+ )I'(£ + 2yim + 1)
P — const - 2t~ <1 201 ) 6.4
const - T (147 T(—0 — s)D(2iym — O)T (20 + 1) o (64)
which provides us with the following dimensionless response coefficients
1) _ L(—20— 1) — s+ 1)L+ 2yim + 1) <rsa)%+1
tm = T(—f — s)T(2iym — £)T(20 + 1) T
¢ (6.5)

sp1imx (€ + s)!(f — s)!

=0T 20120+ 1)! I =) +m*x).

n=1

where x = J/M? is black hole’s dimensionless spin, and r; = 2M is the Schwarzschild
radius. This expression recovers the scalar response coefficients for s = 0 (see eq. (3.54)),
the spin-1 (electromagnetic) response coefficients for s = 1 (see eq. (4.27)), and the spin-2
(gravitational) response coefficients for s = 2 (see eq. (5.14)).
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6.2 Time-dependent responses

Using the Teukolsky equation, we can also obtain expressions for non-static responses to
all orders in frequency, which we present here for completeness. Let us consider a generic
field ¢ of spin weight s that factorizes in the Kerr background as [48, 49]

Y = e WMo R(1)5() . (6.6)

The functions R and S satisfy the following frequency-dependent equations

20 +2amw — A+4irsw

[(w (a®+7%) —am) (w (a®+712) —am+2is(M —r)) .
a?+r(r—2M)

+ (2 +r(r=201)) @ 2(s+1)(r—M)d1R(r):0,

dr? dr
) (6.7)
1 d /. ,dS(9) 9 9 9 m
— — 60— -2 0
0 20 (sm& 20 )—i— (a w” cos 2g  2awscos
2mscost 5 o 9 9
g cot“O+s+A—a*w”—2amw | S(0) =0,
sin
where A denotes angular eigenvalues. For small aw they are given by

9 2

A=(—s)(l+s+1)— aw% + O(a’w?). (6.8)

This expression provides a rational behind the analytic continuation £ — R: the angular
eigenvalues are actually always non-integer for non-zero frequencies [59, 69, 70].

The purely incoming boundary condition for R at the black hole horizon has the
following form in the Boyer-Lindquist coordinates [49, 69]

R=const x (r —ry )97, as r—ry, (6.9)

where we have introduced

2Mry am — 2Mriw

Q=ym — w= . (6.10)
Ty —T— ry —Tr—

The solution of the Teukolsky equation at finite frequency that satisfies the purely in-
coming boundary condition at the horizon can be obtained in the form of a series over
hypergeometric functions, see refs. [71-74],

R e—i\/:f?x—s—ie/2—ié(1 4 )ie/2+iQ i o’ I'(1—s+2iQ)I'(2n+2v +1)
n = R
F'n+v+1+2iQ)T(n+v+1—s—ie)
2T F (—n — v + 2iQ, —n — v + 5 + i€, —2n — 2v, —x 1)
N i av-1 I'l—s+2iQ)r'2n—2v —1)
L(n—v+42iQ)I'(n—v — s — ie)

n=—oo

n=—oo

(6.11)

Xz VTG B (—n 4+ v 4+ 14 2iQ, —n+ v+ 14 5 +i€e,2v 4+ 2 — 2n, x_l)) ,
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where we have used Q = Q — €/2 along with

mx —1rsw
2/1—x2’
E2 52 ((€+1)2752)2 (22752)2

“or1 | T ey T e D@1 2)(2043) (20— 10200204 1) +O().

E=Tsw, Q= v=L+Al,

(6.12)

Al

The quantity v is called “renormalized angular momentum.” The coefficients a% and a_ "~

satisfy certain recursion relations that are given in refs. [71-74]. In general they depend on
e parametrically and they are suppressed in the low-frequency limit, e.g. al = (9(6‘”‘) for
n > —/£. In what follows we will extract the part of the solution that has the desired source
and response asymptotics at large distances. We will work at linear order in € = ryw, in
which case we will need only the following coefficients,

—v— v v —v— . (€+5)2(£_22Q)
ag" t=af =1, a’y =a;" "t =ie 2220+ 1) V1—=x2+0(),

v . _—v—1 _ . (5—8—{—1)2(8—%14—22@) N2 2
al = a7 =ie ESEICTEY V1I—=x24+0(€).

