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In Learn-As-you-GO (LAGO) adaptive studies, the intervention
is a complex multi-component package, and is adapted in stages dur-
ing the study based on past outcome data. This design formalizes
standard practice in public health intervention studies. An effective
intervention package is sought, while minimizing intervention package
cost. In LAGO study data, the interventions in later stages depend
upon the outcomes in the previous stages, violating standard sta-
tistical theory. We develop an estimator for the intervention effects,
and prove consistency and asymptotic normality using a novel cou-
pling argument, ensuring the validity of the test for the hypothesis
of no overall intervention effect. We develop a confidence set for the
optimal intervention package and confidence bands for the success
probabilities under alternative package compositions. We illustrate
our methods in the BetterBirth Study, which aimed to improve ma-
ternal and neonatal outcomes among 157,689 births in Uttar Pradesh,
India through a multi-component intervention package.

1. Introduction. Adaptive designs have been developed and have been
available for use in clinical trials for decades. The U.S. Food and Drug
Administration defines an adaptive design as “...a clinical study design that
allows for prospectively planned modifications based on accumulating study
data without undermining the study’s integrity and validity” (FDA, 2016).

The existing literature on adaptive designs has thus far considered sev-
eral types of prospectively planned design modifications, including blinded
sample size reassessment, group sequential testing, interim analysis for ben-
efit or futility, successive re-randomization, changing subgroup proportions
or eligibility criteria of the trial (Rosenblum and van der Laan, 2011) and
dropping treatment arms. Prominent among the techniques developed to
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preserve the validity of statistical inference when design adaption has oc-
curred is the conditional error function (Proschan and Hunsberger, 1995;
Müller and Schäfer, 2001, 2004), and combination functions have been used
to aggregate p-values from multiple stages (Bauer and Kohne, 1994; Bran-
nath, Posch and Bauer, 2002). See Kairalla et al. (2012); Bauer et al. (2016)
for recent comprehensive reviews of adaptive designs in clinical trials. In
addition to valid testing, methods have been developed for estimation in an
adaptive group sequential design (e.g. Gao, Liu and Mehta, 2013).

The present work is motivated by large-scale public health intervention
studies of complex multi-component intervention packages. In the newly
proposed “Learn-As-you-GO” (LAGO) design, the intervention, which can
e.g. be a treatment, a device, a new way to organize care, or, more likely,
a combination thereof, is composed of several components. While subject
matter experts have some knowledge with regard to the preferred interven-
tion package, in LAGO, optimal development of the intervention package is
an inherent part of the study goals. A LAGO study is conducted in stages.
After each stage, the data collected so far are analyzed, the intervention
package is reassessed, and a revised intervention package is rolled out in
the next stage. Unlike previous adaptive designs, in the LAGO design, the
composition of the intervention package in later stages depends on the out-
comes from previous stages. The lack of suitable framework, estimation and
associated theory motivating the research in this paper, with focus on new
estimators and asymptotic theory utilizing a novel coupling argument.

Response-adaptive designs (Rosenberger, Flournoy and Durham, 1997;
Hu and Rosenberger, 2003) focus on binary or discrete treatments and,
according to accumulated data, change treatment allocation probabilities,
not (as in LAGO) treatment options. Thus, response-adaptive designs do
not concern a multivariate intervention package, the composition of which
changes with trial stage in LAGO studies.

The Sequential Multiple Assignment Randomized Trial (SMART) design
(Murphy, 2005; Murphy et al., 2007) randomizes study participants at more
than one time point to pre-specified randomization options with probabilities
that depend on participant’s past characteristics and outcomes. The aim
of a SMART trial is to estimate the optimal sequence of treatments for
each patient given the patient’s covariate and response histories up to the
present. It is a non-adaptive design method which optimizes a personalized
and dynamic intervention, in part by restricting randomization options at
each step. In contrast, LAGO identifies a complex static, possibly ‘cluster-
personalized’, intervention package where, unlike in SMART, the options
are unknown at the start of the trial and are estimated anew as a result of
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trial data up to the current stage. In addition, LAGO studies will add new
centers, with new participants, entering at each stage, while in SMART the
same individuals are repeatedly re-randomized.

The multiphase optimization strategy (MOST, Collins, Murphy and Strecher,
2007; Collins, Nahum-Shani and Almirall, 2014) consists of three phases:
preparation, optimization and evaluation. The optimal intervention package
is developed during the optimization phase, followed by its formal statistical
evaluation in a randomized controlled trial. The aim of MOST is similar to
LAGO: to develop an optimal intervention package and estimate its impact.
However, in MOST, the outcomes of the past are used at most in one stage,
to determine the optimal package in the optimization phase. The result-
ing package is then independently studied through a controlled trial in the
evaluation phase, using no prior data.

At face value, phase I dose-finding studies have perhaps the greatest sim-
ilarity to the LAGO design paradigm. In dose-finding studies, the goal is
to find the maximum tolerated dose, that is, the highest dose of a drug
such that adverse effects of the drug are below a pre-determined threshold.
Dose values are assigned to patients in a sequential manner, and in each
step a decision is made to stop and declare that the maximum tolerated
dose has been found, or to continue, and if so, with which dose. The more
traditionally used methods include the “3 + 3” and “accelerated titration”
designs (Simon et al., 1997; Wong, Capasso and Eckhardt, 2016). Another
popular method is the continual reassessment method (O’Quigley, Pepe and
Fisher, 1990; O’Quigley and Shen, 1996), which assigns each patient the
current estimated maximum tolerated dose. Methods were also developed
for the optimal dose of two drugs simultaneously (Thall et al., 2003; Wang
and Ivanova, 2005). Rosenberger and Haines (2002) provide a review of the
continual reassessment method and additional statistical methods for dose
finding studies. Dose-finding studies are generally too small for the applica-
tion of asymptotic statistical methods, and typically Bayesian approaches
have been used. In contrast, in public health intervention studies, the mag-
nitude of the per-stage sample size is typically much larger than the sample
size in dose-finding studies, while the maximum number of stages will be
limited. Additionally, unlike dose-finding studies, where methods are con-
sidered for a single or at most dual treatments, the complex public health
interventions motivating the development of the LAGO design feature mul-
tiple components, some of which are continuous, while others are binary.

An ad hoc example of a precursor to a formal LAGO study is the “Bet-
terBirth Study” (Hirschhorn et al., 2015; Semrau et al., 2017) of Ariadne
Labs, a joint center of the Brigham and Women’s Hospital and the Harvard
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T.H. Chan School of Public Health, led by Atul Gawande (Gawande, 2014).
The BetterBirth Study assessed the use of the World Health Organization’s
(WHO) Safe ChildBirth checklist, a 31-item checklist of best labor and de-
livery practices believed to be feasible in resource-limited settings, to reduce
maternal and neonatal mortality. The intervention was adapted and tested
in a three phase process in Uttar Pradesh, India, where neonatal mortality
is 32 per 1000 live births and maternal mortality is 258 per 100,000 births
(Semrau et al., 2017). During the first two phases, the intervention was
adapted, and a final version was tested in a cluster randomized trial, that
included 157,689 mothers and newborns.

The first goal of a LAGO study is to identify the optimal intervention
package such that the cost of the intervention is minimized and the proba-
bility of a desired binary outcome is above a given threshold. For example,
in the BetterBirth Study, the outcome could be the use of the WHO Safe
ChildBirth checklist, with the aim being, for example, that the checklist is
used during at least 90% of the births. In the illustrative example included
in this paper, we investigate a process outcome, oxytocin administration af-
ter delivery, with the aim being that 85% of mothers will receive oxytocin
after delivery. Oxytocin is recommended by the WHO, as a proven interven-
tion for preventing postpartum hemorrhage. We determine whether the use
of a multiple component intervention package that includes on-site coach-
ing visits and an intervention launch of a particular duration, increases the
administration of oxytocin, compared to standard of care.

The second goal of a LAGO study is to assess the overall impact of the in-
tervention strategy, as well as that of its individual components. We present
methodology to achieve both goals.

In a LAGO study, the data are not an independent sample. Beginning
with the second stage, the recommended intervention package is itself a ran-
dom variable that depends on previous outcomes. In the final analysis, a
LAGO study uses the data from all stages. When considering the asymp-
totic behavior of the estimators, we assume that the sample size in each
stage increases at a similar rate. In addition, we assume that the interven-
tion in each stage converges in probability to a constant as the number of
observations in the previous stages goes to infinity. This would happen, for
example and under the usual regularity conditions, if the intervention in
each stage is based on a maximum likelihood estimator obtained from the
data collected in previous stages.

LAGO studies can be further characterized by a key design feature which
determines the strength of the causal inferences that can be made. In an un-
controlled LAGO study, there are neither baseline data available to permit a
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quasi-experimented before-after comparison nor randomized or nonrandom-
ized planned variation in the implementation of the intervention package.
Thus, unplanned variation, which is widespread in large-scale public health
interventions, serves as the basis for estimating causal contrasts. Under un-
planned variation, causal inference methods will be needed to adjust for
possible confounding bias (Hernan and Robins, 2019; Spiegelman and Zhou,
2018). In a controlled LAGO study, baseline outcome data are collected be-
fore the intervention is implemented, or in additional centers in which no
intervention was implemented. These additional centers may be randomized
or not, to be included in the study as controls. When baseline data serves as
the control, the quasi-experimental before-after design provides the data for
causal contrasts. The before-after design relies on the untestable assumption
that there are no time trends in the data, so changes in mean outcomes can
be solely attributed to intervention effects (Cox, 1958). If, instead or in ad-
dition to baseline data, there are concurrent control centers, stronger causal
inference is permitted by design, with the strongest design in this context
being being a randomized controlled LAGO trial.

