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Abstract. We generalize the results of Chang–Li, Kim–Oh and Chang–Li on the mod-

uli of p-fields to the setting of (quasi-)maps to complete intersections in arbitrary smooth

Deligne–Mumford stacks with projective coarse moduli. In particular, we show that the

virtual cycle of stable (quasi-)maps to a complete intersection can be recovered by the

cosection localized virtual cycle of the moduli of p-fields of the ambient space.
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1. Introduction

This paper generalizes Chang–Li’s work [13] on the moduli of stable maps with p-fields

for the quintic hypersurface in P4 to a theory of stable maps with p-fields for complete

intersections in smooth Deligne-Mumford stacks (Theorem 1.1.1).

As applications, we reprove a weak version of quantum Lefschetz in genus 0 (Theorem

1.2.3), and most importantly, in all genus, we derive a formula for the virtual cycle of

the moduli space of stable (quasi-)maps to a complete intersection as a virtual cycle on

a moduli space of p-fields, which has simpler geometry (Corollaries 1.2.1 and 1.2.4). In

combination with the theory of the logarithmic Gauged Linear Sigma Model (GLSM) in

[19], this formula provides a tool for studying the higher genus Gromov–Witten invariants

of complete intersections. This formula is new in the case when the target is not a GIT

quotient. Our approach to the p-fields problem differs from those in the literature as we

use a setup reminiscent of a GLSM.

To understand how the moduli of p-fields is a tool for studying higher-genus Gromov–

Witten invariants, recall the strategy of the original proof in [26, 39] of the genus-zero mirror
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theorem for the quintic hypersurface X ⊂ P4. The first step uses the quantum Lefschetz

principle [35, 24] to relate the Gromov-Witten invariants of X to those of P4. Indeed, a

weak version of the quantum Lefschetz principle states

(1) ι∗[M0,n(X,β)]vir = e(R0π∗f
∗O(5)) ∩ [Mg,n(P4, ι∗β)]vir

(see Theorem 1.2.3). The second step uses torus localization onMg,n(P4, ι∗β). (The quintic

X itself does not carry an adequate torus action.)

The naive version of the quantum Lefschetz principle fails in positive genus. However, an

equality similar to (1) holds when we replaceMg,n(P4, ι∗β) with the moduli of stable maps

with p-fields Mg,n(P4,O(5), ι∗β). The new moduli spaceMg,n(P4,O(5), ι∗β) is a cone over

Mg,n(P4, ι∗β) and in particular it carries a nontrivial torus action. On the other hand, the

main result in [13] can be lifted to an equality of virtual cycles

(2) [Mg,n(X,β)]vir = ±[Mg,n(P4,O(5), ι∗β)]vir
loc

(see also Corollary 1.2.1), where the right hand side is the cosection localized virtual class

of [34]. Equality (2) is leveraged to compute higher genus Gromov–Witten invariants of the

quintic using mixed-spin-p-fields by Chang–Guo–Li–Li–Liu in [14, 15, 11, 10, 9], and using

log GLSM by Guo, Ruan, and the first and second author in [19, 17, 18, 18, 27, 28].

We remark that there are several other approaches to quantum Lefschetz and the com-

putation of the Gromov-Witten invariants of the quintic in genus one, including [48, 50, 36].

Given the success of the p-fields aproach, it is natural to ask if (2) holds for an arbitrary

smooth complete intersections X in smooth Deligne–Mumford stacks Y with projective

coarse moduli. The main result of this paper (Theorem 1.1.1) gives a complete answer to

this question, which implies that (see Corollary 1.2.1)

[M(X)]vir = ±[M(Y,E)]vir
loc

when M(X) is a moduli stack of stable (quasi-)maps to X, M(Y,E) is a moduli stack of

p-fields defined by the vector bundle E whose section cuts out X, and the sign is a function

of various data defining the moduli. When Y is a GIT quotient of an affine variety, our

theorem recovers the main results of [37, 16]. Since the first version of this article appeared

on the arXiv, R. Picciotto [45] found an alternative approach to Corollary 1.2.1.

Our approach unifies these special cases in a single theory. We anticipate applications in

both the GIT and non-GIT settings where the latter fits the general set-up of log GLSM. As

an example of the latter, we hope that Theorem 1.1.1, combined with the log GLSM, can

be used to investigate the conjectures of Oberdieck–Pixton [41] in the case of Weierstrass

elliptic fibrations.