(6.13)

The relevant solution that scales as r*~%(1 + O(r=2"~1)) at large distances in the small-
frequency limit is given by:
e 26+1 I'2v+1
R Sconst x e TPV 1+ 5(8) <Tsa) '(~V+ : j
Frv+1+2iQ)T(v+1— s —ie)
LU 43) (=1 — v +2iQ)(—1 — v + s +ie)

—a D(v+2+2iQ)T(v+2 — 5 —ie)(—2v — 2) (6.14)

r—00 T

)ri I'2v +3)

—af(v+1 -
1( rsaP(V+2+2iQ)F(V+2—S—i6)

+0(%),

(s) (s

where we have used the frequency-dependent response coefficient kym = som (sa/ 7“3)%+1

9

o _Tw—s+1—iol'(v+2iQ+ )I'(-2v — 1)

7)) = )
vm T(2v+ 1)D(~v — s — ie)[(2iQ — v)
w20 2v+1) v+ 1)1+ v — 2i0)
" (1 oo w—2iQ) " (wr1t2iQ) o
e 2w+ 122w+ 1) perre 222041 2
+a1@(u+1+2¢@)(u+1—s) “ %(V_2iQ)(V+S)> <

For w = 0 the response coefficient that appears in eq. (6.15) reduces to eq. (6.5). We
will expand now this coefficient to linear order in €, while retaining black hole’s spin to
all orders. The ¢ — 0 limit of eq. (6.15) is complicated by the presence of a pole in the
gamma functions. The ambiguity associated with this pole can be eliminated if we formally
consider A and € as independent parameters, and use the expression eq. (6.12) only after
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regularizing the singularity. The presence of the pole also generates a finite logarithmic
contribution, see appendix D. We obtain

(s), finite _ iym . { TsT+ }
7,5 [sinh(%wm) sinh < 27 - (w=—mQ) ¢ —2(rsw)ymlnz
Q) (o2 iy (250 +(20+1) (6.16)
2(0+1)0 ST S ) T '
(C+8)'(=9)! 17, 2 2 2 2

where €2 is the black hole’s angular velocity Q = a/(r? + a?) = a/(2Mr,), and it is useful

to recall that = (r — r4)/rsq. The first important observation is that if we expand

the response coefficient at leading order in black hole’s spin and frequency of the external

perturbation, we will find that eq. (6.16) matches the Newtonian expression (2.10) with

the vanishing static Love number A\, = 0, but a non-zero dissipative part,

S+ 80— 8)!(e)?
20120+ 1)!

The dissipative imaginary response part vanishes for the locking frequency w = mf2. There-

k()

o) =irs (w—mQ) (—1) + O(wQ,w?, Q%) . (6.17)

fore, at leading order in black hole’s spin and frequency of the external perturbation the
Kerr black holes behave like rigidly rotating dissipative spheres.

The second important observation is that generically the conservative response coef-
ficients O(m) is not zero. Indeed, at face value, eq. (6.16) implies that the following
time-dependent worldline operator does not vanish

/ dreLEV ALY (6.18)
where the spin-dependent coefficient A%f,l) is odd w.r.t. time reversal. The third im-
portant observation is that for non-zero w the tidal response coefficients exhibit classical
renormalization-group running. This means that only the logarithmic part of the con-
servative frequency-dependent Love number appearing in eq. (6.16) is universal and inde-
pendent of the renormalization scheme. This situation can be contrasted with the w = 0
Love numbers, which do not receive any logarithmic contributions and hence do not run
with distance [6, 75].17 Fourth, eq. (6.11) can be used to extract the Love numbers that
depend on the frequency squared. They will be interesting to compare with recent re-
sults on frequency-dependent Love numbers given in ref. [28]. We leave this question for
future work.

Finally, let us comment on the near-field approximation, which has been recently used
to compute Love numbers from the Teukolsky equation [26]. We present this calculation
for a generic spin s perturbation in appendix D. There we show that the near-field expan-
sion does not exactly map onto the small frequency expansion. As a result, the leading
order near-field approximation does not fully capture the O(w$2) corrections to the tidal
response coefficients.

7This is true in four dimensions. In certain spacetime dimensions the static Love numbers also exhibit
renormalization-group running [7, 11].
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7 Discussion and conclusions

In this work we have computed the static response of Kerr black holes to external elec-
tromagnetic and scalar perturbations in four dimensions. This complements the analysis
of refs. [25, 26], which have calculated the response of Kerr black holes to spin-2 (gravita-
tional) perturbations. Our main results are summarized in the master formula (6.5), which
displays the Kerr black hole static response coefficients for a perturbing field with generic
integer spin s. Importantly, all responses are purely dissipative, i.e. the Love numbers for
spinning black holes identically vanish for spin-0, spin-1, and spin-2 fields to all orders in
black hole spin. We have also extended our results to leading frequency-dependent effects,
which also include the running of response coefficients, see eq. (6.16).