We propose estimators for a LAGO study allowing for several stages,
multiple centers or sites, multiple component complex interventions, and
center-specific baseline covariates that affect the outcome rate, or random
center-specific deviations from the recommended intervention, or both. We
show that even in this setup, the optimal intervention can be learned from
the combined data from all stages. Even when the optimal intervention in
the last stage does not achieve the pre-specified study goal, the optimal
intervention is estimated. We prove consistency and asymptotic normality of
the new estimators utilizing a novel coupling argument. We further establish
the validity of tests for an overall intervention effect. In addition, we develop
a confidence set for the optimal intervention package and confidence bands
for the target outcome probability under various observed or hypothesized
intervention packages.

The rest of the paper is as follows. In Section 2, we describe the LAGO
design and our key assumptions (Section 2.1), propose a relevant estimator
and study its asymptotic properties (Section 2.2), which we then use for con-
struction of hypothesis tests (Section 2.3) and confidence intervals (Section
2.4). In Section 3, we report the results of a simulation study and in Section
4 we present an illustrative analysis of the BetterBirth Study. In Section 5
we discuss our results and future research. Proofs of our two main theorems
are given in the appendix. Additional proofs and simulation study results
are given in the supplementary materials.
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2. LAGO design - theoretical development.

2.1. Description of the learn-as-you-go design. The methods we develop
in this paper cover an arbitrary number of stages, K. At each stage k, a
version of the intervention package is implemented in each of Jk centers. Let
njk denote the sample size (e.g. the number of births) in the j-th center
at stage k. We assume that each center is included in one stage only. In
a randomized controlled trial, centers may be randomized to either inter-
vention or control. Alternatively, data might be collected pre and post the
implementation of the intervention package and then a center contributes
data to both the intervention and the control.

Asymptotic theory is developed for the setting where the number of pa-
tients per center goes to infinity at the same rate in all stages, leading to
reliable approximations when the number patients in each center is rela-
tively large. Let nk =

∑Jk
j=1 njk be the number of participants in stage

k and n =
∑K
k=1 nk be the total number of participants. Our asymptotic

inference assumes that the ratio between the number of patients in each
center and the total sample size n converges to a constant, and we write
αjk = lim

n→∞
njk/n; then,

∑K
k=1

∑Jk
j=1 αjk = 1. Define also n̄k = (n1, ..., nk).

For ease of presentation, we first develop methodology for a LAGO study
consisting of K = 2 stages. Section 3 of the supplementary materials covers
studies with K > 2.

The multivariate intervention package consists of p components. Let X
be the support of the intervention, that is, all possible intervention values.
For example, if all p intervention components are continuous and each is
constrained to be within a given interval [Lr,Ur], r = 1, ..., p, then X =
[L1,U1]× [L2,U2]×·· ·× [Lp,Up]. Throughout this paper, as would ordinarily
be the case in practice, we assume that X is bounded.

For stage 1, an initial x(1) (or x
(1)
j for each center j) is chosen by the

investigators, based on their best judgment. We distinguish between the
recommended intervention and the actual intervention. In large scale public
health settings, the actual intervention, denoted by Aj , may differ from
the recommended intervention, due to local constraints or preferences. We
denote zj for center-specific characteristics reflecting baseline heterogeneity
between centers with respect to the outcome of interest and we consider the
zj fixed, i.e., they are not part of the intervention package. For each center,
zj could be, for example, the district of the health center or its monthly
birth volume.

We assume that the probability of success for a single unit i (e.g., par-
ticipant or birth) in a center j with characteristics zj under intervention
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A = aj , paj (β; z) = pr(Yij = 1 | Aj = aj ,Xj = xj , zj ;β), does not depend
on the recommended intervention xj , except through the actual intervention
aj , and follows a logistic regression model

(2.1) logit paj (β; zj) = β0 + βT1 aj + βT2 zj ,

where βT = (β0,β
T
1 ,β

T
2 ) is a vector of unknown parameters, such that β1

describes the effects of the p intervention package components. For centers
in the control arm or for pre-intervention data, if available, a = x = 0.
We assume that in each stage, conditionally on all aj and zj , outcomes are
independent within and between centers. Learning the intervention, however,
causes dependence between stages, which we consider below.

A main goal of the LAGO design is to identify the optimal intervention
package. Let p̃ be a pre-specified outcome probability goal and C(x) be
a known cost function. For example, in the BetterBirth Study, one may
want to find the minimal number of on-site coaching visits to ensure that
oxytocin is administrated to the mother right after delivery in at least 85%
of births (p̃ = 0.85). If β were known, an optimal intervention for a center
with covariates zj could be the solution to the center-specific optimization
problem

(2.2) min
xj

C(xj) subject to pxj (β; zj) ≥ p̃ & xj ∈ X .

Computational issues regarding solving (2.2) will be discussed in Section 2.5.
We assume that for the true parameter values, there is a unique solution to
(2.2). For example, if the intervention has two components with unit costs
c1 and c2 and a linear cost function, we assume that β11/c1 6= β12/c2. Other
optimization criteria can be considered. For example, the optimal interven-
tion could require that the intervention results in an outcome probability p̃
when calculating a weighed average over a group of centers {j = 1, ..., J},
with sample sizes nj . That is,

min
x1,....,xJ

J∑
j=1

C(xj) subject to
1

N

J∑
j=1

njpxj (β; zj) ≥ p̃ & xj ∈ X ∀j

where N =
∑J
j=1 nj . In this paper we focus on (2.2).

We continue our description of the data and model. Let z̄(k) = (z
(k)
1 , ..., z

(k)
Jk

)
be the observed center characteristics in each of the Jk stage k centers. We

start with stage 1. Let x
(1)
j be the recommended (multivariate) intervention

package for center j in stage 1, which in the absence of z, may be the same
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for all centers. We assume that the stage 1 recommended interventions x
(1)
j ,

j = 1, .., J1, are determined before the trial starts. The actual intervention

in center j of stage 1 is, however, a
(1)
j = h

(1)
j (x

(1)
j ), where h

(1)
j is a determin-

istic center-specific continuous function from X to X that determines how
center j implements the actual intervention based on the recommendation

x
(1)
j . We do not require that the h

(1)
j are known, but only that the a

(1)
j are

observed. Let Y
(1)
ij be the binary outcome of interest for patient i in cen-

ter j of stage 1, each following model (2.1), and let the outcome vector in

center j of stage 1 be Y
(1)
j = (Y

(1)
1j , ..., Y

(1)
nj1j

). Let ā(1) = (a
(1)
1 , ...,a

(1)
J1

) and

Ȳ
(1)

= (Y
(1)
1 , ...,Y

(1)
J1

) be the stage 1 actual interventions and outcomes,
respectively.

Following the stage 1 data collection, a stage 1 analysis is conducted to
determine the recommended interventions for the new centers in stage 2,

denoted by x̂
opt,(2,n1)
j , j = 1, ..., J2. If there are control centers, their rec-

ommended intervention and their actual intervention are zero. The value
x̂
opt,(2,n1)
j is chosen through a function, g, that takes as input the stage 1

data, the goal of the intervention, and the center-specific covariates and re-
turns a recommended intervention, which is usually the estimated optimal

intervention x̂
opt,(2,n1)
j = g(ā(1), Ȳ

(1)
, z̄(1), z

(2)
j ). Then, x̂

opt,(2,n1)
j can be ob-

tained by solving the optimization problem given in (2.2) for each center,

with β replaced by an estimator β̂
(1)

based on the stage 1 data alone. The

superscript, n1, in x̂
opt,(2,n1)
j reminds us that x̂

opt,(2,n1)
j is a random variable

that is a function of the data from the n1 participants in stage 1.

The actual intervention implemented in center j of stage 2 is A
(2,n1)
j =

h
(2)
j (x̂

opt,(2,n1)
j ), where h

(2)
j are the analogues of h

(1)
j , but now for the stage

2 centers. Let ¯̂xopt,(2,n1) = (x̂
opt,(2,n1)
1 , ..., x̂

opt,(2,n1)
J2

) be the recommended

interventions at the J2 stage 2 centers. Once ¯̂xopt,(2,n1) are determined,

stage 2 outcomes are collected under the actual interventions Ā
(2,n1) =

(A
(2,n1)
1 , ...,A

(2,n1)
J2

), which may be the same as ¯̂xopt,(2,n1). Let Y
(2,n1)
j =

(Y
(2,n1)
1j , ..., Y

(2,n1)
nj2j

) be the stage 2 outcomes in center j, each following model

(2.1), and Ȳ
(2,n1) = (Y

(2,n1)
1 , ...,Y

(2,n1)
J2

) be all the stage 2 outcomes. Our
two main assumptions are

Assumption 2.1. Conditionally on ¯̂xopt,(2,n1), (Ā
(2,n1), Ȳ

(2,n1)) are in-

dependent of the stage 1 data (ā(1), Ȳ
(1)

).

Assumption 2.2. For each j = 1, ..., J2, the stage 2 recommended in-
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tervention x̂
opt,(2,n1)
j converges in probability to a center-specific limit x

(2)
j .

