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THE LOGARITHMIC GAUGED LINEAR SIGMA MODEL
QILE CHEN, FELIX JANDA, AND YONGBIN RUAN

ABSTRACT. We introduce the notion of log R-maps, and develop a proper moduli
stack of stable log R-maps in the case of a hybrid gauged linear sigma model. Two
virtual cycles (canonical and reduced) are constructed for these moduli stacks.
The main results are two comparison theorems relating the reduced virtual cycle
to the cosection localized virtual cycle, as well as the reduced virtual cycle to the
canonical virtual cycle. This sets the foundation of a new technique for computing
higher genus Gromov—Witten invariants of complete intersections.
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1. INTRODUCTION

1.1. The gauged linear sigma model. In 1993, Witten gave a physical derivation
of the Landau-Ginzburg (LG)/Calabi-Yau (CY) correspondence by constructing a
family of theories, known as the gauged linear sigma model or GLSM [52]. A math-
ematical realization of the LG model, called the Fan—Jarvis-Ruan-Witten (FJRW)
theory has been established in [30] via topological and analytical methods. On the
algebraic side, an approach using the cosection localization [12] to construct the
GLSM virtual cycle was discovered in [16, 17] in the narrow case, and in general in
[15, 43]. Along the cosection approach, some hybrid models were studied in [28],
and a general algebraic theory of GLSM for (compact-type sectors of) GIT targets
was put on a firm mathematical footing by Fan, Jarvis and the third author [33].
A further algebraic approach for broad sectors using matrix factorizations has been
developed in [50, 27], while an analytic approach has been developed in [31], [51].
As discovered in [16] and further developed in [44, 20, 26], GLSM can be viewed
as a deep generalization of the hyperplane property of Gromov—Witten (GW) theory
for arbitrary genus. However, comparing to GW theory, a major difference as well as
a main difficulty of GLSM is the appearance of an extra torus action on the target,
called the R-charge, which makes the moduli stacks in consideration for defining the
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GLSM virtual cycles non-proper in general. This makes the powerful tool of virtual
localization [34] difficult to apply.

This is the second paper of our project aiming at a logarithmic GLSM theory that
solves the non-properness issue and provides a localization formula by combining the
cosection approach with the logarithmic maps of Abramovich—Chen—Gross—Siebert
[1, 21, 35]. This leads to a very powerful technique for computing higher genus
GW/FJRW-invariants of complete intersections in GIT quotients. Applications in-
clude computing higher genus invariants of quintic 3-folds [38, 39]', and the cycle of
holomorphic differentials [48, Conjecture A.1] by establishing a localization formula
of r-spin cycles conjectured by the second author [22]. This conjectural localization
formula was the original motivation of this project.

In our first paper [25], we developed a principalization of the boundary of the
moduli of log maps, which provides a natural framework for extending cosections to
the boundary of the logarithmic compactification. The simple but important r-spin
case has been studied in [25] via the log compactification for maximal explicitness.

The goal of the current paper is to further establish a log GLSM theory in the
hybrid model case which allows possibly non-GIT quotient targets. As our theory
naturally carries two different perfect obstruction theories, we further prove explicit
relations among these virtual cycles. This will provide a solid foundation for our
forthcoming paper [24] where various virtual cycles involved in log GLSM will be
further decomposed using torus localizations and the developments in [3, 2].

In the case of GIT quotient targets, another aspect of GLSM moduli spaces is that
they depend on a stability parameter and exhibit a rich wall-crossing phenomenum.
To include general targets, the current paper concerns only the co-stability that is
closely related to stable maps. We leave the study of other stability conditions in
the case of GIT quotient targets to a future research.

1.2. R-maps. The following fundamental notion of R-maps is the result of our effort
to generalize pre-stable maps to the setting of GLSM with possibly non-GIT quotient
targets. While the definition makes essential use of stacks, it is what makes various
constructions in this paper transparent.

Definition 1.1. Let 8 — BC] be a proper, DM-type morphism of log stacks where
BC; := BG,, is the stack parameterizing line bundles with the trivial log structure.
A logarithmic R-map (or, for short, log R-map) over a log scheme S with target
P — BC] is a commutative diagram:

B

A
C BC’,

log
Wess

where C — S is a log curve (see §2.1.2) and the bottom arrow is induced by the log
cotangent bundle w(lzo/gs. The notation BC], is reserved for parameterizing the line

bundle w(lzo/gs of the source curve. Pull-backs of log R-maps are defined as usual via
pull-backs of log curves.

1A different approach to higher genus Gromov—Witten invariants of quintic threefolds has been
developed by Chang—Guo-Li-Li-Liu [12, 13, 14, 18, 19].
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For simplicity, we will call f: C — P a log R-map without specifying arrows to
BC!,. Such f is called an R-map if it factors through the open substack B° C B
with the trivial log structure.

A pre-stable map f: C — P over S with compatible arrows to BC, is called an
underlying R-map. Here B is the underlying stack obtained by removing the log
structure of . -

Remark 1.2. Our notion of R-maps originates from the R-charge in physics. In
the physical formulation of GLSM [52], there is a target space X which is a Kahler
manifold (usually a GIT quotient of a vector space) and a superpotential W: X — C.
To define the A-topological twist, one needs to choose a C*-action on X, called the
R-charge, such that W has R-charge (weight) 2. The weights of the R-charge on the
coordinates of X are used to twist the map or the fields of the theory [52, 33, 30].
As pointed out by one of the referees, the setting of this article is more general than
GLSM in physics in the sense that X does not necessarily have an explicit coordinate
description. For this purpose, we formulate the more abstract notion of R-maps as
above. Our notion of R-maps agrees with those of [52, 33, 36] when X is a GIT
quotient of a vector space. The moduli space of R-maps should give a mathematical
description of the spaces on which the general A-twist localizes in physics.

Example 1.3 (quintic threefolds). Consider the target PB° = [Vbps(O(-5))/Cy],
where C! = G, acts on the line bundle Vbpi(O(—5)) by scaling the fibers with
weight one. The map PB° — BC) is the canonical map from the quotient description
of P°. In this case, an R-map f: C — P° is equivalent to the data of a map g: C —
P* together with a section (or “p-field”) p € H(wif @ f*O(=5)). Therefore, if C is
unmarked, we recover the moduli space of stable maps with p-fields [16], which is the
GLSM moduli space [33] for a quintic hypersurface in P4. The construction of this
paper will provide a compactification of J3° relative to BC}), and a compactification
of the moduli of p-fields. We refer the reader to Section 4 for more examples in a
general situation.

Just like in Gromov—Witten theory, various assumptions on ¢ are needed to build
a proper moduli space as well as a virtual cycle. While a theory of stable log R-maps
for general 3 seems to require much further development using the full machinery of
logarithmic maps, we choose to restrict ourselves to the so called hybrid targets which
already cover a large class of interesting examples including both FJRW theory and
complete intersections in Gromov-Witten theory. We leave the general case to a
future research.

1.3. R-maps to hybrid targets.
1.3.1. The input. A hybrid target is determined by the following data:

(1) A proper Deligne-Mumford stack X with a projective coarse moduli scheme

X.
(2) A vector bundle E over X of the form

E=(PE
1€ZL>0

where E; is a vector bundle with the positive grading ¢. Write d := ged (z | E; #
0).
(3) A line bundle L over X.
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(4) A positive integer 7.

For later use, fix an ample line bundle H over X, and denote by H its pull-back
over X.

1.3.2. The r-spin structure. The R-charge leads to the universal r-spin structure as
follows. Consider the cartesian diagram

(1.1) X = BG,,
BC! x x — 2 BG,,

where L, is the universal line bundle over BC?), v, is the rth power map, the bottom
arrow is defined by £, X LY, and the top arrow is defined by the universal r-th root
of L, X LY, denoted by Lx.

1.3.3. The targets. Fix a twisting choice a € é - Z~g, and set 7 = a - r. We form the
weighted projective stack bundle over X:

(1.2) B =P" <6§(EX3€ ® LY ® (936) ;

i>0
where w is the collection of the weights of the G,,-action such that the weight on
the i-th factor is the positive integer a - i, while the weight of the last factor O is 1.
Here for any vector bundle V' = @®]_,V; with a G,,-action of weight w, we use the
notation

(1.3) P¥(V) = [(Vb(V) \ ov) /Gm} ,

where Vb(V') is the total space of V', and Oy is the zero section of V. Intuitively, B
compactifies the GLSM given by

B = Vb (@(EZx ® ﬁ%)) :

>0
The boundary ooy = P\ PB° is the Cartier divisor defined by the vanishing of the
coordinate corresponding to Ox. We make P into a log stack P8 by equipping it with

the log structure corresponding to the Cartier divisor ooy. Denote by Oy the zero
section of the vector bundle °. We arrive at the following commutative diagram

(1.4) ¢ xS BC

N

X

where ( is the composition X — BC!, x X — BC; with the left arrow the projection
to BC;,. By construction, ¢ o p is proper of DM-type.

The general notion of log R-maps formulated using B can be described more
concretely in terms maps with log fields, see § 2.2.
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1.3.4. The stability. A log R-map f: C — B over S is stable if f is representable,
and if for a sufficiently small §y € (0, 1) there exists ky > 1 such that for any pair
(k,d) satisfying k > ko and 9y > § > 0, the following holds

(1.5) (wefs) TP @ (to f)"H™ @ f*O(Fooy) > 0.

The notation > in (1.5) means that the left hand side has strictly positive degree
when restricting to each irreducible component of the source curve.

Remark 1.4. It has been shown that the stack of pre-stable log maps are proper
over the stack of usual pre-stable maps [1, 21, 35]. Even given this, establishing a
proper moduli stack remains a rather difficult and technical step in developing our
theory. An evidence is that the moduli of underlying R-maps fails to be universally
closed [25, Section 4.4.6] in even most basic cases. The log structure of B plays an
important role in the properness as evidenced by the subtle stability (1.5) which was
found after many failed attempts.

Remark 1.5. In case of rank one E, the stability (1.5) is equivalent to a similar
formulation as in [25, Definition 4.9] using Oy, see Remark 2.6. However, the lat-
ter does not generalize to the higher rank case, especially when E is non-splitting.
Consequently, we have to look for a stability condition of very different form, and a
very different strategy for the proof of properness compared to the intuitive proof in
[25], see Section 5 for details.

1.3.5. The moduli stack. Denote by Z, (B, ) the category of stable log R-maps
fibered over the category of log schemes with fixed discrete data (g, 5) such that

(1) g is the genus of the source curve.

(2) The composition of the log R-map with t has curve class § € Hy(X).

(3) = {(v,ci)}, is a collection of pairs such that ¢; is the contact order of the
i-th marking with ocogq, and ; is a component of the inertia stack fixing the
local monodromy at the i-th (orbifold) marking (Definition 2.13).

The first main result of the current article is the compactification:

Theorem 1.6 (Theorem 2.14). The category X, B, B) is represented by a proper
logarithmic Deligne—Mumford stack.

Remark 1.7. Different choices of data in Section 1.3.1 may lead to the same 3, hence
the same Z, (P, 3). The ambiguity in our set-up is analogous to the non-unique
choice of R-charge of general GLSM [33, Section 3.2.3].

1.4. Virtual cycles. Another goal of this paper is to construct various virtual cycles
of (log) R-maps. For this purpose, we now impose the condition that X" is smooth.

1.4.1. The canonical virtual cycles. Olsson’s logarithmic cotangent complex [46] pro-
vides a canonical perfect obstruction theory for %, (B, ), see Section 3.1. If ¢; =0
for all 7, we refer it as a holomorphic theory. Otherwise, we call it a meromorphic
theory. For our purposes, we are in particularly interested in the holomorphic theory
and the closed substack

%;?0‘137 ﬁ) C «@gﬁ(ma 6)

where log R-maps factor through Oy along all marked points. We call %;p; (B, 5)
the stack of log R-maps with compact-type evaluations. In this case, ¢ is simply a
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collection of connected components of the inertia stack fHOmk of Op, = Op XBC?,
Speck as all contact orders are zero.

The canonical perfect obstruction theory of Z, (B, ) induces a canonical perfect
obstruction theory of ,@Cpt (B, B), see (3.12), hence defines the canonical virtual cycle

(2, (B, B)]™.

1.4.2. Superpotentials and cosection localized virtual cycles. A superpotential is a
morphism of stacks W: B° — L, over BC],. Its critical locus Crit(W) is the closed
substack of B° where dW : Tyy/pcr — W1y, /Bcr degenerates. We will consider
the case that Crit(1V) is proper over BC,.

This W induces a canonical Kiem—Li cosection of the canonical obstruction of the
open sub-stack 9?;23 (B°, B) C ZyB, ). This leads to a cosection localized virtual

cycle [9?;}? ('B°, B)], which represents [9?;}? (B°, B)]¥'", and is supported on the proper
substack
(1.6) G C A (B, 5)

parameterizing R-maps to the critical locus of W, see Section 3.6.4.
The virtual cycle [,%;I?(‘BO, B)]s is the GLSM wirtual cycle that we next recover
as a virtual cycle over a proper moduli stack.

1.4.3. The reduced virtual cycles. In general, the canonical cosection over ,%;p;(‘ﬁ", B)

does not have a nice extension to ,@;p; (B, 5). The key to this is a proper morphism
constructed in [25], called a modular principalization:

Fr U™ (P, ) — AP, B)

where %gf?(‘ﬁ, B) is the moduli of stable log R-maps with uniform mazimal degener-

acy. Note that F restricts to the identity on the common open substack 9?;10; (B°, B)
of both its source and target.
The canonical perfect obstruction theory of L@;I?(‘B, f) pulls back to a canon-

ical perfect obstruction theory of % Cpt(% f), hence the canonical virtual cycle
%, Cpt(‘B B)]Vr. Though F' does not change the virtual cycles in that F, [%gc’?(‘ﬁ, BV =
[%Cpt (B, 8)]"", the cosection over %Cpt ('B°, B) extends to the boundary

(1.7) DNy = U (B, B) \ 2 (B, )
with explicit poles (3.22). Then a general machinery developed in Section 6, produces
a reduced perfect obstruction theory of %gf?t(‘p,ﬁ), hence the reduced virtual cycle

[@/Cpt (B, B)]*d, see Section 3.6.3.

Remark 1.8. The two virtual cycles [2,= (B, 5)]" and [%, 2" (%, 5)]** have the same
virtual dimension.

1.5. Comparing virtual cycles.

1.5.1. Reduced versus cosection localized cycle. We first show that log GLSM recovers
GLSM:

Theorem 1.9 (First comparison theorem 3.20). Let v: Zyw — Uy B, B) be the
inclusion (1.6). Then we have

LRt (B, B))o = (2,2 (B, B))



THE LOGARITHMIC GAUGED LINEAR SIGMA MODEL 7

In Section 4, we study a few examples explicitly. By the first comparison theorem,
the reduced virtual cycle of the compact moduli space of stable log R-maps recovers
FJRW-theory and Clader’s hybrid model when they are constructed using cosection
localized virtual cycles [17, 28].

Our machinery also applies to the Gromov—Witten theory of a complete intersec-
tion, or more generally the zero locus Z of a non-degenerate section s of a vector
bundle E, Section 4.1. Examples include the quintic threefolds in P*, and Weierstrass
elliptic fibrations, which are hypersurfaces in a P-bundle over a not necessarily toric
base B. In this case, we may chose r = 1 and P = P(E¥V ® L, @ O). Combining
with the results in [16, 44, 20], and more generally in [26, 19], we have

Corollary 1.10 (Proposition 4.1). Notations as above, we have
. [02/;7?((’137 ﬁ)]red _ (_1>rk(E)(lfg)+f6 c1(E)fZ;L:1 agej(E)L;k [%g,gﬂ(za 6)]Vir

where p: %gf?t (B, B) = My X, B) sends a log R-map to the underlying stable map
to X, MyZ, ) is the moduli of stable maps to Z, and v: My Z, ) — MyAX,P)
1s the inclusion.

Therefore Gromov-Witten invariants of Z (involving only cohomology classes from
the ambient X’) can be computed in terms of (log) GLSM invariants defined using
(X, W).

1.5.2. Canonical versus reduced virtual cycles. The canonical perfect obstruction and
the canonical cosection of % gf?t(‘ﬁ, B) together defines a reduced perfect obstruction
theory of Ay, hence the reduced virtual cycle [A4 |4, see Section 3.8. The following
relates the reduced virtual cycle with the canonical virtual cycle by a third virtual
cycle:

Theorem 1.11 (Second comparison theorem 3.21).
[gz/gc,?tcp’ 6)]Vir — [%gf?:(m’ 6>]red + f[Aa;/]red.

