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Abstract—Computer usage behaviour information can be used
by anomaly detection algorithms to identify the current user
of the computer system for security reasons. However, the
data collected in this setup can be binary and very sparse,
resulting in poor performance for some widely used anomaly
detection methods. In this study, we propose a novel reconstruc-
tion criterion inspired by the F' score and the cross-entropy
loss, that tackles the class imbalance problem introduced by
binary and sparse data distribution with effectively merging
reconstruction criterion calculated from vector elements of both
positive and negative classes. Our experiments show that the
proposed criterion can effectively improve the performance of
reconstruction based anomaly detection methods, including both
the PCA and the autoencoder.

I. INTRODUCTION

Anomaly detection is a widely studied problem with a wide
range of applications, one of which is anomaly detection in the
computer system. Specifically, a computer system, on many
occasions, is supposed to be used by one user and one user
only for security purposes. The behaviour information can be
used with anomaly detection algorithms in building systems to
detect the identity of the current user. They can be realized by
building a one-class classifier trained with the user behaviour
information, which is collected through checking whether any
entry in a pre-determined list of concerned applications and
IP addresses is activated. The resulting data matrices used to
train the one-class classifier model can thus be very sparse,
leading to negative effects on the classification performance.

The one class classification refers to the problem that, in
the training process, only the data of one class is provided,
while at the test phase, the model should determine whether
a testing sample belongs to the original class or not. From
here on, we use the term one-class classification and anomaly
detection interchangeably.

The one class classification is an active research area with
many classic approaches proposed. A straight forward idea is
to determine the class of a data sample through its distance
to other data points [3] [1]. These approaches suffer from the
curse of dimensionality since the distance measure generally
will not work well on high dimensional data. Another class
of widely used methods is the domain-based approach, where
the trained model is essentially trying to find the hypersphere
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that bounds the normal training data [11] or a hyperplain that
separates the normal training data from original point [10].
Being very successful and the most widely used methods
for one-class classification, these methods are not specially
designed to deal with sequential data. Another class of meth-
ods is the reconstruction based one-class classification, where
the model is trained to map the input sample into a lower-
dimensional space through minimizing the reconstruction loss.
Since the model is only trained with samples from one class,
when fed with samples from other classes, the reconstructive
error of the output would be higher, and thus can be used
as a criterion to determine whether it is from the original
class. As a widely used dimension reduction method, the
principal component analysis (PCA) can naturally be used
as a reconstruction error based method, but it also does not
fit well with sequential data in large size. The autoencoder
[6], on the other hand, could combine with popular deep
learning models such as GRU [2] or LSTM [4], and explore
the potential hidden temporal information in the data [7] [12]
[9]. These approaches, however, do not consider the situation
when the input data is sparse. Contrary to widely used the
cross-entropy loss or the MSE loss, the F score has a natural
potential of combining imbalanced class, which is induced by
data sparsity, more effectively.

In this work, our main contribution is proposing a
new reconstruction criterion inspired by the F)} score
and cross-entropy loss, which is able to improve the
performance of the reconstruction-error-based one-class
classification method when the input data is binary and
sparse. Our formulation of the proposed criterion also
leaves space for potential further optimization.

The remaining of this paper is organized as follows:
Section II introduces the formulation of our data set and
explains the sparse problem. In Section III, we describe the
reconstruction-error-based method and our proposed recon-
struction criterion in detail. The experiment results are shown
in Section IV. Finally, Section V concludes the paper.



25000

20000 -

15000

10000

5000 -

number of data vector inste

0- T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
proportion of non-zero elements in a data vector

Fig. 1. Histogram of different levels of sparsity in our data set.

II. DATA FORMULATION

A. Data Collection and Sparsity

In this problem, the usage behaviour information data were
collected from 17 volunteer subjects, and for each subject a
software was used to continuously monitor what applications
are activated and what IP addresses are visited in a pre-
selected list of applications and IP addresses. The data of
each time point are organized as one vector v € R" of Os and
Is, with 1s indicating that the corresponding applications/IP
addresses are activated or visited at the given time and Os
otherwise. In this task, about three weeks of user data were
collected for 17 users. There are 554 interested applications
and websites in the list and 10 columns are used to record
time, thus m = 554 + 10 = 564. Because the list of
interested application and IP addresses are pre-selected, the
data matrices are very sparse. We calculated the percentage
of non-zero elements in the data vectors on each time step,
as presented in Figure 1. We can find that for most of the
data vectors (one row in the matrices), only around 2%
of the columns are non-zero. The average non-zero column
percentage is 1.8%.

