VIRTUAL CYCLES OF STABLE (QUASI-)MAPS WITH FIELDS

QILE CHEN, FELIX JANDA, AND RACHEL WEBB

ABSTRACT. We generalize the results of Chang—Li, Kim—Oh and Chang—Li on the mod-
uli of p-fields to the setting of (quasi-)maps to complete intersections in arbitrary smooth
Deligne-Mumford stacks with projective coarse moduli. In particular, we show that the
virtual cycle of stable (quasi-)maps to a complete intersection can be recovered by the

cosection localized virtual cycle of the moduli of p-fields of the ambient space.
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1. INTRODUCTION

This paper generalizes Chang—Li’s work [I3] on the moduli of stable maps with p-fields
for the quintic hypersurface in P* to a theory of stable maps with p-fields for complete
intersections in smooth Deligne-Mumford stacks (Theorem [L.1.1]).

As applications, we reprove a weak version of quantum Lefschetz in genus 0 (Theorem
, and most importantly, in all genus, we derive a formula for the virtual cycle of
the moduli space of stable (quasi-)maps to a complete intersection as a virtual cycle on
a moduli space of p-fields, which has simpler geometry (Corollaries and [1.2.4). In
combination with the theory of the logarithmic Gauged Linear Sigma Model (GLSM) in
[19], this formula provides a tool for studying the higher genus Gromov-Witten invariants
of complete intersections. This formula is new in the case when the target is not a GIT
quotient. Our approach to the p-fields problem differs from those in the literature as we
use a setup reminiscent of a GLSM.

To understand how the moduli of p-fields is a tool for studying higher-genus Gromov-

Witten invariants, recall the strategy of the original proof in [26],[39] of the genus-zero mirror
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theorem for the quintic hypersurface X C P*. The first step uses the quantum Lefschetz
principle [35, 24] to relate the Gromov-Witten invariants of X to those of P*. Indeed, a

weak version of the quantum Lefschetz principle states
(1) L*[MO,n<X> B)]Vir = 6(R077*f*ﬁ(5)) N [mg,n([PAv L*6>]Vir

(see Theorem‘ The second step uses torus localization on My ,, (P4, . 3). (The quintic
X itself does not carry an adequate torus action.)

The naive version of the quantum Lefschetz principle fails in positive genus. However, an
equality similar to holds when we replace M, ,,(P4, 1, 3) with the moduli of stable maps
with p-fields My (P4, (5), 18). The new moduli space M ,,(P4, &(5), 1. 3) is a cone over
ﬂg,n(P‘l, t+«3) and in particular it carries a nontrivial torus action. On the other hand, the

main result in [I3] can be lifted to an equality of virtual cycles
(2) [Myn (X, B = £[ Mg (P, O(5), 1 B)ie

(see also Corollary , where the right hand side is the cosection localized virtual class
of [34]. Equality is leveraged to compute higher genus Gromov—Witten invariants of the
quintic using mixed-spin-p-fields by Chang—Guo-Li-Li-Liu in [T4} 15, 111 10, 0], and using
log GLSM by Guo, Ruan, and the first and second author in [19, 177, [I8| [18| 27, [28].

We remark that there are several other approaches to quantum Lefschetz and the com-
putation of the Gromov-Witten invariants of the quintic in genus one, including [48}, [50, [36].

Given the success of the p-fields aproach, it is natural to ask if holds for an arbitrary
smooth complete intersections X in smooth Deligne-Mumford stacks Y with projective
coarse moduli. The main result of this paper (Theorem [1.1.1]) gives a complete answer to
this question, which implies that (see Corollary

MO = £IM(Y, )i

when M(X) is a moduli stack of stable (quasi-)maps to X, M(Y, E) is a moduli stack of
p-fields defined by the vector bundle £ whose section cuts out X, and the sign is a function
of various data defining the moduli. When Y is a GIT quotient of an affine variety, our
theorem recovers the main results of [37, [16]. Since the first version of this article appeared
on the arXiv, R. Picciotto [45] found an alternative approach to Corollary

Our approach unifies these special cases in a single theory. We anticipate applications in
both the GIT and non-GIT settings where the latter fits the general set-up of log GLSM. As
an example of the latter, we hope that Theorem combined with the log GLSM, can
be used to investigate the conjectures of Oberdieck—Pixton [4I] in the case of Weierstrass

elliptic fibrations.

1.1. Main definition and result. We now state precise definitions and results. In order
to both address stable maps and quasi-maps, we work in the following abstract set-up. Fix
an algebraic stack Y whose open Deligne-Mumford locus Y° C Y is smooth and dense in
Y. Let E be a vector bundle on Y with & its sheaf of sections, and s be a global section
of E. Let X C Y denote the zero locus of s. Let M := zm;wn denote the moduli space
of prestable twisted curves with genus g and n markings (see [4, Section 4]), with € its

universal curve.
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By [31, Thm 1.2] there is an algebraic stack Homgp (€, Y x 90) of morphisms from € to
Y x 9 over M. Choose an open substack M(Y) C Homgn (€, Y x 9M), letting M(X) =
M(Y') X Hom (€,v xom) Homon (€, X x 9M) denote the moduli of maps in M(Y") that factor
through X C Y, such that the following conditions hold:

(1) The stack M(Y) is separated, Deligne-Mumford, and finite type.
(2) On both M(X) and M(Y"), the canonical construction is a perfect obstruction
theory.
(3) For any closed point [f: C — Y] € M(Y), the locus f~(Y"?) is open dense in C.
(4) The universal curve C — M(X) admits a relatively ample line bundle.
For example, one may take M(Y") to be moduli space of stable maps (see Section or
e-stable quasimaps (see Section .

Motivated by the original definition in [I3], we define the moduli stack M (Y, E) of maps
in M(Y") with p-fields to be a certain cone over M(Y") as follows. Let w denote the relative
dualizing sheaf of € — 9. Let Z be the vector bundle on € x Y whose sheaf of sections is
&XwY. Asin [31, Thm 1.3] define the moduli of sections Sec(Z/€) to be the (algebraic)
stack over 2 with fibers

Sec(Z/€)(T) = Home (€ X9 T, Z) = Homex ,, 7(€ Xop T, Z xon T).

The projection Z — € x Y induces a morphism Sec(Z/€) — Homgy (€, Y x M). The stack
M(Y, E) is the fiber product

MY, E) = M(Y) X Homgy (€,Y x90) Sec(Z/€).

It carries a perfect obstruction theory inherited from Sec(Z/€) and, under additional
assumptions, a cosection determined by s whose degeneracy locus is contained in M (X)

(Corollary [4.4.3)).

To introduce the main result, we define a locally constant function
(3) X(E,M(X)): M(X) = Z

with x(E, M(X))([f]) = x(f*&) for any closed point [f] € M(X)H Since x(E, M(X)) is
locally constant on M(X), this defines a class

(~1)EMED € A%(M(X).
See Remark below for more details, including an explicit formula for x (E, M(X))([f])-

Theorem 1.1.1. The stack M(Y,E) is a separated, finite-type, Deligne—Mumford stack
carrying a canonical perfect obstruction theory . Furthermore, if s is a regular section
and X N'Y° is smooth, then there is a cosection localized virtual cycle [M(Y,E)[}ir €
A (M(X)) satisfying

(4) i [M(Y, E)list = [M(Y, E)]"" € A.(M(Y, E))
and
(5) MY, E)ie = (—1)XEMEDMXO)]™ € Au(M(X)).

IThe function x(E, M(X)) is called the “virtual rank” in [37].



4 QILE CHEN, FELIX JANDA, AND RACHEL WEBB

Remark 1.1.2. The equality is a direct application of [34, Thm 1.1], though we take
a simplified approach to defining cosection localized virtual fundamental classes that applies
when the cosection is defined everywhere (see Appendix@. The bulk of this paper is devoted

to the construction of M(Y, E), its perfect obstruction theory, and cosection; and to proving

equation .

1.2. Applications. Theorem [I.1.1| applies to both stable maps and e-stable quasimaps.
For stable maps, take Y to be a smooth projective Deligne-Mumford stack. Let E be a
vector bundle on Y with a regular section whose zero locus X is smooth. For nonnegative
integers g, n and a class 3 € Ho(Y), where Y is the coarse moduli space of Y, let M, ,,(Y, 3)
denote the moduli stack of twisted stable maps defined in [4]. We set M(Y) = M, (Y, 3).
Furthermore, let M, ,,(X, 3) be the substack of maps that factor through X; this is the
disjoint union of M, (X, ') for all 8’ € Ha(X) such that .3’ = 8 where t: X — Y is the
inclusion. Then we get the following corollary (Section .

Corollary 1.2.1. We have the following identity of virtual classes

MY, B = Y () E MonENRL, (X, B in AL (Mg (X, 8)).
B’ e B'=B

Remark 1.2.2. We have
A*(ﬂg,n(X’ 5)) = @ A*(ﬂg,n(Xa ﬁ/))a
B’ =P
and hence the identity allows one to recover each [Mgy (X, 8™ from [M(Y,E)yE. In

loc*

many situations, ordinary Lefschetz implies that v, is an isomorphism, so that the direct

sum has exactly one term.

In this stable map setup, we can also derive a weak version of the quantum Lefschetz
theorem from Theorem m Recall that & is convez if for every closed point [f: C —
Y] € M(Y), we have

HY'(C, f*&) =0.
Let f: C — Y denote the universal map on the universal curve 7: C — M(Y) and let
t: M(X) — M(Y) denote the inclusion. The strongest version of quantum Lefschetz [35]
says that when & is convex, we have

(6) (MO = M)

where +' is the Gysin pullback. Theorem implies the following weaker version of this
statement (Section [6.4).

Theorem 1.2.3. If & is convex, then the direct image sheaf RO, f*& is locally free, and
L M(X)] = e(RO. f*&) N [MY)]YT in A, (M(Y)).

Theorem is a consequence of the identity @ after applying ¢, to both sides (note
that the section s induces a section R° f*s of RO, f*& whose zero locus is M(X) ¢ M(Y)).

A second application of Theorem is to take Y = [W/G] where W is an affine

l.ci. variety and G is a reductive group acting on W. Choose a character 8 of G such
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that W = Wg*® is smooth and nonempty and has finite G-stabilizers. Let E be a G-
equivariant vector bundle on W with a G-equivariant regular section whose zero locus U
has smooth intersection with W;. This data defines a smooth Deligne-Mumford stack
W/ ,G = [W; /G| carrying a vector bundle induced by E with a regular section whose zero
locus U J/,G = [(W;NU)/G] is smooth. Fix nonnegative integers g, n and a positive rational
number ¢, and choose a class 3 € Hom(PicG(W),Q). Let M(Y) = MZ)R(W//QG,B) be
the moduli stack of e-stable quasimaps defined in [20]. Let ﬂ;n(U /4G, B) be the substack
where the quasi-map factors through U. Then we have the following corollary (Section .

Corollary 1.2.4. We have the following identity of virtual classes

MY, B)]ige = > (1) Man LGOI (U 4G, B)]™
B’ €Hom(Pic® (U),Q)
wpB'=p
in A, (ﬂ;n(U//GG, B)), where v, is the dual of the map 1*: Pic® (W) — Pic®(U) induced
by the inclusion v: U — W.

1.3. Contents of the paper. Our proof of Theorem follows roughly the strategy
of [13]. We construct (Section [2) an auxiliary moduli space M — 9 x Al. This space
is roughly analogous to M(Y, E) but with Y replaced by the deformation to the normal
cone of X in Y, and in fact a generic fiber of M is isomorphic to M(Y, E). We show that
M (resp. its fibers) is a Deligne-Mumford stack with the necessary properties (Section
carrying a canonical perfect obstruction theory relative to 9t x Al (resp. 9; Section .