By Lemma 3.8, 7 is the order of poles of W along cog. In particular, it is a positive
integer.

The fact that the difference between the reduced and canonical virtual cycles is
again virtual allows us to further decompose [Ay|™d in [24] in terms of canonical and
reduced virtual cycles of punctured and meromorphic theories using [2, 3]. This is
an important ingredient in the proof of the structural properties of Gromov—-Witten
invariants of quintics in [39].

1.5.3. Change of twists. Let a1, as be two twisting choices leading to two targets 3,
and P, respectively. Assume that o € Z. Then there is a morphism By — P, by
taking ¢=-th root stack along oogy,.

Theorem 1.12 (Change of twist theorem 3.22). There is a canonical morphism

Va faz - %gc,?t ((‘Bl’ ﬁ) — %gc,?t Cp?? 6>
induced by By — Po. Pushing forward virtual cycles along vy, /q,, we have
(1) Vay jas [ %y (Br, B = (2,2 (B2, B
(2) Vi fon [ 2,2 (Br, O = (%2 (B2, B,
(3) Vay fan o[ D 1] = 2 - [Agy o]

a
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where Ay ; C @/gc’?(%i,ﬁ) is the boundary (1.7) fori=1,2.

Remark 1.13. The flexibility of twisting choices allows different targets with isomor-
phic infinity hyperplanes. The above push-forwards together with the decomposition
formulas in [24] will provide relations among invariants of different targets. For ex-
ample, they can be used to prove the Landau-Ginzburg/Calabi—Yau correspondence
for quintic threefolds [37], as well as to prove a formula [48, Conjecture A.1] for the
class of the locus of holomorphic differentials with specified zeros [22].

1.6. Plan of Paper. The paper is organized as follows. In Section 2, we introduce
stable R-maps and collect the basic properties of their moduli spaces. The canonical
and reduced virtual cycles are constructed and the comparison theorems are proven
in Section 3. In Section 4, we work out several examples explicitly. Theorem 1.6 is
proven in Section 5. Section 6 discusses reducing virtual cycles along the boundary
in more generality, and is used extensively in Section 3.
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grants DMS-1901748 and DMS-1638352. The last author was partially supported
by Institute for Advanced Study in Mathematics of Zhejiang University, NSF grant
DMS-1405245 and NSF FRG grant DMS-1159265 .

1.8. Notations. In this paper, we work over an algebraically closed field of charac-
teristic zero, denoted by k. All log structures are assumed to be fine and saturated
[41] unless otherwise specified. A list of notations is provided below:

Vb(V): the total space of a vector bundle V'
P¥(V): the weighted projective bundle stack with weights w
X: a proper Deligne-Mumford stack with a projective coarse moduli
X — X: the coarse moduli morphism
BC;: the universal stack of C;-torsors
r: a positive integer
Ly — X: universal r-spin bundle
B — BC: the target of log R-maps
C — S: a family of underlying curves over S
C — (" the coarse moduli morphism of underlying curves
C — S: a family of log curves over S
C — C' the coarse moduli morphism of log curves
f:C—PB: alog R-map
[: a curve class in X
n: the number of markings
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¢t collection of discrete data at all markings
RyPB°, F): the moduli stack of stable R-maps
Ry B, f): the moduli stack of stable log R-maps
U, (B, B): the moduli stack of stable log R-maps with uniform maximal degeneracy
9?;? (B°, 5): the moduli stack of stable R-maps with compact type evaluations
9?;? (B, B): the moduli stack of stable log R-maps with compact type evaluations
%gf?(‘ﬁ, f): the moduli stack of stable log R-maps with compact type evaluations

and uniform maximal degeneracy
W B° — L,: the superpotential

2. LOGARITHMIC R-MAPS

2.1. Twisted curves and pre-stable maps. We first collect some basic notions
needed in our construction.

2.1.1. Twisted curves. Recall from [7] that a twisted n-pointed curve over a scheme
S consists of the following data

(C—C— S Aptisy)
where

(1) C is a Deligne-Mumford stack proper over S, and étale locally is a nodal
curve over S.

(2) p; C C are disjoint closed substacks in the smooth locus of C — S.

(3) pi — S are étale gerbes banded by the multiplicative group p,, for some
positive integer r;.

(4) the morphism C — C' is the coarse moduli morphism.

(5) Each node of C — S is balanced.

(6) C — C is an isomorphism over C,,,,, where C,, is the complement of the

markings and the stacky critical locus of C — S.
The balancing condition means that formally locally near a node, the geometric
fiber is isomorphic to the stack quotient

[Spec (klz, y]/(xy)) /1]
where j; is some cyclic group with the action ((z,y) = (¢ - z,("t - y). Given a

twisted curve as above, by [7, 4.11] the coarse space C' — S is a family of n-pointed
usual pre-stable curves over S with the markings determined by the images of {p;}.
The genus of the twisted curve C is defined as the genus of the corresponding coarse
pre-stable curve C'.

When there is no danger of confusion, we will simply write C — S, and the

terminology twisted curves and pre-stable curves are interchangable.

2.1.2. Logarithmic curves. An n-pointed log curve over a fine and saturated log
scheme S in the sense of [17] consists of

(m: C— S, {pitiy)
such that

(1) The underlying data (C — C — S, {p;},) is a twisted n-pointed curve over
S.

(2) m is a proper, logarithmically smooth, and integral morphism of fine and
saturated logarithmic stacks.
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(3) If U C C is the non-singular locus of m, then Mc|y & 7 Mg ® @i, N,
where N, is the constant sheaf over p;, with fiber N.

For simplicity, we may refer to 7: C — S as a log curve when there is no danger
of confusion. The pull-back of a log curve m: C — S along an arbitrary morphism of
fine and saturated log schemes 7" — S is the log curve mp: Cp :=C xg T — T with
the fiber product taken in the category of fine and saturated log stacks.

Given a log curve C — S, we associate the log cotangent bundle wlco/gs = weys (Do pi)
where we/g is the relative dualizing line bundle of the underlying family C — S.

2.2. Logarithmic R-maps as logarithmic fields. In this subsection, we refor-
mulate the notion of a log R-map in terms of the more concrete notion of spin-maps
with fields. This will be useful for relating to previous constructions in GLSM (see
Section 4), and for some of the proofs in Section 5.

Definition 2.1. Let g: C — & be a pre-stable map over S. An r-spin structure of
g is a line bundle £ over C' together with an isomorphism

L7 = wif @ g'LY.

The pair (g, £) is called an r-spin map.

Given a log map ¢g: C — & over S and an r-spin structure £ of the underlying
map g, we introduce a weighted projective stack bundle over C:

(2.1) P = P <@<g*<Ey> ® L) @ 0>

>0
where w indicates the weights of the G,,-action as in (1.2). The Cartier divisor
ocop C P, defined by the vanishing of the last coordinate, is called the infinity
hyperplane. Let M, be the log structure on P, associated to the Cartier divisor
oop, see [11]. Form the log stack

Pe := (Pe, Mp, := Mecl|p, o Mooy),
with the natural projection Pe — C.
Definition 2.2. A log field over an r-spin map (g, L) is a section p: C — P¢ of
Pe — C. The triple (g, L, p) over S is called an r-spin map with a log field.

The pull-back of an r-spin map with a log field is defined as the pull-back of log
maps.

We now show that the two notions — log R-maps and pre-stable maps with log
fields — are equivalent.

Proposition 2.3. Fiz a log map g: C — X over S, and consider the following
diagram of solid arrows
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We have the following equivalences:

(1) The data of an r-spin map (g, L) is equivalent to a morphism C — X making
the above diagram commutative.

(2) The data of a log field p over a given r-spin map (g, L) is equivalent to giving
a log R-map f: C — P making the above diagram commutative.

Proof. The first equivalence follows from Definition 2.1 and (1.1).
Note that (g, £) induces a commutative diagram of solid arrows with all squares
cartesian:

(2.2) Pe Be B
4

N
\

C Xc X

\ l w8 l

c—LBCr.
Thus (2) follows from the universal property of cartesian squares. U

Definition 2.4. An r-spin map with a log field is stable if the corresponding R-map
is stable.

Let f: C — P be a logarithmic R-map over S, and p: C — P¢ be the correspond-
ing logarithmic field. Using (2.2), we immediately obtain

[7O(Fooyp) = p*O(Toop, ),
hence the following equivalent description of the stability condition:

Corollary 2.5. A pre-stable map with log field (g, L, p) over S is stable iff the
corresponding R-map f is representable, and if for a sufficiently small 6y € (0,1)
there exists kg > 1 such that for any pair (k,0) satisfying k > ko and 6o > § > 0,
the following holds

(2.3) (wefs) ™0 ® g H* © p*O(Foo) > 0.

Remark 2.6. The condition (2.3) is compatible with the stability of log r-spin fields
in [25, Definition 4.9]. Let X = Speck and p: C — P¢ be a log r-spin field over S
as in [25]. The stability of p is equivalent to

0< wlco/gs ®@ p*O(k - 0p)
= Wiy ® L™ @ p"O(k - oop)
o log \1+¢ *O(r - ®
= ((weys) TF @ p"O(r - 0cop)

for £ > 0. Now replacing by d in

L
T

(weks) T @ prO(r - 0op) >0,

we recover (2.3) as desired.



12 QILE CHEN, FELIX JANDA, AND YONGBIN RUAN

2.3. The structure of the infinity divisor. For later use, we would like to study
the structure of cog.

Let w and w' be two weights as in (2.1) such that w’ corresponds to a = %.
Consider w, (resp. w/_) obtained by removing the weight of the O factor from w
(resp. w’). Since ged(w’,) = 1, we observe that

cop =P (DB ® LF) 2 P> (P E).

In particular, there is a cartesian diagram

(2.4) ooy ———— ooy = PV (P, EY)
l |
X X.

To fix the notation, denote by O, (1) the tautological line bundle over ooy asso-
ciated to the upper right corner, and by Ooom,(l) the pull-back of O, (1) via the
top horizontal arrow. Let Og (1) be the tautological line bundle associated to the
expression of P as in (1.2).

Let ¢ = ged(we). Observe that P — P’ is an ¢-th root stack along cogy. Thus,
ooy parameterizes (-th roots of the mnormal bundle Nooy, g Over oogy. In particular,
the morphism

OOsn — OOsn/
is a pg-gerbe.

As shown below, the small number “¢” in the stability condition (1.5) plays an
important role in stabilizing components in ocog.

Proposition 2.7. Consider an underlying R-map
et

T e

C BC

log
Ye/s

over a geometric point. Consider the following commutative diagram

p
25) € ooy — o o

T
Then we have
(2.6) [ Og(ioop) = ()" © L® (f,) O (5).
Furthermore, we have
(2.7) (wg®)'™" @ (to [y H™ @ f*O(Fooy) > 0

if and only if the coarse of [, is stable in the usual sense.
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Proof. Recall w corresponds to the choice a = g. We have
* ~ * r

" O(Foog) = ()" O (7 - oog).

Since Ogy (cogy) = Ogqv (1), we calculate
(f")* Opr (009 ) ooy 22 (') Ooegyy (1) @ L27 = (f )" O (1) @ LI
Equation (2.6) is proved by combining the above calculation and Definition 2.1.
Now using (2.6), we obtain

(2.8) (wg®)'™ @ (to /) H™ @ [ O(Fooy)

O * * * r
= (W)’ @ (to ) H™ @ (to /)L ® (f2) O ().
Let Z C C be an irreducible component. Note the (2.7) holds over Z for k£ > 0
unless to f contracts Z to a point. Suppose we are in the latter situation, hence
both (to f)*H® and (to f)*L have degree zero over Z. Since 17O, (1)|2 has

non-negative degree and 1> 4 > 0, (2.7) holds if and only if either f, (Z) is not a

point, or wg’ ®|z is positive. This proves the second statement. O

Corollary 2.8. Let f: C — P be an underlying R-map. Then a rational bridge
Z C C fails to satisfy the stability condition (1.5) if and only if deg f*Oyp(cog)|z =0
and deg(to f)*H|z = 0.

Proof. Suppose Z is unstable. Then (1.5) implies that deg(to f)*H®*|z = 0 for any
k> 0, hence deg(to f)*H|z = 0. Since w(lzo/gs|g = Oz, we have deg f*Og(ocoy)|z < 0.
It is clear that deg f"Og(oop)|z > 0 if f(Z) & cogp. If f(Z) C ocog, then (2.6)
implies deg f*Og(oog)|z > 0. Thus we have deg f*Ogp(ocoy)|z = 0.

The other direction follows immediately from (1.5). O

2.4. The combinatorial structures. The minimality or basicness of stable log
maps, which plays a crucial role in constructing the moduli of stable log maps,
was introduced in [1, 21, 35]. Based on their construction, a modification called
minimality with uniform mazimal degeneracy has been introduced in [25] for the
purpose of constructing reduced virtual cycles. We recall these constructions for
later reference.

2.4.1. Degeneracies and contact orders. We fix a log R-map f: C — B over S.
Consider the induced morphism of characteristic sheaves:

(2.9) fbi f*ﬂsn — Mc.

Note that characteristic sheaves are constructible. We recall the following termi-
nologies.

(1) Degeneracies of irreducible components. An irreducible component Z C C is
called degenerate if (f*Mgy),, = N where nz € Z is the generic point, and non-
degenerate otherwise. Equivalently Z is degenerate iff f(Z) C oogq. For a degenerate
Z, write

€z = fb(l)nz S MC,nz = Mg

and call it the degeneracy of Z. If Z is non-degenerate, set ez = 0.
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An irreducible component Z is called a mazimally degenerate component, if ez <
ez for any ir_reducible component Z’. Here for e, e5 € Mg, we define e; < ey iff
(62 —e) € M.

(2) The structure at markings. Let p € Z be a marked point. Consider

(f*mm)p i) Mc,p = MS &N — N

where the arrow on the right is the projection. If (f*Msy), = N or equivalently
f(p) € coyp, we denote by ¢, € Z>( the image of 1 € N via the above composition,
and ¢, = 0 otherwise. We call ¢, the contact order at the marking p. Contact orders
are a generalization of tangency multiplicities in the log setting.

(3) The structure at nodes. Define the natural partial order < on the set of irreducible
components of C such that Z; 5 2, iff (ez, —ez,) € M.

Let ¢ € C be a node joining two irreducible components Z; and Z, with Z; < 2Z,.
Then étale locally at ¢, (2.9) is of the form

() (f*Mgp)y — Mecy = Ms Oy N?|

where the two generators o, and oy of N? correspond to the coordinates of Z; and
Z, at q respectively, and the arrow N := (¢,) — N? is the diagonal ¢, — oy + 09. If
(f*Mg), = N or equivalently f(g) € ooy, we have

(]ﬂ))q(l) =éez +¢q4- 01,

where the non-negative integer ¢, is called the contact order at q. In this case, we
have a relation between the two degeneracies

(2.10) ez, +¢q-ly=exz,.

If (f*My), is trivial, then we set the contact order ¢, = 0. Note that in this case
ez, = ez, =0, and (2.10) still holds.

2.4.2. Minimality. We recall the construction of minimal monoids in [21, 1, 35]. The
log combinatorial type of the R-map f consists of:

(2.11) G = (G, V(G)=V"G)UVYG), =, (cicrc) (ier@))

where

(i) G is the dual intersection graph of the underlying curve C.

(i) V*(G) U VY(G) is a partition of V(G) where V%(G) consists of vertices of
with non-zero degeneracies.

(ili) < is the natural partial order on the set V(G).

(iv) We associate to a leg i € L(G) the contact order ¢; € N of the corresponding
marking p;.

(v) We associate to an edge | € E(G) the contact order ¢; € N of the correspond-
ing node.

We introduce a variable ¢, for each edge | € E(G), and a variable e, for each
vertex v € V(G). Denote by h; the relation e, = e, + ¢; - {; for each edge | with the
two ends v < v’ and contact order ¢;. Denote by h, the following relation e, = 0 for
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each v € V™(G). Consider the following abelian group

G=|( P Ze.)a( B Zp) | [{ho,lu | veVHE), | € E(G))

veV(G) leE(G)

Let G' C G the torsion subgroup. Consider the following composition

( P Ne,)ao ( @ Np) =G —G/d"
veV () IEE(G)
Let M(G) be the smallest submonoid that is saturated in G/G', and contains the im-
age of the above composition. We call M (G) the minimal or basic monoid associated
to G.
Recall from [21, Proposition 3.4.2], or [25, Proposition 2.5] that there is a canonical
map of monoids

(2.12) M(G) — Ms

induced by sending e, to the degeneracy of the component associated to v, and
sending ¢; to the element ¢, as in (2.10) associated to [. In particular, the monoid
M (@) is fine, saturated, and sharp.