We have used the gauge-invariant definition of Love numbers as Wilson coefficients in
the point-particle effective field theory (EFT). To that end we have introduced local finite-
size operators in the EF'T and have extracted the relevant Wilson coefficients by matching
the EFT and full GR calculations. We have also shown that the EFT allows one to clearly
separate dissipative and conservative responses. The key ingredient of our matching proce-
dure is the analytic continuation of relevant static response solutions to non-integer values
of the orbital multipole number ¢. We have explicatively shown that this procedure allows
one to extract the response coefficients from full general relativity solutions in a coordinate-
independent fashion. Moreover, we have interpreted this procedure in the EFT context and
have shown that it helps to separate non-linear gravity corrections to perturbing sources
(i.e. source-graviton EFT diagrams) from corrections generated by the induced multipole
moments. Curiously, we have found that the subleading source corrections exactly cancel
the response part in the advanced Kerr coordinates. It will be interesting to understand
the origin of this cancellation in the future.

We have demonstrated that spinning black holes are very similar to the static ones
from the EFT point of view: both of them can be described with a single point-particle
term in the worldline action in the static limit. Our analysis suggests that the case of
spinning black holes may be useful to understand the vanishing of tidal Love numbers in
four dimensions and a possible EFT naturalness problem related to that. In particular, we
have shown that this problem may be addressed at the level of the massless scalar field.
This is a very simplistic model, yet it captures many qualitative details of Love number
calculations relevant for both static and spinning black holes. This suggests that the scalar
field toy model may play an important role in elucidating the nature of vanishing of local
finite-size EFT operators for black holes.

Our analysis can be extended in multiple ways. First, one can compute Love numbers
and the relevant Wilson coefficients of the point-particle EFT for spinning black holes in
spacetime dimensions greater than four. The properties of higher dimensional spinning
black holes are known to differ significantly from their four dimensional counterparts (see
e.g. [76, 77]), and hence we can expect interesting consequences for response coefficients
there. Second, one can study the relationship between dissipative spin-0 and spin-1 response
coefficients that we have computed and the phenomenon of black hole torques along the
lines of [25, 27, 53]. Third, it would be interesting to compute the Love coefficients for
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charged spinning Kerr-Newman black holes [78]. Fourth, one can carry out a systematic
analysis of the frequency-dependent Love numbers for spinning black holes. Eventually, it
will be important to understand if there is an extra symmetry of the Schwarzschild and
Kerr spacetimes which makes the conservative static black hole response vanish in four
dimensions. We leave these research directions for future work.

Note added. While this paper was being prepared, refs. [26-28] appeared. These papers
have some overlap with our work in the interpretation of dissipative response coefficients.
In particular, we have independently obtained that the response coefficients presented as
“Love numbers” in ref. [25] actually correspond to purely non-conservative effects.
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A Useful mathematical relations

A.1 Spherical harmonics

Scalar Spherical Harmonics. We use the following definition for the (scalar) spherical
harmonics

|m|+m

2 12641 (= [mD)'Y? sl (A T
[47r (E—i—\m])!] e"™?(sinf) (dcosﬂ) (sinf)=", (A.1)

(_l)f"r
200!

Yﬁm(‘ga (Z)) =
valid for ¢ > 0, —¢ < m < £. These harmonics obey the following relations
BgaYim =~ DYim: Vi) = (1" Viemy(0), f 2 Yoo = Srbmns . (A.2)

where Age2 is the two-sphere Laplacian.

