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Abstract

The recently proposed map [5] between the hydrodynamic equations governing the two-
dimensional triangular cold-bosonic breathers [ 1] and the high-density zero-temperature
triangular free-fermionic clouds, both trapped harmonically, perfectly explains the for-
mer phenomenon but leaves uninterpreted the nature of the initial (¢t = 0) singularity.
This singularity is a density discontinuity that leads, in the bosonic case, to an infinite
force at the cloud edge. The map itself becomes invalid at times t < 0. A similar singular-
ity appears at t = T /4, where T is the period of the harmonic trap, with the Fermi-Bose
map becoming invalid at t > T /4. Here, we first map—using the scale invariance of
the problem—the trapped motion to an untrapped one. Then we show that in the new
representation, the solution [5] becomes, along a ray in the direction normal to one of
the three edges of the initial cloud, a freely propagating one-dimensional shock wave
of a class proposed by Damski in [7]. There, for a broad class of initial conditions, the
one-dimensional hydrodynamic equations can be mapped to the inviscid Burgers’ equa-
tion, which is equivalent to a nonlinear transport equation. More specifically, under the
Damski map, the t = 0 singularity of the original problem becomes, verbatim, the initial
condition for the wave catastrophe solution found by Chandrasekhar in 1943 [9]. At
t = T/8, our interpretation ceases to exist: at this instance, all three effectively one-
dimensional shock waves emanating from each of the three sides of the initial triangle
collide at the origin, and the 2D-1D correspondence between the solution of [5] and the
Damski-Chandrasekhar shock wave becomes invalid.
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1 Introduction

1.1 The triangular breather phenomenon

The present work originates from the recent serendipitous experimental discovery of triangular-
shaped two-dimensional (2D) breathers—periodically pulsating objects—in experiments with
2D harmonically trapped Bose condensates [1]. In this generation of experiments, it is possible
to impose essentially any initial shape on the cloud. Reference [1] used uniformly filled
triangles, squares, pentagons, hexagons, disks, and some other shapes as initial conditions. It
was found that out of all the shapes considered, two of them—the circle and the equilateral
triangle—show periodic revivals, further interpreted as 2D Gross-Pitaevskii breathers.

In the present work, we will concentrate on the triangular-shaped breather. A Bose con-
densate is initially prepared in a flat-bottomed corral in the shape of an equilateral triangle.
When the condensate is subsequently released in a 2D harmonic trap, the outer edge of the
condensate first starts expanding. At the same time, the flat-density patch in the center of
the atomic cloud starts shrinking in area and increasing in density, while the transition region
between the flat patch and the zero-density edge expands in size. See Fig. 1 for an illustration
of the cloud geometry. It has been seen both experimentally and in Gross-Pitaevskii simulation

that at a time

T
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8
the central flat-density patch disappears and the condensate acquires hexagonal symmetry.
Here and below, T = 27/ w is the period of the applied harmonic trap, which has frequency w.
The flat patch then reappears, and at
T
2’
one again finds a flat-density triangular shape, but this time oriented upside down. At
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Figure 1: The geometry of the problem. We show both the initial corral (solid
line) and its upside-down revival at t = % (dashed line), as well as the density
along the down-vertical ray (x = 0, y = —z < 0), as obtained from the proposed
one-dimensional theory. The one-dimensional theory describes a free-propagating
Damski-Chandrasekhar shock wave (SW), controllably distorted by the harmonic
confinement. At t = T /8, the bulk portion of the density distribution disappears and
the one-dimensional theory stops being valid.

the central flat-density patch disappears again and a hexagon reappears. At

t=—,
2
the condensate returns to its initial shape. See Fig. 1 for the general layout.

To suppress oscillations of the moment of inertia in the experiments [2], the size of the
triangle was chosen in such a way that the initial trapping energy was exactly equal to the sum
of the kinetic and interaction energies. In particular, this condition guarantees that the size of
the upside-down triangle at t = T /4 is the same as the size of the original one. In fact, under
the above condition, the time evolution between t = T/4 and t = T /2 is an upside-down
version of the evolution between t =0 and t = T /4.

These results are fully consistent with a numerical simulation using the Gross-Pitaevskii
equation [3]

m

a 2 2
i =2 A + gl o+ Ty,
J|¢|2d2r=N, (1)
b =(r, 0.

Here and below, m is the atomic mass, g > 0 is the Gross-Pitaevskii coupling constant, N is the
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number of atoms, and w is the trapping frequency. The initial state is

Y(r, t =0) = the ground state of an equilateral-triangle-shaped corral,

(see[1,4,5)).