Definition 2.9. A log R-map is minimal or basic if over each geometric fiber, the
natural morphism (2.12) is an isomorphism.

2.4.3. Logarithmic R-map with uniform maximal degeneracy.

Definition 2.10. A log R-map is said to have uniform mazimal degeneracy if there
exists a maximal degenerate component over each geometric fiber, see Section 2.4.1

(1).

Let f: C — B be a log R-map over a geometric log point S, and G be its log
combinatorial type. Assume that f has uniform maximal degeneracy, and denote
by Viax C V(G) the collection of vertices with the maximal degeneracy. We call
(G, Vinax) the log combinatorial type with uniform mazximal degeneracy, and form the
corresponding minimal monoid below.

Consider the torsion-free abelian group

@rcym/~)"
where ~ is given by the relations (e,, — e,,) = 0 for any vy, vs € V.. By abuse
of notation, we may use e, for the image of the degeneracy of the vertex v in

(M(G)#/] ~ )tf. Thus, for any v € Vi their degeneracies in (M(G)%/ ~ )tf
are identical, denoted by ep... Let M(G, Vimax) be the saturated submonoid in
(M(G)? ) ~ )tf generated by

(1) the image of M(G) — (M(G)%/ ~ )tf, and

(2) the elements (e — €,) for any v € V(G).

By [25, Proposition 3.7], there is a natural morphism of monoids M (G) — M (G, Vipax)
which fits in a commutative diagram

M(G) —= M (G, Vinax)

X\ max

.
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We call M(G, Vi) the minimal monoid with uniform mazimal degeneracy associ-
ated to (G, Vinax), or simply the minimal monoid associated to (G, Viax)-

Definition 2.11. A log R-map is minimal with uniform maximal degeneracy if over
each geometric fiber the morphism ¢, is an isomorphism.

Note that in general a log R-map minimal with uniform maximal degeneracy does
not need to be minimal in the sense of Definition 2.9.

2.4.4. The uniwversal logarithmic target. Consider the log stack A with the underlying
stack [A'/G,,] and log structure induced by its toric boundary. It parameterizes
Deligne-Faltings log structures of rank one [21, A.2]. Thus there is a canonical
strict morphism of log stacks

(2.13) B — A

Let co4 C A be the strict closed substack, then cop = 004 X 4 B.

Given any log R-map f: C — P, we obtain a log map f': C — A via composing
with (2.13). Then f’ and f share the same log combinatorial type (with uniform
maximal degeneracy) since

(fYMa= "My and [ =(f)".
This point of view will be used later in our construction.

2.5. The evaluation morphism of the underlying structure. Denote by Py :=
B x By, Spec k where the arrow on the right is the universal G,,,-torsor. Let Z,By be
the cyclotomic inertia stack of Py [, Definition 3.1.5]. Then Z,00q0, = Z, Pk X 4004
is the cyclotomic inertia stack of ooy, equipped with the pull-back log structure from

A.

Lemma 2.12. Let f: C — B be a log R-map over S, and p C C be a marking. Then
the restriction f|, factors through Py — B. Furthermore, f is representable along
p if the induced morphism p — Py is representable.

Proof. Since wlco/gs\p = 0,, the composition p — C — BC, factors through Speck —
BC;,. This proves the statement. O

Consider the universal gerbes T,y — Z, Py and Z,00yp, — Z,00q, in Py and
ooy, [0, Section 3]. Let f: C — P be a log R-map over S with constant contact
order ¢; along its i-th marking p; C C. Write f; = fu‘Bk if ¢; =0, and f; = fuoofpk,
otherwise. By the above lemma, the restriction f|,, induces the ¢-th evaluation
morphism of the underlying structures

(2.14) evii S 7T,

such that p; — S is given by the pull-back of the universal gerbe over T;. Thus,
connected components of Z R L uz .00, provide discrete data for log R-maps. Note
that Z, Py UZ,00p, is smooth provided that 3 — BC;,, hence By is smooth.

Definition 2.13. A log sector v is a connected component of either Zjl?k or fuoofpk.
It is narrow if gerbes parameterized by « all avoids cog, .

A sector of compact type is a connected component of Z,0y, . In particular all
narrow sectors are of compact type.
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Due to the fiberwise C;-action of ‘B — X, it is easy to see that a sector is narrow
iff it parameterizes gerbes in Og, . Thus, the above definition is compatible with [33,
Definition 4.1.3]. Furthermore, since Oy, and ocog, are disjoint, the compact-type
condition forces the contact order to be trivial.

2.6. The stack of logarithmic R-maps. The discrete data of a log R-map f: C —
P consists of the genus g, and the curve class f € Hy(X) of to f. Furthermore,
each marking has discrete data given by its contact order ¢ and the log sector ~.
Let &= {(, ¢;) }i be the collection of discrete data at all markings where n is the
number of markings.

Denote by %, (B, B) the stack of stable R-maps over the category of logarithmic
schemes with discrete data g, 3, <. Let %, (B, B) be the category of objects with
uniform maximal degeneracy. There is a tautological morphism [25, Theorem 3.14]

(215> %975<(‘B7 ﬁ) — «@gﬁ(ma 6)

which is representable, proper, log étale, and surjective. Furthermore, (2.15) restricts
to the identity over the open substack parameterizing log R-maps with images in
RUS

Theorem 2.14. The categories Zy B, 5) and %, B, ) are represented by proper
log Deligne—Mumford stacks.

Proof. Since (2.15) is representable and proper, it suffices to verify the statement for
Hq.(B, ), which will be done in Section 5. A key to the representability is the fact
discovered in [1, 21, 35] that the underlying stack %, «(B, 3) is the stack of minimal
objects in Definition 2.9, and %, B, /) is the stack of minimal objects in Definition
2.11, see also [25, Theorem 2.11]. O

2.7. Change of twists. This section studies R-maps under the change of twists
in preparation of the proof of the Change of twist theorem (Theorem 3.22). The
reader may skip this section on first reading, and return when studying the proof of
Theorem 3.22.

Consider two twisting choices aq, as € é - Z such that Z—; € Z. Let *B; and Py be
the hybrid targets corresponding to the choices of a; and ay respectively as in (1.2).
Then there is a cartesian diagram of log stacks

(2.16) pU Bo
L
Ay Ay

where A; and A, are two copies of A, the vertical arrows are given by (2.13), and v
is the morphism induced by N — N, 1~ &L on the level of characteristic monoids.
Note that the top is the 2-th root stack along cog, in s, and is compatible with
arrows to BC,.

Proposition 2.15. Let f': C" — Py be a stable log R-map over S. Then the com-
position C' — B — Po factors through a stable log R-map f: C — Py over S such
that

(1) The morphism C' — C induces an isomorphism of their coarse curves, denoted
by C.
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(2) The underlying coarse morphisms of C' — C xgcz, B1 and C — C xpcr, Bo
are isomorphic.
(8) If ' has uniform maximal degeneracy, so does f.

Furthermore, this factorization is unique up to a unique isomorphism.

Proof. Consider the stable log map C" — P = P1 xpcy, C induced by f'. By
[7, Proposition 9.1.1], the underlying map of the composition C" — Py — Po o :=
B2 xBcr C factors through a stable map C — B3 ¢ which yields an induced under-
lying R-map f: C — Bo. -

We first construct the log curve C — S. Let C* — S* be the canonical log structure
associated to the underlying curve. Since B; o — B ¢ is quasi-finite, the morphism
C’ — C induces an isomorphism of coarse curves. Thus we obtain a log morphism
C' — C* over S — S*. This yields the log curve C := S x g C* — S.

Next we show that f’ descends to a log map f: C — P5. Since the underlying
structure f has already being constructed, by (2.16) it suffices to show that the
morphism A': C' — A, induced by f’ descends to h: C — A, with k induced by f.
Since A is an Artin cone, it suffices to check on the level of characteristic sheaves
over the log étale cover C" — C, i.e. we need to construct the dashed arrow making
the following commutative

. b R
M, e AN Meler

T1\b
Ma, " Mo,
Thus, it suffices to consider the case where S is a geometric point.

Note that both vertical arrows are injective, hence we may view the monoids on the
top as the submonoids of the bottom ones. Let d; and d, be a local generator of M 4,
and M g,|cr respectively. Denote by §; € My, and 6; € M y,|er the corresponding
elements. Since &y o 51, it suffices to show that m := (}_L’)b(g—; -81) € Mcler.

Indeed, the morphism C' — A; x4, C lifting the identity of C is representable.
Hence along any marking, the morphism €’ — C is a p-th root stack with ,0|Z—;
And along each node, the morphism C’ — C is a p-th root stack with p|g—; on each

component of the node. By the definition of log curves, we have ¢t - Mer € Meler

This proves m € Me|e as needed for constructing h hence f.

Finally, consider any component Z C C and the unique component 2’ C ('

dominating Z. Then we have ey = Z—; - ez where ez, e, € Mg are the degeneracies

of Z and Z' respectively. Therefore (3) holds, since if Z’ is maximally degenerate,
so is Z. U

n

Consider log R-maps f" and f as in Proposition 2.15. Let ¢ = {(v}, ¢;) }; (resp.
¢'={(v,¢c)},) be the discrete data of f’ (resp. f) along markings. Observe that
(74, ¢;) is uniquely determined by (v;,¢,) as follows. First, since Prx — Paok is
the Z—;-th root stack along oog,,, the sector ~; is uniquely determined by ~; [4,
Section 1.1.10]. Then the morphism C' — C is an p;-th root stack along the i-th
marking for some gL uniquely determined by the natural morphism v/ — 7; [,
Lemma 1.1.11]. The contact orders ¢; and ¢, are then related by

a; c
a2 0i
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Corollary 2.16. There are canonical morphisms

Ry (B1, B) = By c(Ba, B)  and U o(P1, B) — Xy (B2, B).

For convenience, we denote both morphisms by v,, o, when there is no danger of
confusion.

3. A TALE OF TWO VIRTUAL CYCLES

This section forms the heart of this paper. We first introduce the canonical perfect
obstruction theory and virtual cycle in Section 3.1, and prove a change of twist
theorem in this setting in Section 3.2. We then introduce the compact type locus,
its canonical virtual cycle (Section 3.3) and the superpotentials (Section 3.4), in
preparation for defining the canonical cosection in Section 3.5. This allows us to
construct the reduced theory in Section 3.6. We then prove the comparison theorems
in Sections 3.7-3.9.

The first time reader may skip Sections 3.2 and 3.9 related to the change of twists.
In addition, under the further simplification that the set 3 of markings is empty,
the reader may skip Sections 3.3, 3.5.1 and 3.5.3. In this situation, the sup- or
subscripts, “cpt”, “reg” and “—” may be dropped.

3.1. The canonical theory. For the purposes of perfect obstruction theory and
virtual fundamental classes, we impose in this section:
Assumption 3.1. X is smooth.

The assumption implies that 8 — BC] is log smooth with the smooth underlying
morphism.
To simplify notations, we introduce

U =Upe(B,B), R =Rye(B,5),
for stacks of log R-maps as in Section 2.6. We also introduce
=, #(A), M =M, +(A)

where M, (A) (resp. 4, z(A)) is the stack parameterizing log maps (resp. with uni-
form maximal degeneracy) to A of genus g and with contact orders ¢ induced by <
These stacks fit in a cartesian diagram

L

where the vertical arrows are canonical strict morphisms by Section 2.4.4, the bottom
is given by [25, Theorem 3.14], and the top is (2.15).

Let e be one of the stacks %, %, or M, and m,: C, — @ be the universal curve.
Denote by P, := C, xBc:, B where C, — BC], is induced by wlco.g/.. Let fo: Co — Ps
be the section induced by the universal log R-map for ¢ = % or Z.
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Consider the commutative diagram

Cz _

P —— Co > M

where the three vertical arrows are strict, and the two squares are Cartesian. We
use L to denote the log cotangent complexes in the sense of Olsson [16]. The lower
and upper triangle yield

Ly, — f;LP@/Psm[l] = W%L%/fm[l] and Ly, = f%LP@/C%[lL

respectively. Hence we obtain

fQ*?LP@/C@ - W%L%/m-
Tensoring both sides by the dualizing complex wy = we,/#[1] and applying 74 .,
we obtain
T (f%LPg/c@ ® w;g) — 7@,*71!%11@/9)1 — Lo /m
where the last arrow follows from the fact that 7. is left adjoint to 7'(—) =

wy @7 (). Further observe that Lp,, c,, = (dyp/BCy |py, is the log cotangent bundle.
Hence, we obtain

(3.1) 90:\%?/931: Eé/m = Wgﬁk (f%qu/BCZ ® w;@) — L%/gm.

The same proof as in [25, Proposition 5.1] shows that ¢y, s 18 a perfect obstruction
theory of Z — 9t in the sense of [9]. Recall that 9 is log smooth and equi-
dimentional [25, Proposition 2.13]. Denote by [Z]"" the virtual cycle given by the
virtual pull-back of the fundamental class [90] using ¢ oy.

Pulling back ¢y, o along % — %, we obtain a perfect obstruction theory of
U — M

(3.2) 902;//11: E\%\//u = Wa;/,* (f;/Q‘B/BC: ® w;w) — Lq//u.

A standard calculation shows that Ey g = 74 . ( I Ty /BCL)'

Let [Z]'™ be the corresponding virtual cycle. Since Y — 90 is proper and bira-
tional by [25, Theorem 3.17], by the virtual push-forward of [29, 45] the two virtual
cycles are related by

(3.3) F %™ = [#)".

3.2. Independence of twists I: the case of the canonical theory. In this
section, using the results from Section 2.7, we study the behavior of the canonical
virtual cycle under the change of twists.

Proposition 3.2. Guwen the situation as in Corollary 2.16, we have the following
push-forward properties of virtual cycles

(1) Va1/az7*[‘%g,§_’ (gpl’ B)]Vlr = [‘%g,f(m% 6)]\/_ir;
(2) Val/ag,*[%g,a (%17 6)]V1r = [02/9,5<(‘]327 6)]V1r'
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Proof. We will only consider (1). Statement (2) can be proved identically by consid-
ering only log maps with uniform maximal degeneracy, thanks to Proposition 2.15
(3).

Since P; — Po is a log étale birational modification, (1) follows from a similar
proof as in [¢] but in a simpler situation except that we need to take into account
orbifold structures. In what follows, we will only specify the differences, and refer
to [8] for complete details.

First, consider the stack MM := M| (A, — Ap), the analogue of the one in [,
Proposition 1.6.2], parameterizing commutative diagrams

(34) C/ I A1

|

C—>.A2

where C’ — C is a morphism of log curves over S inducing an isomorphism of
underlying coarse curves, the top and bottom are log maps with discrete data along
markings given by ¢ = {(r%, ¢})} (see Lemma 3.3) and ¢ = {(r;, ¢;) } respectively, and
the induced morphism C" — C X 4, A; is representable, hence is stable.

We first show that 90U is algebraic. Indeed, let M, #(A) be the stack of genus g log
maps to A with discrete data ¢ along markings. Let 9%; be the stack parameterizing
sequences ' — C — A, where ¢’ — C is a morphism of genus ¢, n-marked log
curves over S with isomorphic underlying coarse curves, and g;-th root stack along
the i-th marking for each i (2.17). 9 is algebraic as the morphism 9t — M, +(As)
defined by

(3.5) [C" = C— As] — [C — A

is algebraic and M, #(A2) = M, (A) is algebraic. Now 9V is given by the open
substack of My X, (45) M, #(A1) where the representability of C' — C x4, A4
holds. Here M, # (A1) = M, 2(A) — M,z (As) is given by composing log maps
to Ay with A; — Ay hence ¢ = {(r], ¢t - ¢})}, and My — M, = (Ap) is given by
' = C— Al = [C' — Ay

Next, by Proposition 2.15 and (2.16), we obtain the commutative diagram

Rye(B1, B) Ry B2, B)
SN
ol e, A)
lFl
My (Asr)

where we define a morphism F : (3.4) — [C" — A;] and a proper morphism F: (3.4) —
[C — Aj], and the square is cartesian.

Since the horizontal arrows in (2.16) are logarithmic modifications in the sense of
(8], the same proof as in [8, Lemma 4.1, Section 5.1] shows that 9 — M, #(A;) is
strict and étale. Using the identical method as in [3, Section 6.2], one construct a
perfect obstruction theory of G’ which is identical to the one of G; as in (3.1).