Assumption 2.1 assumes that learning takes place only through the deter-
mination of the recommended intervention. It ensures that the dependence
between the stage 1 data and stage 2 outcomes is solely due to the de-

pendence of the x̂
opt,(2,n1)
j on the stage 1 data. It specifically means that,

given ¯̂xopt,(2,n1), the actual intervention in a stage 2 center is condition-

ally independent of Ȳ
(1)

. Under Assumption 2.1, and the aforementioned
assumption that conditionally on the actual interventions, the outcomes do
not depend on the recommended interventions, we can conclude that in stage

2, pr(Ȳ
(2,n1) | Ā(2,n1), ¯̂xopt,(2,n1), z̄(2), Ȳ

(1)
) = pr(Ȳ

(2,n1) | Ā(2,n1), z̄(2)),
so the logistic regression model (2.1) holds for the stage 2 data. Assump-
tion 2.2 implies that in the presence of more and more stage 1 data un-

der a
(1)
j , j = 1, ..., J1, each of the estimated optimal intervention packages

x̂
opt,(2,n1)
j , j = 1, ...J2, converges in probability to a fixed value x

(2)
j . For ex-

ample, Assumption 2.2 will hold if ¯̂xopt,(2,n1) are continuous functions of the

stage 1 maximum likelihood estimator, β̂1, as is the case if x̂
opt,(2,n1)
j solves

(2.2) and β11/c1 6= β12/c2. Under Assumption 2.2 and continuity of the hj ’s,

the Continuous Mapping Theorem implies that A
(2,n1)
j = h

(2)
j (x̂

opt,(2,n1)
j )

converges in probability to a
(2)
j = h

(2)
j (x

(2)
j ). We additionally assume that

there is no separation or quasi-separation of the data. This assumption en-
sures that the estimator is unique and alleviates identifiability concerns (Al-
bert and Anderson, 1984; Wedderburn, 1976).

In fact, the results we prove in this paper regarding the estimators ob-

tained at the end of the study hold not only for g(ā(1), Ȳ
(1)
, z̄(1), z

(2)
j ) =

x̂
opt,(2,n1)
j , but under any choice of function g for the recommended inter-

vention, as long as Assumption 2.2 holds.

2.2. β̂ and its asymptotic properties. We estimate β after the K stages
are concluded. As in previous sections, for ease of development, we consider
here K = 2. Section 3 of the supplementary materials covers the case of
K > 2.



10 D. NEVO ET AL.

We propose to estimate β by solving the estimating equations

0 = U(β) =
1

n


J1∑
j=1

nj1∑
i=1

 1

a
(1)
j

z
(1)
j

(Y (1)
ij − pa(1)

j

(β; z
(1)
j )

)

+

J2∑
j=1

nj2∑
i=1

 1

A
(2,n1)
j

z
(2)
j

(Y (2,n1)
ij − p

A
(2,n1)

j

(β; z
(2)
j )

) .

(2.3)

In Section 2 of the supplementary materials, we show that the estimator β̂
that solves (2.3) is also a maximum partial likelihood estimator, although
that is not needed for the proofs below. The estimating equations (2.3) also
arise if the interventions A were determined a priori, so β̂ can be estimated
using standard software.

Asymptotic theory for β̂ is complicated, however, by the fact that Ȳ
(1)

and (Ā
(2,n1), Ȳ

(2,n1)) are not independent. Thus, the score function U(β) is
not a sum of independent random variables.

Let B be the parameter space for β. A conditional expectations argument
(Equation (A.6) in the appendix) shows that the score function has mean
zero when evaluated at the true value, denoted by β?. Furthermore, we show
in the appendix (Equation (A.7)) that the two terms in (2.3), although
dependent, are uncorrelated. These two properties are useful for proving
that β̂ is consistent:

Theorem 2.1. (Consistency). Assume B is compact. Under Assump-

tions 2.1 and 2.2, β̂
P−→ β?.

The proof is given in Section A.1 of the appendix.
Asymptotic normality also poses a challenge due to the dependence be-

tween the two summands in U(β). It can be shown that ∂U(β)/∂β con-
verges in probability to −I(β), for all β ∈ B, with I(β) given in Equation
(A.13) of the appendix. The following theorem establishes asymptotic nor-
mality of β̂:

Theorem 2.2. (Asymptotic normality). Under Assumptions 2.1 and
2.2,

(2.4) n1/2(β̂ − β?) D−→ N
(
0, I−1(β?)

)
.

The full proof of Theorem 2 is given in Section A.2 of the appendix. Here
we outline the main parts of the proof, which rests upon a novel coupling
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argument. First, by the mean value theorem and further arguments, it can
be shown that the asymptotic distribution of n1/2(β̂ − β?) is the same as
the asymptotic distribution of

[I(β?)]
−1
n−1/2

 J1∑
j=1

nj1∑
i=1

 1

a
(1)
j

z
(1)
j

(Y (1)
ij − pa(1)

j

(β?; z
(1)
j )

)

+

J2∑
j=1

nj2∑
i=1

 1

A
(2,n1)
j

z
(2)
j

(Y (2,n1)
ij − p

A
(2,n1)

j

(β?; z
(2)
j )

) .
(2.5)

We next show that the asymptotic distribution of the part of (2.5) that does
not involve I(β?) is multivariate normal. The following coupling argument
deals with the fact that the two summands in (2.5) are not independent.

For each j = 1, ..., J2, let Y
(2)
ij , i = 1, ..., nj2, be independent Bernoulli

random variables, independent of all stage 1 data, with success probability

p
a
(2)
j

(β?; z
(2)
j ), where, as defined before, a

(2)
j = h

(2)
j (x

(2)
j ). We construct

variables Ỹ
(2,n1)
ij which, given the stage 1 data and the A

(2,n1)
j , have the same

distribution as the original Y
(2,n1)
ij , but coupled (see e.g. Lindvall (2002))

with the Y
(2)
ij in the following way. Let Wij be independent uniform (0, 1)

random variables, independent of all other variables introduced so far. For

the case p
a
(2)
j

(β?; z
(2)
j ) > p

A
(2,n1)
j

(β?; z
(2)
j ), let

(2.6) Ỹ
(2,n1)
ij =



0 if Y
(2)
ij = 0

0 if Y
(2)
ij = 1 and Wij <

p
a
(2)
j

(β?;z
(2)
j

)−p
A

(2,n1)

j

(β?;z
(2)
j

)

p
a
(2)
j

(β?;z
(2)
j

)

1 if Y
(2)
ij = 1 and Wij ≥

p
a
(2)
j

(β?;z
(2)
j

)−p
A

(2,n1)

j

(β?;z
(2)
j

)

p
a
(2)
j

(β?;z
(2)
j

)
.

A similar expression is given in equation (A.14) in the appendix for the

case p
a
(2)
j

(β?; z
(2)
j ) ≤ p

A
(2,n1)
j

(β?; z
(2)
j ). The key property of the coupling

argument is that given A
(2,n1)
j and the stage 1 data, the distribution of

the coupled Ỹ
(2,n1)
ij is identical to the distribution of the original Y

(2,n1)
ij .

Therefore, when we replace Y
(2,n1)
ij with Ỹ

(2,n1)
ij in (2.5), the distribution of

(2.5) is unaffected. The coupled outcomes are used in Section A.2 to show
that the part of (2.5) that does not involve I(β?) has the same asymptotic



12 D. NEVO ET AL.

distribution as
(2.7)

1√
n

{
J1∑
j=1

nj1∑
i=1

 1

a
(1)
j

z
(1)
j

(Y (1)
ij −pa(1)

j

(β?; z
(2)
j )
)
+

J2∑
j=1

nj2∑
i=1

 1

a
(2)
j

z
(2)
j

(Y (2)
ij −pa(2)

j

(β?; z
(2)
j )
)}
.

The outcomes Ȳ
(1)

and Ȳ
(2)

= (Ȳ
(2)
1 , ..., Ȳ

(2)
J2

) are independent, because the

Y
(2)
ij are the outcomes under the constant intervention a

(2)
j . Therefore, by

standard logistic regression theory, the expression in (2.7) converges in dis-
tribution to a normal random variable with mean zero and variance I(β?).
Combining the asymptotic normality of (2.7) with (2.5) implies that Theo-
rem 2 holds.

The asymptotic variance can be consistently estimated from the data by

replacing a
(2)
j , β?, αj1 and αj2 with A

(2,n1)
j , β̂, nj1/n and nj2/n, respec-

tively, in I(β?). The asymptotic variance and its approximation are the

same as if the interventions were fixed in advance and Ȳ
(1)

and Ȳ
(2,n1) were

independent.

2.3. Hypothesis testing. A major goal of a LAGO study is to test the null
hypothesis of no overall intervention effect. One way to test this is to carry
out a test for the subvector of β characterizing the effect of the intervention.
That is, to test H0 : β1 = 0 in model (2.1) using the asymptotic normality
result of Section 2.2. Because of this asymptotic normality result, the Wald
or likelihood ratio tests for H0 : β1 = β0

1 are asymptotically valid for any
constant β0

1.
Alternatively, in a controlled LAGO design, let Q be a group indicator

that equals one for the intervention group and zero for the control, and let
p0 and p1 be the success probabilities under Q = 0 and Q = 1, respectively.
Then, an alternative test for an overall intervention effect, H0 : β1 = 0, can
be carried out by testing H0 : p0 = p1. The latter test is valid despite the
adaption of the intervention package, under the assumption that the arm
allocation ratio (i.e. the assignment to control versus intervention arms) does
not depend on the prior data, but only the intervention package composition
depends on data from previous stages. By Assumption 2.1, the dependence
between the stage 2 and stage 1 data is solely due to the stage 1 data
determining the stage 2 recommended intervention, which, in turn, affects
the actual stage 2 intervention, and thus the stage 2 outcomes. However,
under the null, there is no effect of the actual intervention on the stage 2
outcomes. Therefore, under the null, regardless of the way the intervention
was adapted, the stage 1 and stage 2 outcomes are independent. Thus, a
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standard test for equal probabilities in the control and the intervention arms
is valid. While not needed due to our asymptotic results, the same arguments
could have been used for the standard tests of H0 : β1 = 0.

In a controlled LAGO design, an alternative, possibly more powerful, test
for the overall effect of the intervention in the presence of center characteris-
tics is to consider H0 : γ = 0 in the model logit p̃Q(β, γ; z) = β0+βT2 z+γQ.
As before, in light of the between-stages independence under the null, β1 = 0
in model (2.1) implies γ = 0.