The section s induces a cosection ¢ of the perfect obstruction theory on M with de-
generacy locus M(X) x Al; moreover o specializes to cosections on the fibers of M with
degeneracy loci M(X) (Section[4). A torus localization argument shows that the cosection
localized virtual cycle on the special fiber is equal to the usual virtual cycle on M(X), up
to a sign (Section , while the cosection localized class of the generic fiber is precisely the
class [M(Y, E)}I'. of Theorem m

Section [f] elaborates on the main applications of our result, Appendix [A] contains several
technical lemmas related to the moduli of sections, and Appendix [B] discusses a simplified

construction of cosection-localized virtual cycles.

1.4. Conventions. By a sheaf on an algebraic stack ¥ we mean a sheaf in the lisse-
étale topos Yjis—et, unless otherwise stated. By the derived category D(Y) we mean the
unbounded derived category of Oy -modules in Y};s_.; with quasi-coherent cohomology, as
defined in [30]. Our derived functors are the ones defined in (loc. cit.).

If & is a principal C*-bundle on an algebraic stack X and V is a G-stack, then & x¢« V'
is the quotient of & x V by C*, where C* acts with the diagonal action.

The universal objects on the moduli of sections Sec(Z/€) (or an open substack M)
will usually be denoted maq: Cpq — M for the universal curve and npq: Capq — Z for the
universal section. We will use way to denote the relative dualizing sheaf of the morphism
C — M. We will use w}, = waq[1] to denote the dualizing object in the derived category.
If the subscript M on any of these notations can be safely deduced from context we may

omit it. One consistent exception to our convention is when Z = C x Y for some algebraic
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stack Y. In this case Sec(C x Y/C) is canonically identified with the moduli of prestable

maps to Y, and we use f: Csec(cxy/c) — C X Y for the universal section.
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1700682 and DMS-2001089. The second author was partially supported by an AMS—Simons
travel grant and NSF grants DMS-1901748 and DMS-1638352. The third author was par-
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Jeongseok Oh, who explained the proof of Lemma and Richard Thomas for sugges-
tions for improving the introduction. The authors are grateful to the AGNES conference

and the Casa Matematica Oaxaca which facilitated the completion of this project.

2. DEFORMATION TO THE NORMAL CONE

2.1. The family of targets. Recall the notations defined in Section [1.1} in particular, Y
is an algebraic stack with locally free sheaf & and a global section s. We recall the definition

of regularity for s.

Definition 2.1.1. The section s is reqular if smooth affine locally, components of s form

a regular sequence.

This definition makes sense when Y is an algebraic stack because regularity is preserved
by flat base change (see [47, 067P]).

From now on we will assume that s is a regular section and that X NY? is smooth. Some
parts of our construction do not require these assumptions, and we will indicate where this
is the case.

Let Ix be the ideal sheaf of X in Y, and J = (Ix,t) be the ideal sheaf of X x 0 in ¥ x Al
where t is the coordinate of A'. Consider ) — Y x A! the blow-up of Y x A' along the
ideal J. Let ) be obtained by removing the proper transform of Y x 0 from ). Then we
have a flat family of embeddings

(7) XxA' — 5y
\ /

Indeed, the family py: is the deformation to the normal cone of X in Y [25] Section 5.1].
For any ¢ € Al, denote by V. the fiber of pg1 over c¢. Then we have

(8) V. 2Y forany c#0, and Yo = Nx,y,

where Nx/y is the normal bundle to X in Y. Note that Nx,y is a vector bundle over X
as the embedding X — Y is lci.

Note that the morphism sV: &Y — Oy factors through Ix C Oy, hence induces a
surjection

gv|yXA1 D ﬁyXAl - J.



VIRTUAL CYCLES OF STABLE (QUASI-)MAPS WITH FIELDS 7

This defines a surjection of graded algebras

Sym$ 1 (€Y |y xar © Oy xar) = Symyryun J,
hence a closed embedding
(9) P(&ly xat ® Oy xar) < V.

A local calculation shows that this embedding is regular (see [6, Lemma 2.1]). Furthermore,

this embedding restricts to a regular embedding YV — E|y 1.

2.2. The superpotential. The pullback s|y vanishes along the fiber )y, hence defines a

section sy, of &), 1= & (—). The following lemma will be useful for computations later.

Lemma 2.2.1. The section sy, of &), is a reqular section with zero locus X X Al C Y. Its

restriction s§|y0 is canonically identified with the tautological section of 5|NX/Y ~ &gy

Proof. The deformation ) is constructed smooth locally, so we may assume that ¥ =
Spec(A) is an affine scheme and & splits. Let s € T'(Y, &) be given by elements (a1, ...,a,) €
A; by Definition this sequence is regular. By [25], Sec 5.1], Y is equal to Spec(S(‘T)),
where S(’T) is the graded ring

Sty=... 0T ?@IT ' 0 AG AT ® AT & ...

The ideal of )y is generated by T in degree 1. So while s|y is given by the sequence

(a1,--+,ar), as a section of &, it is given by (a1 T~ -+ ,a,T71). It is straightforward to

check that this sequence is regular, and that it generates the ideal of X x Al C V.
Restricting to the fiber T' = 0, we get the coordinate ring

A/l (I/IT e (IP/IT?6...

and our section is the sequence (a7, ---a,T~') in degree 1 (T has degree —1). Since
the sequence is regular it identifies this ring with Sym®(A®"), and under this identification
the sequence becomes the tautological one: (e1,...,e,) where e; is 1 in the i*" coordinate

and 0 elsewhere. O

Let E;, be the vector bundle on ) whose sheaf of sections is éa)j . The dual of Sy induces

a morphism W called the super-potential:
(10) W (E;,)v — C.

It is linear on the fibers of the vector bundle (Ey,)Y = (E|y(Jo))Y—in other words, letting
C* act by scaling on both the source and target of , W is equivariant. The next lemma

says that we can study either the zeros of sy, or the critical locus of W.

Lemma 2.2.2. Suppose Y is a smooth Deligne—Mumford stack and E is a vector bundle
on Y with a reqular section s and zero locus X C'Y. Let W: EV — C be the function
induced by the dual of s. Then X is smooth if and only if the critical locus of W equals X .

Proof. Both sides can be checked étale locally, and we may therefore assume that Y is a
smooth scheme, and that F is trivial of rank r on Y. If we write s = (s1,...,8,): Y — C",

then the function W : Y x C" — C induced by s is given by

:
W p1s- - 0) = Y pi - si(y),
1=1
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and has differential

> ldps - si(y) + pid(si(y))]-

i=1
Let Z be the critical locus of W, which is given by the equations s;(y) = 0, p;d(s;(y)) =0
for all . On the other hand, X C EV is given by s;(y) = 0, p; = 0 for all i. Hence with no
assumptions, we have Z C X.
The other inclusion holds if and only if for every closed y € X the collection of vectors
{d(si(y))}: are linearly independent. This amounts to saying that the Jacobian matrix of

(s1,-..,8) has rank r. In particular, X is smooth of codimension r. O

We apply this lemma as follows. Let J° C ) denote the deformation to the normal cone
of XNY?in Y9 observe that J° is smooth and Deligne-Mumford. Let E° = E;, Xy yo
be the restriction of Ey, to V0 and let W° be the corresponding restriction of . Let
Crit(W?°) c (E®)Y be the critical locus of W°. By Lemmas and we have

(11) Crit(W? = (X NnY?%) x A
Let Crit(W9) be the closure in (E°)V. Hence Crit(W9) C X x Al.

2.3. The moduli. Recall from Section [I.1]that we defined the moduli of p-fields M(Y, E)
as a substack of the moduli of sections. We found it convenient to work with these moduli
throughout our paper, in particular for constructing perfect obstruction theories. The

general construction is as follows. Consider a tower of algebraic stacks over C
(12) Z—C5 4

where m: C — &l is a flat finitely-presented family of connected, nodal, twisted curves
and Z — 4l is locally finitely presented, quasi-separated, and has affine stabilizers. These
technical conditions are imposed to guarantee the algebracity of hom-stacks below. We
define the moduli of sections Sec(Z/C) to be the stack whose fiber over T — 4l is

(13) SeC(Z/C)(T) = Homc(C Xy T7 Z) = HochuT(C X s T,Z X T)

By [31, Thm 1.3], the stack Sec(Z/C) is algebraic and the canonical morphism Sec(Z/C) — 4
is locally finitely presented, quasi-separated, and has affine stabilizers.

We first apply this construction to define a deformation of the space M(Y, E). Recall
the universal family of twisted curves € — 9 from Section Consider My = M x Al
with the universal curve €41 = ¢ x A! — 91, Let w be the relative dualizing sheaf of
Cpr — My On the algebraic stack V' denote by &, the locally free sheaf (p3-&)(—)b)-
Define

(14) Z =Vbe,, (W@ (&)").
The projections Z — €51 X1 Y — €41 X Y induce a morphism
(15) Sec(Z/€p1) — Sec(€h1 x Y/€x1) = Sec(€ x Y/€) x AL,

Definition 2.3.1. The deformation moduli space of p-fields, denoted M(J),c%j), s the
fiber product

MY, E5) = (M(Y) X A') Xsee(e,, xv/e,1) Sec(Z/€a).
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Observe that M (Y, &y ) is a stack over 9,1, and in particular has a canonical projection
to Al

Proposition 2.3.2. The stack M(Y, &y,) is a separated Deligne-Mumford stack of finite
type.

Proof. We have a sequence of morphisms
Sec(Z/€p1) — Sec(Cp1 xpa1 V/€p1) — Sec(€p1 X p3-E/Cx1) — Sec(€p1 X Y/Cy1)

Applying [13, Prop 2.2] for orbifold curves, the first and last are representable by affine
schemes of finite type, hence in particular they are separated, finite type, and representable.
The middle arrow is a closed embedding by Lemma since @ is so. Pulling back the
above sequence along M(Y) x Al — Sec(€1 x Y/€41), the assumption that M(Y) is
a separated Deligne-Mumford stack of finite type implies that M(Y,&),) has the same
properties. (I

2.4. Specialization. Let ¢ € Al. We compute the fiber M. of M = M(), &, ) over c,

first expressing it in terms of Z.. The fiber diagram

Z, —— Cx)Y, —— €xY ¢ M x {c}
Z—— Cpui X1 Y — Cu XY Cp1 M x Al

induces the following fiber diagram with isomorphic horizontal arrows:

Sec(Z/€x1) Xomuar (M x {c}) ———— Sec(Z./€)

| |

Sec(€p1 X YV/Cp1) Xopxar (M % {c}) —— Sec(€ x Y/C)
Pulling back this square over M(Y") C Sec(€ x Y/€), we see that
(16) M= M(Y) Xgec(exy/e) Sec(Z./C).
When ¢ # 0, by (8) we have M, = M(Y, E) the moduli constructed in Section
To simplify when ¢ = 0, we first compute the restriction:
&Y lye = () [y, @ (O(=D0)) lyo = Elyy @ (On1(=0)) |y, = Ely,,

since ) is the fiber over the origin 0 € A'. We conclude that the special fiber My is equal
to
(17) Mo = M(Y) Xsec(exy/e)Sec(Vbexy, (wWRE Y ]y,)/€) = M(X) Xsec(ex x/¢)Sec(Z0/€)

where Zy = Vbexx(6x ® w ® &y ). The final equality uses that Yo = Nx/y = &|x since
differentiating the regular section s induces a surjection Ty |x — &|x with kernel Tx. In

particular we have the following corollary to Proposition |2.3.2
Corollary 2.4.1. The stack M(Y, E) is a separated Deligne—Mumford stack of finite type.