1.2 Thomas-Fermi hydrodynamics: the Shi-Gao-Zhai solution

For a slow spatial variation of the wavefunction, one may neglect the second spatial derivative
of the magnitude of the wavefunction |v| in the Gross-Pitaevskii equation (1) and arrive at the
time-dependent Thomas-Fermi hydrodynamics [6]:

o
a—n +V-(w)=0 continuity equation,
‘ 2)
Kol 1 5 .
—v+ (v -V)v=——V(gn)—wr Euler equation,
Jt m
where n(r,t) = [3(r, t)|? is the time-dependent density profile and
1
t)= ———|y¢*(r, )|V t)|—| Vy*(r,t t
V(0= 5o s (W OV, O] = [V 0 Jur, )
is the velocity field. The initial conditions are
¢ e an equilateral triangle with
rr .
n(r, t=0)= o 10 side length Ly = 2+/3R,, ’ 5
0 otherwise, )
v(ir,t=0)=0.

Here, the characteristic length scale R, is

g <=

R

&Ny
V =4/ —
P~V m

is the characteristic velocity related to the interaction strength of the atoms and to the density.
The initial triangle side, L, is chosen so that the oscillations of the moment of inertia are
suppressed [2].

Thanks to an ingenious insight, the authors of Ref. [5] found a very innovative solution
of the 2D Thomas-Fermi hydrodynamic equations that reproduces the “triangular breather”
phenomenon. The authors have shown that for triangular shapes, and only for triangular ones,
there is an exact map between the ideal 2D gas with a flat phase-space density distribution (a
zero-temperature “classical” Fermi gas) and the 2D Thomas-Fermi hydrodynamics. The map is
valid during the time interval 0 < t < T /4.

The solution of [5] reads

=

where

1 m
n(r,t)= ———x

3v3¢g

Area |:Triang1e I:Vr(t) Fdown T vO,r(r: t); Vr(t) rright + vO,r(r t); Vr(t) Plefe vO,r(r) t)] N

Triangle I:Vv(t) I'down + vO,v(r; t)> Vv(t) rright + vO,v(r, t); Vv(t) Tleft + vO,v(r: t)]] . (4)
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Here Triangle[a, b, c] is a triangle with vertices a, b, ¢ and Area[F] is the spatial area of a
geometric shape F; further,

Fdown = (O)_L), Pright = (+ 1, +L): Pleft = (_ 1; +L) >

V3 2" 243 2" 243
2v/3V,
V()= cot(wt)’
243V,
W)= tan(ewt)’
rw
vor(r,t)= +sin(o.>t) ’
rw
Vou(r, )= cos(wt)

The solution (4) of Ref. [5] perfectly reproduces the time-evolution observed in the experiment
[1]. At t =0 and t = T /4, the solution has, at the edge of the cloud, a discontinuous jump
in the density. Formally, at such instances, the hydrodynamical equations (2) become invalid,
being unable to properly interpret the infinite interaction force —V(gn) appearing on the
right-hand side of the Euler equation. Our goal is to interpret this discontinuity.

1.3 A side remark: the bulk density

An almost trivial observation that we will nonetheless use below is as follows. All the way to
t = T /8, the solution (4) features a central region of a flat density ny(t). In this region, the
interaction force vanishes, leaving only the force —mw?r of the external trap. The atoms there
are freely falling towards the center. It is easy to show that the resulting density behaves as

Mo
t)y=——5—. 5
Mpulk() cos2(w0) )
Accordingly, the velocity field becomes
Vouk(r, t) = —owr tan(wt) . (6)

2 Damski-Chandrasekhar shock waves

The article [7] poses the following question: what are the initial conditions for a general
one-dimensional (1D) set of hydrodynamic equations such that the resulting solutions can
be mapped to the solutions of the inviscid Burgers’ equation (i.e. of the nonlinear transport
equation J,u + u d,u = 0) and as such show a wave catastrophe?