1) Sliding Window: Considering to exploit the possible
temporal information in our data set, we used the sliding
window technique, where data points of consecutive w time
steps were considered as one and are assigned with one output
label, being anomalous or not. For the model such as GRU-
autoencoder that has the inherent structural ability to deal
with sequential data, we fed data sequence into the model
one step at a time, and for other models that are designed to
take single vector input, we concatenate the data sequence into
one vector and fed into them. When the size of the sliding
window increase, the classification accuracy goes up, since
more information was taken into account, but at the same
time, the sensitivity of the system would drop since it takes
more time to make one decision. For balancing two factors,
here we chose window size to be 5.

III. METHOD

A. Background

Reconstruction-based methods for anomaly detection are
usually comprised of two phases: the encoding and the de-
coding phase. When an input sample is fed to the model,
it is first compressed into a lower dimension space. The
low dimension representation of the input sample is then
decoded back to the original space, as a reconstruction of
the original input. A criterion function, usually known as
reconstruction error, is used as a measure of reconstruction
quality. After trained with only normal samples, the model
would be forced to learn the underlying distributional infor-
mation of the normal data set as it has to reconstruct the
input from a lower dimension representation. As an anomaly
detection system, when an anomalous test sample is given
to the model, the reconstruction error would be larger than
that of a normal sample, since the anomalous sample comes
from a distribution that model has never seen before. We can
then use the reconstruction error of test samples, combined
with a threshold, as an indicator of whether the test sample
is anomalous.

The model used in the encoding and decoding phases can
take various forms. In our experiment, we used two different
settings: GRU-autoencoder and PCA.

The GRU [2], similar to LSTM [4], is a variation of the
classic Recurrent Neural Network (RNN), which is known to
be able to process temporal information of longer sequences.
In the GRU-autoencoder model, both encoder and decoder are
the one-layer GRU network. The hidden state on the last time
step of the encoder is fed into the decoder as the initial hidden
state, and the decoder input is set to 0.

1) Reconstruction error: The reconstruction error of such
model is often chosen to be the mean square error (MSE), or
the /5 loss, that is, the error for the i-th input-reconstruction
part can be defined as:

00 = Nlyi — Gilla, (1)

where y; is the i-th input test sequence, and y; is the
corresponding reconstructed sequence. Considering that the
input sequences are binary, we can also use the cross-entropy
loss, which is defined as:

p
() = = " yirlog(@ir) + (1= yix) log(1 = Gir), ()
k=1

where y;, is the k-th element in the ¢-th input sample y;.
Note that when computing the reconstruction error, the data
sequence is flattened into a vector, so that p = w x m. Recall
that m is the input data dimension in each time step, and w
is the window size.

2) Class imbalance: When the cross-entropy loss, which
is often used as a criterion for the classification problem, is
applied element-wise as reconstruction error, one interpreta-
tion is that we treat each element in the sequence as a binary
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classification input/output. This interpretation naturally leads
to the discovering of the class-imbalance problem. Let

(0 = =" yirlog(Gir) + (1 — yix) log(1 — Gir)
keA;

= ik log(iik) + (1 — yar) log(1 — k),
keAs

3)

0

where set A; £ {k|k € [1,2,...,p],yix = 1}, then A £
{klk € [1,2, ...,p;,yik = 0}, accordingly. Then we have
é&? = EEZH + ECQ_. Due to the heavy class imbalance
introduced by the sparsity property in our data, z&Q* is inferior
on serving as criterion compared with zﬁ?*, as shown in Table
I. Given that regardless of the input sample being anomalous
or not, the percentage of positive elements in the reconstructed
vectors would be small, thus the difference in misclassification
between normal and anomalous samples represented in 536)_
would be flooded by the correctly classified elements, which
brings more noise and less useful information to e&?‘. Note
that Table I also shows that the difference of ¢}, and £,
is more significant in the PCA model than in the GRU-
autoencoder. This can be explained by the reconstruction
distribution of each model, as shown in Figure 2, in which we
can see that when smaller than the selected threshold of 0.5,
the output distribution of GRU-autoencoder is flatter than that
of PCA, which drops drastically as the data value approaches
the threshold. This means that there is more information
packed in the true-negatives of the GRU-autoencoder, since
there is potentially more bad-correct classification (the ones
close to the threshold). Thus, the performance of [_, is in turn
closer to [T, compared with that of PCA.

The cross-entropy loss E&Q = z&?* + Kﬁlp)f is in turn not
optimal because the inferior criterion, E&le)_, actually affects
the final score more, since its mean and variance are larger
than that of €£2)+. Thus, we need a better way of combining
the residual criterion computed on positive and negative input
elements than simply adding them together.