Remark 2.4.2. The proof of Proposition can also be used to directly show that
M(Y,E) is a separated Deligne—Mumford stack of finite type. In particular, no proper-

ties of s are needed for this result.
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3. THE PERFECT OBSTRUCTION THEORY

3.1. A general set-up. We now construct a “candidate” perfect obstruction theory for
the moduli of sections defined in , in the general situation of . Consider the family
Z —C—lin , and recall the notational conventions in

Let Lz/c denote the relative cotangent complex of [42]. We have a morphism in the

derived category of Cgec
Ln*Lyc — Leg,. /e ¢ T Lsec(z/c)/u-
Tensoring this morphism with wg,, and applying Rm,, we obtain
R (In*LLz/c @ wge.) = Bma(m Lsec(z/c) /st ® Wiee)-
Since 7'e = wg,. ® 7*e is right adjoint to Rm., we obtain
Ry (7" Lsec(z/c) /st ® Wee) = Ram'Lsee(z/¢) /s — Lsec(z/c)/u
hence a morphism
(18) bsec(z/c) /st Bdeo(z/c)ju = B (In*Lzjc @ wiee) = Lsec(z/0)/ut-
Applying the construction of to Z=CxY — ¢ — M, we obtain
(19) by : Epqyyom := R (Lf* Ly @ w®) — Laqyy om

where f: C — Y is the composition of the universal section with the projection € xY — Y.
By assumption, ¢y is a perfect obstruction theory for M(Y) — 9%. Similarly replacing Y
by X, we obtain

(20) bx: Epqxyym := R (Lf " Lx @ w®) — Lag(x)y/om
which we assume is a perfect obstruction theory of M(X) — 9.

3.2. The family of perfect obstruction theories. We investigate some situations when
is a (perfect) obstruction theory in the sense of [§]. Consider the following commutative

diagram

(21)

Crme.ey) — Cmyyy —

| |

MY, E ) ————— M(Y )i s My Al

where the two bottom squares are cartesian, m is the universal map of M(Y"), and n is the
universal map of M(Y,&),). Applying to M := M(Y,&),) — M1, we obtain

(22) ¢I EM/gmAl = R7T* (LH*LZ/CM (24 w;\/l(y’g;)) — }LM(JJ,ég;)/fmAl .
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For later use, we describe the fibers of ¢ over Al as follows. Let ¢ be a closed point in
Al and let t.: M. — M(Y, é‘;) be the fiber of M(Y, gy_) — Al over ¢ as in Section

The specialization ¢. of ¢ to M, is the composition

v
¢c: ]EMC/QJT = L;EAl — L:LM()/,é";)/EmM — H—‘MC/SD?

where the second arrow is the canonical one. By Lemma[A.2.4] since Y — A' is flat, the
morphism ¢, is isomorphic to the one constructed by applying to the fiber of over

c € A'. That is, we have a commuting diagram

be
Epm.jm —— Lo
(23) JN ‘

R’]T*(Ln:LZC/Q‘ X UJ;V[C) —_— ]L/Vlc/m

We will also refer to the bottom arrow as ¢..

The main result of this section is the following:

Proposition 3.2.1. The morphism ¢ (resp. ¢.) defines a perfect obstruction theory for
MY, &) — Mar (resp. Mo —M).

3.3. Proof of Proposition By [8, Theorem 7.2], it suffices to show that ¢ is a per-
fect obstruction theory. We first show that ¢ defines an obstruction theory of M(Y, &y ) —
My in the sense of [8, Definition 4.4].

The composition Z — €41 XY — €1 asin induces a triangle of cotangent complexes

* (1]
Lq*Le,,xvye, |z — Lzje, |z — Lzje, xy — -

By Lemma we have a morphism of distinguished triangles

p*EM(Y)Al /M1 EM/EmAl R, (n*]LZ/(Q:A\l xXY) ® UJ')

(24) l l¢> ltﬁrel

PLyvonya/oma, — Lygsy)m, — Lvwsy)ymem,, —

We claim that the left and right vertical maps have the property that h° is an isomorphism
and h~! is surjective. Granting this, applying the five lemma to the long exact sequence
of cohomology shows that the middle vertical map does as well. The claim on the leftmost
arrow holds since we have assumed that defines an obstruction theory on M(Y') over
M, so by Lemma the morphism also defines an obstruction theory on M (Y )1
over M1 (in this case, both horizontal arrows in are quasi-isomorphisms). The claim

on the rightmost arrow is the content of the following lemma.

Lemma 3.3.1. The morphism ¢pe is an obstruction theory in the sense of [8, Definition
4.4].

The argument for Lemma is standard. For example, the proof of [, Prop 4.2]

applies verbatim to our situation, once we have the following lemma:
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Lemma 3.3.2. Suppose we have a commutative diagram of solid arrows

nr

Npr -
o[
T’ Crr = ¢ XY
frr

where T — T' is an embedding defined by a square zero ideal J, the left square is cartesian
with Cr and Cr twisted curves, and [fr/] € M(Y)(T") and [nr] € M(Y, &y )(T). Then a

lift np of np exists if and only if the obstruction
Ln;Lz/eAl <Y — ]LCT/CT, — J[l]

n Extl(Lni}]LZ/%l <y, J) vanishes, and in this case the set of extensions is a torsor under
Ext’(LnjLz/e,, xv,J).

Observe that this lemma does not follow from [33] II1.2.2.4] because the cotangent com-
plex Lz /C,1,, 18 MOt a cotangent complex of ringed topoi, nor does it follow from [44]

Thm 1.5] because our base €51 x Y is not a scheme.
Proof. The distinguished triangle of cotangent complexes
IntLz/e,,xy = Lerje, i xy = Lepjz =
leads to a long exact sequence
Ext’(InjLz/e,, xv,J) = Ext'(Ley z, J) < Ext!(Ley e,y xys J) = Ext' (InfLz/e,, <y, J)-

The diagram defines commuting triangles

CT _— CT/ and CT S CT/
P 7/
fT’ v 7 s
€ XY z

Applying [44] Theorem 1.1], since all maps in the right square of are representable,
we see that the left triangle gives an element [fr] € Ext!(Le, /e, xy>J), and likewise the
right triangle gives an element [n7/] € Ext'(Le,, /z,J). Under this identification, the map
given by sending [nr/] to [p o nyv] is compatible with the map on Ext groups. This follows
from the definition of the isomorphism in |44, Thm 1.1] and the functoriality described in
[33, TI1.1.2.2]. Hence a lift ny exists if and only if the fiber a=!([f7/]) is nonempty, if and
only if the obstruction o([fr/]) vanishes. Furthermore, the obstruction o([fr-]) is given by
the composition
Ingplz/e,, xy = Legjen, — J[1]

where in particular the first arrow is the composition Ln}Lg jeaxy = Lepje,xy —
Le¢, ¢, - This follows from the definition of the isomorphism in [44, Thm 1.1].

Assuming o([f7]) = 0, we compute directly that the lifts form an ExtO(Ln"‘TILZ/¢Al xvsJ)-
torsor. Suppose we have two lifts n; of np for ¢ = 1, 2 inducing the same fr.. We may then

view n; as sections of Crv X¢,, xy £ — Crv. We have their differences
(n} —n3) € Ext" (07 Qcr x| oy z/cr: J) = Bxt’(0pQz ¢, v, J) = Ext® (LnpLz/e,, <y, J)

by a standard calculation. O
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Lemma 3.3.3. Rm.(Ln*Lz/(c,,xy) @ w*) is perfect of amplitude [—2,0].

Proof. Consider the composition Y — Ely st — Y x A! where the first arrow is a regular
embedding. Thus by , the morphism Z — (€41 X Y) is affine and Ici. This implies that
Lz/(e,, xy) is perfect of amplitude [1, 0], hence Ln*LLz /(¢,, xy)®w* is perfect of amplitude

[-2,—1]. Then (1) follows as we push forward along a family of twisted curves. O

It remains to verify that Eaqen,, is perfect in [-1,0]. Rotating the top of , we

obtain a distinguished triangle
RW*(LII*LZ/(GAI xY) @ w[-1] — p*EM(Y)Al /M T EM/gﬁAl —

Since the middle complex is perfect in [—1, 0] and the left one is perfect in [—1, 1] (this uses
regularity of @, Ea/om,, 1s perfect in at least [—2,0]. We will next prove that E 4 Jom,, 18
perfect in [—1,0] by showing that h? (E/vvt/zmAl) =0.

This coherent sheaf vanishes if its fibers do. Recall the inclusion t.: M. — M(Y, &y,))
of a fiber over A'. We have

(26) h (B jon,, ) = W2 (LU o, , ) = B? (Rme (Lo Ln* (Lz /e, @ w®)Y)),

where now L7 is pullback to a closed fiber of the universal curve on M(Y, &y,). The two
equalities hold because (1) EY, is perfect, so its derived pullback is computed by the usual
pullback applied to each term; and (2) 7 is flat so we may apply the tor-independent base
change theorem (see e.g. [30, Cor 4.13]). The right hand side of is precisely the second
cohomology of EY, - om (using (23)). Thus, the proof of Proposition is concluded by

the following observation:
Lemma 3.3.4. The fibers E g, jom in are perfect in [—1,0].

Proof. We first consider the case ¢ = 0. The sequence Zy — € x X — € induces a triangle

of cotangent complexes
Lf*LCXX/¢ — LnSLZO/Q — LnSLZO/UX —

Applying the construction of and rotating the triangle, we obtain a distinguished
triangle

R?T*(LHS]LZO/QXX ®w')[—1] — ]EM(X)/S)'R — ]EMO/QJT —

Since My = E|x — X is the projection of a vector bundle, Z; — € x X factors through
a sequence of smooth representable morphisms Zy — € x Vg — € x X. Thus Lz, /¢xx is
a vector bundle over Zy. This implies that the left side of the above triangle is perfect in
[0,1]. Since by assumption Epx)/om is perfect in [—1,0], Ey, o is perfect in [~1,0] as
well.

Replacing X by Y, and noticing that Ey),on is perfect in [—1,0] by assumption, the

case of ¢ # 0 can be then proved similarly. O

3.4. Virtual cycles. We now have the necessary data to define virtual cycles on M =
M(Y, Ey) and its fibers M. using [8 Sec 5] (note that the need for global resolutions was
removed in [38]). When ¢ # 0, by Section [2.4] we have M. = M(Y, E). This, combined
with , yields the following corollary to Proposition
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Corollary 3.4.1. The moduli space M (resp. M) carries a virtual fundamental class
[M]VEE (resp. [M.]V'") defined by the relative perfect obstruction theory given by the canon-
ical morphism . In particular, when ¢ # 0 we obtain a virtual fundamental class

(MY, E)]¥I i= [M " on M(Y,E) = M..

Remark 3.4.2. One can directly show that the canonical theory is a perfect obstruction
theory on M(Y,E), and hence induces a virtual fundamental class [M(Y, E)]V'*, indepen-

dent of any assumptions on s.

4. THE COSECTION

4.1. Relative cosection in the general setting. We now define a cosection of the rela-
tive obstruction sheaf of the candidate obstruction theory on (an open substack of) the
moduli of sections , in the general situation of . Consider the family Z — C — U
in (I2), and recall the notational conventions in Let vb(w) — C be the total space of
the vector bundle corresponding to the dualizing sheaf wg on C. The cosection construction

applies when the morphism Z — C factors as
Z 2 vbh(w) = C.

We also assume that the base il is smooth for constructing an absolute cosection in the
next section.

The morphism W induces a canonical map
w\S/ec = Ln*LW*LVb(w)/C — Lﬂ*Lz/C.

Tensoring this morphism with w®,., applying R, taking the (derived) dual, and finally
composing with the canonical map (Rm.(0cg..[1]))Y — Osec|—1], we get a cosection for

the obstruction theory as a morphism in the derived category:
(27) 01 Edeo(z/0)/u = (RT(Ocs,. (1)Y= Osec[-1].

