
A Novel Criterion of Reconstruction-based

Anomaly Detection for Sparse-binary Data

Heng Qiao

Electrical and Computer Engineering

University of Florida

Gainesville, USA

hengqiao@ufl.edu

Daniela Oliveira

Electrical and Computer Engineering

University of Florida

Gainesville, USA

daniela@ece.ufl.edu

Dapeng Wu

Electrical and Computer Engineering

University of Florida

Gainesville, USA

dpwu@ufl.edu

Abstract—Computer usage behaviour information can be used
by anomaly detection algorithms to identify the current user
of the computer system for security reasons. However, the
data collected in this setup can be binary and very sparse,
resulting in poor performance for some widely used anomaly
detection methods. In this study, we propose a novel reconstruc-
tion criterion inspired by the F1 score and the cross-entropy
loss, that tackles the class imbalance problem introduced by
binary and sparse data distribution with effectively merging
reconstruction criterion calculated from vector elements of both
positive and negative classes. Our experiments show that the
proposed criterion can effectively improve the performance of
reconstruction based anomaly detection methods, including both
the PCA and the autoencoder.

I. INTRODUCTION

Anomaly detection is a widely studied problem with a wide

range of applications, one of which is anomaly detection in the

computer system. Specifically, a computer system, on many

occasions, is supposed to be used by one user and one user

only for security purposes. The behaviour information can be

used with anomaly detection algorithms in building systems to

detect the identity of the current user. They can be realized by

building a one-class classifier trained with the user behaviour

information, which is collected through checking whether any

entry in a pre-determined list of concerned applications and

IP addresses is activated. The resulting data matrices used to

train the one-class classifier model can thus be very sparse,

leading to negative effects on the classification performance.

The one class classification refers to the problem that, in

the training process, only the data of one class is provided,

while at the test phase, the model should determine whether

a testing sample belongs to the original class or not. From

here on, we use the term one-class classification and anomaly

detection interchangeably.

The one class classification is an active research area with

many classic approaches proposed. A straight forward idea is

to determine the class of a data sample through its distance

to other data points [3] [1]. These approaches suffer from the

curse of dimensionality since the distance measure generally

will not work well on high dimensional data. Another class

of widely used methods is the domain-based approach, where

the trained model is essentially trying to find the hypersphere

that bounds the normal training data [11] or a hyperplain that

separates the normal training data from original point [10].

Being very successful and the most widely used methods

for one-class classification, these methods are not specially

designed to deal with sequential data. Another class of meth-

ods is the reconstruction based one-class classification, where

the model is trained to map the input sample into a lower-

dimensional space through minimizing the reconstruction loss.

Since the model is only trained with samples from one class,

when fed with samples from other classes, the reconstructive

error of the output would be higher, and thus can be used

as a criterion to determine whether it is from the original

class. As a widely used dimension reduction method, the

principal component analysis (PCA) can naturally be used

as a reconstruction error based method, but it also does not

fit well with sequential data in large size. The autoencoder

[6], on the other hand, could combine with popular deep

learning models such as GRU [2] or LSTM [4], and explore

the potential hidden temporal information in the data [7] [12]

[9]. These approaches, however, do not consider the situation

when the input data is sparse. Contrary to widely used the

cross-entropy loss or the MSE loss, the F1 score has a natural

potential of combining imbalanced class, which is induced by

data sparsity, more effectively.

In this work, our main contribution is proposing a

new reconstruction criterion inspired by the F1 score

and cross-entropy loss, which is able to improve the

performance of the reconstruction-error-based one-class

classification method when the input data is binary and

sparse. Our formulation of the proposed criterion also

leaves space for potential further optimization.