1.1. Main definition and result. We now state precise definitions and results. In order

to both address stable maps and quasi-maps, we work in the following abstract set-up. Fix

an algebraic stack Y whose open Deligne–Mumford locus Y 0 ⊂ Y is smooth and dense in

Y . Let E be a vector bundle on Y with E its sheaf of sections, and s be a global section

of E. Let X ⊂ Y denote the zero locus of s. Let M := Mtw
g,n denote the moduli space

of prestable twisted curves with genus g and n markings (see [4, Section 4]), with C its

universal curve.
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By [31, Thm 1.2] there is an algebraic stack HomM(C, Y ×M) of morphisms from C to

Y ×M over M. Choose an open substack M(Y ) ⊂ HomM(C, Y ×M), letting M(X) =

M(Y ) ×HomM(C,Y×M) HomM(C, X ×M) denote the moduli of maps in M(Y ) that factor

through X ⊂ Y , such that the following conditions hold:

(1) The stack M(Y ) is separated, Deligne–Mumford, and finite type.

(2) On bothM(X) andM(Y ), the canonical construction (18) is a perfect obstruction

theory.

(3) For any closed point [f : C → Y ] ∈M(Y ), the locus f−1(Y 0) is open dense in C.

(4) The universal curve C →M(X) admits a relatively ample line bundle.

For example, one may take M(Y ) to be moduli space of stable maps (see Section 6.1) or

ε-stable quasimaps (see Section 6.2).

Motivated by the original definition in [13], we define the moduli stackM(Y,E) of maps

in M(Y ) with p-fields to be a certain cone overM(Y ) as follows. Let ω denote the relative

dualizing sheaf of C→M. Let Z be the vector bundle on C× Y whose sheaf of sections is

E � ω∨. As in [31, Thm 1.3] define the moduli of sections Sec(Z/C) to be the (algebraic)

stack over M with fibers

Sec(Z/C)(T ) = HomC(C×M T,Z) = HomC×MT (C×M T,Z ×M T ).

The projection Z → C× Y induces a morphism Sec(Z/C)→ HomM(C, Y ×M). The stack

M(Y,E) is the fiber product

M(Y,E) =M(Y )×HomM(C,Y×M) Sec(Z/C).

It carries a perfect obstruction theory (18) inherited from Sec(Z/C) and, under additional

assumptions, a cosection (28) determined by s whose degeneracy locus is contained inM(X)

(Corollary 4.4.3).

To introduce the main result, we define a locally constant function

(3) χ(E,M(X)) : M(X)→ Z

with χ(E,M(X))([f ]) = χ(f∗E ) for any closed point [f ] ∈ M(X).1 Since χ(E,M(X)) is

locally constant on M(X), this defines a class

(−1)χ(E,M(X)) ∈ A0(M(X)).

See Remark 5.0.2 below for more details, including an explicit formula for χ(E,M(X))([f ]).

Theorem 1.1.1. The stack M(Y,E) is a separated, finite-type, Deligne–Mumford stack

carrying a canonical perfect obstruction theory (18). Furthermore, if s is a regular section

and X ∩ Y 0 is smooth, then there is a cosection localized virtual cycle [M(Y,E)]vir
loc ∈

A∗(M(X)) satisfying

(4) i∗[M(Y,E)]vir
loc = [M(Y,E)]vir ∈ A∗(M(Y,E))

and

(5) [M(Y,E)]vir
loc = (−1)χ(E,M(X))[M(X)]vir ∈ A∗(M(X)).

1The function χ(E,M(X)) is called the “virtual rank” in [37].
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Remark 1.1.2. The equality (4) is a direct application of [34, Thm 1.1], though we take

a simplified approach to defining cosection localized virtual fundamental classes that applies

when the cosection is defined everywhere (see Appendix B). The bulk of this paper is devoted

to the construction ofM(Y,E), its perfect obstruction theory, and cosection; and to proving

equation (5).

1.2. Applications. Theorem 1.1.1 applies to both stable maps and ε-stable quasimaps.

For stable maps, take Y to be a smooth projective Deligne–Mumford stack. Let E be a

vector bundle on Y with a regular section whose zero locus X is smooth. For nonnegative

integers g, n and a class β ∈ H2(Y ), where Y is the coarse moduli space of Y , letMg,n(Y, β)

denote the moduli stack of twisted stable maps defined in [4]. We setM(Y ) =Mg,n(Y, β).

Furthermore, let Mg,n(X,β) be the substack of maps that factor through X; this is the

disjoint union ofMg,n(X,β′) for all β′ ∈ H2(X) such that ι∗β
′ = β where ι : X → Y is the

inclusion. Then we get the following corollary (Section 6.1).

Corollary 1.2.1. We have the following identity of virtual classes

[M(Y,E)]vir
loc =

∑
β′ : ι∗β′=β

(−1)χ(E,Mg,n(X,β′))[Mg,n(X,β′)]vir in A∗(Mg,n(X,β)).

Remark 1.2.2. We have

A∗(Mg,n(X,β)) =
⊕

β′ : ι∗β′=β

A∗(Mg,n(X,β′)),

and hence the identity allows one to recover each [Mg,n(X,β′)]vir from [M(Y,E)]vir
loc. In

many situations, ordinary Lefschetz implies that ι∗ is an isomorphism, so that the direct

sum has exactly one term.