The map (Rm.(COcg,.[1]))Y = Osec[—1] is the dual of a shift of the map Oge. — Rm.(0cs,.)
induced via adjunction by 7*0gec = Ln*0Osec — Ocs... The cosection o of the ob-
struction theory induces a cosection o' of the relative obstruction sheaf Obsec(z/c)/s1 =
hl(E\S/ec(Z/C)/Ll)’ defined to be h! applied to (27):

(28) o' W (Beeizyeyyu) = W (me(Ocs, [1))Y) = Osee(zyc)s

where the second map is now an isomorphism. The degeneracy locus of o (or of o!) is the
closed subset of Sec(Z/C) where the fiber of o' vanishes. We denote it Sec(Z/C)().
The cosection has the useful property that it vanishes on the image of the intrinsic

normal cone in h'/h°(Eg, ., c))- This is the content of the next lemma.
Lemma 4.1.1. The map of cones induced by o o ¢V is zero.

Proof. Let Sec(vb(w)/C) be the moduli of sections of vb(w) — C over 4. By [I3| Prop 2.2]
for orbifold curves, the morphism Sec(vb(w)/C) — 4l is smooth and representable by affine
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schemes. Composing sections of Z — C with W induces a morphism pu: Sec(Z/C) —
Sec(vb(w)/C). From the left square in (56), we have a commuting square

(1 Esee(vb(w)/e)/s)” 22— (Esee(z/e) )"

T Td)g{ec(z/c)/u

(" Lsec(vb(w)/c) /1) (Lsec(z/c) )"

where & is the morphism

ESee(z/c)u — (Bme(Ocs, 1))

from followed by a quasi-isomorphism. After applying h'/h° to this diagram, the

composition T, vanishes because

R /RO (11 Lsecvb(w) /ey /6) ") = Msec(vbw)/c) /s = 0,

where 9t denotes the intrinsic normal sheaf, because Sec(vb(w)/C) — 4 is smooth and
representable by affine schemes. On the other hand, the desired map of cones factors

through the composition < 1. O

4.2. The family cosection. Let M = M(Y, &), ) with fiber M, over a closed point
c € A'. Recall the perfect obstruction theory ¢: E /m,; — Layom,, and its specialization

be: Ee = Epq,yom — Lag,om, see (22) and Proposition
In this section, we apply the general construction of to get a cosection

o: EXA/E)JIM — Opm|—1].

To do so, let w — €41 be the C*-torsor of w = we,, so that w = @ Xx¢« C, hence Z =
w xc- (Ey)Y. Let vb(w) — €41 be the total space of w. Taking the product of with

w and then quotienting by C*, we see that W descends to a map
W: Z — vb(w)
over €1, so we get the relative cosection ¢ above.

4.3. Degeneracy locus. The inclusion X — Y induces a closed immersion Sec(€ x
X/€) < Sec(€ x Y/€) by Lemma Let M(X) denote the intersection

M(X) = Sec(€ x X/€) Xgec(exy/e) M(Y).

The closed embedding X x A! C Z (inclusion in Y followed by the zero section) induces a
closed embedding M(X) x A' € M(Y, &) over A' by Lemma
In this section we compute the degeneracy locus M(c) C M. Our main result is the

following.
Proposition 4.3.1. As closed sets, M(c) = M(X) x Al.

After describing the points of M(o) in more detail, we will prove each containment in
Proposition separately. The forward containment uses our assumption that X NY7© is

smooth.
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Let (C,n,c) be a closed point in M, with C' a twisted curve, n: C' — Z a map over €1
and ¢ € A' a closed point. By definition, (C,n,¢) is in M(c) if the fiber o|(c ) vanishes.
We have a commuting diagram

7 27, vb(w)

J |

CxY,——C

where Z = Z x¢,, C, vb(w) — C' is the vector bundle of wc, and Wy is the restriction of
W. Restricting , we see that o|(c n,c) is h' of the map

(R?T*(LTL*Lz/C ® w.))v — (RW*ﬁC[l])v

followed by a quasi-isomorphism (we have used flatness of Z — €,1). Both the source and
target of this map are (quasi-isomorphic to) complexes of vector bundles in [0,1]. Cancelling

the shifts and taking duals, we see that the fiber of the cosection vanishes if and only if
(29) R'1.(0c) = R (Ln*Lz/c ® we)

is zero. Since base points are discrete, the sheaf h'(wc ® n*ILz,c) is torsion if 7 # 0. Using

a spectral sequence, we obtain that
Rm (Ln*Lz/c ® we) = Rom, (R (Ln*Lz/c ® we)).
Therefore, o|(c ) = 0 if and only if
(30) R (Ln*(dWz)): wg — hY(In*Lyz)c)
vanishes, where dJW; denotes the canonical map of cotangent complexes induced by Wj.

The forward containment of Proposition follows from the next lemma and Lemma,

(the notation is defined in Section [2.2).
Lemma 4.3.2. If (C,n,c) is in M(0), then n factors through €x1 x 41 Crit(W0).

Proof. Let Z° = Z xcxy, (C x Y?) and let C° C C be the complement of the base locus—
ie., CY=n"1(2y). If vanishes, its restriction to C? also vanishes. But the restriction
hO(Ln*Lz/c)|co is equal to QlZO/CO since Z° — C? is smooth and Deligne-Mumford, so we
know that if vanishes then

1 1
n*codWZO : nZVOW}()QC|CO — nz«oQZO/Co

vanishes; that is, nco factors through Crit(Wgyo).
On the other hand, recall that we have the following diagram:

. 0
wx(EO)V%wXC

| J

720 — 2 Vhwe)|eo

where w is the C*-torsor on C such that @w X ¢+« C = we where C* acts on C via multiplica-
tion. This diagram realizes the top row as a C*-torsor over the bottom row; in particular the
square is fibered. By functoriality of the map of cotangent sheaves, the locus Crit(Wzo)
is the quotient of @ x Crit(WY) by C*. We know from Lemma that Crit(W°) is
C*-invariant, so this quotient is precisely C' x Crit(W?). Hence, by the previous paragraph,
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neo factors through C' x Crit(W?). Taking closure, topology forces n to factor through

C x Crit(Wo). O

For the backwards containment of Proposition we claim that if (C,n,c) is a closed
point in M such that n factors through €41 x X, then the map h®(Ln*(dWz)) of is

zero. The claim is a consequence of the following lemma.

Lemma 4.3.3. Let Y — S be a morphism of algebraic stacks, let L be a line bundle on S,
and let E be a vector bundle on' Y with a section s with zero locus X. Let W: LQEY — L

be the morphism induced by s. Then dW|x: LY = Ly g|x — Ly,s|x is the zero morphism.

Proof. As a first example, let Y7 = C™ with coordinates z1,...,x,, let S; be a point and
L; = C be trivial, set £y = Y1 x Y7 and 81 = (1,...,2,), so that X; is the origin.
Then EY @ L1 = Y1 x Y)Y ® L1 =2 C" x C" with coordinates x1,...,Zn,D1,---,Dn, and
Wi: EY ® Ly — Ly is given by

Wl(‘rh'"axnvplw"?pn) = P11 + - +pnx’ﬂ = <p7s>7

where p = (p1,...,pn). It follows that dWi: Ly, /s |py = Opy — Qpy = Ly, gpy/s, is
given by

n

i=1
and hence dWi|x, = 0 since p and s vanish on Xj.

Now consider a second example that is the quotient of the above example. We let C* act
on L1 — S by scaling L; 2 C, and we let G = GL(n) x C* act diagonally on E; — Y7 via
the standard representation of GL(n) on Y; and the trivial action of C*. In the resulting
example we have Yy = [Y1/G], S; = BC*, Ly = [L1/C*], and Ey = [(Y1 x Y1)/G]. The
section sy is still the diagonal one and its vanishing locus X5 is BG C Y5. Note that
EY ® Ly = [(Y1 x Y}Y ® L1)/G]. We wish to show that the map of cotangent complexes
dWj for the diagram

EY ® Ly —"*+ [L,/C”]

® Ll

BC* =————= BC*

vanishes after pulling back to Xs. For this it suffices to check that the pull-back (dW2)|x, of
(dW3)|x, along X; = pt — X5 vanishes. Consider the commutative diagram of solid arrows
where the bottom sequence is the pullback along X; — EY ® Ly of triangle associated to
the quotient map EY ® Ly — EY @ La:

_ ]LLI‘XI

® _ - (dW1)|x,=0
_ - (dW2)|x,
-

Lieyor)/(yory)|x,[-1] ——— Leygr,|x, ————— Leyer, Ix, —

The vanishing (dW7)|x, = 0 implies that (dW3)|x, factors through ¢. Since both Ly, and

L(gyor,)/(ByoL,)|x, are locally free in degree 0, we observe ¢ = 0, hence (dW2)|x, = 0.
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Finally, we claim that the general case factors through the second example. Indeed,
given Y, S, E, L, and s as in the statement of Lemma [£.3.3] we get a commuting cube whose
left and right sides are fibered:

EY ® Ly —25 L,

l Yo lHSQ
/ A

Yy —— §

The map Y — Y, = [V1/G] = [Y1/GL(n)] x BC* is induced the vector bundle E and its
section s (which yield a map Y — [Y1/GL(n)]) and the pullback of L (which yields the map
Y — BC*). From the functoriality of the cotangent complex (see e.g. [49, Lem 2.2.12] we

get a commuting square
dw.
Lrs/s; — Leyer./s.
dw
Lp/s —— Lgver,s

Since dWs vanishes, so does dW. O

4.4. Specialization. We can specialize o to obtain relative cosections o: EX/(C P
Om.|—1]. Let ¢ : M, — M be the inclusion.

Definition 4.4.1. The specialization o. of o is the restriction
* LL:‘T * *
Oc: LLCE.\//\/l/mAl —— Lui(Rm(Oc, [1])Y — Lii(Opm]—1]) = Opnm, [-1].
Applying h* we get a cosection ol of Obpy, /om-

We could also define a cosection for EX/IC m by applying the construction to the
restriction W,: Z. — vb(w). of W, using the identification in . Call this alternate

cosection p.
Lemma 4.4.2. The cosections o. and p are canonically isomorphic.

Proof. By the functoriality of the cotangent complex we have a commuting square
LLZLW*LVb(w)/GAl E— LL:L’Z/CM
LW:]va(w)c/¢ E— H‘Zc/c

where all arrows are canonical morphisms of cotangent complexes except for the left arrow,
which differs from a canonical arrow by a quasi-isomorphism. The two vertical arrows are
isomorphisms because Z and vb(w) are both flat over €. After applying Ln’, tensoring

with w®, applying R(7.). and dualizing, we obtain the square
L} (Rm.Oc, [1])Y +——— EX/IC/Em

l ]

(R(re).Ocr,, 1))V — (R(r.).(LniLs, je ©w*))¥
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where the right vertical arrow is the dual of the left vertical arrow in . Composing with
the adjunction homomorphisms, the top horizontal arrow becomes o., while the bottom

horizontal arrow becomes p. O

This together with Lemma [£.1.1] implies that the relative cosections o. have the property
that the map of cones induced by o. o ¢ is zero. Moreover, combining this result with
Lemma and Proposition we have the following.

Corollary 4.4.3. The specialization o. for ¢ # 0 is induced by the section s € T'(Y, &), and
oo 1s induced by the tautological section of (g}‘NX/Y ~ &|gy. In either case, the degeneracy

locus M.(c.) of the specialized cosection is equal to M(X) C M.