2.4. Confidence sets and confidence bands. After the conclusion of the
study, the optimal intervention is estimated as the solution to (2.2) with β
replaced by β̂. To obtain an asymptotic 95% confidence set for the optimal
intervention xopt, we first obtain a confidence interval for px(β?; z̃), for a
given z = z̃ and for each x ∈ X . To do this, we calculate a 95% confidence
interval for logit(px(β?; z̃)), i.e., for (1 xT z̃T )β?:

CIx = (1 xT z̃T )β̂ ± 1.96σ(β̂;x, z̃),

where σ2(β̂;x, z̃) = (1 xT z̃T )n−1Î−1(β̂)(1 xT z̃T )T is the estimated vari-
ance of (1 xT z̃T )β̂, and n−1Î−1(β̂) is the estimated variance of β̂. The 95%
confidence interval for px(β?; z̃) is CIpx = expit(CIx). Then, we obtain the
confidence set for the optimal intervention as CS(xopt) = {x : CIpx 3 p̃}.
That is, CS(xopt) includes intervention packages for which p̃ is inside the
confidence interval for the success probability under those interventions.

We now show that the confidence set CS(xopt) contains xopt with the
specified probability of 0.95. Recall that under the assumption that p̃ can
be achieved, pxopt(β?; z̃) = expit[(1 xopt

T
z̃T )β?] = p̃. Therefore,

pr(CS(xopt) 3 xopt) = Pr(CIpxopt 3 p̃) = Pr(CIpxopt 3 pxopt(β?; z̃)) = 0.95.

Implementing this procedure is simple and its calculation is fast. Because
calculating CS(xopt) does not depend upon estimating xopt, it does not
involve the optimization algorithm.

At the end of the study, researchers might be interested in a variety of
potential intervention packages in X that were not necessarily identified
as of interest a priori. We propose a method to develop confidence bands
for the outcome probabilities px(β; z̃) for a range of x ∈ X of interest,
simultaneously. These confidence bands allow researchers to study the en-
tire intervention space when comparing potential choices of the intervention
package. We propose a procedure that is based on the asymptotic normality
of β̂ and on Scheffé’s method (Scheffé, 1959). First, for all x ∈ X , construct
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CBx to obtain 95% confidence bands for {(1 xT z̃T )β? : x ∈ X},

CBx = (1 xT z̃T )β̂ ±
√
χ2
0.95,p+q+1σ(β̂;x, z̃),

with σ(β̂;x, z̃) defined as before and χ2
0.95,p+q+1 the 95% quantile of a χ2

p+q+1

distribution. As before, we transform CBx into confidence bands for px(β; z̃)
by setting CBpx = expit(CBx). These confidence bands guarantee asymp-
totic simultaneous 95% coverage for all possible intervention package com-
positions; the proof is given in Section 4 of the supplementary materials.

2.5. Computation of the optimal intervention. The algorithm used to

solve (2.2) after stage k, using β̂
(k)

, depends on the form of C(x). Under a
linear cost function with unit costs cr for the r–th intervention component,
the solution is achieved by 1. setting all components to their minimal value
Lr, 2. ordering the components by their estimated cost-efficiency β̂1r/cr, and
3. increasing the most cost-efficient component until either p̃ is achieved or
until this component reaches its maximal value, then moving to the next
most cost-efficient component among the remaining components, and so on.
For non-linear cost functions, standard non-linear optimization algorithms
can be used.

3. Simulations. We conducted simulation studies to investigate the
finite sample properties of our methods. We simulated 2000 data sets per
simulation scenario. We considered three main scenarios.

1. In Scenario 1, we considered a two-stage controlled LAGO design
with equal number of centers per stage J , with half the centers in the
intervention arm and half in the control arm. The total sample size
available at the end of the study is J(n1j + n2j). We considered the
values J = 6, 10, 20, n1j = 50, 100, 200, and n2j = 100, 200, 500, 1000.
The intervention had two components, x = (x1, x2), with unit costs
c1 = 1 and c2 = 8. The minimum and maximum values of X1 and X2

were [L1,U1] = [0, 2] and [L2,U2] = [0, 5]. We considered the follow-
ing values for exp(β?1) = (exp(β?11), exp(β?12)): (1, 1) (the null), (1, 1.2),
(1, 1.5), (1.2, 1.5), and (1.2, 2). A single center covariate z was normally
distributed with mean 0 and variance 1 and its coefficient was taken
to be β?2 = log(0.75). For simplicity, we did not include an intercept in
model (2.1), although each center had its own baseline success proba-
bility due to z. For z = 0, the probability of success in the control arm
was 0.5. The stage 2 recommended intervention was based on solving
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the optimization problem (2.2) using the stage 1 estimates of β. Sec-
tion 5.1 of the supplementary materials provides the details on what
was done when no solution existed for which p̃ was reached.

2. Scenario 2 is similar to Scenario 1 with respect to true parameter
values, cost functions and the center covariate. However, in Scenario
2, the per-center sample size is lower in stage 1 than in stage 2, and
the number of centers is also lower in stage 1 than in stage 2. Thus,
Scenario 2 reflects the potential desire in practice to learn the optimal
intervention faster. This scenario is divided to Scenario 2a with J1 = 6
and J2 = 12 centers in stages 1 and 2, respectively, and Scenario 2b
(J1 = 10 and J2 = 20). The per-center sample sizes are n1j = 50 and
n2j = 200.

3. Scenario 3 is carefully modeled after the illustrative example, the Bet-
terBirth Study, described in Section 4. While the BetterBirth Study
did not use a LAGO design, in this simulation study we investigated
how LAGO would have performed had LAGO been used. All non-
adaptive design parameters were determined by this study, including
the stage 1 center-specific interventions, number of centers, per-center
sample size, intervention arm allocation in each of the three stages
of the trial, and the distribution of the center-specific covariate z,
monthly birth volume, by taking them to be exactly as in the Bet-
terBirth data. The true parameter values in Scenario 3 were the final
estimators from the data (last column in Table 4). In each simulation
iteration, stage 1 outcome data was first simulated, and then analyzed
to determine stage 2 intervention. Then, stage 2 outcome data was
simulated, and data from both stages were analyzed to derive stage 3
interventions. Stage 3 outcomes were simulated, and the entire data
were analyzed to obtained the final estimators. In all stages, variation
in the uptake of the intervention (specifically in the number of coach-
ing visits) was simulated according to the actual variation in the data,
at that specific stage.

Selected results for Scenarios 1 and 2 are presented in Tables 1 and 2.
Table 1 presents results on the performance of β̂, and shows that for J > 6,
the finite sample bias was minimal, the mean estimated standard error was
very close to the empirical standard deviation, and the empirical coverage
rate of the confidence intervals for the effects of the individual package com-
ponents was very close to 95%. With 2000 replicates per simulation scenario,
the empirical coverage of 95% confidence intervals should lie between 94%
and 96% (in 95% of the scenarios). This was indeed the case (Table 1).
Moreover, in Section 5.2 of the supplementary materials, we found that the
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type I error rate of the tests discussed in Section 2.3 was close to the nom-
inal value of 0.05. However, in several scenarios explored, the finite sample
bias was beyond that which could have been expected due to random sim-
ulation sampling error for 2000 replicates per simulation scenario, that is,
in absolute value beyond 1.96SD(β̂)/

√
2000, where SD(β̂) is the empirical

standard deviation of β̂. This occurred more frequently for β1 than for β2
and for lower sample sizes and per-stage number of centers. When we further
increased the sample size, this bias disappeared.

Table 2 presents bias and root mean square errors for the second-stage
recommended intervention and the final estimated optimal intervention, cal-
culated for a typical center with z = 0; additional results for Scenario 1 with
J = 6, 10 are presented in Section 5.2 of the supplementary materials. The
finite sample bias and the root mean squared errors of the final x̂opt were
generally small and decreased as the number of centers per stage and the
sample size increased. The bias of the second-stage recommended interven-
tion was often much more substantial. Table 3 presents information about
success probabilities under the second-stage recommended intervention and
the final estimated optimal intervention. The empirical 2.5% and 97.5%
quantiles of the true success rate show that the desired 90% was generally
achieved with the final estimated optimal intervention, but less so with the
second-stage recommended intervention. The nominal coverage rate of the
confidence set for xopt was approximately 95%, with the set typically includ-
ing between 3 to 15 percent of X , as a measure of precision in the scenarios
studied. We also compared the cost of the estimated optimal intervention
to the cost of the true optimal intervention and found it to be almost the
same for the scenarios presented in Table 2; see Section 5.2 of the supple-
mentary materials. Table 2 also shows that the empirical coverage rate of
the confidence bands for px(β?; z = 0) was very close to 95%.

The results from Scenario 3 are summarized in Section 5.2 of the sup-
plementary. The results generally agreed with the results of Scenarios 1
and 2. Minimal bias was observed for the final estimated intervention com-
ponent effects and estimated optimal intervention. However, the estimated
optimal intervention in the earlier stages were generally biased, especially
when stage 1 sample size was small. It should be noted that the intermedi-
ate recommended interventions or intervention effect estimates are not the
goal of LAGO. Rather, the final estimated optimal intervention and final
intervention effect estimates are the main output of a LAGO study.