Furthermore Lemma 3.3 and the same proof as in [8, Proposition 5.2.1] imply
that M — M, #(A;) and M — M, (A2) are both birational. Finally, following
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the same lines of proof as in [8, Section 6] and using Costello’s virtual push-forward
[29, Theorem 5.0.1], we obtain (1). O

Since log maps to A are unobstructed [3, Proposition 1.6.1] (see also [25, Propo-
sition 2.13]), the discrete data along markings can be determined by studying the
following non-degenerate situation.

Lemma 3.3. Let f: C — Ay be a log map with discrete data (r;,c;) at the i-th
marking. Assume that no component of C has image entirely contained in oo 4,. Let
C" — C be obtained by taking the o;-th root along the i-th marking for each i. Then
(1) f:C— Ay lifts to f': C" — Ay if and only if Z|c; - 0;. In this case, the lift

1S unique up to a unique isomorphism.
(2) Furthermore, the induced C' — C X 4, Ay by f’ is representable if and only if

0i = m. In this case, let (r},c;) be the discrete data of f; at the i-th

marking. Then for each v we have

C<

ri=o9;-r; and ¢=————.
ged(cq, ar/as)

Proof. Finding a lift f” amounts to finding C" — C X 4, A; that lifts the identity C —

C. Thus, both (1) and (2) follow from [, Lemma 1.3.1] and [11, Theorem 3.3.6]. [

3.3. The compact type locus and its canonical virtual cycle. We next intro-
duce the closed substack over which the reduced theory will be constructed.

3.3.1. The logarithmic evaluation stacks. Let ) = M (resp. U), and & = Z (resp.
% ) with the strict canonical morphism % — %). The i-th evaluation stack "
associates to any 2)-log scheme S the category of commutative diagrams:

(3.6) Pi P
l “’lco/gs l
C A

where C — A is the log map over S given by S — %), p; C C is the i-th marking with
the pull-back log structure from C, and the top horizontal arrow is representable.

There is a canonical strict morphism 9§V — ) forgetting the top arrow in (3.6).
By Lemma 2.12, the morphism % — ) factors through the ¢-th evaluation morphism

ev;: ¥ — @?V.
For the reduced theory, we introduce substacks
VT C Y C VY,

where ¢ parameterizes diagrams (3.6) whose images at the i-th markings avoid oo 4
(or equivalently avoids cog) and 2)** parameterizes diagrams (3.6) whose images at

the i-th markings are contained in Og. Recall that (v;, ¢;) are the sector and contact
order at the i-th marking, see Section 2.6.

Proposition 3.4. Both 2)?“ and Q¥ are log algebraic stacks. Furthermore, we have

(1) If c; > 0, then D" = P¥ = 0.
(2) The strict morphisms 9P — Y and D — Y are smooth.

Remark 3.5. 25 is also algebraic, but we do not need this fact here.
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Proof. (1) follows from the definition of 9** and 9. We now assume ¢; = 0.
Let )0 C 2 be the open dense sub-stack over which the image of p; avoids 0o 4.

Let Zﬁl?i C Z}Bk be the open substack parameterizing gerbes avoiding ooy, . By
(3.6), it follows that

(3.7) 5" = Vio x Py

hence )" is algebraic. Similarly @?pt is a closed substack of 25" given by

(3.8) D™ = Vio x T,0,,

hence is also algebraic. (2) follows from the smoothness of Z,0q, and Z,Bs. U

Consider the following fiber products both taken over ¥):
(3.9) = [[27 and 9V=[]OF,

where ¢ runs through all markings with contact order zero. Consider fiber products
(3.10) WP =W Xgee YP' and Y =D Xy Y.

Then #< C % (resp. #P* C %) is the open (resp. closed) sub-stack parameterizing
stable log R-maps whose images at markings with the zero contact order avoid ocog
(resp. in Og).

3.3.2. The canonical perfect obstruction theory of %Pt — ', Consider the uni-
versal map and projection over < respectively:
ev: U;p, =P and 7w, U;p; — Q‘)ecv.
By (3.7), (3.9) and [5, Lemma 3.6.1], we have an isomorphism of vector bundles
@%ew/@Z E%e“v/@ = (Wev,*eU*T‘n/BCZ)V i} ]ng:je"v/gj.

The perfect obstruction theory (3.2) restricts to a relative perfect obstruction
theory

Spée“v/@ : E;/yew/@ = Eé/gﬁ ayev — Ld]e"v/g:j.

A standard construction as in [10, A.2] or [3, Proposition 4.4, Lemma 4.5] yields a
morphism of triangles

(1]

* TV _ SRV . RV . .
(3 1 1) ev Egje“v /9:3 Ed]ev/@ Ed]ev/@ev
ip%e"v/m \L Lp;;/e"v/m \L (p;/g/e"v/me"v \L

x (1]
ev L@ew/@ — Ld]e“v/gj — Ld]e"v/gje“v —

where ¢ is a perfect obstruction theory of ¢ — 9 of the form

\/ o o

@ev /Qgev
(p;}env/gje“v : E\g/ye“v/gje“v = W@e"v,*f;]e“v (Tm/Bcz (—E))V — Lgye“v/@e“v.

Here ¥ is the sum or union of all markings with the zero contact order. Thus, the

two perfect obstruction theories go\?;env /93 and cp;;env e are compatible in the sense of

[9].

Pulling back goéeav 96 to #°P* we obtain the canonical perfect obstruction theory
of Pt — q)ept

(312) (pg,,cpt/@cpt . Eyjcpt/@cpt = Wgycpt,*f;cpt (qu/BC:: (_E))\/ — L?Icpt/@cpt .
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Denote by [# P']VI' the canonical virtual cycle of %P defined via (3.12).

3.3.3. The compact type locus. We call ZP* C % the compact type locus if the
contact orders of all markings are equal to zero. For the purpose of constructing the
reduced virtual cycles over the compact type locus, we will impose for the rest of
this section that

Assumption 3.6. All contact orders are equal to zero.

This assumption is needed in our construction to apply the cosection localization
of Kiem-Li [12]. In this case ¢ is the same as a collection of log sectors which are
further restricted to be sectors of compact type (see Definition 2.13). Note that if
all sectors are narrow, then %Pt = %/

3.4. The superpotentials. Our next goal is to construct the reduced virtual cycle
[y eptired for gyept — gyePt The superpotential is a key ingredient which we discuss
NOw.

3.4.1. The definition. A superpotential is a morphism of stacks

W:pB° — L,
over BC]. Equivalently, I is a section of the line bundle L, |yp. over B°.

Pulling-back W along the universal torsor Speck — BC;, we obtain a C}-

equivariant function

Wg: 9B, — k
which recovers the information of W. Denote by Crit(Wy) C By, the critical locus
of the holomorphic function Wy. It descends to a closed substack Crit(1V') C J3°.

Definition 3.7. We call Crit(W) the critical locus of the superpotential W. We
say that W has proper critical locus if Crit(Wy) is proper over k, or equivalently
Crit(1W) is proper over BC’,.

Let Xy := X xgc;, Speck where the left arrow is given by ¢ in (1.4) and the right
one is the universal torsor. Since P}, is a vector bundle over Xy, the critical locus of
W, if proper, is necessarily supported on the fixed locus Oy, C By of the C; -action.

3.4.2. The extended superpotential. To extend W to B, we first observe the following;:

Lemma 3.8. Suppose there exists a non-zero superpotential W. Then the order of
poles of Wy along oog, is the positive integer 7 = a - 1.

Proof. The existence of non-zero W implies that there is a sequence of non-negative

integers k; such that
r = Z kz : i,
i

where ¢ runs through the grading of non-trivial E;. The integrality of 7 follows from
the choices of a, and the order of poles of Wy follows from the choices of weights w
in (1.2). O
Consider the P*-bundle over BC,
P, =P(L, D O).

We further equip P, with the log structure given by its reduced infinity divisor
oop, := P, \ Vb(L,). The superpotential W extends to a rational map of log stacks
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W: B --» P, over BC, with the indeterminacy locus (W~=1(0,)) N ooy by Lemma
3.8.

Equivalently, W can be viewed as a rational section of £,
having poles along ooy of order 7.

peo extending W, and

3.4.3. The tunsted superpotential. Next, we discuss how to extend the superpotential
W across the boundary. This will be shown to be the key to extending cosections
to the boundary of the log moduli stacks. It should be noticed that the non-empty
indeterminacy locus of W is a new phenomenon compared to the r-spin case [25],
and requires a somewhat different treatment as shown below.

Consider the log étale morphism of log stacks

(3.13) A° 5 Ax A

given by the blow-up of the origin of A x A. Denote by 3¢ and IP¢, the pull-back of
(3.13) along the following respectively

PBx A ) A% A and Py X A 28 A x A

Here Ap.x = A, and v; is the degree 7 morphism induced by N — N, 1 — 7 on
the level of characteristics. Recall from Lemma 3.8 that 7 is a positive integer given
W 0.

Denote by ooge C B¢ and oope C I, the proper transforms of ooy X Apax and
0op, X Amax respectively. Consider

(3.14) P =P\ oope and PL° =P \ cope.

We obtain a commutative diagram with rational horizontal maps

q:;e,o 77777777 . Ps},o
sB X Amax - 7VK><jd7 > Pw X Amax

Lemma 3.9. There is a canonical surjective log morphism
¢: PS5 — Vb (L, W O, (FARax))

by contracting the proper transform of P, X Apnax where Apax C Amax 1S the closed
point, and the target of ¢ is equipped with the pull-back log structure from Apax.

Proof. This follows from a local coordinate calculation. O

Proposition 3.10. The composition Wi=coW™ isa surjective morphism that
contracts the proper transform of P X Apax-

Proof. A local calculation shows that the proper transform of ¢ x A, dominates
the proper transform of P%° x A,,.x, hence is contracted by ¢. The surjectivity of w*
follows from the pole order of Lemma 3.8 and the above construction. Hence the
surjectivity in the statement follows from the surjectivity of ¢ in the above lemma.

It remains to show that W is well-defined everywhere. Let E° C B*° be the

exceptional divisor of P* — P x A. Then E° = N, /.y 18 the total space of the

normal bundle. The indeterminacy locus of W*° is the fiber of E° — OOy OVer

(W=1(0g,)) Noog. One checks that W contracts the indeterminacy locus of W to
the zero section of its target. 0
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Definition 3.11. We call W the twisted superpotential > Tt , is said to have proper
critical locus if the vanishing locus of the log differential d W, defined as a closed
strict substack of P°, is proper over BC; X Aax.

Proposition 3.12. W has proper critical locus iff W has proper critical locus.

Proof. Since W is the fiber of W over the open dense point of A,.,, one direction
is clear. We next assume that W has proper critical locus.

Consider the substack P* C B° obtained by removing the zero section Ogpe and
the proper transform of P X 4, . Apax. Since the proper transform of P x 4. Amax
is proper over BC!, x Ay, it suffices to show that the morphism

W pe* : gpe,* — Vb (;Cw X OAmax (fAmaX))

has no critical points fiberwise over BC], X A,.x, as otherwise the critical locus
would be non-proper due to the C*-scaling of B¢*.
On the other hand, B“* can be expressed differently as follows

T = Vb (DB L5 8 O (08e))) \ O

>0

where 0 is the zero section of the corresponding vector bundle. Note that W induces
a morphism over BC? X A«

Vb (P(EYx ® LT B O(ailmax))) — Vb (Lo B O(FA ).

>0

whose restriction to ** is precisely W gpe~. Since Crit(W) is contained in the zero

section, W|me,* has no critical points on P*. u

3.5. The canonical cosection. Next we construct the canonical cosection for the
moduli of log R-maps. For this purpose, we adopt the assumptions in Section 3.3.3
by assuming all contact orders are zero and working with the compact type locus for
the rest of this section. Furthermore, in order for the canonical cosection to behave
well along the boundary of the moduli, it is important to work with log R-maps with
uniform maximal degeneracy, see Section 2.4.3. As already exhibited in the r-spin
case [25], this will be shown to be the key to constructing the reduced theory in later
sections in the general case.

3.5.1. Modifiying the target. We recall the short-hand notation 4" and % °P* as in
(3.10) and (3.9). Consider the universal log R-map and the projection over % P*
respectively:

fuer: Cyeot — P and  7: Coyemt — U,

Denote by fyzet : Cyept — Pyrert == P Xpcr Cyert again for the corresponding section.
To obtain a cosection, we modify the target Py et as follows.

Consider Xy et := Cyere X o8 Bey,¢ X Recall ¥ is the sum of all markings. We
define Py et _ to be the log stack with the underlying stack

® LY

:{02/ cpt

(315) Pﬁ]/cpt,, = EW (@(E;/

>0

xaglcpt <_2)) EB OX&Z/CPﬁ) °

2This is different from the “twisted superpotential” used in the physics literature [52, (2.27)].
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The log structure on Pyepr — is defined to be the direct sum of the log structures
from the curve Cyzee and the Cartier divisor ocop, ., similar to Py in Section
3.1. ’
Denote by Py e = Pyert— \ 00p,, ., - We have a morphism of vector bundles

over Xy cpt

P;/cpt,, — P;/cpt
which contracts the fiber over X, and is isomorphic everywhere else. This extends
to a birational map

ng/cpt,, -——> ng/cpt
whose indeterminacy locus is precisely S |s. Denote by

P%Cpt,reg - %Cpt,— \ Ootp%cpt’, |E
Lemma 3.13. There is a canonical factorization

f@cpt

(316) C%Cpt P%cpt

f vz& /

ng/cpt ;reg

Proof. Note that fyeo: — and fy et coincide when restricted away from . The lemma
follows from the constraint fz e (¥) C Op, ., of the compact type locus. t

The following lemma will be used to show the compatibility of perfect obstruction
theories constructed in (3.12) and in [26].

Lemma 3.14. There is a canonical exact sequence

(317) O — fchptT‘B/BC:)(_Z) — f;ZCpt,—TPdZ/cpt’reg/C%cpt — Tx/BC:‘J

Proof. Consider the following commutative diagram of solid arrows

0 Typ/xley, e (=) Ty/Besley e (—2) — Tx/Bes e, o (—2) —0
|

; '

v

O - Tp%cpt’reg/%%cpt ‘Cdglcpt - TP@Cpt’reg/c@Cpt ‘Cdzlcpt - TX/BCZ: Cq/cpt

l~

Tx/Bcyle, e —0

v — 0.

— =0

0

Tp/xle,en Ty/Bes ey,

where the horizontal lines are exact, the top exact sequence is the twist of the bottom
one, and the lower middle vertical arrow is induced by (3.16). Note that the sheaves
in the first two columns are naturally viewed as sub-sheaves of Ty/Bcz|c,, o - The
injection Tk Bc> (=X) = Tx/Bcp, ‘C%Cpt on the upper right corner can be viewed
as an inclusion of quotients by the same sub-bundle

Cazlcpt (_Z)/Tﬁ/%|c%cpt (_Z) C T'P%cpt’reg/c%cpt

which lifts to T‘B/BC:: Copept (—E) C T'P%Cpt’reg/c%cpt
defines the dashed arrow.

Finally, (3.17) follows from combinning the following exact sequence to the top
two rows in the above commutative diagram

C%cpt

Cazlcpt /Tm/%|c%cpt (_Z)’
by Lemma 3.15 below. This

Ty/sC,

C‘“Z/ cpt

0— TX/BC:‘J

(—Z) — TX/BC:‘J

— T%/BC:‘J s — 0.

C% cpt C% cpt
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t

Lemma 3.15. Suppose R is a commutative ring, and A, B, C" are submodules of an
R-module M satisfying A C B, A C C and B/A C C/A as submodules of M/A.
Then B C C' as submodules of M.

Proof. The proof is left to the reader. O

3.5.2. The boundary of the moduli stacks. Recall from [25, Section 3.5] that the
maximal degeneracy induces canonical morphisms to A

UP" — U — 4 — Ay
Consider the Cartier divisors
Ag = Aoy XA, 4 CU and  Agert = Apax X4, UPT C UP*
and their pre-image Ayt C Z P, Hence we have the line bundle
Liax = Ogert (—Agert) = O gy (—Armax)

Definition 3.16. We call Ay (resp. Ayerr and Ager) the boundary of mazimal
degeneracy of U (resp. % °P* and UP"). We further introduce the interiors

(3.18) BV = YN\ (Ager) and  UP' = UP\ (Agert)

s[ept .

By construction, RePt (resp. iolet) parameterizes stable log R-maps (resp. log
maps) whose image avoids cog (resp. avoids coy). In this case, 4Pt is the stack of
pre-stable curves since all maps to A factor through its unique open dense point. In
particular, (Pt is smooth and log smooth.