The remaining of this paper is organized as follows:

Section II introduces the formulation of our data set and

explains the sparse problem. In Section III, we describe the

reconstruction-error-based method and our proposed recon-

struction criterion in detail. The experiment results are shown

in Section IV. Finally, Section V concludes the paper.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
proportion of non-zero elements in a data vector
0

5000

10000

15000

20000

25000

30000

35000

nu
m

be
r o

f d
at

a
ve

ct
or

 in
st

an
ce

s

Fig. 1. Histogram of different levels of sparsity in our data set.

II. DATA FORMULATION

A. Data Collection and Sparsity

In this problem, the usage behaviour information data were

collected from 17 volunteer subjects, and for each subject a

software was used to continuously monitor what applications

are activated and what IP addresses are visited in a pre-

selected list of applications and IP addresses. The data of

each time point are organized as one vector v ∈ R
m of 0s and

1s, with 1s indicating that the corresponding applications/IP

addresses are activated or visited at the given time and 0s

otherwise. In this task, about three weeks of user data were

collected for 17 users. There are 554 interested applications

and websites in the list and 10 columns are used to record

time, thus m = 554 + 10 = 564. Because the list of

interested application and IP addresses are pre-selected, the

data matrices are very sparse. We calculated the percentage

of non-zero elements in the data vectors on each time step,

as presented in Figure 1. We can find that for most of the

data vectors (one row in the matrices), only around 2%
of the columns are non-zero. The average non-zero column

percentage is 1.8%.

1) Sliding Window: Considering to exploit the possible

temporal information in our data set, we used the sliding

window technique, where data points of consecutive w time

steps were considered as one and are assigned with one output

label, being anomalous or not. For the model such as GRU-

autoencoder that has the inherent structural ability to deal

with sequential data, we fed data sequence into the model

one step at a time, and for other models that are designed to

take single vector input, we concatenate the data sequence into

one vector and fed into them. When the size of the sliding

window increase, the classification accuracy goes up, since

more information was taken into account, but at the same

time, the sensitivity of the system would drop since it takes

more time to make one decision. For balancing two factors,

here we chose window size to be 5.

III. METHOD

A. Background

Reconstruction-based methods for anomaly detection are

usually comprised of two phases: the encoding and the de-

coding phase. When an input sample is fed to the model,

it is first compressed into a lower dimension space. The

low dimension representation of the input sample is then

decoded back to the original space, as a reconstruction of

the original input. A criterion function, usually known as

reconstruction error, is used as a measure of reconstruction

quality. After trained with only normal samples, the model

would be forced to learn the underlying distributional infor-

mation of the normal data set as it has to reconstruct the

input from a lower dimension representation. As an anomaly

detection system, when an anomalous test sample is given

to the model, the reconstruction error would be larger than

that of a normal sample, since the anomalous sample comes

from a distribution that model has never seen before. We can

then use the reconstruction error of test samples, combined

with a threshold, as an indicator of whether the test sample

is anomalous.

The model used in the encoding and decoding phases can

take various forms. In our experiment, we used two different

settings: GRU-autoencoder and PCA.

The GRU [2], similar to LSTM [4], is a variation of the

classic Recurrent Neural Network (RNN), which is known to

be able to process temporal information of longer sequences.

In the GRU-autoencoder model, both encoder and decoder are

the one-layer GRU network. The hidden state on the last time

step of the encoder is fed into the decoder as the initial hidden

state, and the decoder input is set to 0.

1) Reconstruction error: The reconstruction error of such

model is often chosen to be the mean square error (MSE), or

the ℓ2 loss, that is, the error for the i-th input-reconstruction

part can be defined as:

ℓ(i)mse = ‖yi − ŷi‖2, (1)

where yi is the i-th input test sequence, and ŷi is the

corresponding reconstructed sequence. Considering that the

input sequences are binary, we can also use the cross-entropy

loss, which is defined as:

ℓ(i)ce = −

p∑

k=1

yik log(ŷik) + (1− yik) log(1− ŷik), (2)

where yik is the k-th element in the i-th input sample yi.