Spin-Weighted Spherical Harmonics. One can introduce the following spin s-raising
and spin s-lowering operators,

;_<ag+ ! a¢—sco‘°’9>, 5;_<ag— L 9y + COSH). (A.3)

sin 0 sin 0 sin 0 ¢T3 sin

Applying these operators on the (scalar) spherical harmonics Yz, = oYz, one can define
the spin-weighted spherical harmonics for ¢ > |s],

3(sYom) = +/(€ = )(€ + 5 + 1)1 Yim,

- (A.4)
6(SYVKm) = _\/(E + ‘9)(£ —s+ 1)871}/6771 .
These harmonics obey the following relations
i) = ()" Vi my(0), f A YoV = b (A5)
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Transverse Vector Spherical Harmonics. The transverse vector analog of scalar
spherical harmonics are defined as follows

=7 1 - v/det
Y = X VY., Y = _VaetIsCijk .j

= VY A6

where g3 is the 3d metric, €;5; is the three-dimensional Levi-Civita symbol (g123 = 1)
and V¥ is the corresponding covariant derivative. Note that there is a sign difference
between our definition and the one adopted in ref. [41]. We also stress that ;5 denotes
the fully-antisymmetric symbol, whereas ¢;;, stands for the anti-symmetric tensor,

€ijk = \/97351']'167 Gijk = . (A'7)

The transverse spin-1 spherical harmonics are related to the spin-weighted spherical har-
monics through

T i A i
Yitm = ﬁ(flyﬁmmz + 11 Yemm™). (A.8)
Since }7;7;1 are orthogonal to the radial direction n;, it is also convenient to use their pro-
jections onto S?, known as the Regge-Wheeler (RW) vector spherical harmonics [63, 79]

YW, =/ car g5V Y (A9)

\/ €—|—1

where a = (0, ¢), ggb is the metric tensor on S?, go = detgo, V, is the covariant derivative
on S?, and we have introduced the flat-space 2-dimensional Levi-Civita symbol

Ehp = —EpH = 1 s €00 = Epp = 0. (A.lO)

In our conventions the RW and the vector harmonics defined in eq. (A.6) coincide in the or-
thonormal spherical coordinates basis. The 2d transverse spherical harmonics satisfy [7, 79]:

ApVEY = (00 +1) — 1) YRV f dQ g YEVY RV s (AL
Symmetric Trace-Free Tensors. Finally, instead of the spherical harmonics it may
be conveneient to use the basis of the symmetric trace-free tensors of rank ¢ (“STF-¢ ten-
sors”) [41]. These tensors generate an irreducible representation of SO(3) and hence there
exists a one-to-one mapping between them and the spherical harmoncis. This mapping is

realized via
L> 47T£'

Yom =Y * iy, or nt =G 2 Z Yim @k (A.12)
where the constant STF tensors %ﬁl satisfy
L _ (2€+1)” * L _ m gy * L
Yo = T Anl <2 ds) n(L>Yéma %(—m) = (=", - (A.13)
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Since Z;L tensors form a basis for the (2¢+ 1) dimensional vector space of the STF tensors
on S?, any STF tensor can be expanded over them as

¢
47l
L xL L
= = — ) Al4
Frm L T gy (A
All in all, any scalar function on S? can be represented as
00 l 00
F0,0)=> > FuYm=> Frnyy. (A.15)
(=0 m=—¢ =0
Some other important identities are
x0m Im . (2€ + 1)” F
e 1) Za(l-1) = —im=
wfm L(m+1 .(224‘1)!! 1/2 ~—
Equ@ Il;(L_l)@q(FL—l)) - —ZW [2(6 - m)(e + m + 1)] / é.] ! 9 (A 16)

wlm Um—1 ,(254—1)!!
€ipg? f;(L—l)g V) =g 0T

_ 1/2 41
q(L-1) — ¢ AT0'20 [2(6 + m)(e m+ 1)] ‘Sj )

*fm L(m—+ .
Eipg? f;(L—l)@q((qu) =0 if p#0or £1,

where £0 = 03, £F! = £(6} £i6?)//2.
A.2 Gamma function
The Euler Gamma funciton is defined via
MNz+1) =T(x)x. (A.17)
We use several important relations in the main text
l
b

sinh(7b) H

n=1

IT(1+ ¢+ bi)|* = (n?4+b?) for €N, (A.18)

as well as I'(z*) = I'*(2), and Euler’s reflection formula,

Fz)Ira1-=z) =

. A.19
sin(7z) ( )
We also need the Taylor expansions of the Gamma function around its poles that correspond
to natural values of the orbital number £. To obtain them, we shift the argument of the
Gamma function as £ — ¢ + ¢, € < 1, which yields

1 1
T Or(20) o = (D@ (A.20)

I'(=£)
These expressions lead to the following relations

[(-2¢—1) (=11 [(—20-1) (-1 (¢ +2)!
L(—6) 220+ 1)° L(—¢—-2)  220+1)! 7
(A.21)
[(-20-1)  (-1)%+1)! r(-2¢) (=1
L(—¢—1)  2204+1) L(—¢) 2020 °
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A.3 Gauss hypergeometric function