4. Illustrative example. The BetterBirth Study consisted of three
stages. The first two stages were pilot stages used to develop the intervention
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Table 1
Simulation study: results for individual package component effects. Unit costs were c1 = 1

and c2 = 8.

eβ
?

n1j n2j J β̂11 β̂12
%RelBias SE

EMP.SD
CP95 %RelBias SE

EMP.SD
CP95

(×100) (×100)

Scenario 1 (J1 = J2 = J)

(1.2, 1.5) 50 100 6 -2.3 96.5 95.1 -1.9 84.1 94.0
10 -2.7 98.8 94.9 -1.2 92.2 95.2
20 -1.4 101.3 95.2 -0.3 102.7 95.6

200 6 -1.8 95.0 94.9 -2.6 81.0 95.4
10 -4.4 92.7 94.2 -1.0 91.9 95.2
20 -2.1 102.2 95.5 -0.2 99.7 95.2

100 100 6 -1.7 92.9 94.7 -1.5 86.2 95.5
10 2.8 101.9 95.7 -1.4 100.9 95.4
20 2.1 101.1 95.5 -0.5 101.6 95.0

200 6 -3.2 91.4 94.6 -0.8 83.6 95.5
10 -1.6 99.5 95.4 -0.6 94.9 95.3
20 -0.4 98.4 95.0 -0.3 97.5 94.5

(1.2, 2) 50 100 6 -16.0 91.6 95.4 0.7 86.0 96.0
10 -7.4 101.4 95.8 0.2 102.2 96.0
20 -3.6 99.6 95.2 -0.1 101.4 94.8

200 6 -11.8 89.9 95.1 0.7 89.7 95.1
10 -9.2 94.9 95.5 0.1 97.6 96.0
20 -2.7 100.0 95.0 -0.2 101.4 96.2

100 100 6 -7.6 94.5 95.8 -0.1 94.1 95.2
10 -2.1 98.2 94.8 -0.0 102.7 95.2
20 -3.7 100.3 95.2 0.2 102.7 95.5

200 6 -7.1 84.6 95.2 0.3 95.8 95.9
10 -4.6 96.4 94.7 0.0 99.6 95.5
20 -3.5 98.0 94.6 0.1 104.8 95.9

Scenario 2a (J1 = 6, J2 = 12)

(1.2, 1.5) 50 200 -3.8 96.4 95.5 -0.5 91.0 94.8
(1.2, 2) 50 200 -7.4 95.6 95.9 0.7 94.7 95.5

Scenario 2b (J1 = 10, J2 = 20)

(1.2, 1.5) 50 200 -3.1 96.9 94.6 -0.7 95.5 95.5
(1.2, 2) 50 200 -6.2 93.4 94.7 0.2 100.1 95.2

%RelBias, percent relative bias 100(β̂ − β?)/β?; SE, mean estimated standard error;
EMP.SD, empirical standard deviation; CP95, empirical coverage rate of 95% confidence

intervals.
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Table 2
Simulation study: results for estimated optimal intervention package in stages 1 and 2.

Unit costs were c1 = 1 and c2 = 8.

eβ
?

xopt n1j n2j Stage 1 Stage 2
Bias1 Bias2 RMSE Bias1 Bias2 RMSE
(×100) (×100) (×100) (×100) (×100) (×100)

Scenario 1 (J1 = J2 = 20)

(1, 2) (0, 3.2) 50 100 52.8 -10.0 110.6 34.5 -4.7 85.0
500 52.6 -11.5 110.5 16.5 -2.1 58.5

100 100 35.0 -5.8 89.0 24.0 -2.5 71.0
500 38.9 -7.5 93.0 10.6 -0.9 47.0

(1.2, 1.5) (2, 4.5) 50 100 -30.0 -9.9 94.5 -9.5 2.7 51.6
500 -30.7 -9.8 94.8 -2.7 2.1 27.8

100 100 -14.9 -3.1 68.6 -3.6 1.2 35.9
500 -16.6 -2.5 70.9 -0.7 1.7 18.1

(1.2, 2) (2, 2.6) 50 100 -50.2 -0.5 106.3 -33.1 4.5 84.0
500 -51.4 0.5 107.1 -14.9 3.3 56.6

100 100 -35.8 1.7 88.2 -23.2 3.3 70.3
500 -35.0 1.7 87.5 -8.8 2.3 43.6

Scenario 2a (J1 = 6, J2 = 12)

(1, 2) (0, 3.2) 50 200 76.0 -43.0 168.6 42.7 -8.1 96.6
(1.2, 1.5) (2, 4.5) 50 200 -65.4 -92.2 210.8 -18.6 1.2 71.3
(1.2, 2) (2, 2.6) 50 200 -81.0 -29.3 163.9 -44.4 3.0 98.4

Scenario 2b (J1 = 10, J2 = 20)

(1, 2) (0, 3.2) 50 200 66.4 -20.1 134.4 32.1 -4.8 82.2
(1.2, 1.5) (2, 4.5) 50 200 -49.3 -33.1 141.3 -10.4 4.6 52.4
(1.2, 2) (2, 2.6) 50 200 -68.6 -8.3 133.4 -32.6 4.2 83.3

Bias1, bias of x̂opt1 ; Bias2, bias of x̂opt2 ; RMSE, root of mean squared errors
{mean(||x̂opt − xopt||2)}1/2, mean taken over simulation iterations;
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Table 3
Simulation study: results for estimated optimal intervention package in stages 1 and 2
and coverage of 95% confidence bands for success probabilities. .Unit costs were c1 = 1

and c2 = 8.

eβ
?

xopt n1j n2j PrOpt1 PrOpt2 SetCP95 SetPerc% BandsCP95
(Q2.5,Q97.5) (Q2.5,Q97.5)

Scenario 1 (J1 = J2 = 20)

(1, 2) (0, 3.2) 50 100 (83.6, 93.8) (87.2, 91.8) 94.0 7.6 97.0
500 (83.5, 93.7) (88.2, 91.1) 95.0 4.0 97.2

100 100 (85.2, 93.1) (87.8, 91.6) 94.8 6.3 96.5
500 (85.6, 92.8) (88.8, 91.0) 95.3 3.7 97.4

(1.2, 1.5) (2, 4.5) 50 100 (81.1, 91.6) (87.3, 91.6) 94.8 13.3 96.0
500 (81.9, 91.6) (88.8, 91.3) 95.1 7.6 95.9

100 100 (84.7, 91.6) (87.9, 91.6) 94.8 12.3 95.4
500 (84.0, 91.6) (89.0, 91.1) 95.3 7.1 95.4

(1.2, 2) (2, 2.6) 50 100 (83.3, 93.2) (87.2, 91.7) 94.6 14.3 95.5
500 (83.7, 93.3) (88.5, 91.2) 94.4 8.1 95.3

100 100 (85.6, 92.4) (87.7, 91.5) 95.6 12.4 96.0
500 (85.3, 92.5) (88.7, 91.1) 95.1 7.5 95.8

Scenario 2a (J1 = 6 J2 = 12)

(1, 2) (0, 3.2) 50 200 (50.0, 97.0) (85.6, 92.2) 94.7 9.8 97.5
(1.2, 1.5) (2, 4.5) 50 200 (56.8, 91.6) (85.8, 91.6) 95.1 17.3 95.7
(1.2, 2) (2, 2.6) 50 200 (56.7, 97.3) (85.5, 92.0) 95.8 17.1 97.2

Scenario 2b (J1 = 10 J2 = 20)

(1, 2) (0, 3.2) 50 200 (78.7,95.5) (87.1, 91.6) 94.7 6.6 96.8
(1.2, 1.5) (2, 4.5) 50 200 (70.0,91.6) (87.5, 91.6) 95.6 11.8 95.4
(1.2, 2) (2, 2.6) 50 200 (75.6,95.2) (87.2, 91.4) 95.2 12.4 96.3

PrOpt1, success probability of the second-stage recommended intervention, calculated
using true coefficient values; PrOpt2, success probability of the final estimated optimal
intervention, calculated using true coefficient values; Q2.5 and Q97.5, 2.5% and 97.5%

quantiles; SetCP95, empirical coverage percentage of confidence set for optimal
intervention; SetPerc%, mean percent of X covered by the confidence set; BandsCP95,

empirical coverage rate of 95% confidence bands for {px(β; z = 0) : x ∈ X}.
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package. Stage 3 was a randomized controlled trial. The development of the
recommended intervention package was conducted qualitatively, as described
in Hirschhorn et al. (2015), and the intervention package was adjusted after
each pilot stage. The results of stage 3, the randomized controlled trial, were
presented and discussed in Semrau et al. (2017). The number of centers with
data on oxytocin administration in the first, second, and third stages was
2, 4 and 30, respectively. In the first two stages, data in each center were
collected before and after the intervention was implemented. In stage 3,
there were 15 centers in the control arm and 15 centers in the intervention
arm. In 5 intervention arm centers, outcome data were also collected before
the intervention was implemented.

Here, we focus on the binary outcome of oxytocin administration im-
mediately after delivery, as recommended by the WHO (WHO, 2012) to
prevent postpartum hemorrhage, a major cause of maternal mortality. The
intervention package components were the duration of the on-site interven-
tion launch (in days), the number of coaching visits after the intervention
was launched, leadership engagement (non-standardized initial engagement,
standardized initial engagement, and standardized initial engagement with
follow-up visits) and data feedback (none; ongoing, paper-based; ongoing,
app-based). The four components were adapted in a way that resulted in
near multicollinearity. Therefore, for illustration purposes, we considered the
first two components only, launch duration and number of coaching visits.
The launch duration was 3 days in stage 1 and 2 days in stages 2 and 3.
Compared to stage 1, the intensity of coaching visits was increased in stage
2, and further increased in stage 3. For illustrative purposes, we truncated
the data at 40 coaching visits or less. The baseline center characteristic
we included was the approximate monthly birth volume, given that large
facilities might be likely to follow WHO recommendations about oxytocin
administration more closely, regardless of the intervention package imple-
mented. Other available center characteristics, e.g. number of staff nurses,
were highly correlated with the monthly birth volume.

Table 4 provides the estimated effects of the intervention package com-
ponents after each of the stages, using all available data at that point. The
sample size in stage 1 was relatively small, explaining the wide confidence
intervals for the odds ratios. The final results imply that both package com-
ponents had an effect. Tests for the overall effect of the package yielded a
highly significant p-value, regardless of the test we used.

After consulting with the study investigators, we assigned unit costs of
$800 per launch day and $170 per coaching visit. In practice, implementation
costs may also depend on center size and, if so, C(x) could be replaced with
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Table 4
Package component effect estimates and confidence intervals, calculated after each stage.