Note that when computing the reconstruction error, the data

sequence is flattened into a vector, so that p = w×m. Recall

that m is the input data dimension in each time step, and w

is the window size.

2) Class imbalance: When the cross-entropy loss, which

is often used as a criterion for the classification problem, is

applied element-wise as reconstruction error, one interpreta-

tion is that we treat each element in the sequence as a binary

TABLE I
AUC ROC of different model/criterion combinations. The number was calculated by averaging the AUC ROC of all 17 models trained on each subject.

ℓ
+
ce (GRU-autoencoder) ℓ

−

ce (GRU-autoencoder) ℓ
+
ce (PCA) ℓ

−

ce (PCA)

average AUC 0.8377 0.8111 0.8865 0.6821

classification input/output. This interpretation naturally leads

to the discovering of the class-imbalance problem. Let

ℓ(i)+ce = −
∑

k∈Ai

yik log(ŷik) + (1− yik) log(1− ŷik)

ℓ(i)−ce = −
∑

k∈Ac

i

yik log(ŷik) + (1− yik) log(1− ŷik),
(3)

where set Ai , {k|k ∈ [1, 2, ..., p], yik = 1}, then A
c
i ,

{k|k ∈ [1, 2, ..., p], yik = 0}, accordingly. Then we have

ℓ
(i)
ce = ℓ

(i)+
ce + ℓ

(i)−
ce . Due to the heavy class imbalance

introduced by the sparsity property in our data, ℓ
(i)−
ce is inferior

on serving as criterion compared with ℓ
(i)+
ce , as shown in Table

I. Given that regardless of the input sample being anomalous

or not, the percentage of positive elements in the reconstructed

vectors would be small, thus the difference in misclassification

between normal and anomalous samples represented in ℓ
(i)−
ce

would be flooded by the correctly classified elements, which

brings more noise and less useful information to ℓ
(i)−
ce . Note

that Table I also shows that the difference of ℓ+ce and ℓ−ce
is more significant in the PCA model than in the GRU-

autoencoder. This can be explained by the reconstruction

distribution of each model, as shown in Figure 2, in which we

can see that when smaller than the selected threshold of 0.5,

the output distribution of GRU-autoencoder is flatter than that

of PCA, which drops drastically as the data value approaches

the threshold. This means that there is more information

packed in the true-negatives of the GRU-autoencoder, since

there is potentially more bad-correct classification (the ones

close to the threshold). Thus, the performance of l−ce is in turn

closer to l+ce compared with that of PCA.

The cross-entropy loss ℓ
(i)
ce = ℓ

(i)+
ce + ℓ

(i)−
ce is in turn not

optimal because the inferior criterion, ℓ
(i)−
ce , actually affects

the final score more, since its mean and variance are larger

than that of ℓ
(i)+
ce . Thus, we need a better way of combining

the residual criterion computed on positive and negative input

elements than simply adding them together.

3) Weighted Sum: It is natural to think of using a weighted

sum to tackle problems introduced by class-imbalance, that is,

ℓ(i)ce = βℓ(i)+ce + ℓ(i)−ce , (4)

where β is the weight parameter, and should be set to a

value larger than 1, since we are trying to emphasis ℓ
(i)+
ce

more. However, in this case, the weighted sum does not work.

Our experiments show that using weighted loss would in

fact has detrimental effects on the classification performance.

0.0 0.2 0.4 0.6 0.8 1.0
value of vector elements in reconstructed samples

101

102

103

104

105

106

107

nu
m

 o
f o

cc
ur

re
nc

es

(a) Reconstruction distribution of GRU-autoencoder

0.0 0.2 0.4 0.6 0.8 1.0
value of vector elements in reconstructed samples
100

101

102

103

104

105

106

107

nu
m

 o
f o

cc
ur

re
nc

es

(b) Reconstruction distribution of PCA

Fig. 2. Reconstruction distribution of two models when trained with subject
10 (The distribution of other subjects have a very similar pattern). The
histogram was drawn regarding the value of each element in the reconstructed
data sequence vectors.