3.5.3. The twisted superpotential over the modified target. Consider the two mor-
phisms

P%cpt,reg — A x Amax and Pﬁ]/cpt — A x Amax
where the morphisms to the first copy A are induced by their infinity divisors.
Pulling back (3.13) along the above two morphisms, we obtain

%Cpﬂreg - P%Cptvreg and IP%CM = Paen

Further removing the proper transforms of their infinity divisors from both, we
obtain P2, . and P%,.. Note that that P2, = PB° xgcr Cyerr. Consider the
short-hand

(319) & = (A}CJ 9y cpt ® ﬂ-*L_F

U Cpt/ max

7reg

~ . log *T —
and Wi : et @ T LT

= W gy cpt
Copept/ max | % °P

with the natural inclusion w — Wie,.

Lemma 3.17. There is a commutative diagram

W_
€,0 ~
_
PW/CN reg (’I
e,0 w ~
P%Cpt Wiog

where the two vertical arrows are the natural inclusions, W s the pull-back of W,
and the two horizontal arrows are isomorphic away from the fibers over X.
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Proof. 1t suffices to construct the following commutative diagram

W/
e,0 - ~
P%Cpt reg W2 g cpt
€,0 w’ ~
P% cpt wlog,%% cpt

where the right vertical arrow is the pull-back of w — Wioe along Xyept — Cyere. By
Proposition 3.10, the composition

e,o e,o ~
P%Cpt’reg _) 7Do&cpt — Wlog,%%cpt
contracts the fiber of P;ﬁPt,reg — Xyt over X to the zero section of Wyeg x,, ., » hence
~ 4
factors through Wy, .., = Wiog x,, o (—2)- O

3.5.4. The relative cosection. By [25, Lemma 3.18], (3.16) canonically lifts to a com-
mutative triangle

f@cpt

(3.20) Coevt Poent

! %k /

e,0
q/cpt,reg

where the corresponding arrows are denoted again by fyet and fyer . Now we
have

w.

>~

ff*zept,— dW_: fﬂZcpt,—TPE’o — W-o %CPtv_)*Tw

9y cpt ,reg/c% cpt /C% cpt

By (3.17), we have a composition

(3.21) JwenTpmey (=3) — [y Tpee e, 0 = W,

U Pt reg

again denoted by [}, d W Pushing forward along 7 and using (3.12), we have

Ozycpt/ﬂcpt = Ty (fr;}cpt7_ dW_) . E%Cpt/ﬂcpt — 7T*C’:) = W*wc%cpt/ﬁj/cpt ® Lr;gx|q/cpt.

where the isomorphism follows from the projection formula and (3.19).
Finally, taking the first cohomology we obtain the canonical cosection:

(3.22) O ept Js[cpt Obs%cpt/ﬂcpt = Hl (E%/L{Cpt) N L;l,;x

9y cpt .

3.5.5. The degeneracy locus of ogeetjyerr. Denote by Q%W the stack of R-maps in
U Pt which factor through Crit(W). Since Crit(W) is a closed sub-stack of B, Zy

is a strict closed substack of Z°P'. The stack % °** plays a key role in the following
crucial result.

Proposition 3.18. Suppose W has proper critical locus. Then the degeneracy locus
of Ogevtjyern is supported on Ry C UP".

Proof. 1t suffices to check the statement at each geometric point. Let f: C — B be
a stable log R-map given by a geometric point S — % P*. Following the same line
of proof as in [20], consider the cosection:

Og = U%cpt/ﬂcpt‘s: H1<f*Tq3/BCf:(_E)) - H1<w‘c)
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Applying Serre duality and taking dual, we have
0§ H'wess ® &"]e) = H'(weys ® f*Qqymes (2)).

Note that we/g ® 0¥|c = L7 |lc = Oc. Thus og degenerates iff

id® (f* dVNVf)Vi weys ® W' e — weys ® f*Qypmoz ()
degenerates which translates to the vanishing of
(3.23) (FdW.): [Tymos(-%) = Oc

Note that away from markings, W_ is the same as W which is the pull-back of
W. If S & Ages, then (3.23) degenerates iff f factors through Crit(WW'). Consider a
geometric point S € Ay, By [25, Lemma 3.18 (2)], C has at least one component
Z whose image via f_ is contained in the exceptional locus of P;ﬁPt,reg — Payevt reg.-

Because W has proper critical locus, (3.23) is non-zero along Z. This completes the
proof. O

3.6. The reduced theory. Next we fix a W hence W with proper critical loci, and
apply the general machinery in Section 6 to construct the reduced theory.

3.6.1. The twisted Hodge bundle. Consider

-7

~ *
Wyept 1= WCuCpt /4lept & ﬂ-ﬂcpthaX

and its direct image cone §) := C(my ,.Wyept ) as in [16, Definition 2.1]. It is an algebraic
stack over UP parameterizing sections of Wyepe [16, Proposition 2.2]. Indeed, § is
the total space of the vector bundle

Roﬂ'ﬂcpg*wucpt = Roﬂucpg*wiicpt & L;gx‘ucpt

over UP' by [25, Section 5.3.5]. We further equip $ with the log structure pulled
back from 4Pt
By [16, Proposition 2.5], £ — U has a perfect obstruction theory

(324) g@g/ﬂcpt: Tﬁ/ﬂcpt — Eﬁ/ﬂcpt = 7Tﬁ7*wﬁ
By projection formula, we have
(3.25) H' (Egpuent) = R'mg,05 = R'g .05 @ Liiyls = Liiyls:

Let s : Cy — Vb(wg) be the universal section over §). The morphism %/ Pt — §[P*
factors through the tautological morphism

U = §

such that sg|gewt = W_ 0 fyer _.

3.6.2. Verifying assuptions in Section 6.1. First, the sequence (6.1) in consideration
is

Y Pt 5§ — goP

with the perfect obstruction theories @ ept jgert in (3.12) and pg jgert in (3.24). Choose
the Cartier divisor A = 7Ayeet with the pre-images 7Ayewt C Z " and 7Ag C §.
Thus we have the two term complex F = [Oyev — L7 ] in degrees [0,1]. The

commutativity of (6.3) is verified in Lemma 3.19 below, and the sujectivity of (6.4)
along Ay, follows from Proposition 3.18.
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Lemma 3.19. There is a canonical commutative diagram
(326) Tﬁ]/cpt/ucpt —_— Tﬁ/uopt |0]/cpt

lp%cpt/ucpt l l@ﬁ/ucpt ‘%Cpt

.
chpt

E”]/Cpt/ﬂq’t Ey)/ucpt ‘g]/cpt

where the two vertical arrows are the perfect obstruction theories.

Proof. Similarly as in Section 3.5.1, we may construct the log weighted projective
bundle

Pucpt — %ﬂcpt = Cucpt XBCr, X
and its modification Py ., with the pull-backs

cpt ;re

e,0 e,o
Pucpt X%%cpt Xﬂcpt g P%cpt and Pﬂcpt anlcht }:ucpt %" P%Cpt

,reg ,reg’

We may also define the line bundle @gept over Cyepr similar to (3.19). The same proof
as in Lemma 3.17 yields a morphism

A . e,o
Wucpt,, . Pﬂ

’cpt reg _) Wﬂcpt

which pulls back to W_ over % Pt. We obtain a commutative diagram

C% cpt C )

fﬂgcht,_l lsﬁ
e,0 Wucpt’,
Pil

cpt reg

(IJ s[cpt

where by abuse of notations the two vertical arrows are labeled by the morphisms
inducing them. This leads to a commutative diagram of log tangent complexes

Elani ~ * ~
™ r‘quﬂngt/uq;)t - TC% cpt /cucpt ™ Tcﬁ /cucpt |C%cpt - Tﬁ/ﬂCpt |C%cpt

l (dWyept e, L
(f%cpt,,)*r]rfpevo v (Sﬁ)*r‘lr

{(cpt ’reg/cucm

ajucpt /Cucpt |c@ cpt

Diagram (3.26) follows from first applying 7, to the above diagram and then using
adjunction. (l

3.6.3. The reduced perfect obstruction theory. Applying Theorem 6.1 to the situation
above, we obtain the reduced perfect obstruction theory

(3.27) Phgenn v+ Tagenjyeoe = Bt jepe
and the reduced cosection
ot s HY (B jyem ) — Ogpent
with the following properties
(1) The morphism ¢y et jgert factors through gp‘%ﬁ‘ipt Jgget such that

_red )
()O%cpt/ﬂcpt %CPt\A%cpt — (p%cpt/ucpt %Cpt\Aq/cpt
(2) ofed: is surjective along Agycee, and satisfies
red | _ )
O-L[Cpt %Cpt\A%cpt — chpt %Cpt\A%cpt .
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The virtual cycle [Z °Pt]**d associated to gp‘%ﬁ%pt Jgget is called the reduced wvirtual

cycle of 7 °**. We emphasize that the reduced theory depends on the superpotential
w.

3.6.4. The cosection localized virtual cycle of Z°Pt. Recall from Proposition 3.18 that
the degeneracy loci of o et jgeoe are supported along the proper substack Q?W C K.
We have canonical embeddings

i: By — A and 1 By — U

Since Yt is smooth, we are in the situation of Section 6.3. Applying Theorem
6.4, we obtain the cosection localized virtual cycle

(3.28) (%), € A(%w)

with the property that i,[#2%], = [%%!]". Since the canonical theory, the reduced
theory, and their cosections all agree over ZP*, the existence of the cycle [#'],
does not require the compactification % °P* of Z°P*.

3.7. The first comparison theorem. We now show that the reduced virtual cycle
and the cosection localized virtual cycle agree.

Theorem 3.20. ¢, [@Cpt]g = [ cPt]red

Proof. Since % °P* is of finite type, replacing { by an open set containing the image
of % P*, we may assume that £ hence 4" is also of finite type. By [25, Lemma 5.25],
there is a birational projective resolution v: {f — 4 which restricts to the identity

on 8 = U\ (Apaly). Let
(3.29) P = S8 s S5 UPY and U = U xy U o U.

By abuse of notations, both morphisms are denoted by t when there is no danger of
confusion. Then the two morphisms restrict to the identity on 4" and Z°P* respec-
tively. Furthermore, UP* — {°P* is a birational projective resolution by Proposition
3.4.

Let (pred ) be the pull-back of (2, Jgert Ogert) along v Then ¢

red
Sog]/cpt/ﬂcpt’ O-L[Cpt

q;cpt/ﬂcpt
defines a perfect obstruction theory of % P — 4IP* hence a virtual cycle [% °Pt]*ed.
By the virtual push-forward of [29, 15], we have

(3.30) T, [%Cpt]red [%Cpt]red
On the other hand, since (<P£§Clcpt Jiiewt” Ogept) is the pull-back of (gp;ﬁ%m Jggents Tyent ),

red

%Cpt /ucpc Y chpt) Slnce

the same properties listed in Section 3.6.3 also pull back to (¢

Pt i smooth, Theorem 6.4 implies

), cpt _ cptired
(3.31) L | %P ]oﬁcpt = (% Pt
Since t does not modify the interior Pt and iolcpt, we have
2/ Cpt __ [gpept
(3'32) [% P ]Uﬁcpt - I:t@ P ]chpt'

Finally, (3.30), (3.31), and (3.32) together imply the statement. O
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3.8. The second comparison theorem. By Section 3.6.2 and Theorem 6.5 (1),
we obtain a factorization of perfect obstruction theories of Ay cor — Agept

¢A%cpt /Aucpt
TA%cpt /Aucpt EA%cpt /Aucpt
red \ /
SZ)Adzlcpt /Aucpt
red
A% cpt /Aucpt

where the top is the pull-back of (3.27). Let [Age]™d be the reduced boundary

virtual cycle associated to gozeilcpt N We then have:

Theorem 3.21. [Z P = [/ PHd 4+ F[Agep ]
Proof. The pull-back ¢ ;. Jiient 1= Paert et |%~Cpt defines a perfect obstruction theory

of Pt —5 (I with the corresponding virtual cycle [?//VCP‘:]V“. Applying the virtual
push-forward [29, 15], we have

(3.33) v U = (U
Consider the resolution (3.29), and write

Agere = Agert Xggeme UP and Aoy = Agepe X ZP
Applying Theorem 6.5 to the data (?f/\zpt,ngz;cpt,QO@Cpt /gcpt,agcpt), we obtain the
reduced boundary cycle [FA ;. ]* = F[A ;.. [*! and the following relation
(3:34) (U = U+ (D e
Applying ¢, and using (3.30) and (3.33), we have
[%Cpt] _ [gz/cpt]red LFen, [A

] red

. ]red
9y cpt

It remains to verify that [Ag ] = v, [A s
Recall the degeneracy loci Zw C ZP" of ogee. Write V. = %\ Zyw and
V = %\ Zy. In the same way as in (6.13) we construct the totally reduced

perfect obstruction theory E%}?ﬁcpﬁ for V' — U which pulls back to the totally

reduced perfect obstruction theory Egj%cpt for V — 4P Let [V]"d and [V]"d be

the corresponding virtual cycles. Then the virtual push-forward implies t,[V]
[V]tred. We calculate
7 T, [Agzcht]red — t*i![f}]tred _ i![v]tred — 7. [A%Cpt]red

where the first and the last equalities follow from (6.14), and the middle one follows
from the projection formula. This completes the proof. O

tred __

3.9. Independence of twists 1I: the case of the reduced theory. In this sec-
tion, we complete the proof of the change of twists theorem.

Consider the two targets P; and By as in Section 2.7. Since Py — Ps is isomor-
phic along Oy, = Oyp, and < is a collection compact type sectors, the morphism in
Corollary 2.16 restricts to

Vay /as - %lcpt = %g(:?t(mlv 6) - %;pt = %g(:?t(m% 6)

We compare the virtual cycles:
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Theorem 3.22. (1) Vo jay 2] = [Pt ]red
(2) Val/azv*[%fpt]mdz KA .
(3) I/al/a27* [A%lcpt]re == az | [A%;pt]re

al

Proof. By Theorem 3.20, both [%,']*d and [%,']"*? are represented by the same

cosection localized virtual cycle contained in the common open set % of both UL

and %, ™", hence are independent of the choices of a;. This proves the part of (1).
We can prove (2) similarly as in Proposition 3.2. The only modification needed is

to work over the log evaluation stack in Section 3.3.1.
Finally, (3) follows from (1), (2) and Theorem 3.21. O

4. EXAMPLES

4.1. Gromov—Witten theory of complete intersections. One of the most di-
rect application of log GLSM is to study the Gromov-Witten theory of complete
intersections, and more generally, zero loci of non-degenerate sections of vector bun-
dles. Here, the most prominent examples are quintic threefolds in P4,

The input of this log GLSM is given by a proper smooth Deligne-Mumford stack
X with a projective coarse moduli, a vector bundle E = E; over X, a section
s € H°(E) whose zero locus Z is smooth of codimension rk E. In this case we may
choose L = Oy, r = 1, and may choose a = 1 for simplicity. Then the universal
targets are B = P(EV ® L, ® O) and P° = Vb(EY @ L,). We may also view them
as the quotients of P(EY @ O) and Vb(EY) under the C = C*-scalar multiplication
on EY. By Proposition 2.3, the data of a stable R-map f: C — ° with compact
type evaluation over S is equivalent to a stable map g: C — X over S together with
a section p € H(we ® g*(EY)). Thus %;?(‘BO, B) is the same as the moduli space of
stable maps to X with p-fields studied in [16, 44, 20, 26].

In this situation, the superpotential

W: Vb(EY K £,) — Vb(L.,)

is defined as the pairing with s. It has proper critical locus whenever Z is smooth
of expected dimension [26, Lemma 2.2.2], and then the degeneracy locus Q%W is
supported on .#, +(Z, ) embedded in the subset .#, (X, ) C %;?(%0, 3), which
is defined by log R-maps mapping into Oyp. Recall that ¢'is a collection of connected
components of the inertia stack of X. The moduli space .#, A Z, ) parameterizes
stable maps C — Z such that the composition C — Z — X has curve class 5, and
sectors ¢. In particular, .Z, «(Z, ) is a disjoint union parameterized by curve classes
£ on Z such that ¢+, = 8 under the inclusion ¢: Z — X. Combining Theorem 3.20
with the results in [16, 44, 20], and more generally in [26, 19], we obtain:

Proposition 4.1. In the above setting, we have
(%, AP, B = (-1 a® e B g, (2, 5)),
where age;(E) is the age of Elc at the jth marking (see [5, Section 7]).

Therefore Gromov—Witten invariants of Z (involving only cohomology classes from
X) can be computed in terms of log GLSM invariants.