3) Weighted Sum: 1t is natural to think of using a weighted
sum to tackle problems introduced by class-imbalance, that is,

059 = et + 08~ (4)

where 3 is the weight parameter, and should be set to a
value larger than 1, since we are trying to emphasis E&H
more. However, in this case, the weighted sum does not work.
Our experiments show that using weighted loss would in
fact has detrimental effects on the classification performance.
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Fig. 2. Reconstruction distribution of two models when trained with subject
10 (The distribution of other subjects have a very similar pattern). The
histogram was drawn regarding the value of each element in the reconstructed
data sequence vectors.

To understand the fail of using weighted sum, we can re-
formulate cross-entropy loss as

p
0D =>"p(ri)
k=1

p(r) = —log(l — =),

®)

where 7, £ |yix — Yir| is the residual of the k-th element
in sample ¢. This way we unify the cross entropy loss with
MSE, since the later can be written as

p
0 — ’
o ; o(rir) ©
o(x) = a°

The goal of this representation of cross-entropy loss is to
get rid of the information introduced in y;; and see each
element equally through residual r;;. By re-formulating the
cross-entropy loss, we find that using weighted loss is essen-
tially putting more weight on a subset of residuals, resulting



in distortion in measuring the quality of reconstruction, and
thus making it a worse criterion than not having weighted
sum. The reformulation is also useful in building our proposed
reconstruction criterion, as described in the next section.

B. I 104 score

Here we propose a new criterion that better combines
criterion information from both positive and negative input
elements inspired by cross-entropy loss and the Fj score.
First, we define the element-wise F) score for ¢-th input-
reconstruction pair as

@ _o. precision; - recall;

Lelem precision; + recall;
TP,
precision; = m 7
i TP,
recall; = ———-—,
TPZ' + FNi

where T'P;, F'P; ,and F'N; are element-wise true-positive,
false-positive and false-negative ,respectively, that is, we
go through w x m elements in the flattened i-th in-
put/reconstruction sequence and count how many got correctly
or mistakenly classified. Note that since the reconstruction of
an input sample is not Bernoulli-distributed, a threshold th is
needed for counting.

P
TP = Z Lyso=1,9x>th (k)

k=1
P
FpP = Z Ly.=0g:>tn (k) ®)
k=1
p
FN; = Z ]lyikzl,@ikfth(k)’
k=1

Commonly, the threshold is chosen to be 0.5. Note that

when we use Fl(lzlem as reconstruction criterion, it is no longer

a loss, since better reconstruction yields higher Fl(iglem
i)

An obvious problem with F1( lem 18 that, similar to traditional
Fy score, it ignores the difference of reconstruction value
except being larger or smaller than the threshold, e.g., an
element in the reconstructed vector with a value of 0.1 or
0.3 would result in the same contribution on Fl(fe)lem value,
while they, in fact, are of different reconstruction quality. To
reduce the crudeness of Fl(,lilem’ we can sum up the value of
reconstruction directly after applying the threshold, resulting

in a “softened” F} score £ whose definition is identical

) 1,so0ft>
to that of Fl(lgl -m €xcept for the method to calculate true-

positive, false-positive and false-negative, which are defined

score.

as:

p
TPigost = Y ik - Lyn=1,g>tn (k)

k=1
p
FPisope = Z Tik * Ly =0,gu,>th (k) ©)
k=1
p
FNisopt = Y it Lyp=1,5uzen(k),
k=1

Note that in F'N; so5; and FP; 5, we are adding up
ri1 instead of ¢;i, because we measure how “false” those
misclassified elements are.

To further exploit the information in misclassifications,
following the same spirit of reformulation as in III-A3, the
sum of residuals can be viewed as

P P
ZTU« = Z o(rik)
k=1 k=1
p(z) =,

which gives room for substituting the identical function
p(x) = x with other more complicated ones. Considering
the reformulation presented in III-A3, we can replace it with
¢(x) = —log(1 — x) to get the final criterion function Fl(fl)o "
merged from cross-entropy loss and F} score, that is defined
as:

(10)

() precision; - recall;
Fliog =2 S1OT. ,
precision; + recall;
s TP,
recision; = ——————
P TP, + FPi,
TP,
I, = T Twe
reca TP+ FN,,
P
TPiy=> ik Lyn=1gusen(k) (11)
k=1
P
FPi,= Z @(rik) - Lyik=0,g,>th (k)
k=1
P
FNip =Y @ri) - Lyn=1g,<in(k)
k=1
p(r) = —log(1 — )
We chose the log loss ¢(x) = —log(l — x) used in cross-

entropy over the mse loss (¢(z) = 22) or £1 loss (p(7) = x)
because as the value of residual approaches 1, the log loss
goes to infinity, which makes the function emphasize more
on mistakenly classified elements and the noise packed in
borderline misclassifications would be relatively suppressed.