The classic hypergeometric equation has the following form
r(1—2)y" +(c—Q1+a+bzx)y —aby=0. (A.22)

If ¢ #0,—1,—2,..., this equation has the following solution in terms of the Gauss hyper-
geometric function
T(n+a)l(n+b) T(c) a"

=oFi(a,b,c,x) = T;O T()T () Tt nl” (A.23)

The other indepedent solution of eq. (A.22) is given by
y=az"%F(b-c+la—c+1,2—czx). (A.24)

This solution is singular at z = 0.
If c = —n, where n =0, 1,2,. .., the (regular at z = 0) solution to eq. (A.22) takes the
following form

y=a""F(a+n+1,b+n+1,n+2 ). (A.25)
Ifa=-nn=0,1,2,...and c = —m, m =n,n+ 1,n + 2,... the hypergeometric series
truncates at order m. If a + b — ¢ < 0, the hypergeometric series converges at |x| = 1.

Otherwise it generically converges for |z| < 1 (unless it is a polynomial).
The hypergeometric function (A.23) can be analytically continued at x = oo via

L'(e)I'(b—a) _ ~1
= — a 1 - 1 -
2F1(a7 b, c, Q?) F(b)F(c—a)( 1’) 2F1((1,CL+ ¢ a+ b,z ) (A 26)
L(eT(a=b), ., - '
+F(a)F(c—b)( x) oF(byb+1—c,b+1—a,xz7),
and around x = 1 via
I'(e)I'(c—a—D)
F =2 — J,F 1—c,1—
2 1(a,b,c,:r:) F(C—G)F(C—b)2 1(a,b,a+b—|— Cy SL’)
(A.27)

I'(c)I'(—c+a+b)

1—-2) % % (c—a,c—b,c+1—a—b,1—1x).
T ()T () (1—x) oFi(c—a,c—b,c+1—a—b,1—x)

B Calculation of Maxwell-Newman-Penrose scalars

In this appendix we compute the stationary electromagnetic field around the Kerr black
hole for a source located at spatial infinity. This is the calculation relevant for the extraction
of the response coefficients. In the Newman-Penrose formalism, the electromagnetic tensor
F,,, is represented in terms of 3 complex scalar functions,

1
q)o = F#Vlumy 5 (I)l = iFuV (l“n” + m*“my) s @2 = Flwm*”ny, (Bl)

where [#, n*, m* are the NP null tetrades and m* is the complex conjugate of m#*. In what
follows we will use the Boyer-Lindquist coordinates, in which the Kinnersley tetrades are
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given by eq. (4.11). Instead of the usual scalars ®¢, ®;, P9, it is convenient to work in terms
of the rescaled scalars,

~ (r —iacosf)?

~ r —iacosf
do =y, = ) (r —tacos )
+_ —

)2
By . (B.2)

P, Py= e —r )2

The stationary (i.e. w = 0) vacuum Maxwell equations take the following form in terms of
the NP quantities [48, 49]:

V2r?, <BT+Z(9¢> ®y—(r—iacosh) (89+Cot6—si§108¢) do+iasinfdy =0, (B.3a)

Va2, <89+sir2108¢> &1 4 (r—iacos) <aT—Za¢) Ady—Ad,=0,  (B.3b)
a

A
8¢) dy  dasing -

\2 (89—Siflea¢> ®) —(r—iacosh) <8r+

1 a ~ . 7
\ﬁ (&—A@(]g) &1+ (r—iacosh) (89+C0t9+sir10

Teukolsky has shown that ®y and ®, factorize in the Kerr background as

a¢> Dy+Py=0,  (B.3c)

2= D amm B (r) 1Yo (0.9), B0 =D anaRip(r) 11Yem(0.6),  (BA)
Im

Im

where the radial harmonic R satisfies eq. (4.16). Applying the operator

‘m
Oy — 10y sin 6

to eq. (B.3a) and the operator
Or + aly/A

to eq. (B.3c), we find eq. (4.21), which means we have obtained both &g and ®,. Tt is

(0) (2) because we

i, as a second derivative over R,

important to express the radial function R
will have to integrate over it to get ®;.
The calculation of (fl is more intricate as it does not factorize in 6§ and x. The axial

symmetry suggests the following ansatz

o0

~ x —iym imé
o= > (1+:B> e oy, (x,0) . (B.5)

m=—00

Plugging this into eq. (B.3a) and integrating over = (which is related to the radial coor-
dinate r) we obtain (4.22) plus an integration constant, which corresponds to black hole’s
charge. Since we consider the neutral black holes, we put this constant to zero.