Proof. We will show that the perfect obstruction theory and cosection used in this
paper are compatible with those in [26]. Recall the notations #Zt = %;I?(‘BO, B)
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and 4P = §(°PH\ (Ayept) from (3.18). Note that LPt = £ x (Z,X)" where Z,X is the

)

rigidified cyclotomic inertia stack of X as in [, 3.4], and 4 is simply the moduli of
twisted curves. Note that we have a morphism of distinguished triangles over Z°*

T@cpt/ﬂcpt Tg‘;cpt/ﬂ T(fﬂ)()n |j§cpt >

| | 5

o * — o * o *
W%cpt7*fjcptTm/BCZ( Z) - W%cp&*fgchtﬁTP@cpt’reg/c@cpt - W%cpt7*TX/BCW

% >

where the left vertical arrow is the restriction of the perfect obstruction theory
(3.12) to @Cpt, the middle vertical arrow is precisely the perfect obstruction theory
[26, (18)], the vertical arrow on the right follows from [5, Lemma 3.6.1], and the
bottom is obtained by applying the derived pushforward 7. , to (3.17). Thus,
the perfect obstruction theory defined in this paper is compatible with that of [26],
hence they define the same absolute perfect obstruction theory of 74

Now applying Rlﬁjcptv* to the composition (3.21), we have

1. * _ = 1. . *
R W‘%CPt,*fjcptTm/BC:;( 2) R W%CPt7*f@cpt7_ijcptJeg/cjicpt

T

Ojcpt

where the horizontal isomorphism follows from the compatibility of perfect obstruc-
tion theories above, the vertical arrow on the right is the relative cosection [26, (25)],
and the skew arrow is the relative cosection (3.22) restricted to the open substack

%", This means that the cosections in this paper over Z°P is identical to the
cosections in [26]. Therefore, the statement follows from [26, Theorem 1.1.1]. O

4.2. FJRW theory. We discuss in this section how our set-up includes all of FJRW
theory, which is traditionally [30] stated in terms of a quasi-homogeneous polynomial
W defining an isolated singularity at the origin, and a diagonal symmetry group G
of W.

We first recall a more modern perspective on the input data for the FJRW moduli
space following [33, Section 2.2] and [50, Section 3|. Fix an integer N, a finite
subgroup G C G and positive integers ci, ..., cy such that ged(cy,...,cn) = 1.

Let C} be the one dimensional sub-torus {(A“,..., A°¥)} C GY, and assume that
G N C3 is a cyclic group of order r, which is usually denoted by (.J). Consider the
subgroup I' = G - C} C GY. There is a homomorphism (: I' — C! = G,, defined

by G +— 1 and (A, ..., AN) — A",

Definition 4.2. A I'-structure on a twisted stable curve C is a commutative diagram
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A T'-structure with fields [17] is a commutative diagram

[C¥/T]

-

c——BC;,

Remark 4.3. A special case of FJRW theory is the r-spin theory, whose logarithmic
GLSM was discussed in [25]. In this case, N =1, Cj, =T, and G = u, C C3, is the
subgroup of rth roots of unity.

Lemma 4.4. There is hybrid target data (as in Section 1.3) such that there is a
commutative diagram

[CY/T] ——°

G

BC;.
Proof. This is a special case of the following Lemma 4.5. 4

There are several constructions of the FJRW virtual cycle in full generality [15,
32, 43, 50]. The construction closest to ours, and which we will follow here, is the
approach [17] using cosection localized virtual classes for the special case of narrow
insertions at all markings.

In the FJRW situation, by Lemma 4.4, the moduli space %g?(‘ﬁo,ﬁ) of stable
R-maps is the same as the moduli of G-spin curves with fields in [17]. Indeed, X is
a point, and all compact-type sectors are narrow. In this case, Proposition 3.4 (1)
implies that Z;>(P°, ) = Zy(%°, B).

The perfect obstruction theories in this paper are constructed in a slightly different
way to the ones in [17] or [25] in that construct it relative to a moduli space of twisted
curves instead of a moduli space of G-spin curves. These constructions are related
via a base-change of obstruction theories as in [20, Lemma A.2.2], and in particular
give rise to the same virtual class. Given a superpotential W with proper critical
locus, the cosection constructed in Section 3.6.4 is easily seen to agree with the one
in [17]. Therefore, [Z°P']V" is the FJRW virtual class, and log GLSM recovers FJRW
theory in the narrow case.

4.3. Hybrid models. The hybrid GLSM considered in the literature [27, 28, 33]
fit neatly into our set-up, and they form a generalization of the examples of the
previous sections. In this paper though, we restrict ourselves to the case of compact
type insertions, and to the co-stability in order to include non-GIT quotients.

The input data of a hybrid GLSM is the following: Let G C GE* be a sub-torus,
and 6: G — C* be a character such that the stable locus C** and the semi-stable
locus C%%% for the G-action on C* = CX x{0} agree, and that CETV:ss = CK:ss x CV,
Then [CF* x CN /@] is the total space of a vector bundle EY on a Deligne-Mumford
stack X = [C***/G]. Furthermore, assume that there is a one-dimensional subtorus
Ch={(1,..., 1,2, ..., X))} C GEN such that ¢; > 0 for all 4, and G N Ch =
Z]rZ. Let I' = G - C%, and define (: ' = C; via G +— 1 and (A?,...,AV) — A",

Given this set-up, the moduli space of oo-stable LG quasi-maps [27, Defini-
tion 1.3.1] is the same as the moduli space of R-maps to the target [C*** x CV /T'] —
BC; . Analogously to the previous section, we have the following:
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Lemma 4.5. There is hybrid target data (as in Section 1.3) such that there is a
commutative diagram

[CK,ss % CN/F] _~ ;Bo

T~

BC,.

Proof. Choose a splitting GETV = T x C% into tori. Let H be the projection of G
to T'. Then there is an isomorphism I' = H x C}, defined by the projections, and the
homomorphism (: I' — C! becomes of the form (A, h) — A"x(h) for the character
X:=C(lg: H—C.

Set X = [C®**/H] and let L be the line bundle induced by y. Then [C**xC" /H]
is a rank N vector bundle over X with the splitting E = @jEch according to the
weights c¢; of the Cj-action.

Consider X := [CK**/T] 2 BC}, x X — BC}, x X induced by the line bundle
L5 KL and the identity on the second factor. Here, L is the universal line bundle
on BCj. The universal spin structure Ly is the pull-back of L. We then have
B° = [Vb(,EY)/Cx] — BC! which is the same as [CK* x CV/T'] — BC;. O

It is a straightforward verification that the hybrid GLSM virtual cycles constructed
in our paper agree with those constructed in [28, 33]. Indeed, the absolute per-
fect obstruction theory and cosection for P constructed in this paper agree with
the ones in the literature (to see this, we again need the base-change lemma [206,
Lemma A.2.2]). We leave the comparison to [27] for a future work.

5. PROPERTIES OF THE STACK OF STABLE LOGARITHMIC [R-MAPS
In this section, we establish Theorem 2.14.

5.1. The representability. For convenience, we prove the algebraicity of the stack
Z(P) of all log R-maps with all possible discrete data since the discrete data specifies
open and closed components, and the stability is an open condition.

Consider the stack of underlying R-maps &(3/BC!)) which associates to any
scheme S the category of commutative diagrams

!
C—3

N
c/s
BC;,
where C — S is a family of twisted curves. As proved in [, 21, 35], the tautological
morphism Z (B, ) — &(P/BC;)) is represented by log algebraic spaces, see also

(25, Theorem 2.11]. To show that Z(*B, 5) is algebraic, it remains to prove the
algebraicity of &(/BC;,). Now consider the tautological morphism

S(P/BCY) — M

where O™ is the stack of twisted pre-stable curves. For any morphism S — 91",
the corresponding pre-stable curve C — S defines a fiber product ‘B xpc; C. For
any T'— S, the fiber product

Ss(T) :== T Xonxy) S(P/BC)(S)
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parameterizes sections of the projection P xgcr Cr — Cp :=C xgT. Note that the
composition B xgcy; C — C — S is proper and of Deligne-Mumford type. Since
being a section is an open condition, the stack & s is an open substack of the stack
parameterizing pre-stable maps to the family of targets ‘B xgcr C — S, which is
algebraic by the algebraicity of Hom-stacks in [10, Theorem 1.2]. Hence, &g is
algebraic over S. This proves the algebraicity of S(3/BC;)).

5.2. Finiteness of automorphisms. We now verify that %, (B, /) is of Deligne-
Mumford type. Let f: C — B be a pre-stable R-map. An automorphism of f over
S is an automorphism of the log curve C — S over S which fixes f. Denote by
Aut(f/S) the sheaf of automorphism groups of f over S. Since the underlying stack
Ry B, B) parameterizes minimal objects in Definition 2.9, it suffices to consider the
following:

Proposition 5.1. Assume f as above is minimal and stable, and that S is a geo-
metric point. Then Aut(f/S) is a finite group.

Proof. By [21] and [35], it suffices to show that the automorphism group of the
underlying objects are finite, see also [25, Proposition 2.10 and 3.13]. By abuse
of notation, we leave out the underlines, and assume all stacks and morphisms are
equipped with the trivial logarithmic structures.

Since the dual graph of C has finitely many automorphisms, it suffices to consider
the case that C is irreducible. After possibly taking normalization, and marking the
preimages of nodes, we may further assume that C is smooth. Suppose f has infinite
automorphisms. Then we have either C is smooth and rational, and the total number
of markings is less than 3, or C is an unmarked genus one curve. In both cases, the
morphism ¢g :=to f: C — X contracts the curve to a point x € X.

We first consider the cases that C is rational with two markings, or it is of genus
one without any markings. In both cases, we have wlco/gs = O¢/g. Thus the morphism

C — BC] induced by wlco/gs factors through the universal quotient Speck — BC].
We obtain a commutative diagram

f
/\
(5.1) € —— P B

\\ Speck —= BC}

where the square is cartesian. Since the automorphism group of f is infinite, the
automorphism group of fi is infinite as well. Thus fyx contracts C to a point of the
Deligne-Mumford stack Py. Then we have

deg (feO(oog,)) = deg (f*O(oop)) =0

which contradicts the stability of f as in (1.5).

Now assume that C is rational with at most one marking. Suppose there is no
point ¢ € C such that f(q) € Op. Let fyr: C — ooy be the composition C —
B\ Op — cop — ooy where P\ Op — oog is the projection from Oy to cog, see
Proposition 2.7. Since automorphisms of f fix fy, the map fy contracts C to a

point of coy, hence deg (f}@oom/(g)) = 0. Proposition 2.7 immediately leads to a
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contradiction to the stability condition (1.5). Thus there must be a point ¢ € C such
that f(q) € Og.
On the other hand, since w(lzo/gs < 0 and deg g*H = 0, by the stability condition

(1.5) we must have deg ( f *O(oosn)) > 0. Thus C intersects ooy properly at its unique
marking, denoted by o, as the morphism f comes from a log map. Clearly, q # o.
Consider the G,,-invariant open subset U = C \ {q}. Note that w? ¥ is G,,-
equivariantly trivial. We thus arrive at the same diagram (5.1) with C replaced by
U. The infinite automorphism group implies that fi|y is constant. On the other
hand, the image of U must intersect ooy, properly. This is not possible! U

5.3. Boundedness. We next show that the stack Z, (B, ) is of finite type. Con-
sider the following composition

(5.2) Ky (B, B) = S(P/BC) = My

where 9, ,, is the stack of genus g, n-marked pre-stable curves, the first arrow is
obtained by removing log structures, and the second arrow is obtained by taking
coarse source curves. We divide the proof into two steps.

5.3.1. The composition (5.2) is of finite type. Let T'— 9, ,, be a morphism from a
finite type scheme T, and C' — T be the universal curve. Since the question is local
on My, it suffices to prove that

%T = ‘%g,f(mv 6) Xgmg’n T — 6T = 6(E/BCZ) Xgmgm T —T
is of finite type.

For any object (f: Cs — P) € &¢(S5), let Cp be the pull-back of C' — T via
S — T. Then Cg — Cr is the coarse morphism. Note that wg’f T
to wlcosg/s. We thus obtain a commutative diagram of solid arrows with the unique
square cartesian:

pulls back

(5.3) pUs B
_ 7
f_-
- - - \L wlC’g l
Cs Z C ‘T . BC
v
”i:os/s

Then it follows that f factors through a unique dashed arrow f making the above
diagram commutative.
Note that B, — 7" is a family of proper Deligne-Mumford stacks with projective

coarse moduli spaces over T. Let § be the curve class of the fiber of B, = T

corresponding to objects in Zr. Note that B is uniquely determined by the curve
class f in X and the contact orders. Thus, the morphism %Zr — &1 factors through
the open substack 6T(B) C & with the induced maps with curve class 3.

First, note that the morphism % — 6T(6~) is of finite type. Indeed, using the
same proof as in [25, Lemma 4.15], one shows that the morphism %; — GT(B) is
combinatorially finite ([25, Definition 2.14]), hence is of finite type by [25, Proposition
2.16].

Now let ‘///%"<§T/T’ B) be the stack of genus g, n-marked stable maps to the
family of targets B /T with curve class 3. Then &() is identified with the locally
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closed sub-stack of .2, ,(B,./T /3) which for any T-scheme S associates the category

of stable maps f :Cs — B, over S such that the induced map Cs — C from the
coarse curve Cs of Cs to €' — T is stable, and is compatible with the marked points.
Since A, ,(B,,./T, B) is of finite type over T' by [7, Theorem 1.4.1], &7(f) is of finite
type.

5.3.2. The image of (5.2) is of finite type. It remains to show that the image of
(5.2) is contained in a finite type sub-stack of 9, ,,. For this purpose, it suffices to
bound the number of unstable components of the source curves in %, (B, ).

Let f: C — P be an R-map corresponding to a geometric log point S — %, «(B, ).
Observe that the number

(5.4) dg = degwafy ® f*O(Fooy)

is a constant only depending on the choice of genus ¢, the orbifold structure at
markings, and the contact orders. Let Z C C be an irreducible component. Denote
by
dg z = deg (wlco/gs ® f*O(Fooy))|z.

Let g := to f be the pre-stable map underlying f. An irreducible component Z C C
is called g-stable if (degg*H)|z > 0 or Z is a stable component of the curve C.
Otherwise, Z is called g-unstable.

Suppose Z is g-unstable. Then by the stability condition (1.5) and (deg ¢*H)|z =
0, we have

ds,z > deg ((wefy)' © f*O(Fooy))|z > 0.

Note that Py is a proper Deligne-Mumford stack, and the stack of cyclotomic gerbes
in Py is of finite type, see [5, Definition 3.3.6, Corollary 3.4.2]. Thus there exists a
positive integer A such that if Py has a cyclotomic gerbes banded by p, then k|A.
Since [ factors through a representable morphism f in (5.3), we have dg z > %

Now we turn to considering g-stable components. Since the genus is fixed, and the
orbifold structure of Z is bounded, the number of g-stable components is bounded.
Let Z be an g-stable component. We have the following two possibilities.

Suppose f(Z) ¢ ooy, hence deg f*O(foog))|z > 0. Then we have dgz > —1
where the equality holds only if Z is a rational tail.

Now assume that f(Z) C cog. By Proposition 2.7, we have

ds.z = deg gL @ (f,)" Onen(5).

Since deg(f,)"Oxy(3) = 0 and deg gL is bounded below by some number only
depending on L and the curve class 3, we conclude that dg z is also bounded below
by some rational number independent the choices of Z.

Finally, note that
dg = Z dg z + Z dg z.

Z: g-stable Z: g-unstable

The above discussion implies that the first summation can be bounded below by
a number only depending on the discrete data [, and each term in the second
summation is a positive number larger than i We thus conclude that the number
of irreducible components of the source curve C is bounded.

This finishes the proof of the boundedness.
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5.4. The set-up of the weak valuative criterion. Let R be a discrete valuation
ring (DVR), K be its quotient field, m C R be the maximal ideal, and k = R/m the
residue field. Denote by S = Spec R, n = Spec K and s = Spec k. Our next goal is
to prove the weak valuative criterion of stable log R-maps.

Theorem 5.2. Let f,,: C, — B be a minimal log R-map over a log K-point 1.
Possibly replacing R by a finite extension of DVRs, there is a minimal log R-map
fs: C =B over S extending f, over n. Furthermore, the extension fg is unique up
to a unique isomorphism. B

We will break the proof into several steps. Since the stability condition in Sec-
tion 1.3.4 are constraints only on the level of underlying structures, by the relative
properness of log maps over underlying stable maps [21, 1, 35], see also [25, Propo-
sition 2.17], it suffices to prove the existence and uniqueness of an underlying stable
R-map f: C — B extending f, over S, possibly after a finite extension of the base.

Since the focus is now the underlying structure, we will leave out the underlines
to simplify the notations, and assume all stacks are equipped with the trivial loga-
rithmic structure for the rest of this section.