4.5. Cosection localized virtual cycles. We have the necessary data to define cosection
localized virtual cycles on M = M(Y, &y;) and its fibers M... Specifically, set

M = 05 ([€agym,, 1) € A(M(X) x AT M= 0, ([€ar, ym]) € Ac(M(X))

Oc

where the cosection localized Gysin maps 0, are defined in [34, (3.5)]. By Proposition
these classes agree with the ones defined in [34] using the corresponding absolute

obstruction theory and cosection, so that in particular by [34, Theorem 5.2], we have
(32) L MG = M) LM = M,

where the virtual classes [M]'" and [M_]** were defined in Corollary Recall that by
definition, [M(Y, E)]V'" is equal to the class [M]"" for ¢ # 0.

These cosection localized virtual cycles are related by the following lemma, which is
[16, Theorem 4.6]. Our proof below follows exactly that of (loc. cit.); we include it for

completeness.

Lemma 4.5.1. The constructed virtual cycles satisfy

Ll MITT = MY

Oc

where 1\, is the Gysin map for the reqular embedding t.: M. — M.

Proof. This argument follows that of [I6, Theorem 4.6]. We have morphisms of algebraic
stacks M — 9 x Al — 9 and a relative perfect obstruction theory ¢: Exromxar —
Laq/omxar with a cosection o. By Proposition there is a relative perfect obstruction
theory Eq/om — Lag/am on M with a cosection p such that p descends to an absolute co-
section and [M]Zir = [M]¥*. Moreover, restricting the morphism of distinguished triangles
to M. C M, we obtain the top two rows of the following diagram of distinguished

triangles:

Eng/mim, —— Eapyoxatlm, —— ¢ Lopsar o [[m, ——

l l H

(33) Lagmlm, — Lagmxat v, —— ¢*Lonsarjom[1|m, —

| |

IL‘M/EW|M0 — IL',/\/10/93’1 e — ILJ\/lr//\/l E—
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the bottom row is the canonical triangle and the dotted arrow is induced by the mapping
cone axiom. The middle column is precisely the specialization ¢, in which by Proposi-
tion [3:2.1] is isomorphic to the perfect obstruction theory on M.. The morphisms between
the top and bottom rows of are the compatibility required to apply [34, Thm 5.2]. By
that result, o'[M]¥" = [M.]¥" as desired. O

P oe

5. CALCULATION IN THE SPECIAL FIBER

In this section we investigate the special fiber Mo of M = M(Y, &3,). Recall from
that

My = M(X) X Sec(Ex X/€) SeC(Zo/Q:) with Zp = Vb@xx(gx Dw 5)\(/)

Recall from Proposition and that My has a canonical relative perfect obstruction
theory

¢o: R, (In*Lz, ¢ @ w*) = Liagyom

where n: Caq, — 2o is the universal section, and by Corollary [£.4.3]it carries a cosection
oo induced by the tautological section of &|g,. The degeneracy locus of the cosection is
contained in M(X) C M, embedded via the zero section. The goal of this section is to

prove the following.

Theorem 5.0.1. We have an equality of virtual classes

[Molsy = (=D)XEMEDMOPM in A (M(X)).

g0

Here, (—1)X(EMEXD) ¢ AO(M(X)) is the locally constant function defined via (3).

Remark 5.0.2. In Theorem|5.0.1}, the function x(E, M(X)) is constant on each connected
component of M(X). If {M;}, are the connected components of M(X), then we define
(_1)X(E,M(X))[M(X)]vir _ @(—1)"(}5’/\4”[/\/&}"“

i=1
as a class in A, (M(X)) = P Ac(M;).
Ezplicitly, by Riemann—Roch for twisted curves [2, Theorem 7.2.1]

(34) KB M) = (6)(1 =)+ [ 1(6) =Y aee6)

where age; (&) is the age of f*& at the jth marking, which is constant on M;.

The proof of Theorem uses cosection localized torus localization [12, Thm 3.4]. We
recall two definitions from there. First, if X is a Deligne-Mumford stack with a C*-action,
the fized locus XC is defined étale-locally as follows. Let Spec(A) — X be an étale affine
chart, equivariant after reparametrization (such charts exist by [b, Thm 4.3]); then A is a
Z-graded ring and in this chart the fixed locus is cut out by the ideal generated by elements
of positive weight. One can check that a closed point € X(C) is in the fixed locus if and
only if ¢tz is isomorphic to x for every t € C* (see for example [5, Prop 5.23]).

Second, if E is a perfect complex of sheaves on X, we say that £ = A @ B is a de-

composition into fixed and moving parts if given an equivariant étale chart U — X and
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a quasi-isomorphism f: FE|y — F with F' a bounded complex of vector bundles, f in-
duces quasi-isomorphisms A — Ff* and B — F™°V to the fixed and moving parts of F,
respectively.

In preparation to apply torus localization, we prove the following lemmas. The proof
of the first was explained to us by Bumsig Kim and Jeongseok Oh (see also [21l Foot-
note 1, p. 35]).

Lemma 5.0.3. Let M be a Deligne-Mumford stack of finite type and let w : C — M be a
family of prestable twisted curves as in [4]. If there exists a w-relatively ample line bundle
on C, then for any vector bundle E on C, the complex Rm.FE is globally isomorphic to a

2-term complex of vector bundles.

Proof. Factor 7 as the composition C 2 €' % M where C is the relative coarse moduli
space [3, Thm 3.1]. By assumption, there exists a g-relatively ample line bundle &'(1) on
C, meaning that for any affine scheme U — M the pullback of (1) to C x ¢ U is ample.
Let &(n) denote 0'(1)®™.
Choose n > 0 such that
(1) Rlg.0(n) =0,
(2) Rlq.(p.(E)® 6(n)) = 0, and
(3) ¢*q.0(n) — O(n) is surjective.
Indeed, this is possible when M is an affine scheme by [32], Thm II1.8.8]. We cover a general
M with finitely many affine schemes and take the maximum value of the respective n’s.
Now points (3) and (1) yield a surjection of vector bundles 7*¢,.&'(n) — p*&(n). Let K
denote the kernel of this map, also a vector bundle. Taking the dual of the resulting short

exact sequence and tensoring with p*&'(n) ® F yields an exact sequence of vector bundles
(35) 0—=E— (m"'¢.0(n))Y @p*0n)®E — K ®p*0(n)®E — 0.
Using the projection formula twice, we compute
R'r, ((7T*q*ﬁ(n))v ®p On)® E) =H! (Rﬂ'* ("¢ 0(n)Y @ p*O(n)® E))
= ' ((¢.0)" &" Rq.(0(n) @" Rp.E))
Since p, is exact (see e.g. [43, Prop 11.3.4]) we may replace Rp,E with p,FE; in particular
this is a coherent sheaf. Moreover since €'(n) and q.0(n) are vector bundles (by (1))
we may replace the derived tensor products ®” with the usual one. Since tensoring with
(g+0(n))Y commutes with taking cohomology, we see that (2) above implies that the sheaf

R, ((ﬂ*q*ﬁ(n))v ®p*0(n) ® E) = 0. Now the long exact sequence for Rm, applied to
(35) produces the desired resolution of R, E. O

Lemma 5.0.4. The moduli space My has a C*-action such that
(1) As closed sets, the fixed locus F of the action is naturally identified with M(X)
(2) There is a decomposition into fixred and moving parts

EMO/WL}— _ Eﬁx o Emov

where E®™ = B yq(x)jm and B = R (f*&Y @ w® & f*&[1]), with m: Caqex) —
M(X) the universal curve and f: Caqxy — X the universal map.
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Proof. The torus C* acts on Zy by scaling its fibers over € x X: let it act with weight 1 on
E and weight —1 on EY ® w. The fixed locus for this action is X.

The C*-action on Zy induces one on My; let F be the fixed locus. Suppose (n: C' — Zp)
is a closed point of F for some twisted curve C'. Then n factors through € x X C Z, for
purely topological reasons as follows. Let P(Zy) be the projective closure of Z, as a vector
bundle over € x X. Because (C,n) is fixed, if ¢ € C* is any closed point, then (C,n) is
isomorphic to (C,ton) as points of Mg, where t also denotes the function on Zy defined by
t € C*. In particular, the image n(C) is invariant under the C*-action. Invariance implies
that if n(C') contains some point of Zy not in € x X, then it contains the entire fiber F' of

Zy containing this point. Then the composition
n: C i> Zy — @(ZQ)

is proper and hence closed, so it is surjective onto its image which must contain the pro-
jective closure of F'. This is a contradiction since 7 factors through Z,. Conversely, if n
factors through € x X then (n: C' — 2) is C*-fixed. This proves (1).

Now let ¢: €x X — Z; be the inclusion of the zero section. The C*-equivariant sequence
of maps Zp — € x X — € produces a distinguished triangle of C*-equivariant tangent

complexes which we can restrict to € x X, obtaining
(36) ]LCXX/C — LL*LZO/C — LL*LZO/QXX — .

In fact, this triangle splits by the canonical map Li*Lz, /¢ — Lexx ¢ induced by ¢. Let
mr: €xr = F and nr: Cr — Zy be the restrictions of 7 and n to Cx, the restriction of
the universal curve to F. We have seen that nyg = ¢t o f for a morphism f: Cr — € x X.

Because 7 is flat we have
Ergy o7 = (Rw*(Ln*]LZO/@ ® w')) |7 = R(mz)«(Lf Lt Lz, /e @ W*).
Hence, applying R(7x)«(Lf*(e) ® w®) to the splitting sequence we obtain
Eno/om|r = R(mr)(f* 6 @ w® @ f*E[1]) © Epq(x) /o,

where Epx)/om is defined in and Lz, /¢xx was computed using . Since local
sections of & are all scaled with weight 1 by the C*-action, local sections of f*& and w® f*&V
are as well with weight +1, and in particular R(7mx).(f*&[1]) and R(7x).(w® ® f*&Y) have
pure weights +1. Likewise, since € x X and hence Lgy x/¢ is C*-fixed, the cohomology

sheaves of Er(x)/om are C*-fixed. This proves (2). O

Proof of Theorem[5.0.1 To apply [12, Thm 3.4] we must use an absolute perfect obstruc-
tion theory ¢aps: Ear, = Loy, - It may be defined by the morphism of distinguished triangles

EMO e EMO/EUI e q*]Lgm[” e

(37) lms l«ﬁ H
L

o — Laggym —— ¢*Lop[l] ——

where ¢: My — 9 is the projection. By Proposition daps is a perfect obstruction

theory and it carries a cosection .5, and the induced cosection localized virtual funda-

vir

mental class is equal to [Mo]¥". This morphism of distinguished triangles is equivariant

(i.e., pulled back from a morphism of DTs on [M/C*]) by Lemma Moreover, note



VIRTUAL CYCLES OF STABLE (QUASI-)MAPS WITH FIELDS 23

that the original cosection o 4, o Was equivariant for the C*-action scaling &, since it was
induced by an equivariant section; so oups is equivariant as well.
The splitting of E s, /on in Lemmal@l induces a splitting of Epy, as follows. There is

a commuting diagram where all rows and columns are distinguished:

Emxy — Emexyym —— ¢Flom ——

! ! |

Epmolr —— Eamoyomlz — @5l ——

| | |

EmOV ~ ]EIHOV 0
l l I

Here E y(x) is the absolute obstruction theory for M(X), defined as in , and ¢r is the

restriction of ¢ to F. To obtain this diagram, begin with the middle horizontal and vertical

triangle, and observe first that the top right square commutes. Note that the splitting
Epnty/m|7z = Eaqx)/om and equality on ¢xLop induce a splitting of the leftmost column.
We conclude that
Enmolr = Epm(x) ® E™
is a decomposition into fixed and moving parts, respectively. By Lemma [5.0.3] and our
assumptions in Section we may find a resolution Rm,(f*&) = [y — &1] where &y and
&, are locally free of ranks rg and rq, respectively, and of C*-weight 1. In particular, E™°Y
has a global resolution and we may apply [12, Thm 3.5], obtaining
M)

e((Rm.(f*&Y @w* & f*&[1]))Y)

where the euler class is the C*-equivariant one, we have identified the virtual class of the

Maolsy = € A% (Mo(0)) Eqp QI 1),

fixed locus using Lemma and we have remembered that the degeneracy locus in Mg
is contained in M(X) C Mj. By Serre duality,

R (f 6" ©w®) = (Rr.(f*&))".