Stage 1 Stages 1-2 Stages 1-3
n1 = 73 (n1 + n2 = 1780) (n1 + n2 + n3 = 6124)

OR (CI-OR) OR (CI-OR) OR (CI-OR)

Intercept 1.07 (0.00, 280.80) 0.10 (0.07,0.15) 0.10 (0.09,0.11)
Coaching Visits 7.95 (1.77,73.95) 1.11 (0.96,1.28) 1.08 (1.04,1.12)

(per 3 visits)
Launch Duration 1.41 (0.76,2.64) 2.65 (1.95,3.77) 2.79 (2.41,3.23)

(days)
Birth Volume 0.37 (0.00,32.33) 2.11 (1.93,2.33) 1.94 (1.84,2.06)

(monthly, per 100)

x̂opt,(2,n1) = (1, 5) x̂opt,(3,(n1,n2)) = (3, 1) x̂opt = (3, 1)

OR, estimated odds ratio exp(β̂); CI-OR, 95% Confidence interval for the odds ratio. In
the estimated optimal interventions, the first component is the launch duration (in days)

and the second component is the number of coaching visits .

Cz(x).
The estimation of the optimal intervention package with linear cost C(x) =

c1x1+c2x2 was conducted as in the simulation study. Assuming that at least
1 launch day and 1 coaching visit are needed, and that a launch duration
of more than 5 days or having more than 40 coaching visits is impractical,
we estimated the optimal intervention for a center with average birth vol-
ume (z = 175) to be a launch duration of 2.78 days and 1 coaching visit.
We also carried out optimization over all possible combinations of discrete
values within X , which are 1, ..., 40 for coaching visits and 1, 1.5, 2, 2.5, ..., 5
for duration of intervention launch and obtained the optimal intervention
as launch duration of three days with one coaching visit, x̂opt = (3, 1). The
total cost of the estimated optimal intervention package, x̂opt, was $2570.

We calculated a 95% confidence set for the optimal intervention CS(xopt)
over the grid of X , taking all possible numbers of coaching visits, 1, ..., 40,
and 1, 1.5., 2, 2.5, ..., 5 for intervention launch duration. Out of 360 potential
intervention packages, 38 (10.5%) were included in the 95% confidence set.
The set included the following combinations: 1.5 days launch duration and
40 coaching visits; 2 days launch durations and 27 or more coaching visits;
2.5 days launch duration and less than 20 coaching visits; and 3 days launch
duration and less than 5 coaching visits. The first, second and third quar-
tiles of the cost distribution within CS(xopt) were Q1=$2462, Q2=$4035,
and Q3=$6797. We also calculated 95% simultaneous confidence bands for
the probability of success under all 360 intervention compositions; plots are
shown in Section 6 of the supplementary materials. For the estimated opti-
mal intervention x̂opt = (1, 3), the obtained confidence interval (within the
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bands) for the probability of oxytocin administration was (0.79, 0.93). The
mean difference between the top and bottom of the confidence band over all
360 intervention compositions was 0.07.

5. Discussion. We developed the LAGO design for multiple compo-
nent intervention studies with a binary outcome, where the intervention
package composition is systematically adapted as part of the design. The
goals of studies using the LAGO design are to find the optimal intervention
package, to test its effect on the outcome of interest, and to estimate its
effect as well as the effects of the individual components.

The methodology in this paper was developed for scenarios with a stage-
wise analysis that does not include formal interim hypothesis testing. How-
ever, the LAGO design allows for futility stops, since stopping the trial for
futility between stages preserves the type I error. The type I error can only
decrease from the nominal level when futility stops are included, because
when stopping for futility, the null hypothesis is not rejected (Snapinn et al.,
2006).

For clear presentation of the design, methods, and theory, we focused on a
general yet practical design. Our work opens the way for further research. For
example, it would be interesting to develop methods for studies with further
dependence because centers contribute data to more than one stage. The
results in this paper could also be extended to continuous, count, or survival
outcome data. Adapting the LAGO framework to paired data would also
be useful. Additionally, many design problems arise, in terms of identifying
the optimal K, Jk and njk for given settings. It should be noted that the
performance of estimators obtained from a LAGO trial depends on the choice
of the function g, which determines how the later stage interventions depend
on the data from previous stages. Therefore, an important topic for future
research is the choice of g.

Our asymptotic results use the assumption that the sample sizes in the
different stages increase at a similar rate, in the sense that the ratio between
the sample size in each of the stages and the overall sample size converges
to a constant, which can be small. Even when the stage 1 sample size was
relatively small, we showed in simulation Scenario 3 that the asymptotic
properties were still good approximations of the finite sample behavior of
the final estimators. On the other hand, even when the stage 1 sample size
is large, further data collection in a second stage is often desirable to avoid
excessive extrapolation of the outcome model to intervention packages that
have not been implemented in stage 1, minimizing the potential for bias
due to model misspecification. In practice, researchers will usually prefer to
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observe the performance of the optimal intervention before reaching final
conclusions.

In this paper, we assumed that center effects can be fully captured by
observed covariates and that the intervention effects are fixed across cen-
ters. In the BetterBirth Study, for example, we assumed that the monthly
birth volume captured center effects. This is a limitation of the presented
work, because, in practice, center effects often cannot be captured solely by
observed covariates. Therefore, future work will consider generalizing LAGO
to allow for clustered data.

Van der Laan (2008) provides rigorous proofs for specific adaptive designs
which do not include LAGO, while providing “templates and conditions” for
more general settings. As in LAGO, van der Laan (2008) considers settings
where the intervention of patient i depends on the information available of
previous patients, and where the limiting design is a fixed design. However,
van der Laan (2008) is not directly applicable to LAGO as developed in this
paper. In the LAGO design, the number of stages, i.e., the number of times
the intervention could be adapted, is finite and fixed, while van der Laan
(2008) would require that the number of stages tends to infinity. However,
following the same arguments as in van der Laan (2008) page 11, the LAGO
estimating equations form a martingale and it might be possible to apply
a triangular Martingale Central Limit Theorem instead of the Martingale
Central Limit Theorem referenced in van der Laan (2008), to develop theory
for LAGO both for settings with a large number of patients per stage and for
settings with smaller numbers of patients per stage; it might also be useful
for extending LAGO to continuous and time-to-event outcomes.

In this paper, we considered the model parameter values fixed, and not
dependent on the sample size n. As a result, the limiting design, that is,
the probability limit of the intervention package composition, is constant
in all stages. An interesting direction for future research involves studying
the asymptotic regime when the parameter values themselves change with n,
and specifically sequences of distributions where the intervention component
effects (β) go to zero at rate n−1/2 (known as local alternatives, see e.g.
Chapter 14 in van der Vaart (1998)). In this setting of local alternatives,
even in the limit for large n, the later stage interventions will not converge
to a constant but may have a limiting distribution. The resulting asymptotic
theory might lead to better approximations for finite sample situations where
there is less certainty about the later stage interventions.

Many large effectiveness and implementation trials fail because current
design methodology does not permit adaptation of the intervention in the
face of implementation failure as in, for example, the BetterBirth (Semrau
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et al., 2017) and the TasP (Iwuji et al., 2017) studies. The LAGO design
rigorously formalizes practices in public health research that are presently
conducted in an ad hoc manner, with unknown consequences for the valid-
ity of the subsequent standard analysis (Escoffery et al., 2018). We expect
widespread use of the LAGO design as a result, with potential gain for many
randomized clinical trials.

APPENDIX A: PROOFS OF THEOREMS 1 AND 2

As previously explained, we prove the results in the paper for a gen-

eral recommended interventions X
(2,n1)
j = g(Ā

(1)
, Ȳ

(1)
, z̄(1), z

(2)
j ). Usually

X
(2,n1)
j will be the estimated optimal intervention (previously denoted as

x̂
opt,(2,n1)
j ). The proof works, however, for any function of the data such

that X
(2,n1)
j converges in probability to a center-specific limit x

(2)
j , for all

j = 1, ..., J2. Let X̄
(2,n1) = (X

(2,n1)
j , ...,X

(2,n1)
J1

) be all the stage 2 recom-
mended interventions.

A.1. Proof of Theorem 1: consistency of β̂. The following Lemma
will be useful for the proof of Theorem 1.

Lemma A.1. Let f(x;β) : X → Rq be a differentiable function of x
with continuous and bounded first partial derivatives for all x ∈ X (β ∈ B),
uniformly bounded over X ×B, where X and B are compact sets in Rp. Let

Xn be a sequence of random vectors with support in Rd. If Xn
P−→X, then

supβ ||f(Xn;β)− f(X;β)|| P−→ 0.

Proof. First, observe that

sup
β
||f(Xn;β)− f(X;β)|| = sup

β

√√√√ q∑
r=1

[fr(Xn;β)− fr(X;β)]2

=

√√√√sup
β

q∑
r=1

[fr(Xn;β)− fr(X;β)]2.

(A.1)

We will show that [supβ ||f(Xn;β)−f(X;β)||]2 P−→ 0 and hence supβ ||f(Xn;β)−
f(X;β)|| P−→ 0. We have

(A.2) sup
β

q∑
r=1

[fr(Xn;β)− fr(X;β)]2 ≤
q∑
r=1

sup
β

[fr(Xn;β)− fr(X;β)]2.
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For each r = 1, ..., q, because of the mean value theorem for fr, there exists
X̃r(β) between Xn and X such that

(A.3) fr(Xn;β)− fr(X;β) =

[
∂

∂x
fr(X̃r(β),β)

]T
(Xn −X).