In this stable map setup, we can also derive a weak version of the quantum Lefschetz

theorem from Theorem 1.1.1. Recall that E is convex if for every closed point [f : C →
Y ] ∈M(Y ), we have

H1(C, f∗E ) = 0.

Let f : C → Y denote the universal map on the universal curve π : C → M(Y ) and let

ι : M(X) →M(Y ) denote the inclusion. The strongest version of quantum Lefschetz [35]

says that when E is convex, we have

(6) [M(X)]vir = ι![M(Y )]vir

where ι! is the Gysin pullback. Theorem 1.1.1 implies the following weaker version of this

statement (Section 6.4).

Theorem 1.2.3. If E is convex, then the direct image sheaf R0π∗f
∗E is locally free, and

ι∗[M(X)]vir = e(R0π∗f
∗E ) ∩ [M(Y )]vir in A∗(M(Y )).

Theorem 1.2.3 is a consequence of the identity (6) after applying ι∗ to both sides (note

that the section s induces a section R0f∗s of R0π∗f
∗E whose zero locus isM(X) ⊂M(Y )).

A second application of Theorem 1.1.1 is to take Y = [W/G] where W is an affine

l.c.i. variety and G is a reductive group acting on W . Choose a character θ of G such
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that W s
θ = W ss

θ is smooth and nonempty and has finite G-stabilizers. Let E be a G-

equivariant vector bundle on W with a G-equivariant regular section whose zero locus U

has smooth intersection with W s
θ . This data defines a smooth Deligne–Mumford stack

W//θG := [W s
θ /G] carrying a vector bundle induced by E with a regular section whose zero

locus U//θG := [(W s
θ ∩U)/G] is smooth. Fix nonnegative integers g, n and a positive rational

number ε, and choose a class β ∈ Hom(PicG(W ),Q). Let M(Y ) = Mε

g,n(W//θG, β) be

the moduli stack of ε-stable quasimaps defined in [20]. LetMε

g,n(U//θG, β) be the substack

where the quasi-map factors through U . Then we have the following corollary (Section 6.2).

Corollary 1.2.4. We have the following identity of virtual classes

[M(Y,E)]vir
loc =

∑
β′∈Hom(PicG(U),Q)

ι∗β
′=β

(−1)χ(E,Mε
g,n(U//θG,β))[Mε

g,n(U//θG, β)]vir

in A∗(M
ε

g,n(U//θG, β)), where ι∗ is the dual of the map ι∗ : PicG(W ) → PicG(U) induced

by the inclusion ι : U →W .

1.3. Contents of the paper. Our proof of Theorem 1.1.1 follows roughly the strategy

of [13]. We construct (Section 2) an auxiliary moduli space M → M × A1. This space

is roughly analogous to M(Y,E) but with Y replaced by the deformation to the normal

cone of X in Y , and in fact a generic fiber of M is isomorphic to M(Y,E). We show that

M (resp. its fibers) is a Deligne–Mumford stack with the necessary properties (Section 2)

carrying a canonical perfect obstruction theory relative to M× A1 (resp. M; Section 3).

The section s induces a cosection σ of the perfect obstruction theory on M with de-

generacy locus M(X) × A1; moreover σ specializes to cosections on the fibers of M with

degeneracy lociM(X) (Section 4). A torus localization argument shows that the cosection

localized virtual cycle on the special fiber is equal to the usual virtual cycle on M(X), up

to a sign (Section 5), while the cosection localized class of the generic fiber is precisely the

class [M(Y,E)]vir
loc of Theorem 1.1.1.

Section 6 elaborates on the main applications of our result, Appendix A contains several

technical lemmas related to the moduli of sections, and Appendix B discusses a simplified

construction of cosection-localized virtual cycles.

1.4. Conventions. By a sheaf on an algebraic stack Y we mean a sheaf in the lisse-

étale topos Ylis−et, unless otherwise stated. By the derived category D(Y ) we mean the

unbounded derived category of OY -modules in Ylis−et with quasi-coherent cohomology, as

defined in [30]. Our derived functors are the ones defined in (loc. cit.).

If P is a principal C∗-bundle on an algebraic stack X and V is a G-stack, then P×C∗ V

is the quotient of P × V by C∗, where C∗ acts with the diagonal action.

The universal objects on the moduli of sections Sec(Z/C) (or an open substack M)

will usually be denoted πM : CM → M for the universal curve and nM : CM → Z for the

universal section. We will use ωM to denote the relative dualizing sheaf of the morphism

C → M. We will use ω•M = ωM[1] to denote the dualizing object in the derived category.