C Spin-1 magnetic Love numbers

Due to the presence of magnetic-electric duality in four dimensions, we have anticipated
that the electric and magnetic response coefficients would coincide in the Kerr background.
In this appendix we explicitly show it. To that end, we extract the magnetic response from
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the Maxwell-Newman-Penrose scalar ®; and match them to the Wilson coefficients of the
magnetic field worldline EFT.

Our first goal is to extract the Newtonian response coefficients from the Kerr solution
using eq. (4.8). We will match one particular component, Fyps. To proceed, we need to
simplify the commutator V[aY})] v+ A crucial observation is that'®

1

V¥8hn = i [0 (VARmEeash ) = Vi (VCtaazneas? V)] Vi
‘ C.1)

1 sin 0 (

2 e(z+1)[ VAetgs g Yo = 222\ Jet + 1)Ye

Thus, we have
' —20-1
1

Fop =32 37 sin 0¥ s [1 () ] | o

{=1m=—¢

To extract the magnetic Love numbers, we need to compare this expression with our formula
for Fps that we have obtained by solving for ®;. We have

Fyy =2Im®; r%sinf

r—00
0.2 Sa aémnm d
=2r Sln@ Im E E €—|—1 1/2[ dr — (Yem) — yZm]

:sin@Z Z ﬂémangﬁ(T)a

{=1m=—¢
where in the last line we have used eq. (4.24) and we have also introduced the new function

a1 LA IT(=20 = DI+ 2)T(E + 2imy + 1)

1= 1 I'(1 -0 204 1)I(2imy —¢)

0¢ __ P L
FE - sa

(C.4)

Note that the sum Y., Bem Yem (2Yp,,, — Yem) is real.
Matching this with eq. (C.2) we obtain that the magnetic and electric response coeffi-
cients coincide in the Kerr background

O (C.5)

Im

Matching to the EFT can be done using the EFT electromagnetic action eq. (4.1). In
analogy with the electric field we introduce an external background magnetic field source as

_ . zvk: 4 B
A = m :_M ¢ mYm
i = \/ﬁ Z BmY, W+ m;/”@ ‘

<€zk:L‘V i1
\/;Z_’_l) 511 wx1 e

181t can be shown that in general 2V(a/9260)cVE = — /G2 V2.

(C.6)
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where Bzd...ig is the STF tensor. By construction, our source flj is manifestly harmonic
VQAj = 0 and transverse V/ Aj = 0 and hence it satisfies the spatial part of the Maxwell
equations VA F),; = 0. Expanding the Maxwell action to quadratic order in A; and solving
perturbatively its equation of motion with the coupling to the source included, we obtain

i k! (-2
V93Eiwat VT <y il 2 ——1

¢
_ o) T T 3 l
A] = Z ﬁgmr ngm £(£+1) liliﬁh%n( 1 (—]_) mr

m=—{

(C.7)

Now we are in position to match the angular component of the magnetic tensor Fyy. As a
first step we compute the response part of the Maxwell tensor F,,***"* from eq. (C.7) and

use that 2, /ggs[bjk:cj vkva] =, /ggeabrV§2 in the spherical coordinate basis, which yields

2(*2

V2 ~ = o
Jrresponse _ _\/g>2€ab7’ §2 (1)1/11/5 p (#...3) 1 Y4 —/—1 ) )
o Tuerny et D g gy (©3)

This can be compared with eq. (C.3), which we rewrite for a single orbital harmonic ¢ as

follows: ,
V922047V 52 06
Fyg = — Z BemYem Epo (1) /7. (C.9)
(e+1) =,

Now we can rewrite the expression above using the Thorne STF tensors and arrive at the
anticipated result

NOLEE T?E—H 4l —
e T B, (204 1)

¢ o
(£€+ 1) Z %},2@*%“%2”%’ (C.10)

m=—/{

where By a constant is given in eq. (3.31). This expression coincides with the electric
response coefficient tensor given in eq. (4.32) up to a factor (¢ + 1)/¢.

D Comment on the near-field approximation

In this appendix we discuss the validity of the solution of the frequency-dependent radial
Teukolsky equation (6.7) in the near-field approximation. We start with the Klein-Gordon
equation in the Schwarzschild background.