To understand the fail of using weighted sum, we can re-

formulate cross-entropy loss as

ℓ(i)ce =

p∑

k=1

ϕ(rik)

ϕ(x) = − log(1− x),

(5)

where rik , |yik − ŷik| is the residual of the k-th element

in sample i. This way we unify the cross entropy loss with

MSE, since the later can be written as

ℓ(i)ce =

p∑

k=1

ϕ(rik)

ϕ(x) = x2

(6)

The goal of this representation of cross-entropy loss is to

get rid of the information introduced in yik and see each

element equally through residual rik. By re-formulating the

cross-entropy loss, we find that using weighted loss is essen-

tially putting more weight on a subset of residuals, resulting

in distortion in measuring the quality of reconstruction, and

thus making it a worse criterion than not having weighted

sum. The reformulation is also useful in building our proposed

reconstruction criterion, as described in the next section.

B. F1,log score

Here we propose a new criterion that better combines

criterion information from both positive and negative input

elements inspired by cross-entropy loss and the F1 score.

First, we define the element-wise F1 score for i-th input-

reconstruction pair as

F
(i)
1,elem = 2 ·

precisioni · recalli
precisioni + recalli

precisioni =
TPi

TPi + FPi

recalli =
TPi

TPi + FNi

,

(7)

where TPi, FPi ,and FNi are element-wise true-positive,

false-positive and false-negative ,respectively, that is, we

go through w × m elements in the flattened i-th in-

put/reconstruction sequence and count how many got correctly

or mistakenly classified. Note that since the reconstruction of

an input sample is not Bernoulli-distributed, a threshold th is

needed for counting.

TPi =

p∑

k=1

1yik=1,ŷik>th(k)

FPi =

p∑

k=1

1yik=0,ŷik>th(k)

FNi =

p∑

k=1

1yik=1,ŷik≤th(k),

(8)

Commonly, the threshold is chosen to be 0.5. Note that

when we use F
(i)
1,elem as reconstruction criterion, it is no longer

a loss, since better reconstruction yields higher F
(i)
1,elem score.

An obvious problem with F
(i)
1,elem is that, similar to traditional

F1 score, it ignores the difference of reconstruction value

except being larger or smaller than the threshold, e.g., an

element in the reconstructed vector with a value of 0.1 or

0.3 would result in the same contribution on F
(i)
1,elem value,

while they, in fact, are of different reconstruction quality. To

reduce the crudeness of F
(i)
1,elem, we can sum up the value of

reconstruction directly after applying the threshold, resulting

in a “softened” F1 score F
(i)
1,soft, whose definition is identical

to that of F
(i)
1,elem except for the method to calculate true-

positive, false-positive and false-negative, which are defined

as:

TPi,soft =

p∑

k=1

ŷik · 1yik=1,ŷik>th(k)

FPi,soft =

p∑

k=1

rik · 1yik=0,ŷik>th(k)

FNi,soft =

p∑

k=1

rik · 1yik=1,ŷik≤th(k),

(9)

Note that in FNi,soft and FPi,soft we are adding up

rik instead of ŷik, because we measure how “false” those

misclassified elements are.

To further exploit the information in misclassifications,

following the same spirit of reformulation as in III-A3, the

sum of residuals can be viewed as

p∑

k=1

rik =

p∑

k=1

ϕ(rik)

ϕ(x) = x,

(10)

which gives room for substituting the identical function

ϕ(x) = x with other more complicated ones. Considering

the reformulation presented in III-A3, we can replace it with

ϕ(x) = −log(1−x) to get the final criterion function F
(i)
1,log ,

merged from cross-entropy loss and F1 score, that is defined

as:

F
(i)
1,log = 2 ·

precisioni · recalli
precisioni + recalli

precisioni =
TPi,ϕ

TPi,ϕ + FPi,ϕ

recalli =
TPi,ϕ

TPi,ϕ + FNi,ϕ

TPi,ϕ =

p∑

k=1

ŷik · 1yik=1,ŷik>th(k)