If the subscript M on any of these notations can be safely deduced from context we may

omit it. One consistent exception to our convention is when Z = C × Y for some algebraic



6 QILE CHEN, FELIX JANDA, AND RACHEL WEBB

stack Y . In this case Sec(C × Y/C) is canonically identified with the moduli of prestable

maps to Y , and we use f : CSec(C×Y/C) → C × Y for the universal section.
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1700682 and DMS-2001089. The second author was partially supported by an AMS–Simons

travel grant and NSF grants DMS-1901748 and DMS-1638352. The third author was par-
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Jeongseok Oh, who explained the proof of Lemma 5.0.3; and Richard Thomas for sugges-

tions for improving the introduction. The authors are grateful to the AGNES conference

and the Casa Matemática Oaxaca which facilitated the completion of this project.

2. Deformation to the normal cone

2.1. The family of targets. Recall the notations defined in Section 1.1; in particular, Y

is an algebraic stack with locally free sheaf E and a global section s. We recall the definition

of regularity for s.

Definition 2.1.1. The section s is regular if smooth affine locally, components of s form

a regular sequence.

This definition makes sense when Y is an algebraic stack because regularity is preserved

by flat base change (see [47, 067P]).

From now on we will assume that s is a regular section and that X∩Y 0 is smooth. Some

parts of our construction do not require these assumptions, and we will indicate where this

is the case.

Let IX be the ideal sheaf of X in Y , and J = (IX , t) be the ideal sheaf of X×0 in Y ×A1

where t is the coordinate of A1. Consider Y → Y × A1 the blow-up of Y × A1 along the

ideal J . Let Y be obtained by removing the proper transform of Y × 0 from Y. Then we

have a flat family of embeddings

(7) X × A1 ι
//

p2
##

Y

ρA1��

A1

Indeed, the family ρA1 is the deformation to the normal cone of X in Y [25, Section 5.1].

For any c ∈ A1, denote by Yc the fiber of ρA1 over c. Then we have

(8) Yc ∼= Y for any c 6= 0, and Y0
∼= NX/Y ,

where NX/Y is the normal bundle to X in Y . Note that NX/Y is a vector bundle over X

as the embedding X ↪→ Y is lci.

Note that the morphism s∨ : E ∨ → OY factors through IX ⊂ OY , hence induces a

surjection

E ∨|Y×A1 ⊕ OY×A1 → J.
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This defines a surjection of graded algebras

Sym•Y×A1(E ∨|Y×A1 ⊕ OY×A1)→ Sym•Y×A1 J,

hence a closed embedding

(9) P(E |Y×A1 ⊕ OY×A1)←↩ Y.

A local calculation shows that this embedding is regular (see [6, Lemma 2.1]). Furthermore,

this embedding restricts to a regular embedding Y → E|Y×A1 .

2.2. The superpotential. The pullback s|Y vanishes along the fiber Y0, hence defines a

section s−Y of E−Y := EY(−Y0). The following lemma will be useful for computations later.

Lemma 2.2.1. The section s−Y of E−Y is a regular section with zero locus X ×A1 ⊂ Y. Its

restriction s−Y |Y0 is canonically identified with the tautological section of E |NX/Y ' E |E|X .

Proof. The deformation Y is constructed smooth locally, so we may assume that Y =

Spec(A) is an affine scheme and E splits. Let s ∈ Γ(Y,E ) be given by elements (a1, . . . , ar) ∈
A; by Definition 2.1.1 this sequence is regular. By [25, Sec 5.1], Y is equal to Spec(S•(T )),

where S•(T ) is the graded ring

S•(T ) = . . .⊕ I2T−2 ⊕ IT−1 ⊕A⊕AT ⊕AT 2 ⊕ . . . .

The ideal of Y0 is generated by T in degree 1. So while s|Y is given by the sequence

(a1, · · · , ar), as a section of E−Y it is given by (a1T
−1, · · · , arT−1). It is straightforward to

check that this sequence is regular, and that it generates the ideal of X × A1 ⊂ Y.

Restricting to the fiber T = 0, we get the coordinate ring

A/I ⊕ (I/I2)T−1 ⊕ (I2/I3)T−2 ⊕ . . .

and our section is the sequence (a1T
−1, · · · arT−1) in degree 1 (T has degree −1). Since

the sequence is regular it identifies this ring with Sym•(A⊕r), and under this identification

the sequence becomes the tautological one: (e1, . . . , er) where ei is 1 in the ith coordinate

and 0 elsewhere. �

Let E−Y be the vector bundle on Y whose sheaf of sections is E−Y . The dual of s−Y induces

a morphism W called the super-potential:

(10) W : (E−Y )∨ → C.

It is linear on the fibers of the vector bundle (E−Y )∨ = (E|Y(Y0))∨—in other words, letting

C∗ act by scaling on both the source and target of (10), W is equivariant. The next lemma

says that we can study either the zeros of s−Y or the critical locus of W .

Lemma 2.2.2. Suppose Y is a smooth Deligne–Mumford stack and E is a vector bundle

on Y with a regular section s and zero locus X ⊂ Y . Let W : E∨ → C be the function

induced by the dual of s. Then X is smooth if and only if the critical locus of W equals X.