D.1 Scalar field example

The differential equation defining the radial mode function of the scalar field in the Schwarz-
schild background takes the following form [59, 69]

o (14 )

r(1+2)R"+ 2z + 1)R' + |(rsw) w0t

U+ 1| R=0. (D.1)

The near field approximation amounts to replacing [59, 69, 70]

(rsw)?(1 + z)* (rsw)?
z(1+ ) _>x(1+x)'
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The corrections to the r.h.s. term are small as long as
(rew)r < (£+1). (D.3)

The near-zone approximation can be systematically formulated by an introduction of a
formal expansion parameter « such that

(1+2)' = (1 +ax) =1+ 0(ax). (D.4)

The final expressions have to be evaluated at a = 1. Then the corrections beyond eq. (D.2)
can be systematically computed order-by-order in . However, we note that this does not
correspond to a low-frequency expansion with the small parameter rsw < 1. Indeed,
sufficiently far from the horizon, i.e. for z = O(1), we have

(Tsw)2 ~ (rsw)QxQ, (D.5)

and hence keeping the term (rsw)? while neglecting the term (rsw)?z? in eq. (D.2) is not
justified by the smallness of ryw.
Now let us write eq. (D.1) in the zeroth order near zone approximation (azx < 1),

2
L+ )R + e+ DR + | )| R=0. D.6
r(14+2z)R" + (2x +1) +x(1+x) (+1) (D.6)
The solution consistent with the purely incoming boundary condition at the horizon is
given by
T W
R = const - <1+> oF1(0+1,—0,1+ 2irsw, —x). (D.7)
x

If we now analytically continue this solution for z > 1, we will obtain,

z \“s [ T(1+2iraw)T(204+1) , .
R= te| —— by (—0,—0—2 —20,—
cons <1+x> (F(€+1)F(1+€+2irsw)x 2 1( ) 1w, , =T )
I(142irsw)l(=20-1) _, . 1 (D.8)
oF (£+1,041-2 2042, —
(O (— 0+ 2iryw) 2P (L (120w, 2042,
0.0 (O)NF_ —2¢—1
T <1+l€€ x ),
where the coefficient kgO)NF might be interpreted as a frequency-dependent response coef-
ficient,
r—2—10r¢e+nra+4+2i
k‘éo)NFE ( ) ( + ) ( +L4+ Wsw) (D.Q)

204+ 1)T(—0)T (=4 + 2irsw)
Indeed, for w = 0 this expression reproduces the scalar Love number for the Schwarzschild
black hole. However, strictly speaking, we cannot use eq. (D.9) for the Love number
matching because there may be other frequency-dependent contributions that have been
omitted in the near zone approximation. This will be shown shortly when we compare
eq. (D.9) with the accurate solution to the Teukolsky equation.
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D.2 Teukolsky equation in the near-field approximation

Now we compute the solution of the frequency-dependent radial Teukolsky equation (6.7)
for the mode function R in the potential region (near-field zone), characterized by

z(ry —ro) < ({+1)/w. (D.10)

for a rotating black hole and perturbation of a generic spin s. We additionally expand
over the small parameter wM ~ wrg < 1. Using that wa < wM < 1, we can approximate
A= (0 —5s)(f + s+ 1) and hence the radial differential equation can be written in the
following simple form [69, 70],

Q”qfffﬁ”)c“ﬁ(sﬂ)(hﬂ)d+x(m+1)d2]R(fv>=0- (D-11)

2, . 2
e +s—0*—0+ Ir e

This is the same equation as (6.1), but with ym replaced by Q). Hence, the required solution
is given by eq. (6.3) with ym — Q. If we now formally analytically continue this solution
for x > 1, we can obtain the following expression for response coefficients

k(s)NF_F(—2€—1)F(£—s+1)F(£+2¢Q+1) o —r_\ 2+
tm T (=) (2iQ— )T (20+1) ( )

Ts

=(—1)S+1;(mx—2r+w)m [T [P2(=x)+(mx—2rw)’]  (D.12)

—s)!
=(=1)*ir, (mQ—w)W 11 {nz(l—xz)—i—élri (mQ—w)Q} :

where we used black hole’s angular velocity Q = a/(r% +a?) = a/(2Mr,). We can see that
this expression is not invariant under time reversal transformations w — —w, m — —m,
which implies that the near-field response is purely dissipative. However, this result is
uncertain up to other frequency-dependent corrections. To estimate these corrections, let
us use the perturbed angular eigenvalues (6.8) instead of the usual ones. We have:

2ms?