IV. EXPERIMENTS

To evaluate the effectiveness of the‘g)roposed reconstruction
criterion, we combined Fl(jl)o ” Fl(felem and Fl(js)oft with
both GRU-autoencoder and PCA to compare with traditional
reconstruction criterion such as the cross-entropy loss. We

also run experiments with classic anomaly detection methods,



TABLE II
AUC ROC scores for the GRU-autoencoder model combined with different criteria and trained with different subjects as normal data.

1 2 3 4 S 6 7 8 9
cross entropy | 0.975239  0.958159  0.974099  0.907872  0.764404  0.979918  0.985366 ~ 0.990756  0.944715
lo 0.964421 0917244  0.972857  0.88324 0.697965  0.964851  0.97831 0.989469  0.925973
Fy 0.922404  0.886108  0.844787  0.766478  0.816244  0.925565  0.927039  0.979016  0.932907
Fi soft 0.953818  0.928765  0.903571  0.854745  0.815791  0.968696  0.950684  0.993311  0.932291
F1.10g 0.987227  0.985611  0.979339  0.954102  0.851323  0.999144  0.997623  0.996901 0.944014

10 11 12 13 14 15 16 17 Avg
cross entropy | 0.981127  0.977195  0.951464  0.949133  0.941423  0.959979  0.89552 0.937988  0.94555
lo 0.979184  0.94489 0.896652  0.857217  0.881879  0.943517  0.861038  0.925543  0.916721
Py 0967334  0.977196  0.804858  0.815347  0.907183  0.945377  0.84815 0.746241  0.883073
F1 soft 0.97372 0.987033  0.824479  0.841786  0.911925 0.954494  0.86734 0.773368  0.907989
F1.10g 0.991274  0.993245  0.953315  0.969155  0.952176  0.981794  0.934214  0.935161  0.965036

TABLE III
AUC ROC scores for the PCA model combined with different criteria and trained with different subjects as normal data.

1 2 3 4 6 7 8 9
cross entropy | 0.905623  0.932903  0.889032  0.874782  0.809761  0.917691  0.917097  0.923905  0.953029
lo 0.893629  0.869883  0.875814  0.815733  0.740041  0.888635  0.89731 0.908899  0.942671
Iy 0.902749  0.905896  0.88644 0.857147  0.861196  0.936294  0.976685  0.902188  0.921901
Fi soft 0.904935  0.913003  0.889323  0.875949  0.871135 0.936922  0.979903  0.905859  0.924378
F1.10g 0.921769  0.9533 0.903276  0.909348  0.876643  0.967007  0.963049  0.947192  0.944199

10 11 12 13 14 15 16 17 Avg
cross entropy | 0.942259  0.94695 0.939047  0.907387  0.925588  0.874012  0.857456  0.872571  0.905241
lo 0.93422 0.932748  0.923125  0.865657  0.901959  0.843484  0.833475  0.837728  0.876765
Iy 0.943334  0.965608 0.916079  0.892141  0.931789  0.890752  0.839821  0.887454  0.90691
F1 soft 0.943902  0.969193  0.920286  0.89813 0.935591  0.896031  0.844782  0.889675 0.911706
F1.10g 0.962085  0.97575 0.955309  0.931534  0.952503  0.905517  0.884555  0.910486  0.933148

TABLE IV

AUC ROC scores for different methods and criterion-model combination. Each column indicates that the corresponding subject is used as normal data.
Here we denote GRU-autoencoder as GRU to save space in the table.

F1 109 (PCA) | 0.921769  0.9533 0.903276  0.909348
F1,104 (GRU) | 0.987227  0.985611  0.979339  0.954102

0.876643  0.967007  0.963049 0.947192  0.944199
0.851323  0.999144  0.997623 0.996901  0.944014

1 2 3 4 6 7 8 9
LOF 0.652200  0.792872  0.877586  0.627958  0.905282  0.865176  0.669485 0.779208  0.711425
OCSVM 0.94865 0.870193  0.953574  0.79841 0.72567 0.945882  0.922988 0.983601  0.932072
ce (GRU) 0.975239  0.958159  0.974099  0.907872  0.764404  0.979918  0.985366 0.990756  0.944715
ce (PCA) 0.905623  0.932903  0.889032  0.874782  0.809761  0.917691  0.917097 0.923905  0.953029

Fi 109 (PCA) | 0962085 097575 0955309 0931534
Fi1og (GRU) | 0.991274  0.993245  0.953315  0.969155