Proof. Both sides can be checked étale locally, and we may therefore assume that Y is a

smooth scheme, and that E is trivial of rank r on Y . If we write s = (s1, . . . , sr) : Y → Cr,
then the function W : Y × Cr → C induced by s is given by

(y, p1, . . . , pr) 7→
r∑
i=1

pi · si(y),
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and has differential
r∑
i=1

[dpi · si(y) + pid(si(y))].

Let Z be the critical locus of W , which is given by the equations si(y) = 0, pid(si(y)) = 0

for all i. On the other hand, X ⊂ E∨ is given by si(y) = 0, pi = 0 for all i. Hence with no

assumptions, we have Z ⊂ X.

The other inclusion holds if and only if for every closed y ∈ X the collection of vectors

{d(si(y))}i are linearly independent. This amounts to saying that the Jacobian matrix of

(s1, . . . , sr) has rank r. In particular, X is smooth of codimension r. �

We apply this lemma as follows. Let Y0 ⊂ Y denote the deformation to the normal cone

of X ∩ Y 0 in Y 0; observe that Y0 is smooth and Deligne–Mumford. Let E0 = E−Y ×Y Y0

be the restriction of E−Y to Y0 and let W 0 be the corresponding restriction of (10). Let

Crit(W 0) ⊂ (E0)∨ be the critical locus of W 0. By Lemmas 2.2.2 and 2.2.1, we have

(11) Crit(W 0) = (X ∩ Y 0)× A1

Let Crit(W 0) be the closure in (E0)∨. Hence Crit(W 0) ⊂ X × A1.

2.3. The moduli. Recall from Section 1.1 that we defined the moduli of p-fieldsM(Y,E)

as a substack of the moduli of sections. We found it convenient to work with these moduli

throughout our paper, in particular for constructing perfect obstruction theories. The

general construction is as follows. Consider a tower of algebraic stacks over C

(12) Z → C π−→ U

where π : C → U is a flat finitely-presented family of connected, nodal, twisted curves

and Z → U is locally finitely presented, quasi-separated, and has affine stabilizers. These

technical conditions are imposed to guarantee the algebracity of hom-stacks below. We

define the moduli of sections Sec(Z/C) to be the stack whose fiber over T → U is

(13) Sec(Z/C)(T ) = HomC(C ×U T,Z) = HomC×UT (C ×U T,Z ×U T ).

By [31, Thm 1.3], the stack Sec(Z/C) is algebraic and the canonical morphism Sec(Z/C)→ U

is locally finitely presented, quasi-separated, and has affine stabilizers.

We first apply this construction to define a deformation of the space M(Y,E). Recall

the universal family of twisted curves C →M from Section 1.1. Consider MA1 = M × A1

with the universal curve CA1 = C × A1 → MA1 . Let ω be the relative dualizing sheaf of

CA1 → MA1 . On the algebraic stack Y denote by E−Y the locally free sheaf (ρ∗Y E )(−Y0).

Define

(14) Z = V bCA1×A1Y(ω ⊗ (E−Y )∨).

The projections Z → CA1 ×A1 Y → CA1 × Y induce a morphism

(15) Sec(Z/CA1)→ Sec(CA1 × Y/CA1) ∼= Sec(C× Y/C)× A1.

Definition 2.3.1. The deformation moduli space of p-fields, denoted M(Y,E−Y ), is the

fiber product

M(Y,E−Y ) = (M(Y )× A1)×Sec(CA1×Y/CA1 ) Sec(Z/CA1).
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Observe thatM(Y,E−Y ) is a stack over MA1 , and in particular has a canonical projection

to A1.

Proposition 2.3.2. The stack M(Y,E−Y ) is a separated Deligne–Mumford stack of finite

type.

Proof. We have a sequence of morphisms

Sec(Z/CA1)→ Sec(CA1 ×A1 Y/CA1)→ Sec(CA1 × ρ∗Y E/CA1)→ Sec(CA1 × Y/CA1)

Applying [13, Prop 2.2] for orbifold curves, the first and last are representable by affine

schemes of finite type, hence in particular they are separated, finite type, and representable.

The middle arrow is a closed embedding by Lemma A.1.4 since (9) is so. Pulling back the

above sequence along M(Y ) × A1 → Sec(CA1 × Y/CA1), the assumption that M(Y ) is

a separated Deligne–Mumford stack of finite type implies that M(Y,E−Y ) has the same

properties. �

2.4. Specialization. Let c ∈ A1. We compute the fiber Mc of M := M(Y,E−Y ) over c,

first expressing it in terms of Zc. The fiber diagram

Zc C× Yc C× Y C M× {c}

Z CA1 ×A1 Y CA1 × Y CA1 M× A1

induces the following fiber diagram with isomorphic horizontal arrows:

Sec(Z/CA1)×M×A1 (M× {c}) Sec(Zc/C)

Sec(CA1 × Y/CA1)×M×A1 (M× {c}) Sec(C× Y/C)

Pulling back this square over M(Y ) ⊂ Sec(C× Y/C), we see that

(16) Mc =M(Y )×Sec(C×Y/C) Sec(Zc/C).