Normalizing along nodes of C,, possibly taking further base change, and marking
the points from the nodes, we obtain a possibly disjoint union of smooth curves
Cy. Observe that Cj — BC[ induced by wlcc%g factors through the corresponding

C, — BC;, before taking normalization. Thus, we may assume that C, is smooth
and irreducible. It is important to notice that every isolated intersection of C, with
ooy via f is marked. This will be crucial in the proof below.

5.5. The separatedness. We first verify the uniqueness in Theorem 5.2. The strat-
egy is similar to [25, Section 4.4.5] but in a more complicated situation.

5.5.1. Reduction to the comparison of coarse curves. Let f;: C; — 3 be a stable
underlying R-map over S extending f, for i = 1,2. Let C; — C; and C,, — C), be the
corresponding coarse moduli. By (5.3), the morphism f; factors through a twisted
stable map C; — P; := ‘B xpcy, C;, where B; is a proper Deligne-Mumford stack over
S. By the properness of [7, Theorem 1.4.1], to show that f; and f, are canonically
isomorphic, it suffices to show that the two coarse curves C and Cy extending C,
are canonically isomorphic.

5.5.2. Merging two maps. Let C3 be a family of prestable curves over Spec R ex-
tending C,, with dominant morphisms Cs — C; for ¢ = 1,2. We may assume C'3 has
no rational components with at most two special points contracted in both C; and
Cs by further contracting these components.

Let C3 — C; x Cy x U5 be the family of twisted stable maps over Spec R extending
the obvious one C,, — C; xCy x (3. Observe that the composition C3 — C; xCy x C3 —
(5 is the coarse moduli morphism. Indeed, if there is a component of C3 contracted
in ('3, then it will be contracted in both C; and Cy as well.

Set UZ-(O) = (5 for i = 1,2. Let Ui(kﬂ) be obtained by removing from Ul-(k) the
rational components with precisely one special point in Ui(k) and that are contracted
in C;. Note that these removed rational components need not be proper, and their
closure may have more than one special points in C3. We observe that this process
must stop after finitely many steps. Denote by U; C C5 the resulting open subset.

Lemma 5.3. U1 U U2 = 03.
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Proof. Suppose z € C3\ (U; UUs,) # 0. Then there is a tree of rational curves in Cj
attached to z and contracted in both C; and Cs. This contradicts the assumption
on Cj. [

We then construct an underlying R-map f3: C3 — P by merging f; and f5 as
follows. Denote by U; := C3 xX¢, U; for © = 1,2. Note that U; — C; hence U; —
C; contracts only rational components with precisely two special points in U;. In

- 1 1 : . .
particular, we have wcosg/ sl = wco,’j glu;- This leads to a commutative diagram below

(5.5) Jols P
fi
wlog l/
c,/s

U, Ci BC;.
\/ w

log ‘
Weg/siU;

where f3]y, is given by the obvious composition. We then observe that the two
morphisms f3ly, and f3]y, coincide along Uy N Us. Indeed, both morphisms fsyy,
restrict to f, over the open dense set C,, C U;, and ‘B — BC, is proper of Deligne-
Mumford type. Thus, fs]y, and f3ly, can be glued to an underlying R-map f3: C3 —
B over S.

5.5.3. Comparing the underlying R-maps. Denote by U; , the closure of the closed
fiber Z/{i,s in C3.

Lemma 5.4. Notations as above, we have

(5.6)  deg (wihy ® f10(Fooy) ) | > deg (whs @ fO(Fooy)) |,
Proof. We prove (5.6) by checking the following
(5.7) deg (wlczg/s ® f;@(foom)> |, > deg (wlccﬁs ® f;(’)(f%gp)) .

for each irreducible component Z C U, .

Since U; ; — C; s i1s a dominant morphism contracting rational components with
precisely two special points in U s, there is an effective divisor D’ of Cs s supported
on U; \ U; such that

lo lo
(58) ngg/S ui,s = wC'L?S ui,s (D/)
Restricting to Z, we obtain
(5.9) degwlc(;g/s|g = degwlci“js|g +deg D' z.

Suppose Z is contracted in C;. By (5.5), we obtain
deg f3O(coy)|z = deg f O(cog)|z = 0.

Then (5.7) immediately follows from (5.9).

Now assume Z is mapped to an irreducible component Z' C C;. Consider the case
that f3(Z) C oog, hence f;(Z') C ooy by (5.5). By (2.6), we obtain the equality in
(5.7).

It remains to consider the case f3(Z) ¢ oog. Let L3 and L; be the corresponding
spin structures over Cs and C; respectively, see Proposition 2.3. Note that L3y, =
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Lily; by (5.5). By (5.8) and Definition 2.1, there is an effective divisor D supported
on U; \ U; such that r- D = D" and L3|z = L;|z(D|z). By (2.1), we have

1
deg f30(cog)|z — deg fO(ocoy)|z > - deg Dlz.

Combining this with (5.9), we obtain (5.7). O

Suppose Cy # Cy. Then we have U; # C; for some i, say ¢ = 1. By construction
each connected component of C5 \ U; is a tree of proper rational curves in Us with
no marked point, hence T := (C3 \ Uy) C Us.

By construction, the composition 7 — C3 — Cs is a closed immersion and f3|7 =
fa|7. Since deg wlc(;g/s|7 < 0 (unless 7 = (), and T is contracted to C; and hence
maps to a point in X', the stability of fy implies

deg (wlczg/s ® f;@(foosn)) | = deg (w(long/S ® f;@(foom)) }T > 0.

Using Lemma 5.4, We calculate
deg (wlcgg/s ® fg@(foom)) ..
= deg (wlcogg/s ® fg@(foom)> ‘LT + deg <wlc°3g/s ® f;@(foofp)> e

> deg (wlc(ig/g ® ff(?(foo@) ‘cl,s + deg (wlc(;g/s ® f;(?(foom)> ‘7"

Since deg f5 ,O(7ooy) = deg f} ,O(7Fooy) is given by the sum of contact orders, we
conclude that 7 = C3 \ Uy = 0.

Observe that C35 = U; — C contracts proper rational components with precisely
two special points. Let Z C C5 be such a component, and let Z = Z x¢, C5. Since
f3|cs=1, factors through f;, we have

(5.10) deg f3O(cog)|z = 0.

On the other hand, since Z has two special points in C'3 and is contracted in Cf,
it is not contracted in Cy. Denote by Z' C Cy the component dominating Z C Cs.
Then Z’ has precisely two special points. Furthermore f;|z and f3|z coincide away
from the two special points. Using (5.10), we observe that deg f3O(coyp)|z = 0,
which contradicts the stability of fo. Thus C3 — C is an isomorphism.

This finishes the proof of separatedness.

5.6. Rigidifying (pre-)stable reductions. We start constructing the stable limit
as in Theorem 5.2. Recall from Section 5.4 that it suffices to construct an extension
of the underlying structures where C, is smooth and irreducible. Suppose we have
an underlying R-map extending f,:

(5.11) f:C—P
where C — S is a pre-stable curve over S. We modify f to obtain a representable

morphism to P as follows.
Forming the relative coarse moduli [6, Theorem 3.1], we obtain a diagram

c—I .y

| ]

' —~BC,
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in which the upper triangle is commutative, f” is representable, and 7 is proper and

quasi-finite. Note that since wlco/gs\cr = wlcorg/ g, the lower triangle is also commutative.

Proposition 5.5. Notations as above, we have:

(1) f" is a representable underlying R-map over S extending f,.
(2) If f satisfies the positivity condition (1.5), then so does f'.

Proof. Both parts follow easily from the above observations. O

5.7. Pre-stable reduction. Next, we construct a (not necessarily stable) family
(5.11) across the central fiber. We will show that such a family can be constructed
by taking the stable map limit twice in a suitable way. It is worth mentioning that
the method here is very different than the one in [25] in order to handle the general
situation of this paper.

In the following, g, and £, denote the pre-stable map and the spin structure on
C, associated to f;,.

5.7.1. The first stable map limit. Let g, be the prestable map underlying f,. Then,
let go: Co — X be any pre-stable map extending g, whose existence follows from
[7]. Possibly after a further base change, we construct the following commutative
diagram:

fo

(5.12) Cy B
.
l (wlog 7) l
Co—"_Ber x &

First, there is a unique stable map limit C) — Co Xpcy, xx X extending the one given
by the spin £,. This yields the spin structure £, on ). Furthermore, the morphism
Cy — Co is quasi-finite. We then take the unique stable map limit h: Cf — P¢, =
B xx C; extending the one given by f,.

To see the difference between the above stable map limits and a pre-stable reduc-
tion, we observe:

Lemma 5.6. Suppose we are given a commutative diagram

(5.13) T L .y
' L) BL:

where C' and C are two pre-stable curves over S such that C — C' contracts only
rational components with two special points. Then f is a pre-stable reduction as in

(5.11).

Proof. The lemma follows from that wlco,i sle = wlco/gs. O

Observe that wlc‘;g/ské = wlcfig/s. If C[l — C|, contracts no rational tails then it can
0

only contract rational bridges. Thus we obtain a pre-stable reduction in this case
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by applying Lemma 5.6. Otherwise, we show that a pre-stable reduction can be
achieved by repeating stable map limits one more time as follows.
5.7.2. The second stable map limit. Set C; = C{/. We will construct the following

commutative diagram:

fi

(5.14) C, T
¢ c i x
l/ (wéolg/s,gl) ‘/

First, g1 is the composition of C; — Cy with go, and £, is the spin structure over
C{ obtained by taking the stable map limit as in (5.12).

Second, we construct a quasi-finite morphism of pre-stable curves (f{ — Cy over S
such that over 7 it is the identity C, — C,, and the identity £, — £, extends to a
morphism of line bundles

(5.15) Loley = Lilg
whose r-th power is the natural morphism
(5.16) (wes ® gL)le = (webs © giLY) -
Let {/CT be the rth root stack of
(W% ® GILY) | ® (w55 ® GILY)ler,

and {/(C}, s) be the r-th root stack of the section s of the above line bundle given
by (5.16). We form the fiber product

Ai = Ci X{/C_i \T/< i,S),

where the morphism C; — {/C] is defined via Lg|e ® Li|g. The identities £, =
Lle, = L1|z, induce a stable map C, — C| which, possibly after a finite base change
of S, extends to a quasi-finite stable map C, — C}. Since €| — C} is quasi-finite, the

composition (Z — é{ — C] gives the desired quasi-finite morphism. Thus, £, pulls

back to a spin structure on C;. Furthermore, the universal r-th root of {/(C/, s) pulls
back to a section of £1 @ L[4 as needed.

Finally, we construct fi; in the same way as the stable map limit in (5.12) but
using the spin structure £| - We will show:

Proposition 5.7. The morphism Co — C| contracts no rational tails.

Together with Lemma 5.6, we obtain a pre-stable reduction (5.11).
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5.7.3. The targets of the two limits. Consider P; := (f{ Xz B for i = 0,1, where the
arrow C, — X is induced by £;. The morphism (5.15) induces a birational map
c: Py --+ P1 whose indeterminacy locus is precisely the infinity divisor cop, C Py
over the degeneracy locus of (5.15). Its inverse ¢~': P, --» Py is given by the
composition

P =P (@@;(E;) ® LP)|e, © 0>

§>0

PV (@(g;(Ey) ® LYo @ (L1 @ £8)®“\c*;>

j>0

>~ P (@(gé(E? ) ® L) @ 0) =P,

>0
where the first map is multiplication of the last coordinate by the ath power of the
section of (L1 ® Lg)|¢ given by (5.15). Therefore, the indeterminacy locus of clis

the zero section Op, C Py over the degeneracy locus of (5.15).
We have arrived at the following commutative diagram

(5.17) Po
fo .
I
o
C, el et C
b
v
h N/
Py

where by abuse of notations fo and f; are given by the corresponding arrows in
(5.12) and (5.14). Indeed, fo: Co — Py is given by the composition Co — C; — C] —
Ci — m

5.7.4. Comparing the two limits along vertical rational tails. A rational tail of Cy
over the closed fiber is called vertical if it is contracted in Cj.

Lemma 5.8. If Z C Cy is a vertical rational tail, then fo(Z) C oop,.

Proof. Note that f, contracts any vertical rational tails. Suppose fo(Z) ¢ ocop,.
Then c o fy is well-defined along Z hence fi|z = co fy|z. This contradicts the
stability of f; as a stable map limit. ([

For i = 0,1, denote by p;: P; --+ cop, the projection from the zero section Op, to
oop,. Thus p; is a rational map well-defined away from Op,. Furthermore, we observe

that oop, = cop,. Using this isomorphism, we have po = p; o c and p; = pgoc L.

Lemma 5.9. Let Z C Cy be a vertical rational tail. Then py o fi contracts an open
dense subset of Z.

Proof. Since f; is a stable map and Z is a vertical rational tail, we have fi(Z) ¢ Op,.
Thus p; o f is well-defined on an open dense U C Z such that fi1(U) avoids Op,.
Observe that ¢! is well-defined on f;(U). We then have p; o fi|y =poocto fily =
Do © folu. Here py is well-defined on fy|y by Lemma 5.8. The statement follows from
that fy contracts any vertical rational tail. O
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Corollary 5.10. If Z C C, is a vertical rational tail, then the image fi(Z) dominates
a line joining Op, and a point on cop,.

Proof. By Lemma 5.9, f1(Z) has support on a fiber of p;. Since Z intersects cop, at
its unique node, it suffices to show that f;(2) ¢ ocop, hence fi|z dominates a fiber
of p;. Otherwise, since pl\oopl is the identity, f; contracts Z by Lemma 5.9. This
contradicts the stability of f; constructed as a stable map limit. U

Proof of Proposition 5.7. We show that Corollary 5.10 and Lemma 5.8 contradict
each other, hence rule out the existence of vertical rational tails.

Let Z C Cy be a vertical rational tail. The pre-stable map C; — & factors
through C; — C; along which Z is contracted to a smooth unmarked point on C;.

Thus there is a Zariski neighborhood U C C, containing ¢ such that E;|; splits.

Denote by {Hwk}zkj’ the collection of hyperplanes in P;|y corresponding to each

splitting factor of E;|y.

By Corollary 5.10 there is a smooth unmarked point ¢ € Z such that fi(q) € 0p,,
hence f1(q) € Hyjj, for all j and k. We will show that fy(q) € Hy,i, for all j and & as
well, hence fy(q) € 0p,, which contradicts Lemma 5.8.

Suppose Z intersects Hj; properly at ¢ via f;. Let Dij, C U be an irreducible
component of fy(Hy;) containing ¢q. Then Dsjx is a multi-section over S with the
general fiber Dy, C f7,(Hijky) = f5,(Hojky). Taking closure, we observe that
fo(q) € Dyji, C f5(Hoj)-

Suppose f1(Z) C Hy . Note that pyo fi =pgoc o fi =pgo fo are well-defined
along an open dense subset of Z. Then Lemma 5.8 together with p; o fi(2) C
oop, M Hyji = oop, N Hy,;i, implies that f, contracts Z to a point of cop, N Hyjr. [

5.8. Stabilization. Let f: C — P be a pre-stable reduction extending f, over S as
in (5.11). We next show that by repeatedly contracting unstable rational bridges and
rational tails as in Section 5.8.1 and 5.8.2, we obtain a pre-stable reduction satisfying
(1.5). Together with Proposition 5.5, this will complete the proof of Theorem 5.2.

5.8.1. Stabilizing unstable rational bridges. Let Z C C be an unstable rational
bridge. We contract Z as follows. Consider C — C' — C” where the first arrow
takes the coarse curve, and the second arrow contracts the component correspond-
ing to Z. Since wlCO,g/S|c = wlCO/gS, we have a commutative diagram

“ !

N
AN fer

where the square is cartesian and the dashed arrow fo is induced by the fiber
product. By Corollary 2.8, Z is contracted along fer.

Note that f,: C,, — P yields a stable map C,, — B¢ which, possibly after a finite
base change, extends to a stable map f{,: C' — P¢. Let ¢ € C’ be the node to
which Z contracts.

Lemma 5.11. The composition C' — Por — C' is the coarse moduli morphism.
Furthermore, let ¢ € C' be the node above q € C'. Then we have f|o\z = f'lengqy-
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Proof. Let f': C' — Pcr be the coarse stable map of f.,, and for: C — Per be the
coarse stable map of fo. Thus f' is the stabilization of fo as a stable map. By
construction, the image of Z in C' is the only unstable component of for, hence is the
only component contracted along C' — C'. Therefore C' — C" is the coarse moduli.
Since the modification is local along Z, the second statement follows from the first
one. U

Let f' be the composition ' — P — PB. The above lemma implies that
w(lﬁ% = wlg/g/s|c/. Thus f': C' — P is a new pre-stable reduction extending f,
with Z removed.