10 11 12 13 14 15 16 17 Avg
LOF 0.708235  0.646512  0.671088  0.646572  0.640881  0.692538  0.6220062  0.720277  0.719371
OCSVM 0.98864 0913311  0.892281  0.882556  0.870536  0.847483  0.81662 0.929258  0.895396
ce (GRU) 0.981127 0977195 0.951464  0.949133  0.941423  0.959979  0.89552 0.937988  0.94555
ce (PCA) 0.942259  0.94695 0.939047  0.907387  0.925588  0.874012  0.857456 0.872571  0.905241

0.952503  0.905517  0.884555 0.910486  0.933148
0.952176  0.981794  0.934214 0.935161  0.965036

including OC-SVM and Local outlier factor(LOF), as part of
the baseline models.

A. Experimental Setup

Following the one-class classification setup, to test the
performance of a specific algorithm, we train one model for
each subject in the data set, that is, 17 models were trained
for each algorithm. When training for subject A, for example,
the data matrix of subject A was temporally divided into
3 consecutive parts, namely training, validating ,and testing.
We would only use the training part of subject A to train
the model, and use the test part of the data from subject A
and other subjects combined as normal/anomalous test data
respectively.

1) Models:

1y

2)

PCA: The crucial hyper-parameter in the PCA model
is the number of features after projection. Here we use
the explained variance ratio to determine the number of
features to keep. As shown in figure 3, for most of the
models, the explained variance can reach 90% with the
first 60 dimensions. Thus we keep 60 dimensions (first
60 projected features).

GRU-autoencoder: Considering the similarity of PCA
and GRU-autoencoder, i.e., both are reconstruction
based methods, we borrow the information of PCA
explained variance and chose the size of the hidden
state in GRU network to be 60 as well. We chose cross-
entropy as the training criterion. The model was trained
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Fig. 3. Accumulative explained variance for PCA models trained with each
subject as training data.

with Adam [5], in mini-batch style. The batch size is
128, and the learning rate is chosen to be 0.0015. Other
hyper-parameters were set to follow the default set up
in the Pytorch [8] package.

3) One-class SVM (OCSVM) [10] is a widely used one-
class classification method, where a high dimensional
sphere surrounding the training normal data points is
found and used to predict whether a given test sample
is anomalous or not. We used the Radial basis function
(RBF) kernel as the non-linear kernel for the model.

4) Local outlier factor (LOF) [1] is a classic distance-
based anomaly detection method, where a sample point
is recognised as an anomaly when its local density is
lower than its k nearest neighbours. In our experiment
k is chosen to be 20.

2) Metrics: The traditional of comparing the performance
of different classification methods would be demonstrating
the ROC curve. Considering the fact that there are multiple
models trained for each method, we mainly demonstrate the
Area Under Curve (AUC) of ROC curves.

B. Results and Comparison

By examining table II and III, we can find that F ;.
outperforms I s,f¢, and Iy 5o ¢ in turn outperforms Fy. Thus
proved the effectiveness of the proposed formulation based
on F} score, as shown in equation 11. The formulation in the
equation also gives possibilities of using other functions other
than p(x) = —log(1 — ) or p(x) = x? when encountering
other sparse distributions.

Another observation is that the performance gain of us-
ing F jo, compared with cross-entropy loss is higher when
combined with PCA than GRU-autoencoder. The information
from table I, where we can find that the difference of ¢,
and ¢, is more significant in the PCA model than in GRU-
autoencoder, combined with table II and III also shows that
the performance gain of our proposed criterion comes from
better merging two parts of residual based loss.

We can also find that other than a few exceptions (2 out
of 17 for both PCA and GRU-autoencoder), the F1 ;o4 score

outperforms other criteria, which proved the effectiveness of
using our proposed criterion in a sparse data set. As shown in
table IV, the best performance can almost always be achieved
when combining the proposed F1 ;,, with GRU-autoencoder.
In the few exceptions where the other methods do perform
better, the margins are small (0.9379 vs 0.9351 and 0.9530
vs 0.9440). This gives a satisfying solution for user identity
anomaly detection with behaviour information in the computer
system.

V. CONCLUSION AND FUTURE WORK

In this paper, we examined the class imbalance problem
in reconstruction error based one-class classification problem,
analysed the cause of it, and proposed a novel reconstruc-
tion criterion. The experiment shows that our criterion can
effectively improve the performance of both PCA and GRU-
autoencoder, and when combined with GRU-autoencoder, the
model can serve as a practical usage behaviour based anomaly
detection system. Regarding future work, more possible selec-
tions for the ¢ function can be further examined.
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