When c 6= 0, by (8) we have Mc =M(Y,E) the moduli constructed in Section 1.1.

To simplify (16) when c = 0, we first compute the restriction:

E−Y |Y0
= (EY) |Y0

⊗ (O(−Y0)) |Y0
= E |Y0

⊗ (OA1(−0)) |Y0
∼= E |Y0

,

since Y0 is the fiber over the origin 0 ∈ A1. We conclude that the special fiberM0 is equal

to

(17) M0 =M(Y )×Sec(C×Y/C)Sec(V bC×Y0
(ω⊗E ∨|Y0

)/C) =M(X)×Sec(C×X/C)Sec(Z0/C)

where Z0 = V bC×X(EX ⊕ ω ⊗ E ∨X ). The final equality uses that Y0 = NX/Y ∼= E |X since

differentiating the regular section s induces a surjection TY |X → E |X with kernel TX . In

particular we have the following corollary to Proposition 2.3.2.

Corollary 2.4.1. The stack M(Y,E) is a separated Deligne–Mumford stack of finite type.

Remark 2.4.2. The proof of Proposition 2.3.2 can also be used to directly show that

M(Y,E) is a separated Deligne–Mumford stack of finite type. In particular, no proper-

ties of s are needed for this result.
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3. The perfect obstruction theory

3.1. A general set-up. We now construct a “candidate” perfect obstruction theory for

the moduli of sections defined in (13), in the general situation of (12). Consider the family

Z → C → U in (12), and recall the notational conventions in 1.4.

Let LZ/C denote the relative cotangent complex of [42]. We have a morphism in the

derived category of CSec

Ln∗LZ/C → LCSec/C
∼←− π∗LSec(Z/C)/U.

Tensoring this morphism with ω•Sec and applying Rπ∗, we obtain

Rπ∗(Ln
∗LZ/C ⊗ ω•Sec)→ Rπ∗(π

∗LSec(Z/C)/U ⊗ ω•Sec).

Since π!• = ω•Sec ⊗ π∗• is right adjoint to Rπ∗, we obtain

Rπ∗(π
∗LSec(Z/C)/U ⊗ ω•Sec) = Rπ∗π

!LSec(Z/C)/U → LSec(Z/C)/U

hence a morphism

(18) φSec(Z/C)/U : E•Sec(Z/C)/U := Rπ∗(Ln
∗LZ/C ⊗ ω•Sec)→ LSec(Z/C)/U.

Applying the construction of (18) to Z = C× Y → C→M, we obtain

(19) φY : EM(Y )/M := Rπ∗(Lf
∗LY ⊗ ω•) −→ LM(Y )/M

where f : C → Y is the composition of the universal section with the projection C×Y → Y .

By assumption, φY is a perfect obstruction theory for M(Y )→M. Similarly replacing Y

by X, we obtain

(20) φX : EM(X)/M := Rπ∗(Lf
∗LX ⊗ ω•) −→ LM(X)/M

which we assume is a perfect obstruction theory of M(X)→M.

3.2. The family of perfect obstruction theories. We investigate some situations when

(18) is a (perfect) obstruction theory in the sense of [8]. Consider the following commutative

diagram

(21) Z

q

��

f−1Z

��

55

CA1 × Y

��

CM(Y,E−Y )

ñ

66

n

//

µ
//

π

��

CM(Y )A1
//

��

m

66

CA1

��

M(Y,E−Y )
p

// M(Y )A1 // MA1 // A1

where the two bottom squares are cartesian, m is the universal map ofM(Y ), and n is the

universal map of M(Y,E−Y ). Applying (18) to M :=M(Y,E−Y )→MA1 , we obtain

(22) φ : EM/MA1
:= Rπ∗(Ln

∗LZ/CA1
⊗ ω•M(Y,E−Y )

) −→ LM(Y,E−Y )/MA1
.
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For later use, we describe the fibers of φ over A1 as follows. Let c be a closed point in

A1 and let ιc : Mc →M(Y,E−Y ) be the fiber of M(Y,E−Y ) → A1 over c as in Section 2.4.

The specialization φc of φ to Mc is the composition

φc : EMc/M := ι∗cEA1

ι∗cφ−−→ ι∗cLM(Y,E−Y )/MA1
−→ LMc/M

where the second arrow is the canonical one. By Lemma A.2.4, since Y → A1 is flat, the

morphism φc is isomorphic to the one constructed by applying (18) to the fiber of (21) over

c ∈ A1. That is, we have a commuting diagram

(23)

EMc/M LMc/M

Rπ∗(Ln
∗
cLZc/C ⊗ ω•Mc

) LMc/M

∼

φc

We will also refer to the bottom arrow as φc.