Combining (A.1), (A.2) and (A.3), we have

[sup
β
||f(Xn;β)− f(X;β)||]2 ≤

q∑
r=1

sup
β


[(

∂

∂x
fr(X̃r(β);β)

)T

(Xn −X)

]2
≤

q∑
r=1

sup
β

[∣∣∣∣∣∣∣∣ ∂∂xfr(X̃r(β),β)

∣∣∣∣∣∣∣∣2||Xn −X||2
]

= ||Xn −X||2
q∑

r=1

sup
β

∣∣∣∣∣∣∣∣ ∂∂xfr(X̃r(β),β)

∣∣∣∣∣∣∣∣2,
where the second line follows by the Cauchy–Schwarz inequality. Lemma A.1

follows, because ||Xn−X||2
P−→ 0 and because the components of ∂

∂xfr(x;β)
are bounded uniformly in x and β since X and β take values in a compact
space.

We are now ready to prove Theorem 1 (consistency of β̂).

Proof. To prove consistency of β̂, we invoke Theorem 5.9 of van der
Vaart (1998). Let

u(β) =
J1∑
j=1

αj1

 1

a
(1)
j

z
(1)
j

(p
a
(1)
j

(β?; z
(1)
j )− p

a
(1)
j

(β; z
(1)
j )

)

+
J2∑
j=1

αj2

 1

a
(2)
j

z
(2)
j

(p
a
(2)
j

(β?; z
(2)
j )− p

a
(2)
j

(β; z
(2)
j )

)
.

(A.4)

We show that the two conditions needed for Theorem 5.9 of van der Vaart
(1998) hold. First, we prove uniform convergence over B of U(β) to u(β):

(A.5) sup
β∈B
||U(β)− u(β)|| P−→ 0.
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Recall Equation (2.3) and rewrite U(β) as

U(β) = U(β?) +
J1∑
j=1

nj1
n

 1

a
(1)
j

z
(1)
j

(p
a
(1)
j

(β?; z
(1)
j )− p

a
(1)
j

(β; z
(1)
j )

)

+
J2∑
j=1

nj2
n

 1

A
(2,n1)
j

z
(2)
j

(p
A

(2,n1)
j

(β?; z
(2)
j )− p

A
(2,n1)
j

(β; z
(2)
j )

)
.

Therefore,

U(β)− u(β) = U(β?) +G1 +G2 +G3 +G4 +G5

where

G1 =
J1∑
j=1

(
nj1
n
− αj1

)
 1

a
(1)
j

z
(1)
j

(p
a
(1)
j

(β?; z
(1)
j )− p

a
(1)
j

(β; z
(1)
j )

)

G2 =
J2∑
j=1

αj2


 1

A
(2,n1)
j

z
(2)
j

 p
A

(2,n1)
j

(β?; z
(2)
j )−

 1

a
(2)
j

z
(2)
j

 p
a
(2)
j

(β?; z
(2)
j )



G3 =
J2∑
j=1

αj2


 1

a
(2)
j

z
(2)
j

 p
a
(2)
j

(β; z
(2)
j )−

 1

A
(2,n1)
j

z
(2)
j

 p
A

(2,n1)
j

(β; z
(2)
j )



G4 =
J2∑
j=1

(
nj2
n
− αj2

) 1

A
(2,n1)
j

z
(2)
j

 p
A

(2,n1)
j

(β?; z
(2)
j )

G5 =
J2∑
j=1

(
αj2 −

nj2
n

) 1

A
(2,n1)
j

z
(2)
j

 p
A

(2,n1)
j

(β; z
(2)
j ).

By the triangular inequality for the supremum norm, we can analyze each
of the terms U(β?),G1, ...,G5, separately.

Regarding U(β?), we show that its expectation is zero and the variance
of each of the 1 + p + q components of U(β?) converges to zero, and thus,

by applying Chebychev’s inequality, U(β?)
P−→ 0.
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By the law of iterated expectations, we have

E(U(β?)) =
1

n


J1∑
j=1

nj1∑
i=1


 1

a
(1)
j

z
(1)
j

E
(
Y

(1)
ij − pa(1)

j

(β?; z
(1)
j )
)

+

J2∑
j=1

nj2∑
i=1

E


 1

A
(2,n1)
j

z
(2)
j

E

[
Y

(2,n1)
ij − p

A
(2,n1)

j

(β?; z
(2)
j )

∣∣∣∣A(2,n1)
j

]
 = 0.

(A.6)

We now turn to the variance. The random vector U(β?) is a sum of two
vectors, one for each stage. We first show that these two vectors are uncor-

related. Let Qj,j′ =

 1

a
(1)
j

z
(1)
j




1

A
(2,n1)
j′

z
(1)
j′


T

. For any i, i′, j and j′, we have

E


 1

a
(1)
j

z
(1)
j

(Y (1)
ij − pa(1)

j

(β?; z
(1)
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
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Y
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A
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(β?; z

(2)
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)
= E

{
Qj,j′E

[(
Y

(1)
ij − pa(1)

j

(β?; z
(1)
j )

)(
Y

(2,n1)
i′j′ − p

A
(2,n1)

j′
(β?; z

(2)
j′ )

)∣∣∣∣X(2,n1)
j′

]}
= E

{
Qj,j′E

[
Y

(1)
ij − pa(1)

j

(β?; z
(1)
j )

∣∣∣∣X(2,n1)
j′

]
E

[
Y

(2,n1)
i′j′ − p

A
(2,n1)

j′
(β?; z

(2)
j′ )

∣∣∣∣X(2,n1)
j′

]}
= E

{
Qj,j′E

[
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(1)
ij − pa(1)

j

(β?; z
(1)
j )

∣∣∣∣X(2,n1)
j′

]
E

[
Y

(2,n1)
i′j′ − p
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(2,n1)

j′
(β?; z

(2)
j′ )

∣∣∣∣X(2,n1)
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j′
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= E

{
Qj,j′E

[
Y

(1)
ij − pa(1)

j

(β?; z
(1)
j )

∣∣∣∣X(2,n1)
j′

]
· 0
}

= 0,

(A.7)

where the second equality is justified since the two factors are conditionally

independent given X
(2,n1)
j by Assumption 1. Then, by the linearity of the

covariance, we get that the two vectors in U(β?) are uncorrelated.
Denote DiagV ar(V ) for the diagonal of the covariance matrix of a ran-

dom vector V . Define τ2(a, z,β) as

(A.8) τ2(a, z,β) = pa(β; z)(1− pa(β; z)),
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and observe that for each j = 1, ..., J2, by the law of total variance, we have

DiagV ar

 1√
n

 1

A
(2,n1)
j

z
(2)
j

 nj2∑
i=1

(
Y

(2,n1)
ij − p

A
(2,n1)

j

(β?; z
(2)
j )

)
=
nj2
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E

DiagV ar
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j
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j
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(2)
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
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j
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(2)
j )

)∣∣∣∣A(2,n1)
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

=
nj2
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
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z
(2)
j

 ◦
 1

A
(2,n1)
j

z
(2)
j

 τ2(A
(2,n1)
j , z

(2)
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+DiagV ar

(
1√
n

0
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→ αj2

 1
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(2)
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(2)
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a
(2)
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z
(2)
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 τ2(a
(2)
j , z

(2)
j ,β?),(A.9)

with ◦ being the element-wise Schur product, (u ◦ v)i = uivi, for any two
vectors u and v, and where the last line is justified by Lebesgue’s Domi-

nated Convergence Theorem, because the A
(2,n1)
j ’s take values in a compact

space, the z
(2)
j ’s are finite, and A

(2,n1)
j

P−→ a
(2)
j . It is easy to see that similar

reasoning can be applied to the variance of the first term, leading to

DiagV ar

 1√
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(1)
j
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(1)
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(
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ij − pa(1)
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(1)
j )

)

→
J1∑
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αj1

 1

(a
(1)
j )

(z
(1)
j )

 ◦
 1

(a
(1)
j )

(z
(1)
j )

 τ2(a(1)j , z
(1)
j ,β?).

(A.10)
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Combining (A.7)–(A.10), we obtain

DiagV ar[
√
nU(β?)]→

J1∑
j=1

αj1

 1

(a
(1)
j )

(z
(1)
j )

 ◦
 1

(a
(1)
j )

(z
(1)
j )

 τ2(a(1)j , z
(1)
j ,β?)

+
J2∑
j=1

αj2

 1

(a
(2)
j )

(z
(2)
j )

 ◦
 1

(a
(2)
j )

(z
(2)
j )

 τ2(a(2)j , z
(2)
j ,β?),

which is finite, and we conclude that DiagV ar[U(β?)] is o(1). Therefore,
by applying Chebyshev’s inequality to each component of U(β?), we obtain

U(β?)
P−→ 0. Since U(β?) is not a function of β, its supremum over β is its

value at β?, which we just showed converges in probability to zero.

Regarding G2, like U(β?), it does not involve β. Recall that A
(2,n1)
j

P−→
a
(2)
j . Therefore, since f1(a;β, z) = apa(β; z) and f2(a;β, z) = cpa(β; z),

for any constant c, are continuous in a for all β ∈ B, G2
P−→ 0 by the

Continuous Mapping Theorem.
To show that the supremum over β of G3 converges to zero, we can use

Lemma A.1 for each j, since the function f(a,β;α, z) = α
(
1 aT zT

)T
pa(β; z)

is continuous with bounded derivatives with respect to a for all β ∈ B, and

because B is compact, and becauseA
(2,n1)
j

P−→ a
(2)
j . Thus, supβ ||f(A

(2,n1)
j ,β;α, z)−

f(a
(2)
j ,β;α, z)|| converges in probability to zero for all j, and we assumed

that J2 is finite.
The convergence of nj2/n to αj2, and the boundedness of f1(a;β) and

f2(a;β), uniformly in β ∈ B, implies that the supremums of G1, G4 and
G5 each converges in probability to zero. Equation (A.5) follows.

The second condition in Theorem 5.9 of van der Vaart (1998) is

(A.11) inf
β:||β−β?||>0

||u(β)|| > 0 = ||u(β?)||.