The one-dimensional Thomas-Fermi hydrodynamics in the absence of a trap reads

0 0
—nyp+ =—(npvip) =0 continuity equation
ot 0% @)
0 %, 10 .
—vip+ | vip=— |vip = ——=-(gpn1p)  Euler equation
ot 0z moz

Inspired by [8], the author of [7] finds that the ansatz

1m ,
p =7 —Vip>
4g1p
2
le = §u,
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turns both the continuity equation and the Euler equation into the inviscid Burgers’ equation:

d d
—u+u=—u=0. 8
at 0z ®)
Recall that if there exist any two points in space such that z, > z; but u(z,, 0) < u(z;, 0),
the corresponding solution u(x, t) of the equation (8) is bound to undergo a wave-breaking
catastrophe at a time t* > 0 and ceases to exist for t > t*.
The full family of solutions of (8) is given by the implicit algebraic equation

u=f(z—ut), 9

with f(:) an arbitrary function. The only known explicit solution of the inviscid Burgers’
equation (8) was given by Chandrasekhar in 1943 [9]:

zZ
uChandrasekhar(z: t) = ? B (10$)

up to arbitrary temporal and spatial shifts. To interpret the solution (10) in terms of the general
solution (9), consider f(£) = %. The equation (9) would give u(z, t) = z/(t+6t). The solution
(10) will then correspond to the following limit: ucpandrasekhar(2, t) = limg, 0 2/(t + 6t).

It turns out that the solution (10) gives rise to the exact solution (4), taken along a particular
ray, within a limited time interval.

This Damski-Chandrasekhar shock wave, modified for our purposes, reads

- 2
nip(z, t):{lﬂ(M) }X{ 1 for z<Zg+ Vst }’

9¢gp t 0 otherwise (11
_ 2 Z_(ZG‘l‘VGt) 1 for ZSZG+VGt
V(s £) = {5 ( t V6 [ > undeterm. otherwise |’

where we have introduced an arbitrary Galilean boost V; and translation Z;. Note that we
have set the right spatial half of the Chandrasekhar solution (10) to zero; it can be shown that
such a truncated function remains a solution of the inviscid Burgers’ equation (8). Indeed,
such truncation leaves the field u(z, t) spatially and temporally continuous; only the spatial
derivative at the origin becomes discontinuous. Since the inviscid Burgers’ equation (8) is of
first order in the coordinate, no new terms appear on its right hand side after the discontinuity
is introduced. Also, the z > 0 part of the truncated field, u(z, t) = 0 is a valid solution of (8),
and hence the whole of the truncated field, u(z, t) = (z/t) 6(—z) is a valid solution of (8).
We observe the following:

1. (a) At the zero-density point
Zn=o(t) =Zg+ Vgt
where
nip(Zp=o(t), t) =0,
the force —J,(gpnip) is zero at all times t > 0.
(b) The particle velocity at this point coincides with the velocity of the point itself:

Vip(Zn=o(t), t) = V5.

These two observations are consistent with the fact that the point Z,_,(t) moves at a
constant velocity. Nonetheless, at the moment, it is not clear if either (a) or (b) is a generic
property. Looking ahead, both of them are guaranteed by a map to an ideal gas [5].
Indeed, on the ideal gas end, the edge Z,_(t) is represented by a single free particle. In
the absence of a map, the kinematics of the Z,_(t) edge has to be reevaluated.

6
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2. The solution (11) remains exact at all times, not only in the beginning of the evolution.

3. Let us select a density value ng ;p. The point at which the density reaches this value,

&1p™0,1D
0= ()

M1p(Zn=n,,, (1), ) =no1p

such that
also moves at the constant velocity

&1pM0,1D
Vn=n0’1D(t) =-3 \ E— + V.

Now, select a velocity value v, 1 and require that the solution (11) reaches this velocity vq 1p
at the point Z (t). Interestingly, this can be fulfilled at all times, simply by setting

+| &1p70,1D
VG =2 _— Yo.1D -
m ’

Now, the solution (11) can be amended as follows (see also Fig. 1):

n=ng 1p

n9,1p , for 2 < Zipner(t)
_Zou er t
nip(z, t) = {é% (th()) } for Zipner(t) <2 < Zyyer(t) |,
0 for 2 2 Zouter(t) (12)
V0,1D for 2 < Zinner(t)
_Zouter
VlD(Z> t) = % (Zf(t)) + Vouter for Zinner(t) <z < Zouter(t) 5
undetermined for 2 > Zouter(t)

with the positions and the velocities of the outer and inner edges given by

4| &1pM0,1D
Vouter =2 m + VO,lD > (13)

Zouter(t) = Zedge,O + Voutert > (14)
1| 81b™0,1D
Vinner =—\\l——+t V0,1D > (15)
m
Zinner(t) = Zedge,O + Vinnert » (16)

where Zg4q. o is the arbitrary initial position of the shock wave front, infinitely narrow at this
instance.
Two more observations:

4. Velocity v, 1p with which the atoms move at the inner edge is different from the velocity
Vinner Of the edge itself.

5. The formula (15) for the velocity of the inner edge of the shock wave front can be proven
for any discontinuity in the derivative of the density, using matter conservation alone.
However, this conclusion is only valid in one dimension: it can be shown that additional
terms in the continuity equation destroy this relationship in the case of non-straight 2D
edges.
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3 A general map between hydrodynamic solutions, induced by
scale invariance

Pitaevskii and Rosch discovered a particular symmetry of 2D Bose-condensates [2]. This symme-
try stems from the fact that in two dimensions, the coupling constant g in Ref. (1) has the same
dimensionality as the diffusion constant 42/(2m) appearing in the kinetic energy and as such
does not induce a length scale. As a result, the following three observables form a closed algebra:
the Hamiltonian, the moment of inertia (proportional to the hyperradius), and the generator
of scaling transformations. Empirical consequences are that (a) the dynamics of the moment
of inertia separates from that of the rest of the system, and (b) there emerges an additional
integral of motion, namely the Casimir invariant for the above algebra. These properties allow
us to relate the dynamics of any two systems that have the same hyperangular dynamics—the
dynamics complementary to the dynamics of the hyperradius—but different hyperradial one
and, more generally, different dependence of their Hamiltonians on the hyperradius.
Let us first introduce the hyperradius R(t):

1

R(t) = U n(r, t)r2dzr)E ) (17)

The new integral of motion that is preserved by the hydrodynamic equations (2) in the 2D case
is represented by the square of a generalized hyperangular momentum:

£2 = szz(t) {Ekinetic-hyperangular(t) + Einteraction(t)} 5 (18)
where
mv2(r,t) ,  mR(t)
Ekinetic-hyperangular(t) = n(r, t) —=d°r— T
and

1
Einteraction(t) = f 5 gnz(r: t) dzr

are respectively the kinetic hyperangular and interaction energies.
The dynamics of the hyperradius is governed by the equation of motion

2

)
2RO w R(t) . (19)

R(t) =
The motion generated by equation (19) is an isochronous (meaning that the period does
not depend on the energy) but polychromatic oscillation of universal base frequency 2w. A
stationary fixed point of (19) is

L
Ro=\—. (20)
mew
Note that at this point, the sum of the kinetic hyperangular and interaction energies equals the

trapping energy: Ekinetic—hyperangular + Einteraction = Etrapping7 where

mw2r2

Etrapping(t) = f n(r, t) d’r

At the level of the hydrodynamic equations (2), the map between two motions sharing
the same hyperangular dynamics looks as follows. Consider two sets of the 2D hydrodynamic

8
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equations (2), generally corresponding to two different trapping frequencies, w; and w, but
with the same coupling constant g:

5r . M2 +Vi5-(n12v12)=0,
t12
’ (21

1 2
Vig+ (V12 Vi) Vi =——Vi5(gn o) —wi,r,,
3 tl,Z m ’ ’

where V; o = 8/3r; . It can be straightforwardly verified that there is a one-to-one correspon-
dence between the solutions of the first and the second sets, given by

RI(t1)ny(ry, t1) = R3(ta) na(ry, ts)

d d , (22)
Ry (nars, 6= 11 IR (0001) = Rae) (vl )= 1 Il Ro(0)])
1 2
where
rn
Ri(t)  Ra(ty)’
dt;  dt, (23)
R%(tl) R%(tz) ’
with
t1=0<:>t2=0. (24)
4 A particular scale-invariance-induced map to be used
A particular case of the general map (22)-(24) is given by
w=w wy =0
ny(ry, 0) = nip(ry) ny(ry, 0) = nyy (1) (25)
vi(r;,0)=0 Vy(ry,0) =0,

where n;,(r) is the initial density, the same for both systems. Notice that the two systems share
the same initial value of the hyperradius,

R1(0) =R4(0) = R(qy,
and the same value of the Casimir invariant,
ﬁl = ,62 = £(0) .

We will identify the System 1 with the system described by Egs. (2), subject to the ini-
tial conditions (3). Recall that these initial conditions were chosen in such a way that the
hyperradius R, resides at the stationary point:

L)
Rl(tl):R(O) = % .