FPi,ϕ =

p∑

k=1

ϕ(rik) · 1yik=0,ŷik>th(k)

FNi,ϕ =

p∑

k=1

ϕ(rik) · 1yik=1,ŷik≤th(k)

ϕ(x) = − log(1− x)

(11)

We chose the log loss ϕ(x) = − log(1 − x) used in cross-

entropy over the mse loss (ϕ(x) = x2) or ℓ1 loss (ϕ(x) = x)

because as the value of residual approaches 1, the log loss

goes to infinity, which makes the function emphasize more

on mistakenly classified elements and the noise packed in

borderline misclassifications would be relatively suppressed.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed reconstruction

criterion, we combined F
(i)
1,log , F

(i)
1,elem and F

(i)
1,soft with

both GRU-autoencoder and PCA to compare with traditional

reconstruction criterion such as the cross-entropy loss. We

also run experiments with classic anomaly detection methods,

TABLE II
AUC ROC scores for the GRU-autoencoder model combined with different criteria and trained with different subjects as normal data.

1 2 3 4 5 6 7 8 9

cross entropy 0.975239 0.958159 0.974099 0.907872 0.764404 0.979918 0.985366 0.990756 0.944715

ℓ2 0.964421 0.917244 0.972857 0.88324 0.697965 0.964851 0.97831 0.989469 0.925973
F1 0.922404 0.886108 0.844787 0.766478 0.816244 0.925565 0.927039 0.979016 0.932907
F1,soft 0.953818 0.928765 0.903571 0.854745 0.815791 0.968696 0.950684 0.993311 0.932291
F1,log 0.987227 0.985611 0.979339 0.954102 0.851323 0.999144 0.997623 0.996901 0.944014

10 11 12 13 14 15 16 17 Avg

cross entropy 0.981127 0.977195 0.951464 0.949133 0.941423 0.959979 0.89552 0.937988 0.94555
ℓ2 0.979184 0.94489 0.896652 0.857217 0.881879 0.943517 0.861038 0.925543 0.916721
F1 0.967334 0.977196 0.804858 0.815347 0.907183 0.945377 0.84815 0.746241 0.883073
F1,soft 0.97372 0.987033 0.824479 0.841786 0.911925 0.954494 0.86734 0.773368 0.907989
F1,log 0.991274 0.993245 0.953315 0.969155 0.952176 0.981794 0.934214 0.935161 0.965036

TABLE III
AUC ROC scores for the PCA model combined with different criteria and trained with different subjects as normal data.

1 2 3 4 5 6 7 8 9

cross entropy 0.905623 0.932903 0.889032 0.874782 0.809761 0.917691 0.917097 0.923905 0.953029

ℓ2 0.893629 0.869883 0.875814 0.815733 0.740041 0.888635 0.89731 0.908899 0.942671
F1 0.902749 0.905896 0.88644 0.857147 0.861196 0.936294 0.976685 0.902188 0.921901
F1,soft 0.904935 0.913003 0.889323 0.875949 0.871135 0.936922 0.979903 0.905859 0.924378
F1,log 0.921769 0.9533 0.903276 0.909348 0.876643 0.967007 0.963049 0.947192 0.944199

10 11 12 13 14 15 16 17 Avg

cross entropy 0.942259 0.94695 0.939047 0.907387 0.925588 0.874012 0.857456 0.872571 0.905241
ℓ2 0.93422 0.932748 0.923125 0.865657 0.901959 0.843484 0.833475 0.837728 0.876765
F1 0.943334 0.965608 0.916079 0.892141 0.931789 0.890752 0.839821 0.887454 0.90691
F1,soft 0.943902 0.969193 0.920286 0.89813 0.935591 0.896031 0.844782 0.889675 0.911706
F1,log 0.962085 0.97575 0.955309 0.931534 0.952503 0.905517 0.884555 0.910486 0.933148

TABLE IV
AUC ROC scores for different methods and criterion-model combination. Each column indicates that the corresponding subject is used as normal data.