First, (A.4) implies ||u(β?)|| = 0. Furthermore, u(β) is continuous, and
its Jacobian matrix is negative definite, assuming no separation or quasi-
separation of the data (Albert and Anderson, 1984; Wedderburn, 1976).
Therefore, it has a unique zero (which is β?), and condition (A.11) is fulfilled.
Because of van der Vaart (1998), (A.5) and (A.11) imply that β̂ is consistent.

A.2. Proof of Theorem 2: asymptotic normality of β̂.
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Proof. We start with a mean value theorem for each of the components
of U(β):

(A.12) 0 = Ur(β̂) = Ur(β
?) + (β̂ − β?)T ∂

∂β
Ur(β̃r)

for r = 1, ..., p + q + 1, where each β̃r is a point on the line between β̂ and
β?. The square matrix of dimension p+ q + 1 ∂

∂βU(β) equals

∂

∂β
U(β) = − 1

n

 J1∑
j=1

nj1

 1

a
(1)
j

z
(1)
j


 1

a
(1)
j

z
(1)
j


T

[1− p
a

(1)
j

(β; z
(1)
j )]p

a
(1)
j

(β; z
(1)
j )

+

J2∑
j=1

nj2

 1

A
(2,n1)
j

z
(2)
j


 1

A
(2,n1)
j

z
(2)
j


T

[1− p
A

(2,n1)

j

(β; z
(2)
j )]p

A
(2,n1)

j

(β; z
(2)
j )

 .
Since under no separation or quasi-separation of the data (Albert and

Anderson, 1984; Wedderburn, 1976), the logistic regression likelihood is
strictly log-concave in β, ∂

∂βU(β) is invertible. Furthermore, because of

A
(2,n1)
j

P−→ a
(2)
j and because the baseline covariates z

(1)
j and z

(2)
j are finite,

we have that for all β ∈ B,

− ∂

∂β
U(β)

P−→
J1∑
j=1

αj1

 1

a
(1)
j

z
(1)
j


 1

a
(1)
j

z
(1)
j


T

[1− p
a

(1)
j

(β; z
(1)
j )]p

a
(1)
j

(β; z
(1)
j )

+

J2∑
j=1

αj2

 1

a
(2)
j

z
(2)
j


 1

a
(2)
j

z
(2)
j


T

[1− p
a

(2)
j

(β; z
(2)
j )]p

a
(2)
j

(β; z
(2)
j )

:= I(β),

(A.13)

by Lebesgue’s Dominated Convergence Theorem. Since β̃r is between β̂
and β? for all r, β̂r is consistent for each r. Since I(β) is continuous in β
and uniformly bounded in β ∈ B, equations (A.12) and (A.13) imply that
the asymptotic distribution of

√
n(β̂ − β?) is the same as the asymptotic

distribution of f (2.5)
Regarding the part of (2.5) that does not involve I(β?), we will show that

its asymptotic distribution is multivariate normal. We present a coupling
argument (Lindvall, 2002) to deal with the fact the two summands are not

independent. For each j = 1, ..., J2, let Y
(2)
ij be iid Bernoulli random variables
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with success probability p
a
(2)
j

(β?; z
(2)
j ). We construct variables Ỹ

(2,n1)
ij which,

given the stage 1 data and A
(2,n1)
j , have the same distribution as the original

Y
(2,n1)
ij , but coupled (see e.g. Lindvall (2002)) with the Y

(2)
ij in the following

way. Let Wij be a uniform (0, 1) random variable independent of all other

variables introduced so-far. For the case p
a
(2)
j

(β?; z
(2)
j ) > p

A
(2,n1)
j

(β?; z
(2)
j ),

Ỹ
(2,n1)
ij is defined by (2.6). For the case p

a
(2)
j

(β?; z
(2)
j ) ≤ p

A
(2,n1)
j

(β?; z
(2)
j ),

(A.14)

Ỹ
(2,n1)
ij =



1 if Y
(2)
ij = 1

1 if Y
(2)
ij = 0 and Wij <

p
A

(2,n1)
j

(β?;z
(2)
j )−p

a
(2)
j

(β?;z
(2)
j )

1−p
a
(2)
j

(β?;z
(2)
j )

0 if Y
(2)
ij = 0 and Wij ≥

p
A

(2,n1)
j

(β?;z
(2)
j )−p

a
(2)
j

(β?;z
(2)
j )

1−p
a
(2)
j

(β?;z
(2)
j )

.

The key ingredient of the coupling argument is that given A
(2,n1)
j and all

stage 1 data, the distribution of the Ỹ
(2,n1)
ij is identical to the distribution

of the Y
(2,n1)
ij . Therefore, when replacing Y

(2,n1)
ij with Ỹ

(2,n1)
ij in (2.5), the

distribution of (2.5) is unaffected: the term of (2.5) that does not involve
I(β?) has the same distribution as

1√
n

J1∑
j=1

nj1∑
i=1

 1

a
(1)
j

z
(1)
j

(Y (1)
ij − pa(1)

j

(β?; z
(1)
j )

)

+
1√
n

J2∑
j=1

nj2∑
i=1

 1

A
(2,n1)
j

z
(2)
j

(Ỹ (2,n1)
ij − p

A
(2,n1)

j

(β?; z
(2)
j )

)
.

This equals

1√
n

J1∑
j=1

nj1∑
i=1

 1

a
(1)
j

z
(1)
j

(Y (1)
ij − pa(1)

j

(β?; z
(2)
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)

+
1√
n

J2∑
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(2)
j

z
(2)
j

(Y (2)
ij − pa(2)

j

(β?; z
(2)
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)
+Dn,
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where

Dn =
1√
n

J2∑
j=1

nj2∑
i=1

[ 1

A
(2,n1)
j

z
(2)
j

(Ỹ (2,n1)
ij − p

A
(2,n1)

j

(β?; z
(2)
j )

)

−

 1

a
(2)
j

z
(2)
j

(Y (2)
ij − pa(2)

j

(β?; z
(2)
j )

)]
.

We will show that Dn
P−→ 0, using the fact that the Y

(2)
ij and Ỹ

(2,n1)
ij are

coupled.

Conditionally on A
(2,n1)
j for the respective terms the expectation of the

first term of Dn is zero, and conditioning on a
(2)
j for the respective terms

implies the expectation of the second term is also zero. Therefore, E(Dn) =
0. We will show that the expectation of the square of each entry in the vector

Dn converges to 0, so that Chebyshev’s inequality implies that Dn
P−→ 0.

We concentrate on the component of the vector that is led by A
(2,n1)
j , as the

proof for the other terms is similar, yet simpler.
The expectation of the square of each of the m–th components of

1√
n

J2∑
j=1

nj2∑
i=1

[
A

(2,n1)
j

(
Ỹ

(2,n1)
ij − p

A
(2,n1)
j

(β?; z
(2)
j )

)
− a(2)j

(
Y

(2)
ij − pa(2)

j

(β?; z
(2)
j )

)]

equals to
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1

n
E
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1
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)]2(A.15)

=
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nj2
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E
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+ 2E
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(Ỹ

(2,n1)
ij − Y (2)

ij )− (p
A

(2,n1)

j

(β?; z
(2)
j )− p

a
(2)
j

(β?; z
(2)
j )

)(A.17)

·
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(A.18)
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=
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(A.19)

→ 0.

In (A.15), all terms with j′ 6= j and i′ 6= i vanish by conditioning on

(A
(2,n1)
j ,A

(2,n1)
j′ ), for all j, j′ = 1, ..., J2 (a

(2)
j are constants). BecauseA

(2,n1)
j

P−→
a
(2)
j and A

(2,n1)
j has bounded support, the expectations (A.16) and (A.17)

are o(1) by Lebesgue’s Dominated Convergence Theorem. In both expres-

sions, (A.16) and (A.17), all the components are bounded and (A
(2,n1)
jm −

a
(2)
jm)

P−→ 0, both (A.16) and (A.17) are o(1). In (A.19), we utilize the cou-

pling: conditionally on A
(2,n1)
j and a

(2)
j , (Ỹ

(2,n1)
ij −Y (2)

ij ) is a plus or minus a

Bernoulli random variable with corresponding probability |p
A

(2,n1)
j

(β?; z
(2)
j )−

p
a
(2)
j

(β?; z
(2)
j )|. By A

(2,n1)
j

P−→ a
(2)
j , p

A
(2,n1)
j

(β?; z
(2)
j )

P−→ p
a
(2)
j

(β?; z
(2)
j ), so

that Lebesgue’s Dominated Convergence Theorem implies that the expec-

tation converges to zero. Because ((a
(2)
jm)2 is bounded and nj2/n is bounded

by 1, then Dn
P−→ 0.

We conclude that the asymptotic distribution of the term of (2.5) that
does not involve I(β?) has the same asymptotic distribution as (2.7). The
asymptotic normal distribution of (2.7) follows from standard theory about

logistic regression because the a
(1)
j and a

(2)
j′ are fixed for all j, j′, so the

outcomes are independent. Standard theory also implies that the asymptotic
variance of (2.7) is equal to I(β?). Combining with (2.5), we conclude that

√
n(β̂ − β?) D−→ N

(
0, I−1(β?)

)
.

The variance can be consistently estimated from the data by replacing a
(2)
j ,

β?, αj1 and αj2 with A
(2,n1)
j , β̂, nj1/n and nj2/n, respectively, in I(β?).

This asymptotic variance is the same as the asymptotic variance that one

would obtain if the interventions were fixed in advance (and thus Y
(1)
j and

Y
(2,n1)
j′ were independent (for all j, j′)).
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Müller, H.-H. and Schäfer, H. (2001). Adaptive group sequential designs for clini-

cal trials: combining the advantages of adaptive and of classical group sequential ap-
proaches. Biometrics 57 886–891.
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