V= Al = D.1
v="0+ AL €+aw£(€+1)(2£+1)+ (D.13)

Now we can easily find a solution to eq. (D.11) with ¢ replaced by v. It is given by

R

= const x x” (1 T x*Qi/le(_2V -DI'(0 — s+ 1)I'(v +2iQ + 1)) .

I(—7 — s)I(2iQ — )T (20 + 1) (D.14)

T—r00

Therefore, the relevant response coefficient reads

Lene _ D(=20 = DD(7 — s+ )05 +2iQ + 1)

T'sa 2041
om (7~ 5T @0 — 571 @s £ 1) () (1-2Allnz), (D.15)

Ts
where the logarithm comes from the Taylor expansion of 22771,

g7t = 721 — 2A/In ) .
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After some simplifications we obtain

2iQ  (L—s)!(L+3)! 2 2
sin(2iQm) 2(26)!(2¢ + 1)! nl_[( T4 (D.16)

1

KN = (<1)*+! sin(2iQm — Alr)
X (15a/7s) T (1 — 2ALInz) + O(AL?).

For A¢ = 0 the response coefficients reduce to eq. (D.12). However, we can see that the
near field approximation misses O(wa) and O(walnx) corrections. This can be confirmed
by an explicit comparison with a solution obtained in a small-frequency expansion of the
Teukolsky equation [71-74].

D.3 Comparison with the low-frequency solution

The systematic treatment of the Teukolsky equation in the low-frequency limit [71-74]
gives a solution which is somewhat different from the near-field expression, cf. eq. (D.12)
and eq. (6.16). Importantly, the relevant response coefficients are not purely imaginary in
this case. To see this, let us expand eq. (6.14) to linear order in €, while keeping all powers
of Q. Because of the presence of the simple pole at € = 0, is important that we also expand
the renormalized angular momentum v = ¢ + A{, where ¢ is an integer number satisfying
¢ > |s|, and Al = O(e?). We have

I(-2v-1) 1 0
Pav+1)  2aiei+ e o)
T(v+1—ie—
WA LE IS )+ A (- 91+ 5!+ O, (D.17)
LO+2Q41) _(yye g o 250 T2 1 40?4 O
F(—V—i—2i@) = (1) sin(2iQm Agﬂ)sin(%@w) nl;[l(n +4Q7) + 0(€),
This gives
(s) _ —2Qe 2iQ . Ay A\ (27Q) cosh(27Q)
v = | Ay +sinh(2Q7r) (s1nh(27rQ) ewcosh(QﬁQ)) Al Sinb(270)

14
><(—1)S+1Ws (H 24 407 ) (D.18)

We see that our response coefficient has a pole at A¢ = 0. When we match the EFT
result to the GR calculation, we use only finite parts, and hence this singular contribution
can be ignored.'® However, it is important to note that this term also generates a finite
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logarithmic contribution,

23 pm = 59 =21 9NNz + O(€2))

=g 21 € 2Q i Q) — em 7Q
= l4Q lnaH— Snh(207) <s1nh(2 Q) cosh(2 Q))] (D.19)
sy (0 (l+s £ 9
x(_1)+(%+<1;[ 2 +4Q? ) O(e?).
Using that
sinh(27Q) — em cosh(2rQ) = sinh(27Q — enr) + O(€?), (D.20)

we obtain the first correction in eq. (6.16). We see that this expression coincidently matches
the near-zone result eq. (D.12) at linear order in w and zeroth order in w(). However,
the near-field approximation does not correctly capture O(e?, ef2) corrections and their
logarithmic running.

Extracting the other contributions from eq. (6.15) is straightforward. Collecting ev-
erything together we arrive at eq. (6.16).

197t is also worth stressing that the full GR solution is regular, the pole in eq. (D.18) in fact gets canceled
by a similar singularity that is contained in the source series. To see this, we have to get back to the original
solution (6.14) and regularize the hypergeometric function that is attached to the source solution o z” as

follows
o Fy (—v + 2iQ, —v + s + i€, —2u, fx_l)
()2 F(4+1+2iQ)F'(li+s+1+ie)‘ -1
(20 + 2)T(—£ 4 2iQ)T(—£ + s + i) (20)12A¢
X o (04+14+2iQ, 0+ s+ 1+ie,20+2,—z~ ")+ O(°),
which exactly cancels the divergence that we have encountered in the term z =2/~ 1%,&‘2, see eq. (D.18).
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