Here we denote GRU-autoencoder as GRU to save space in the table.

1 2 3 4 5 6 7 8 9

LOF 0.652200 0.792872 0.877586 0.627958 0.905282 0.865176 0.669485 0.779208 0.711425
OCSVM 0.94865 0.870193 0.953574 0.79841 0.72567 0.945882 0.922988 0.983601 0.932072
ce (GRU) 0.975239 0.958159 0.974099 0.907872 0.764404 0.979918 0.985366 0.990756 0.944715
ce (PCA) 0.905623 0.932903 0.889032 0.874782 0.809761 0.917691 0.917097 0.923905 0.953029

F1,log (PCA) 0.921769 0.9533 0.903276 0.909348 0.876643 0.967007 0.963049 0.947192 0.944199
F1,log (GRU) 0.987227 0.985611 0.979339 0.954102 0.851323 0.999144 0.997623 0.996901 0.944014

10 11 12 13 14 15 16 17 Avg

LOF 0.708235 0.646512 0.671088 0.646572 0.640881 0.692538 0.6220062 0.720277 0.719371
OCSVM 0.98864 0.913311 0.892281 0.882556 0.870536 0.847483 0.81662 0.929258 0.895396
ce (GRU) 0.981127 0.977195 0.951464 0.949133 0.941423 0.959979 0.89552 0.937988 0.94555
ce (PCA) 0.942259 0.94695 0.939047 0.907387 0.925588 0.874012 0.857456 0.872571 0.905241
F1,log (PCA) 0.962085 0.97575 0.955309 0.931534 0.952503 0.905517 0.884555 0.910486 0.933148
F1,log (GRU) 0.991274 0.993245 0.953315 0.969155 0.952176 0.981794 0.934214 0.935161 0.965036

including OC-SVM and Local outlier factor(LOF), as part of

the baseline models.

A. Experimental Setup

Following the one-class classification setup, to test the

performance of a specific algorithm, we train one model for

each subject in the data set, that is, 17 models were trained

for each algorithm. When training for subject A, for example,

the data matrix of subject A was temporally divided into

3 consecutive parts, namely training, validating ,and testing.

We would only use the training part of subject A to train

the model, and use the test part of the data from subject A

and other subjects combined as normal/anomalous test data

respectively.

1) Models:

1) PCA: The crucial hyper-parameter in the PCA model

is the number of features after projection. Here we use

the explained variance ratio to determine the number of

features to keep. As shown in figure 3, for most of the

models, the explained variance can reach 90% with the

first 60 dimensions. Thus we keep 60 dimensions (first

60 projected features).

2) GRU-autoencoder: Considering the similarity of PCA

and GRU-autoencoder, i.e., both are reconstruction

based methods, we borrow the information of PCA

explained variance and chose the size of the hidden

state in GRU network to be 60 as well. We chose cross-

entropy as the training criterion. The model was trained

0 25 50 75 100 125 150 175 200
num of features

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

m
ul

at
iv

e
ex

pl
ai

ne
d

va
ria

nc
e id:0

id:1
id:2
id:3
id:4
id:5
id:6
id:7
id:8
id:9
id:10
id:11
id:12
id:13
id:14
id:15
id:16

Fig. 3. Accumulative explained variance for PCA models trained with each
subject as training data.

with Adam [5], in mini-batch style. The batch size is

128, and the learning rate is chosen to be 0.0015. Other

hyper-parameters were set to follow the default set up

in the Pytorch [8] package.

3) One-class SVM (OCSVM) [10] is a widely used one-

class classification method, where a high dimensional

sphere surrounding the training normal data points is

found and used to predict whether a given test sample

is anomalous or not. We used the Radial basis function

(RBF) kernel as the non-linear kernel for the model.