The main result of this section is the following:

Proposition 3.2.1. The morphism φ (resp. φc) defines a perfect obstruction theory for

M(Y,E−Y )→MA1 (resp. Mc →M).

3.3. Proof of Proposition 3.2.1. By [8, Theorem 7.2], it suffices to show that φ is a per-

fect obstruction theory. We first show that φ defines an obstruction theory ofM(Y,E−Y )→
MA1 in the sense of [8, Definition 4.4].

The composition Z → CA1×Y → CA1 as in (21) induces a triangle of cotangent complexes

Lq∗LCA1×Y/CA1
|Z −→ LZ/CA1

|Z −→ LZ/CA1×Y
[1]−→ .

By Lemma A.2.3 we have a morphism of distinguished triangles

(24)

p∗EM(Y )A1/MA1
EM/MA1

Rπ∗(n
∗LZ/(CA1×Y ) ⊗ ω•)

p∗LM(Y )A1/MA1
LM(Y,E−Y )/MA1

LM(Y,E−Y )/M(Y )A1

φ φrel

We claim that the left and right vertical maps have the property that h0 is an isomorphism

and h−1 is surjective. Granting this, applying the five lemma to the long exact sequence

of cohomology shows that the middle vertical map does as well. The claim on the leftmost

arrow holds since we have assumed that (18) defines an obstruction theory on M(Y ) over

M, so by Lemma A.1.3 the morphism (18) also defines an obstruction theory on M(Y )A1

over MA1 (in this case, both horizontal arrows in (59) are quasi-isomorphisms). The claim

on the rightmost arrow is the content of the following lemma.

Lemma 3.3.1. The morphism φrel is an obstruction theory in the sense of [8, Definition

4.4].

The argument for Lemma 3.3.1 is standard. For example, the proof of [1, Prop 4.2]

applies verbatim to our situation, once we have the following lemma:
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Lemma 3.3.2. Suppose we have a commutative diagram of solid arrows

(25) T

J2=0
��

CT

��

oo
nT

// Z

p

��

T ′ CT ′oo //

nT ′

66

fT ′

// CA1 × Y

where T → T ′ is an embedding defined by a square zero ideal J , the left square is cartesian

with CT and CT ′ twisted curves, and [fT ′ ] ∈ M(Y )(T ′) and [nT ] ∈ M(Y,E−Y )(T ). Then a

lift nT ′ of nT exists if and only if the obstruction

Ln∗TLZ/CA1×Y → LCT /CT ′ → J [1]

in Ext1(Ln∗TLZ/CA1×Y , J) vanishes, and in this case the set of extensions is a torsor under

Ext0(Ln∗TLZ/CA1×Y , J).

Observe that this lemma does not follow from [33, III.2.2.4] because the cotangent com-

plex LZ/CA1×Y
is not a cotangent complex of ringed topoi, nor does it follow from [44,

Thm 1.5] because our base CA1 × Y is not a scheme.

Proof. The distinguished triangle of cotangent complexes

Ln∗TLZ/CA1×Y → LCT /CA1×Y → LCT /Z →

leads to a long exact sequence

Ext0(Ln∗TLZ/CA1×Y , J)→ Ext1(LCT /Z , J)
α−→ Ext1(LCT /CA1×Y , J)

o−→ Ext1(Ln∗TLZ/CA1×Y , J).

The diagram (25) defines commuting triangles

CT //

��

CT ′

fT ′zz

and CT //

��

CT ′

nT ′
}}

CA1 × Y Z

Applying [44, Theorem 1.1], since all maps in the right square of (25) are representable,

we see that the left triangle gives an element [fT ′ ] ∈ Ext1(LCT /CA1×Y , J), and likewise the

right triangle gives an element [nT ′ ] ∈ Ext1(LCT /Z , J). Under this identification, the map

given by sending [nT ′ ] to [p ◦ nT ′ ] is compatible with the map on Ext groups. This follows

from the definition of the isomorphism in [44, Thm 1.1] and the functoriality described in

[33, III.1.2.2]. Hence a lift nT ′ exists if and only if the fiber α−1([fT ′ ]) is nonempty, if and

only if the obstruction o([fT ′ ]) vanishes. Furthermore, the obstruction o([fT ′ ]) is given by

the composition

Ln∗TLZ/CA1×Y → LCT /CT ′ → J [1]

where in particular the first arrow is the composition Ln∗TLZ/CA1×Y → LCT /CA1×Y →
LCT /CT ′ . This follows from the definition of the isomorphism in [44, Thm 1.1].