Therefore,

(R (176" " @ fr61))Y) = LR

Using the resolution Rm.(f*&) = [y — &1], we can write
(60) e(&) _ e(é)
&)

((Br (767 " & f1EMD)") = Z(é"l) (&) el ZE?);(—I)”“ = (=17,

Noting that by definition ro — 71 is the value of x(F, M(X)) on the component of M(X)

under consideration, this finishes the proof of the theorem. ([

Proof of Theorem[T1.1.1. The Gysin maps t.: A, (M(X) x Al) — A, (M(X)) are indepen-

dent of ¢, so fixing some ¢ # 0 we have

(38) MY = M € AdM(X).

o

By Lemma the left hand side is [M]3" = [M(Y, E)]¥; combined with this proves

(4). By Lemma and Theorem the right hand side of is (—1)X(EMEN A (X)),
proving . O
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6. APPLICATIONS

We explain how Theorem applies in various situations, and we relate it to existing

constructions of the moduli of p-fields.

6.1. Application to stable maps. Let Y be a smooth projective Deligne-Mumford stack.
Choose a vector bundle E on Y and a regular section whose zero locus X is smooth. Fix
nonnegative integers g,n and a class 8 € Hy(Y'), where Y denotes the coarse moduli space
of Y.

Proof of Corollary[1.2.1, Let t: X — Y denote the inclusion, and let M(Y) be the moduli
space of stable twisted maps M, (Y, ). A priori, M, ,(Y,5) is an open substack of
Homgp (€, Y x 0M); by Lemma [A.1.1] canonical map Sec(€ x Y/€) — Homgy (€, Y x M) is an
equivalence. Moreover the morphism is the usual obstruction theory on Homgy (€, Y x
M), so by [2, Section 4.5] its restriction to My, (Y, ) is perfect. The moduli space M (X)
is a disjoint union over 8’ € Ho(X) with ¢.8' = f:
(39) M(X) = Myn(X,8) = | | Myn(X,8).

B'—pB
Since degree is constant in (connected) families, each stack M, (X, ") is open in M(X).
In particular this is a decomposition into connected components. Since X is smooth, the
morphism defines a relative perfect obstruction theory on M(X). By Theoremwe
see there is a moduli space of p-fields M(Y, E) containing M, ,,(X, 3) as a closed substack,
and a class [M(Y, E)|\ satisfying

loc
(40) MY, E)iae = (=1)XPMEDIM (X BT in A (Mg,n (X, 5)).
Using the decomposition we rewrite the right hand side of as
(—XEMONAL, L (X, BT = Y (—1)XEMon DAL (X, 1]
B'—B
which completes the proof. O

6.2. Application to quasimaps. Let Y = [W/G] where W is an affine l.c.i. variety and
G is a reductive group acting on W. Choose a character § of G such that W; = Wj* is
smooth and nonempty and has finite G-stabilizers. Let E be a G-equivariant vector bundle
on W with a G-equivariant regular section s whose zero locus U has smooth intersection
with Wj. Fix nonnegative integers g, n and a positive rational number ¢, and choose a class
B € Hom(Pic% (W), Q).

Proof of Corollary[1.2.4) Observe first that the G-equivariant sheaf & descends to a sheaf 3
on [W/G| and that s descends to a regular section s with zero locus X = [U/G]. Moreover,

U is an affine l.c.i. variety with G-action. It is straightforward to check that
WgnU) CcU; CcU;* C(Wg*nU),

so Wg* = Wy implies that Uy® = Uy = U N Wj?®, and by assumption this locus is smooth.
Hence we may consider moduli of e-stable quasimaps to U/ ,G.

Let ¢: U — W denote the inclusion, and let M(Y) be the moduli space of e-stable
quasimaps ﬂ;n(W// 0G,B). We note that the definition in [20, Def 2.1] guarantees the
existence of an ample line bundle as required in Sectionassumption (4). By Lemma
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this is (isomorphic to) an open substack of Sec(€ x [W/G]/€) and is a relative perfect
obstruction theory defining the same virtual cycle as the one defined in [20, Sec 2.4.5].
As in the proof of Corollary the moduli space M(X) is a disjoint union over ' €
Hom(PicG(U), Q) with ¢4’ = 8. An argument analogous to the one used in Section
completes the proof of the corollary. O

6.3. Relation to the original construction of Chang—Li. We compare our construc-
tion to that in [13], that is, to their moduli space M, (P* d)P and its relative perfect
obstruction theory (defined in [I3] 3.1] and [I3] Prop 3.1], respectively). The easiest com-
parison is to choose Y = [C%/C*] and E the line bundle determined by the fifth power of
the regular representation, and set M(Y) = M (P* d). Observe that M(Y) is an open
substack of Sec(€ x P*/€), which is in turn an open substack of Sec(€ x [C®/C*]/€) via the
embedding P4 C [C®/C*]. As before, set Z = Vbexy (w® &Y).

Let Caq(yy = M(Y') be the universal curve and f: Cpq(yy — [C®/C*] the universal map.
The moduli space M (P*, d)? is defined to be Sec(f*E ®w/Caq(y))- By Lemmas and
this is canonically isomorphic to our moduli space

MY, E) = M(Y) Xgec(ex[c5/c#]/¢) Sec(Z/ ).

To compare the perfect obstruction theories, we use the following diagram.

/

Vb(LPS & P) ¢ x BC*

(41) / l /

Crtr ———— Cp, ——————— €

J |

M 9, m,

Z

Here, @, is the Picard stack of 9 , which is identified with Sec(¢€ x BC*/€), and .Z is
its universal line bundle, with & = .2~%5 ® w. The stack M? is M(Y, E) = M,(P*,d)P.
All quadrilaterals in this diagram are fibered. The obstruction theory of [I3, Prop 3.1]
is the canonical one on MP, relative to ®g4; our obstruction theory is the canonical
one relative to 9t,. These are related by a morphism of distinguished triangles, and
in particular induce the same virtual cycle, by an argument analogous to that of Lemma
1AL 2.0l

6.4. Quantum Lefschetz. We will prove Theorem [1.2.3] in this section. Recall that we

assume
HY(C, &) =0
for every closed point [f: C' — Y] € M(Y). Hence the zero section M(Y) - M(Y, E) is

an isomorphism and RO, f*& is a locally free sheaf.
Pushing forward () under the inclusion ¢t: M(X) — M(Y, E), gives

(42) MO = (X EMODIMY, )™ in A (M(Y).
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Now [M(Y, E)]V'" and [M(Y)]'!* are two virtual cycles on the same space but defined via
different obstruction theories.

By Lemma [A:273] there exists a morphism of distinguished triangles

Emy,zym —— Emyym —— Rr(Lf*Lzjexy @ w®) ——

l l l

Lymey,pym — Lmeyyym —— Lymyeymey) ——

so that we have a compatible triple of obstruction theories in the sense of [40], Definition 4.5].
Hence, by [40, Theorem 4.8, Example 3.17], we have

(43) (MY, E)™ = MY,

where 7' is virtual pullback via the projection M(Y, E) — M(Y). Note that
(RmLf"Lzjexy ®w®)” = Rr(w® f*6Y) = Rm.(f*6)" = (R'm. f* &) [1].

Going through the definition of virtual pullback ([40, Construction 3.6]), we see that

(44) T M) = (X EMEDe(ROm, f*6) 0 MY )]

Combining , and , we conclude the proof of Theorem m

APPENDIX A. SUMMARY OF RESULTS ABOUT THE MODULI OF SECTIONS

In this appendix we collect some results about the moduli of sections defined in and
its candidate obstruction theory defined in . Most, if not all, of these results are well-
known, but we could not find references for the proofs. Since our argument relies heavily
on these properties, we give a coherent treatment here.

Throughout this appendix, all algebraic stacks a quasi-separated and locally finite type
over C. We fix such an algebraic stack 4l and 7: C — 4l is a flat finitely-presented family
of connected, twisted (nodal) curves in the sense of []. By [49, Prop 2.2.6], such a family
is equipped with a functorial pair (wf, try) where the complex wg is represented by wg[1],
with wy an invertible sheaf in the lisse-étale site of C; and try : Rm.wg — Oy is a morphism

in the derived category.
A.1. Properties of the moduli. Suppose we have morphisms of algebraic stacks
(45) Z—-W-—=C5 4

where both Z — 1 and W — 4l have affine stabilizers. We prove some canonical isomor-

phisms of moduli of sections. The following observation will be useful.

Lemma A.1.1. Fix a diagram of algebraic stacks with morphisms as below, so that the
square is fibered (and includes a 2-morphism «):
F—Z25D
oo
A——B——C
Then the arrow F — D induces an equivalence of groupoids

Homp (A, F) = Homg (A, D).

Proof. Straightforward; see, for example, [49, Lem 2.3.1]. O
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In the context of ([45)), on Sec(W/C) we have the universal curve (pullback of C) and

universal section, denoted f: Csec(w/cy — W.

Lemma A.1.2. Let f*Z denote the fiber product Csec(w/cy xw Z. Then there is a canonical

isomorphism
Sec(f*Z/CSec(W/C)) = SeC(Z/C)

of stacks over il.

Proof. The canonical morphism ®: Sec(f*Z/Csec(w/cy) — Sec(Z/C) is a morphism of cat-
egories fibered in groupoids over 4, so to show & is an equivalence, it suffices to study the
induced map on fibers over a scheme T — 41.

We compute the fiber of F := Sec(f*Z/Cscc(w/c)). The fiber of F over an arrow T' —
Sec(W/C) is Homeg,, yyc, (Cr, f*Z); by Lemma this is equivalent to Homy, (Cr, Z).
Hence F(T — i) is the groupoid of dotted arrows

N

SN
A
«— -
_Q

~

/ﬁ« 71[/
////’/ P
e Ve
|
T —— U

Specifically, an object of F(T) is a tuple (z,w, 7,w) where z: Cr — Z and w: Cp — W are
1-morphisms, and 7: goz — w and w: pow — ¢ are 2-morphisms. An arrow in F(T") from
(z1,w1,T1,w1) to (22, wa, To,we) is a pair of 2-morphisms a: w; — ws and B: 21 — 22 such
that w) = wy o p(a) and @ o7 = 15 0 ¢(3).

Now let G be the usual construction of the fiber product for the diagranﬂ

G —— Sec(Z/C)

| |

Sec(W/C) —Ls Sec(W/C)

The map & factors as F ', G ™ Sec(Z/C). Of course 7y is an equivalence of stacks over
. On the other hand, we claim that ® induces the literal identity map from F(T') to
G(T). By definition, an object of the fiber of F' is a tuple (w,w; z,(; T), where w: Cr — W
and z: Cp — Z are 1-morphisms, w: pow — 4 and (: po go z — ¢ are 2-morphisms, and
7:qoz — wis a 2-morphism such that { = wop(7). The final condition determines ¢ from
the other data, and hence these objects are literally the same as the objects of F. Arrows

in these two groupoids are also literally the same.
d

2Compare with [47, Tag 06N7].
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Lemma A.1.3. Let Z — C — 4 be as above. Suppose Z' — C' — U is another tower of

the same type, and suppose we have a commuting diagram of fibered squares

Z! —— 7

I

¢ ——=C

L]

[ QU ANy

Then there is a canonical isomorphism
(46) Sec(Z'/C") = Sec(Z/C) xy N
of stacks over .