4) Local outlier factor (LOF) [1] is a classic distance-

based anomaly detection method, where a sample point

is recognised as an anomaly when its local density is

lower than its k nearest neighbours. In our experiment

k is chosen to be 20.

2) Metrics: The traditional of comparing the performance

of different classification methods would be demonstrating

the ROC curve. Considering the fact that there are multiple

models trained for each method, we mainly demonstrate the

Area Under Curve (AUC) of ROC curves.

B. Results and Comparison

By examining table II and III, we can find that F1,log

outperforms F1,soft, and F1,soft in turn outperforms F1. Thus

proved the effectiveness of the proposed formulation based

on F1 score, as shown in equation 11. The formulation in the

equation also gives possibilities of using other functions other

than ϕ(x) = − log(1 − x) or ϕ(x) = x2 when encountering

other sparse distributions.

Another observation is that the performance gain of us-

ing F1,log compared with cross-entropy loss is higher when

combined with PCA than GRU-autoencoder. The information

from table I, where we can find that the difference of ℓ+ce
and ℓ−ce is more significant in the PCA model than in GRU-

autoencoder, combined with table II and III also shows that

the performance gain of our proposed criterion comes from

better merging two parts of residual based loss.

We can also find that other than a few exceptions (2 out

of 17 for both PCA and GRU-autoencoder), the F1,log score

outperforms other criteria, which proved the effectiveness of

using our proposed criterion in a sparse data set. As shown in

table IV, the best performance can almost always be achieved

when combining the proposed F1,log with GRU-autoencoder.

In the few exceptions where the other methods do perform

better, the margins are small (0.9379 vs 0.9351 and 0.9530

vs 0.9440). This gives a satisfying solution for user identity

anomaly detection with behaviour information in the computer

system.

V. CONCLUSION AND FUTURE WORK

In this paper, we examined the class imbalance problem

in reconstruction error based one-class classification problem,

analysed the cause of it, and proposed a novel reconstruc-

tion criterion. The experiment shows that our criterion can

effectively improve the performance of both PCA and GRU-

autoencoder, and when combined with GRU-autoencoder, the

model can serve as a practical usage behaviour based anomaly

detection system. Regarding future work, more possible selec-

tions for the ϕ function can be further examined.

VI. ACKNOWLEDGMENT

This work was supported in part by NSF grant CNS-

1814557 and MIT Lincoln Grant Air Force Contract No.

A8721-05-C-0002 and FA8702-15-D-0001.

REFERENCES

[1] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg
Sander. Lof: identifying density-based local outliers. In Proceedings of

the 2000 ACM SIGMOD international conference on Management of

data, pages 93–104, 2000.
[2] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[3] Ville Hautamaki, Ismo Karkkainen, and Pasi Franti. Outlier detection
using k-nearest neighbour graph. In Proceedings of the 17th Interna-

tional Conference on Pattern Recognition, 2004. ICPR 2004., volume 3,
pages 430–433. IEEE, 2004.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[6] Mark A Kramer. Nonlinear principal component analysis using autoas-
sociative neural networks. AIChE journal, 37(2):233–243, 1991.

[7] Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran
Liou. Autoencoder for words. Neurocomputing, 139:84–96, 2014.

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[9] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoen-
coders with nonlinear dimensionality reduction. In Proceedings of the

MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data

Analysis, pages 4–11, 2014.
[10] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-

Taylor, and John C Platt. Support vector method for novelty detection.
In Advances in neural information processing systems, pages 582–588,
2000.

[11] David MJ Tax and Robert PW Duin. Support vector data description.
Machine learning, 54(1):45–66, 2004.

[12] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu,
Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. Un-
supervised anomaly detection via variational auto-encoder for seasonal
kpis in web applications. In Proceedings of the 2018 World Wide Web

Conference, pages 187–196, 2018.