The identification of System 1 is completed by setting

(n, v) =(ny, v1),
(r,t)=(ry, t1).
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As for System 2, we will take it to be the same as System 1 except that there is no trapping
potential. We get

R 1
72_2 =/1+(wty)? = (26)
©)

cos(wt)’
r
_ ./ 2p =
ro = 1+ ((.Otz) r= Cos(wt) B (27)
t, = 1 tan(wt), (28)
w
and, accordingly,
1
n(r, t) = ———n,(ry(r, t), t5(t))
cosZ(wt) ' 29)
v(r,t)= (va(ry(r, 1), ta(t)) — wry(r, t)sin(wt) cos(wt))

"~ cos(wt)

5 The Shi-Gao-Zhai solution vs. Damski-Chandrasekhar shock waves

Let us emphasize that System 2, subject to the map (25), (28) and (29), describes free propaga-
tion from the initial condition (3), depicted in Fig. 1 as a solid line. We now focus our attention
to the center of the base of the initial triangle, at (x =0, y = —L,/(2v/3) = —R,,). In free prop-
agation from a triangle, the left and right vertices bounding the base cannot have an immediate
effect on the dynamics in the center. As a result, for a period of time, the propagation in the
base center, under the “free” System 2, will effectively be a free one-dimensional propagation.
This is the point where the Damski-Chandrasekhar shock wave emerges as a description of the
dynamics.
Let us make the following association:

gny((x3 =0, y, = —2,), t3) _ g1pMip(22, t2)
m m ’
(va((x2 =0, yp = —=25), t3)), = —Vip(22, t2),

where nip(z, t) and vip(z, t) describe the Damski-Chandrasekhar shock wave (12), with

V,
Zedge,O = LO/(Z‘/§) = R‘u = ZM 5

81pMo, 1D gn
m m
Vo0 = 0.

(30)

0 _ /2
=Vv?,

The bulk density ng ;p remains constant both in space and in time. The front of the shock wave
is a half-parabola, with a center at

Zouter(tz) = R,u(l + zwfz)
and the bulk interface at
Zinner(tz) = RM(l - th) .

At ty = 1/w, the inner edge of the shock wave front reaches the origin and the one-dimensional
theory collapses. Now observe that according to the map (28), t, = 1/w corresponds to the
actual time of t = T /8, which is exactly the instance when the bulk disappears in the exact
2D solution (4). In general, the shock wave (12)—(16), with the association (30), under the

10
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n(x=0,y,t=0.0625T)/ng
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Figure 2: The shock wave theory (blue, dashed) vs exact hydrodynamics (red). The
density is plotted at t = T /16, along the vertical symmetry axis of the triangle.

map (25), (28) and (29), can be shown to reproduce the solution (4) at (x =0, y = —%)
exactly, for a period of time 0 < t < T/8. Figure 2 corroborates this correspondence.

We expect that the other points on the base of the original triangle, along with their
counterparts on the other two sides, will also behave as one-dimensional shock waves, but with
a solution that stops being valid before T /8.

6 Discussion and summary

We have interpreted the exact solution [5] for the triangular breather observed in the ex-
periment [1] in terms of the Gross-Pitaevskii shock waves introduced by Damski [7]. More
specifically, under the transformation discovered in [7], the t = 0 singularity of the original
problem becomes, verbatim, the initial condition for the wave-breaking catastrophe solution of
the inviscid Burgers’ equation (also commonly referred to as the nonlinear transport equation)
found by Chandrasekhar in 1943 [9]. This interpretation remains valid and exact for all times
in the 0 < t < T/8 interval.

Chandrasekhar’s catastrophe at t = 0 is consistent with a loss of the Fermi-Bose connection
observed in [5]. It is also consistent with the fact that at t = 0, Chandrasekhar’s solution breaks
the time-reversal invariance that is dictated by the underlying Gross-Pitaevskii equation [1,4,5].
Namely, at t = 0, the Galilean boost V; (which determines the velocity of the outer edge of
the shock wave (13-14); see (11)) reverses sign and thus undergoes a sudden jump. Such a
discontinuity can not be supported by the hydrodynamic equations, signifying a failure thereof.

A related phenomenon occurs at the time t = T /8. This is the moment when the inner
edge (15-16) of the shock wave reaches the origin, where it meets the two other shock wave
edges, originating from the two other sides of the initial triangle. At this instant, the region
occupied by the bulk (5-6) shrinks to a point. Again, the time-reversal invariance suggested by
both the experiment and the Gross-Pitaevskii numerics implies that at t = T /8, the bulk velocity
gradient in (6) reverses sign, along with the velocity of the inner edge (15), thus signifying
another breakdown of the hydrodynamic description.

Curiously, at t = T /8, the Fermi-Bose map [5] remains valid. It is only at T /4, that the
map starts producing results different from the Gross-Pitaevskii predictions and requires an
abrupt parameter update.

11
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