Proof. Let F = Sec(Z/C) xy M. First, observe that a slight extension of the argument in
[47, Tag 06N7] shows that F is indeed fibered in groupoids over #’. So to show that the
canonical map ®: Sec(Z’/C) — F is an equivalence, it suffices to show it is an equivalence
on the fiber over arbitrary z: T — $I'.

The fiber F(T') has for objects tuples (a, o, n, v) where (letting C, = C'xgy T) a: T — U
and n: C, — Z are l-morphisms and «: fox — a and v are 2-morphisms (v witnesses the
commutativity of a triangle, one of whose sides is n). A morphism in F(7T') from (a, a, n,v)
to (b, B, m, ) is a tuple (7,0) where 7: a — b and 0: n — m o ¢, are 2-morphisms (here
¢y Cy — Cy is the morphism induced by 7), such that (1) =% o 7 o « is the identity, and
(2) the 2-cell with faces o, v, u, and one other face determined by 7 is commutative.

The fiber Sec(Z’/C’) is by Lemma equal to Hom¢(Cr, Z). This groupoid has for
objects pairs (n,v) where n: Cp — Z is a l-morphism and v is a 2-morphism witnessing the
commutativity of the triangle over C. A morphism from (n,v) to (m,u) is a 2-morphism
0: n — m such that the 2-cell with o, v, and y commutes.

Let ®7: Sec(Z'/C") — F(T') be the restriction of ® to the fiber. Then &7 sends (n,v)
to (f ox,id,n,v) and o to (id,o). The map P is essentially surjective because a induces
an isomorphism from an object in the image of ®7 to (a, a, n,v). It is fully faithful because
if 8 = a = id, then condition (2) forces 7 = id. O

Lemma A.1.4. There is a natural morphism Sec(Z/C) — Sec(W/C). If Z — W is a
closed embedding, then so is Sec(Z/C) — Sec(W/C).

Proof. Let &' = Sec(Z/C) and & = Sec(W/C). Since &' — 4l is already locally of finite
type, by [47, Tag 04XV] it suffices to show that ¢: & — & is universally closed and a
monomorphism. The monomorphism property is immediate using the characterization in
[47, Tag 04ZZ]. By Lemma to show that ¢ is universally closed it suffices to prove
that it is a closed map, and since we already know that ¢ is a momomorphism, it suffices to
show that (&) is closed in &. Now the set +(&’) consists of points whose rg-fibers map
completely into Z. Hence, & \ (&) = mg(n~ (W \ Z)). Since 7 is flat, and hence open,
this implies that ¢(&") is closed, which finishes the proof of the lemma. O

A.2. Properties of the obstruction theory.
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A.2.1. An adjunction-like morphism. Let D(C) (resp. D(4l)) denote the unbounded derived
category of sheaves of &-modules on C (resp. U) in the lisse-étale topology. Let Dy (C) and
Dgc(4h) denote the corresponding subcategories on objects with quasi-coherent cohomology.

Define an adjunction-like morphism
a : Homp ey (F, 7*G) — Homp g (Rm. (F @ w*), G)

by sending f : F' — 7*G to the composition

Rm. (f®id)

Rr.(F @ w®) Rr.(m"G @ w*) < G @ Rr,.w® G

where the isomorphism is the projection formula and tr is the trace map. Observe that a

is functorial in both arguments, meaning

(1) Given F’ € D(C) and g € Homp ey (F', F), we have a(f o g) = a(f) o Rm.(g ® id).
(2) Given G’ € D(Y) and g € Homp g (G, G’), we have a(r*go f) = g o a(f).

The next lemma, inspired by [I, Lem 4.1], says that a commutes with pullback.

Lemma A.2.1. The adjunction-like map a commutes with arbitrary basechange. Precisely,
given a fiber square
K "¢
x ln
B -2 4
and a morphism f : F — m*G, we have i f : 3 X — pim*Y = n*ppY, and the following
diagram commutes:

pa(f)

pp R (F @ wt) 20 g

““J” )
R, (i F © w*)

The isomorphism a,, is functorial in X. Moreover, if vg : B' — B is a morphism of alge-
braic stacks with K' := K xg B’ and vk : K' — K the projection, then these isomorphisms

satisfy the cocycle condition a,., = a, o via,.

Before proving the lemma we note several canonical isomorphisms:

(47) pwp R F — R uj F F € Dy (C)
(48) G® Rm.F — Rm.(r"G® F) F € Dyc(C),G € Dgc(Lh)
(49) HRW = Wh

The first is [30, Cor 4.13], the second is [30, Cor 4.12], and the last is [49, Prop 2.2.6].

Proof of Lemma[A-21 The desired commuting triangle is equivalent to
1R (F © ) Ll e
\Lu“ trT
R (e (F)  ®) WG Rro®

\Rﬂ'*(ll«}(f)@w.) /

R, (1 (7°G) ® w*) = R (n*15G © w*)
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We demonstrate this diagram as the composition of three. From left to right, the first is

* R .
PR (F @ we) —ERUED s pr (G @ W)

(50) u#lN lN
" o R (0 (£)®w®) . % o
R (pg (F) @ w®) R, (pgm G @ w®)

where the vertical arrows are followed by the strong monoidal map (commutativity of
® and pj;), and finally . It commutes by functoriality of and the strong monoidal
map, and because and f act on different factors of the tensor product. The second

diagram is
Wi R (m*G @ w*) HE i (G ® Rmw®)
o |
Rr 5 (m*G @ w*) WG @ Wy Rmw®
2 | o
R (15 f*G @ piew®) = R (m* G @ piew®) «==— puhG ® R piow®

48)
l lid@Rm (7))

Rr, (ui f*G @ w®) = R, (7" ui G @ w*®) whY ® Rm,.S

The top cell commutes by [29, Lem A.7(3)] and the bottom cell is functoriality of (48)). The

final diagram is

wp (idtr)

15(G © Rrmw®) e
I I
i
(52) ppY @ ppRmw® it npG
@l Tidetr
wpG ® R, pjew® Ty 1w5G ® Rm.w*®

where the bottom cell is the diagram [49, Prop 2.2.6]. One sees from the definition of a that
the composition of the top arrows in , 7 and is pia(f). Finally, a, is functorial
in F' by its definition, and it satisfies the cocycle condition because each of the morphisms
in its definition do: for the cocycle condition is [47, Tag 0E47] and for it is [49]
Prop 2.2.6]. O

A.2.2. Functoriality. Suppose we have a commuting diagram of algebraic stacks
Z —— W
S
(53) K; — Ky —— C

N

B; —— By — U

where the squares in the bottom row are fibered. To a diagram of the form we associate
a morphism in Dy (Bz) as follows. We have a morphism in Dq.(Kz) consisting of canonical

morphisms of cotangent complexes:

(54) L.f*LZ/W%LKZ/KW (lTF*LBZ/BW.
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We may apply the adjunction-like morphism a to , obtaining
(55) ¢Bz/BW :EBz/BW _>]LBz/BW7 EBz/BW = Rﬂ-*(Lf*LZ/W(@w.BZ)

Observe that when Ky = W = C, By =t and Bz = Sec(Z/C) we recover ([L8).

Remark A.2.2. [t follows from the functoriality of a in the first argument that when
either W — C or Kw — C is flat, the morphism ¢p, B, defined by the diagram (B3|) is
isomorphic to ¢p,, /B, defined by the diagram obtained from by setting 7' = Z x s Ky,
By =4, and Ky =W =C.

The morphism inherits the functoriality properties of the morphisms of cotangent

complexes used to define it.

Lemma A.2.3. Let Z L W — V be morphisms of algebraic stacks over C. Let Bz, By,
and By be quasi-separated algebraic stacks locally of finite type fitting in a fiber diagram

K; — Kw Ky C
[
B; —— By By, s

and suppose we are given morphisms f : Kz — Z, Ky — W, and Ky — V so that the
analog of commutes. Then there is a morphism of (canonical) distinguished triangles

LM*EBW/BV —_— EBZ/BV —_— EBZ/BW e
(56) J/LH*(bBW/BV J/(ﬁBZ/BV J/¢BZ/BW
L:U/*]LBW/BV e ]LBZ/BV e LBZ/BW e
Proof. By the functoriality in [49, Lem 2.2.12] we have a morphism of distinguished triangles

& | | l

W*LN*LBW/BV — 7T*]LBZ/BV — W*LBZ/BW

where each vertical arrow is the compositions of two canonical morphisms of cotangent
complexes, one of which is inverted in the derived category. Now apply the adjunction-like
operation a to each vertical arrow. Since a is functorial in both arguments and commutes

with pullback by Lemma we obtain (56).
O

Lemma A.2.4. Suppose we have commuting squares

w25y Bw —“25 By
(58 | ] [
X —7Z Bx —— Bz

where the square on the left consists of stacks over C and the square on the right consists
of stacks over . Let Ky = C Xy Bw (similarly for X,Y, and Z) and suppose we have a
map fw : Kw — W (and similarly for X, Y, and Z) such that the resulting large diagram
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is commutative. Then there is a commuting diagram
LppEpy /B, — Epy /By

(59) lLH*Bd)By/BZ l¢Bw/Bx
LyppLlpy /B, — Ly /By

where the top (resp. bottom) horizontal arrow is an isomorphism if the left (resp. right)
square in is fibered and either X — Z or Y — Z (resp. Bx — Bz or By — Byz) is

flat.
Proof. As in the proof of Lemma [A22:3] apply a to the following commuting diagram of
canonical morphisms of cotangent complexes.
LfyLg*Ly;z — LfyLw)x
| l
m*Luglpy B, — ™ Lpy /Bx
O

tw
g,m

the moduli space of prestable orbifold curves of genus g with n markings, and let € be its

A.2.3. A quasimap example. Fix a complex affine reductive group G. Let 9t = M"Y denote
universal curve. Denote by B = Sec(€ x BG/€) the moduli stack of prestable orbicurves
together with a principal G-bundle, and let 8 — € be the universal principal bundle over
its universal curve.

Now let Y be an affine l.c.i. variety with an action by G. Let 6 be a character of G with
Yy® =Yy smooth. Fix e > 0and 8 € Hom(Pic([Y/G]),Q). Then [20] defines a moduli space
of e-stable quasimaps ﬂ;n([Y/G], B) as an open substack of Sec(Pp x¢ Y/€x). By Lemma
the stack ﬂ;n([Y/G], B) is identified with an open substack of Sec(€ x [Y/G]/€).

We now investigate the obstruction theory (see also the discussion in [22] Section 5.3]).
Setting M = m;n([Y/G], B), we have the following commuting diagram.

¢ x [Y/G)
_— e
P xgY ¢ x BG
(60) e
Cor ¢ ¢
4 | |
M—r 3 m

By Lemma and Remark we have the following morphism of distinguished tri-
angles:

LiBogjom — Exgop — Exgy ——

lLu*dmm l‘j)ﬂ/f’“ lm/%

Ly Legjon —— Liggjon — Ligg/; —
where the morphism in the third column is constructed by setting Z =P xg Y, W =C =
Kw =¢€ and By = 4 =B in . The map B — 9N is “relatively Artin” so that the
complex Lu*Eeg son is perfect in [—1,1]. It is known that even in this setting, the morphism

@3 /9m 1s an obstruction theory, meaning that h' and RO of Lu*po /o are isomorphisms and
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h~! of the same is a surjection (see [7| Ex 8.12] or [49]). Then because h'(Lp*Eg jox) = 0 for
i < 0 it follows that B — 9 is smooth and ¢« /9n is a quasi-isomorphism. Then argument
of [35, Prop 3] shows that ¢z 9y and ¢y, induce the same virtual class on M.

We have proved the following lemma.

Lemma A.2.5. The stack of e-stable quasimaps ﬂ;n([Y/G], B) is canonically isomorphic
to an open substack of Sec(€ x [Y/G]/€). Moreover, the restriction of to this substack
is a perfect obstruction theory, and it induces the same virtual fundamental class as the
perfect obstruction theory of [23, 4.4.1] and |20} Sec 2.4.5].