5.8.2. Stabilizing rational tails. Let Z C C be an unstable rational tail, C — C’ be
the contraction of Z, and p € C’ be the image of Z. Possibly after a finite extension,
we take the stable map limit

f’i " — mc/ = XBC;, ‘B
extending the one induced by f,. We will also use f': C” — P for the corresponding

morphism. Let 7 C C” be the tree of rational components contracted to p. Since f’
is a modification of f around Z, we observe that fé”\T = flevz-

Proposition 5.12. The composition C" — Per — C' is the identity. Therefore,
'+ C" = P is a pre-stable reduction extending f, with Z contracted but everywhere
else is identical to f.

The proof of the above proposition occupies the rest of this section. Since p is a
smooth unmarked point of C’, it suffices to show that 7 contains no component. We
first consider the following case.

Lemma 5.13. Notations and assumptions as above, suppose that f(Z) C Op. Then
Proposition 5.12 holds.

Proof. Since fén = fle\z, the assumption implies deg f*O(ocoy) < deg(f')*O(cogp)|zmz-

On the other hand, we have deg(f’)*O(coyp)|7 > 0, and “=" iff T is a single point.

Thus, the lemma follows from deg f*O(ocog) = deg(f’)*O(ocogp)[ama+deg(f')*O(cop)| 7.
U

We now impose the condition f(Z) ¢ Oyp. Observe that the pre-stable map
g: C — X contracts Z, hence factors through a pre-stable map ¢': ¢’ — X. Since
p is a smooth unmarked point, we may choose a Zariski neighborhood U’ C C’ of p
such that (¢')*E;|y+ splits for each i. Denote by U = U’ x¢ C. Then ¢*E;|y splits
as well for each 7. The j-th splitting factors of ®E;|y and ®E;|y define families of
hyperplanes

(518) H_] C (BU, and Hj/ - mU/
over U and U’ respectively for j =1,2,---  n.

Lemma 5.14. Notations and assumptions as above, for each j we have deg(f*H;)|z <
0. In particular, f(Z) ¢ Oy implies that f(Z) N 0g = 0.
Proof. Observe that [, H; is the zero section Oy,. Thus, it suffices to show that
deg(f*H,)|z < 0 for each j.

Since Z is contracted by f, E; and L are both trivial along Z. Thus, we have Pz =
]P’W(EBjﬁg” @ O) where the direct sum is given by the splitting of E; for all <. The
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corresponding section Z — Pz is defined by a collection of sections (s1, -, Sy, Soo)
with no base point, where s; € H(LY @ f*O(w;,00y)|z) and so, € H(f*O(cog)|z).
In particular, we have f*O(H,)|z = LY ® f*O(w;,00q)|z. Note that w;, = a -1 by
the choice of weights (1.2). We calculate

(LY ® f*O(wi00q)|2)" = (L ® f*O(cop)|2)™ = (wifs ® f*O(Fooy)|z)"

Since Z is unstable, we have deg wlco/gS@f*(’)(fOOsp) |z < 0, which implies deg(f*H,)|z <
0. 0

To further proceed, consider the spin structure £’ over C" and observe that £'|cn 3 =
L|e\z. Using the same construction as for (5.15), we obtain a quasi-finite morphism
C — C between two pre-stable curves over S which is isomorphic away from Z
and its pre-image in C, and a canonical morphism of line bundles £'|z — L|5 ex-
tending the identity £'|enpy = L|e\z, whose r-th power is the canonical morphism
w}ﬁ% sle = w(lzo/gs| - Define:

g,BCT = gp XBCr g and SB% = g,pcl X C

We have arrived at the following commutative diagram

c— ;

f~’ \ ¥

5/// C'

where J?is the section obtained by pulling back f, ¢ and ¢~! are the two birational

maps defined using £'|; — L]z similarly to (5.17), and #' is the stable map limit
extending the one given by f,.

Denote by Z the corresponding rational tail of C. , and by Z C C" the component

dominating Z. By Lemma 5.14, the image f(Z) avoids Oy_|z which is the indeter-
minacy locus of ¢='. This implies that f/(Z) C ¢ o f(Z) C ooy . Thus by the

commutativity of the above diagram, any rational tail of C" contracted to a point
on Z, is also contracted by f’. Now the stability of f" as a stable map implies:

Lemma 5.15. C"” — C contracts no component.
Furthermore:
Lemma 5.16. The rational tail Z is contracted by f".

Proof. Write U=C xc U. By abuse of notations, denote by H; C Bs and H; C
2]3’5 the families of hyperplanes over U obtained by pulling back the corresponding
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hyperplanes in (5.18). From the construction of ¢!, we observe that f(Z) C H; for
some H; implies that f'(Z) C Hj.

Suppose f”(Z) is one-dimensional. Then Z intersects some H; properly and non-
trivially. Since H} is a family over U, (f)(H ’) contains a non-empty irreducible
multi-section over U which intersects Z. Denote this multi-section by D. Consider
the general fiber D, C fr(H},) = f;(Hj,). The closure D, C f*H; intersects Z
non-trivially. By Lemma 5.14, we necessarily have f(Z) C H; hence f'(Z) C Hj by
the previous paragraph. This contradicts the assumption that Z and H} intersect
properly. 0

Finally, observe that the coarse pre-stable map of f” factors through the coarse
stable map of f': C" — P¢r. The above two lemmas show that the unstable compo-
nents of C” with respect to f” are precisely those contracted in C'. Therefore, the

arrow C” — C’ contracts no component. This completes the proof of Proposition
5.12.

6. REDUCING PERFECT OBSTRUCTION THEORIES ALONG BOUNDARY

For various applications in this and our subsequent papers [23, 24], we further
develop a general machinery, initiated in [25], on reducing a perfect obstruction
theory along a Cartier divisor using cosections. Furthermore, we prove a formula
relating the two virtual cycles defined using a perfect obstruction theory and its
reduction under the general setting in Section 6.5. Since log structures are irrelevant
in this section, we will assume all log structures to be trivial for simplicity.

6.1. Set-up of the reduction. Throughout this section we will consider a sequence
of morphisms of algebraic stacks
(6.1) M= H— M
where .# is a separated Deligne-Mumford stack, and the second morphism is smooth
of Deligne-Mumford type.

Let A C 9 be an effective Cartier divisor, and let Ay and A , be its pull-backs
in $ and .# respectively. Let F be the complex with amplitude [0, 1] over I

O — Ogp(A)

where € is the canonical section defining A.

We further assume two relative perfect obstruction theories
(6.2) eam: Tam = Egom and  gm: Tam — Egjomn

which fit in a commutative diagram

(6.3) Tjom —————To/m
Wﬂ/Wl l‘%/zmﬂ
E.z/m - Eg/om

such that H'(Eg o) = Om(A)|s, and the following cosection
64)  owm= HYoh): H'(E.m) > H (Esyml.a) = On(A)].4

is surjective along A ,.
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6.2. The construction of the reduction. Consider the composition
Egm — H' (Eg/om)[—1] = Om(A)].4 — cok(e)[-1].

Since $ — M is smooth, we have cok(e)[—1] = F|g. Hence the above composition
defines a morphism

(6.5) Eg/m — Fls

over §). We form the distinguished triangles

1 1
(6.6) Elhy = Enjm — Fly 3 and By — E 4 pm — FlL, 53,

where the middle arrow in the second triangle is the composition of (6.5) with og;.

Theorem 6.1. Notations and assumptions as above, we have:

(1) There is a factorization of perfect obstruction theories

‘P*/zm

T, jon E, o

B

T

such that cp*e/%ﬁ|*\A* = Qumlaa, forx =4 or$H.
(2) There is a canonical commutative diagram

B o E.z/m

o red l o®

Ton 0
By« Egjon|.#

such that H 1(E§§/dmt) = Oy. Furthermore, the reduced cosection

o5 = H' (o) : H'(Eym) = H' (Exyjonl.ar) = O.s

is surjective along A 4, and satisfies o53| na , = oml.na -
This theorem will be proven below in Section 6.4.
In case M admits a fundamental class [9], denote by [.Z]*"" and [.#]* the virtual
cycles giving by the perfect obstruction theories ¢ z/m and cpr/jf/m respectively.

Remark 6.2. In order to construct the cone Eﬂ;ld/gm, instead of having the auxil-

iary stack ), it suffices to assume the existence of a cosection ogy: H'(E , /m) —
Om(A)|.». Furthermore, the proof of Theorem 6.1 shows that if ogy is surjective
along A ,, then E;d/m is perfect of amplitude [0, 1]. On the other hand, in practice
the auxiliary stack $) provides a convenient criterion to ensure the factorization of

Theorem 6.1 (1).
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6.3. Decending to the absolute reduced theory. We further assume 901 is
smooth. Consider the morphism of triangles:

(1]

(6.7) T, /o T, Tonls
¢ J/ pred l l =

Ered Ered T | [1]
* /M * DML | *

for ¥ = $ or .#. By [10, Proposition A.1.(1)], " is a perfect obstruction theory

compatible with cp}d/m, hence induces the same virtual cycle [.Z]™d.

Lemma 6.3. The induced morphism Hl(Ege;im) — HY(E¥Y) is an isomorphism of
Og.

Proof. Since M is smooth, we have H'(Tyy) = 0. Consider the induced morphism
between long exact sequences

H(Tg) —— H°(Ton,,) — H'(Tg/m) — H'(Ts) ——0

T

HO(BR) — H(Tonly) — H! (Bhy) — H'(B5") —0

Since £ — 9 is smooth, the two horizontal arrows on the left are both surjective.

Thus H 1(Ef§efm) — H'(Eg?) is an isomorphism. By Theorem 6.1 (2), we have

HY(EFY) = Og. O
By Theorem 6.1, we obtain a morphism of triangles

(1]

B o ) T

O_Q,red \L o.red ‘/ ‘/
s g
(1]

Eiml.e —E5%.0 — Tonl.sw —

Taking H' and applying Lemma 6.3, we have a commutative diagram

(6.8) H (B o) — H' ()
O'gﬁdl lared
O.n - Ou.

Denote by .#(0™Y) C .# the closed substack along which the cosection ™4
degenerates, and write ¢: . (0**) — .# for the closed embedding. Let [.#],wa be
the cosection localized virtual cycle as in [12]. We conclude that

Theorem 6.4. With the assumptions in Section 6.1 and further assuming that 9t
18 smooth, we have
(1) The cosection o™ is surjective along A .

(2) 1| M ) ea = [T

Proof. (1) follows from the surjectivity of ofsd along A , and (6.8). (2) follows from
[12, Theorem 1.1]. O
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6.4. Proof of Theorem 6.1. By (6.3), we obtain a commutative diagram of solid

arrows
(6.9) T #/m
WW\ )
B o E. 7/ F|.«

Toml.w ~——

~
~ \
~
Crsomla >

Ered | — - F | IF| [1]
H/M M /M| 4 M

where the two horizontal lines are given by (6.6), and the two solid curved arrows
are given by (6.2).

Since $) — M is smooth of Deligne-Mumford type, Tg/on is the relative tangent
bundle Tgon. Thus the composition Tg/m — Eg/m — F|g is trivial, which leads to

: red

the desired arrow ¢ o

Similarly, the composition T 4 /m — E 4m — F|, factors through Tg/m|., —
|+ hence is also trivial, which leads to cp}d/m. This proves the factorization part
in (1), and the commutative diagram in (2).

For the perfect obstruction theories part, observe that Ege;im and Efe/;/m are at

least perfect in [0, 2] as IF is perfect in [0, 1]. It remains to show that H 2(E§§/dmt) =0
and H Q(Ef;;‘/m) = 0. Taking the long exact sequence of the first triangle in (6.6), we
have

H'Y(Egjon) — H'(Flg) — H%ngm) — 0.

Since the left arrow is precisely Og(A) — cok e, we obtain H Q(Efﬁefm) = 0.
Similarly, we have the long exact sequence

HY(E 4 jom) = H'(F|.g) = H*(E'5)0) — 0,
where the left arrow is given by the composition
H'E.zpm) = H' (Egpml.0) — H'(Fla).

Since F| ,\a_, = 0 and o9y is surjective along A 4, the above composition is surjec-
tive, hence H*(Eg ;) = 0.

We next verify that gofzi/im and cpgafm are obstruction theories. Indeed, the fac-

torization of (1) implies a surjection H(T 4 /m) — HO(E}C‘/W) and an injection
HY (T ypm) = H'(E"}qy). Since F| 4 is perfect in [0, 1], H(T z/m) — H°(E'Gqy)
is an injection, hence an isomorphism. The case that prﬁe/dm is an obstruction theory

can be proved similarly. This completes the proof of (1).
Observe that H°(F|y) = 0 since $ — 90 is smooth. The first triangle in (6.6)
implies an exact sequence

0— Hl(Egefm) — H'(Egjon) — H'(F|g) — 0.

Using (6.4) and the construction of (6.5), we obtain Hl(Efﬁe/dm) ~ O
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Now (6.9) induces a morphism of long exact sequences

0— HYF| ) — Hl(Efe//f/m) — Hl(E//,/gm) —— HYF|.4) —=0

e

0 —— H(F|.¢) — H'(Egjy) — H'(Egjom) — H'(Fl.y) —=0

The surjectivity of oid along A 4, follows from the surjectivity of og along A .

This finishes the proof of (2).
6.5. The reduced boundary cycle. The pull-backs

EA/,{/A = E//{/S))I‘AJ,[ and EAﬁ/A = Esﬁ/fm‘Ag-

define perfect obstruction theories of A , — A and Ay — A respectively. Consider
the sequence of morphisms

Ea,/a = Bagjala,, = H (Egmla,)[—1] = H' (F)|a_,[-1]

where the last arrow is given by (6.5). Since

(6.10) HY(F|a) = Oa(A),
we obtain a triangle

1
(6.11) EX! n = Ea s = Oa(B)]a,[-1] B

The two virtual cycles [.Z]"* and [.Z]"¢ are related as follows.

Theorem 6.5. Notations and assumptions as above, we have
(1) There is a canonical factorization of perfect obstruction theories

PA _4/A

Ta ,/a Ea_,/a

9028% /

red
EA//Z/A

Denote by [A_4]*? the virtual cycle associated to cpffﬂm, called the reduced
boundary cycle.
(2) Suppose M is smooth. Then we have a relation of virtual cycles

[%]vir — [%]red 4 Z* [A%]red
where i: A, — M is the natural embedding.
Proof. The proof of Theorem 6.5 (1) is similar to Theorem 6.1 (1), and will be
omitted. We next consider (2).

Recall that .# (07°1) C .# is the locus where 0" hence gy degenerates. Replacing
M by M\ M (07Y) we may assume that ooy is everywhere surjective. Since the
cosection localized virtual cycle [.#],wea is represented by a Chow cycle supported
on (0%, which is empty by our assumption, we see that [.#],.a = 0. By
Theorem 6.4, it remains to show that
(6.12) (] =i A 4

To proceed, we consider the triangle

(6.13) E%m — E.oym = Om(A)].o[-1] Y
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where the middle arrow is given by (6.5) and (6.10). Similar to the case of (1), we
obtain a factorization of perfect obstruction theories

Poajm
T 4 om E_z/om
vﬂ‘/l}« ) /
tre
B on

Let [.#]"¢ be the virtual cycle corresponding to the perfect obstruction theory
gof/;;?m. We call [.Z]" the totally reduced virtual cycle to be distinguished from

[]7d. Comparing (6.11) and (6.13), we have cpf/;;;lmh,ﬂ = SOI"Aei,,/Aa hence
i![%]tred — [A//l]red.

Since 9 is smooth, as in (6.7), we may construct absolute perfect obstruction

theories associated to ¢ 4 om and @“jfm respectively:

O T////gm — E/{ and @%di T/{/gm — E%d.

By the same construction as in Section 6.3, the cosection o9y descends to an
absolute cosection o: H(E ;) — O(A)|. which is everywhere surjective. Let € 4
and €7¢ be the vector bundle stacks of E 4 and E"4 respectively. Then €7¢ is
the kernel cone stack of € , — Om(A)|.» induced by o. Let €, be the intrinsic
normal cone of .Z. Unwinding the definition of cosection localized virtual cycle in
[12, Definition 3.2], we have

(6.14) [ ) = i0gta[€.] = 7 [ A" = [ALg]™.

where [.#], is the cosection localized virtual cycle corresponding to o. Finally, (6.12)

follows from i, [A], = [#]™", see [12, Theorem 1.1]. O
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