A.3. Equivariance. Let G be a flat, separated group scheme, finitely presented over C.
In this section we use the definitions of G-stacks and equivariant morphisms in [46]. If Z is
an algebraic stack with G-action, we say that a complex (resp. diagram of complexes) in
Dyc(Z) is G-equivariant if it is isomorphic to the pullback of a complex (resp. diagram of
complexes) in Dy ([Z/G]).

Lemma A.3.1. Suppose we are given G-equivariant stacks and morphisms Z — W —
C — U. If By = Sec(Z/C) and By = Sec(W/C) in (53), then there are G-actions on all
the stacks in such that the entire diagram is equivariant.

Proof. To simplify the notation we take Z = W and Bz = Byy; the proof in the general

case is similar. We have a commuting diagram

Gx 22 —— 7

— 1

GXCSec(Z/C) —— GxC ——C

l |

G x Sec(Z/C) —— G x4 —— 4

where the left part of the diagram is just the product of G with , and the right part
is the equivariance of the right column of —in particular, the horizontal arrows are
all action by G. By the universal property of Sec(Z/C), this diagram factors canonically
through the original one (53]). This is the desired equivariance. O

Lemma A.3.2. Suppose we are given equivariant stacks and morphisms Z — C — il

There is a natural isomorphism
[Sec(Z/C)/G] =~ Sec([2/G]/[C/G])
where the latter moduli space is constructed using the family [C/G] — [U/G].

Proof. We have a fiber diagram

Z —— [Z/G]
} il
C —— [C/G]
} 1

s [4/G]
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where the horizontal maps are fppf covers (see [46, Theorem 4.1]). Hence by Lemma

we have a fiber square as in the following diagram.

[Sec(Z/C)/G]

e

(61) Sec(Z/C) 55 Sec([2/G)/1C/G))
g —2"2 /G

The map pg is equivariant and hence factors as depicted. In fact, the outer trapezoid is also
fibered, since it is a commuting diagram of G-torsors. Again, both horizontal maps and the

diagonal map are fppf covers, so by descent the map labeled F is an isomorphism. O

Lemma A.3.3. Suppose we are given a diagram consisting of G-equivariant stacks

and morphisms. Then the corresponding morphism ¢, B, s canonically G-equivariant.

Moreover, the conclusions of Lemmas|A.2.5 and|A.2.4) hold G-equivariantly.

Proof. For the first claim, observe that there are two fibered squares:

7z —— [Z/G] Bz —— [Bz/G)]
o | !
W —— [W/G] By —— [Bw/G]

where the square on the left consists of stacks over [C/G] and the square on the right consists
of stacks over [U/G] (that the square on the right is fibered follows from Lemma [A.1.3).

The horizontal maps are flat, so Lemma [A.2.] yields a commuting square

P*EiBz/c1/Bw/c) — EBy/Byw
lPW[Bz/G]/[BW/G] \P)Bz/BW

P*LiB,/c)/Bw/c) — Lby/Bw

which is the desired equivariance of ¢, /g, -
We prove the equivariant version of Lemma (the proof of Lemma is similar).
Let p : Bz — [Bz/G] be the quotient map. Then p induces a morphism to from the

following morphism of distinguished triangles:

P Lf* Ly Liwycyyvic) — P*Lf*Lizsc)vie) —— p"Lf*Lizcyiwic) ——

| l l

P upLlisy a1y /¢) — P T LB, 0By /G) — PP LB, c1/Bwja) —

where we have used f and g for the analogous maps of quotient stacks. In other words, we
consider a commuting diagram that includes four distinguished triangles as the edges of a
rectangular prism. The rest of the argument is as in the proof of Lemma[A:2:3] except that

to conclude the final diagram commutes we also use the cocycle condition on a, proved in

Lemma [A2.1] O

Consider a diagram and define p to be the map By — By given there. We define an

absolute version of ¢, /p,, to be a (shifted) mapping cone fitting in the following diagram,
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where the arrow labeled “F” is defined to make its square commutative:

abs F *
IEBbZ/BW —— Ep, /By, — Lp*Lp, [1] —

(62) ld’%bzs/BW l‘sz/Bw H

]LBW E— ]LBZ/BW E— L,[L*]LBW[I] —

Lemma A.3.4. The morphism ¢aBbZS/BW : E“BbZS/BW — Lp, is naturally equivariant.

Proof. Define E to be a (shifted) mapping cone fitting into the following morphism of

distinguished triangles:

E ——— Lf*Liz/cyw/c) — ™ L Lipy, /c)/1e/c)[1] —

o] J l

™ Lisz/c1/e/6) — T Lisz/c1/iBw/6) — T L Lipy jc)/e/c)[t] ——
Here o = Spec(C) with the trivial G-action. We likewise have a diagram

Lf*Lzw — 7" Lp*Lp,, (1]

g ! |

n*Lp, —— 7©*Lp, /B, — ©*Lu*Lp,[1] —

Let p : Bz — [Bz/G| denote the qutoient map. Then p induces an isomorphism from
(the relevant portion of) p* applied to , to the diagram . We define the missing
mapping cone in to be p*E, together with the constructed (iso)morphisms. Now apply
the adjunction-like morphism a and conclude as in the proof of Lemmas[A.2.3]and O

Let T' = G be a torus and suppose we have a diagram where all stacks and morphisms
are T-equivariant. Suppose moreover that Bz and By, are Deligne-Mumford, that T' acts
trivially on By, and we let I — Bz denote the T-fixed locus. If By = Spec(C) and
®B, /By, is a perfect obstruction theory, it is shown in [12] that the following composition

is a perfect obstruction theory for F:

« PBy/Bw |
(65) ]EBZ/BW% Z—WF>]LBz/BW|F _>LF/BW'

On the other hand, we may construct the morphism ¢r,p,, by simply replacing Bz with

Fin.

Lemma A.3.5. The morphism is isomorphic to the fized part of ¢, p,, ; that is, there

18 a commuting square
fix ~ fix
Ep,/Bwlr —— Egp,,

fix ix
J/¢BZ/BWIF J{Qﬁﬁr/BW

Proof. Before applying the fix functor, this diagram is part of Lemma with Z, W
(there) both equal to Z (here), V (there) equal to W (here), By = F, By = Bgz, and

By = By (continuing the same notational pattern). Note that in the notation of Lemma

A.2.3| we have Eg, /g, = 0. O
2/Bw
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APPENDIX B. ABSOLUTE VERSUS RELATIVE COSECTION LOCALIZED VIRTUAL CLASSES

Let Z be any smooth algebraic stack locally of finite type. Let X — Z be a morphism
from a finite type, separated Deligne-Mumford stack X with a relative perfect obstruction
theory ¢: E — Ly,;. Let ox/z: ]E}/(/Z — Ox[—1] be a cosection (defined on all of X).
Recall the functor h'/h%(e) from a certain subcategory of the derived category of X to the
category of abelian cone stacks on X (see e.g. [8, Prop 2.4]). Applying this functor to o
yields a map €y,z — Cx of cone stacks on X, where we define €y,; = h'/h°(Ex,z) and
Cx = h'/h°(Ox[—1]). We define the kernel €x, (o) to be the fiber product

€x/z(0) = €x/z Xcx 0 X.

(Note that the underlying set of €x,(c) is the locus E(c) in [34} (3.2)].) We do not require

(as in [34]) that o descends to an absolute cosection, but instead we directly assume that
(66) the map of cone stacks h' /h%(c 0 ¢¥) is zero.

In this case, by the universal property of €x,z(c), the relative intrinsic normal sheaf is
contained in (’EX/Z(U), and hence the relative intrinsic normal cone €x /7 is as well. We
define

X = 0h L ([€x2)) i A(X(0)

where OE,X/Z is the localized Gysin map S!GX/Z-,UX/Z 34, (3.5)] and X (o) is the degeneracy
locus.

The following proposition shows that in fact, ox,, defines a cosection ox of an absolute
obstruction theory Ex induced by Ex,7, that the absolute intrinsic normal cone €x is

vir

Vi agrees with

contained in the absolute kernel €x (o), and finally that our definition of [X]
that of [34] (where [X]Y" is defined to be 0! ([€x]). Our proposition is, however, more

g

general than this and may be viewed as a cosection localized analog of [35, Proposition 3].

Proposition B.0.1. Fix Z, a smooth algebraic stack locally of finite type. Let X be a
Deligne—Mumford stack and let X —Y — Z be morphisms such that X =Y and X — Z
are separated and finite type, and Y — Z is smooth and locally finite type. Let ¢: Ex/y —
Lx/y be a relative perfect obstruction theory and o : IE}Q/Y — O[—1] a cosection such that
h/h%(o o ¢¥) = 0. Then there is a relative perfect obstruction theory : Fx/z = Lx/z
with induced cosection p satisfying h' /h°(p oY) = 0. Moreover, the degeneracy loci X (o)
and X (p) are equal, and the cosection localized virtual cycles induced by (¢,0) and (¢, p)

agree.

Proof. Let q be the map from X — Y. The relative obstruction theory ¢: Fx,z — Lx,z

is any morphism fitting into a morphism of distinguished triangles

Fx/z — Ex/v - q¢Lyz[1] —

(67) | |# |

Ly/z — Lx/;y — ¢*Lyz[1] —

By the proof of [35, Proposition 3], ¢ is indeed a perfect obstruction theory. Dualizing, we
see that o o 6V factors through o o ¢V and hence by assumption h'/h%(c 0 §¥) = 0. By [8,
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Lem 2.2], the map g o4 is nullhomotopic, and there is a (not necessarily unique) morphism

p inducing a morphism of distinguished triangles as below.

ﬁx[fl] — ﬁx[fl] 0

o T T

\%

EX/y b (¢"Lyz[1])Y ——

By [8 Proposition 2.7], from and we get a commuting diagram of abelian cone

stacks whose rows are short exact sequences and & = h'/h°((¢*Ly,2[1])"):

0 Cx = Cx 0 0

d d |

0 < h/h(Fy, ;) «—— h'/RO(EY,)y) ¢— R «—0

o o |

0 +—— mx/z S mx/y R 0

Here 91 denotes an intrinsic normal sheaf. In particular the bottom left square is fibered
and the horizontal arrows in that square are smooth surjections. Because the composition
oo ¢V is zero and « is surjective, we also have p oV = 0.

On the one hand, by the proof of [35, Proposition 3] we may replace the bottom row of
with the exact sequence 0 <= €x,7 < €x/y < K « 0. On the other hand, we have
a diagram where all squares are fibered and the arrow hl/hO(E}/Y) — ht/h° (IFX(/Z) is a

smooth surjection:
R— hl/ho(]E}/(/Y)(a) — hl/hO(E}/(/Y)

| | |
(

X 0 WROEY ) (p) —— W RO(FY,,)

| l

X o Cx

To identify the two leftmost terms in the top row, observe that the composition of the two
right vertical arrows is ¢ and the composition of the two middle horizontal arrows is the

zero section. Using [8) Def 1.12], we obtain a short exact sequence
(70) 0 < h'/h°(FX,z)(p) < h' /B°(EX /)y )(0) < & 0.

Finally, because poV = 0o ¢" = 0, we may replace the middle row of with . We

get a fiber square with horizontal arrows that are smooth surjections:
hJhO(BY )y )(p) —— h'/hO(FY, ) (o)

[ [

Cx)y ———— Cxyz
From here, we can compute the cosection localized virtual class:

(X" =0 [€x/y] = 0,a"[€x/z] = 0,[€x/7] = [X]J".
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Here, 0! and O!p are the cosection localized Gysin maps of [34) Section 2]. The second

equality above is the compatibility of these maps with the usual Gysin maps. O
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