Assuming o([fT ′ ]) = 0, we compute directly that the lifts form an Ext0(Ln∗TLZ/CA1×Y , J)-

torsor. Suppose we have two lifts ni of nT for i = 1, 2 inducing the same fT ′ . We may then

view ni as sections of CT ′ ×CA1×Y Z → CT ′ . We have their differences

(n∗1 − n∗2) ∈ Ext0(n∗TΩCT×CA1×Y
Z/CT , J) = Ext0(n∗TΩZ/CA1×Y , J) ∼= Ext0(Ln∗TLZ/CA1×Y , J)

by a standard calculation. �
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Lemma 3.3.3. Rπ∗(Ln
∗LZ/(CA1×Y ) ⊗ ω•) is perfect of amplitude [−2, 0].

Proof. Consider the composition Y → E|Y×A1 → Y ×A1 where the first arrow is a regular

embedding. Thus by (14), the morphism Z → (CA1 ×Y ) is affine and lci. This implies that

LZ/(CA1×Y ) is perfect of amplitude [−1, 0], hence Ln∗LZ/(CA1×Y )⊗ω• is perfect of amplitude

[−2,−1]. Then (1) follows as we push forward along a family of twisted curves. �

It remains to verify that EM/MA1
is perfect in [−1, 0]. Rotating the top of (24), we

obtain a distinguished triangle

Rπ∗(Ln
∗LZ/(CA1×Y ) ⊗ ω•)[−1] −→ p∗EM(Y )A1/MA1

−→ EM/MA1
−→

Since the middle complex is perfect in [−1, 0] and the left one is perfect in [−1, 1] (this uses

regularity of (9), EM/MA1
is perfect in at least [−2, 0]. We will next prove that EM/MA1

is

perfect in [−1, 0] by showing that h2(E∨M/MA1
) = 0.

This coherent sheaf vanishes if its fibers do. Recall the inclusion ιc : Mc → M(Y,E−Y )

of a fiber over A1. We have

(26) ι∗ch
2(E∨M/MA1

) = h2(Lι∗cE∨M/MA1
) = h2

(
Rπ∗

(
Lι∗cLn

∗(LZ/CA1
⊗ ω•)∨

))
,

where now Lι∗c is pullback to a closed fiber of the universal curve on M(Y,E−Y ). The two

equalities hold because (1) E∨A1 is perfect, so its derived pullback is computed by the usual

pullback applied to each term; and (2) π is flat so we may apply the tor-independent base

change theorem (see e.g. [30, Cor 4.13]). The right hand side of (26) is precisely the second

cohomology of E∨Mc/M
(using (23)). Thus, the proof of Proposition 3.2.1 is concluded by

the following observation:

Lemma 3.3.4. The fibers EMc/M in (23) are perfect in [−1, 0].

Proof. We first consider the case c = 0. The sequence Z0 → C×X → C induces a triangle

of cotangent complexes

Lf∗LC×X/C −→ Ln∗0LZ0/C −→ Ln∗0LZ0/C×X −→

Applying the construction of (18) and rotating the triangle, we obtain a distinguished

triangle

Rπ∗(Ln
∗
0LZ0/C×X ⊗ ω

•)[−1] −→ EM(X)/M −→ EM0/M −→

Since Y0 = E|X → X is the projection of a vector bundle, Z0 → C × X factors through

a sequence of smooth representable morphisms Z0 → C × Y0 → C ×X. Thus LZ0/C×X is

a vector bundle over Z0. This implies that the left side of the above triangle is perfect in

[0, 1]. Since by assumption EM(X)/M is perfect in [−1, 0], EM0/M is perfect in [−1, 0] as

well.

Replacing X by Y , and noticing that EM(Y )/M is perfect in [−1, 0] by assumption, the

case of c 6= 0 can be then proved similarly. �

3.4. Virtual cycles. We now have the necessary data to define virtual cycles on M =

M(Y, E−Y ) and its fibersMc using [8, Sec 5] (note that the need for global resolutions was

removed in [38]). When c 6= 0, by Section 2.4 we have Mc = M(Y,E). This, combined

with (23), yields the following corollary to Proposition 3.2.1.
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Corollary 3.4.1. The moduli space M (resp. Mc) carries a virtual fundamental class

[M]vir (resp. [Mc]
vir) defined by the relative perfect obstruction theory given by the canon-

ical morphism (18). In particular, when c 6= 0 we obtain a virtual fundamental class

[M(Y,E)]vir := [Mc]
vir on M(Y,E) =Mc.

Remark 3.4.2. One can directly show that the canonical theory (18) is a perfect obstruction

theory on M(Y,E), and hence induces a virtual fundamental class [M(Y,E)]vir, indepen-

dent of any assumptions on s.

4. The cosection

4.1. Relative cosection in the general setting. We now define a cosection of the rela-

tive obstruction sheaf of the candidate obstruction theory (18) on (an open substack of) the

moduli of sections (13), in the general situation of (12). Consider the family Z → C → U

in (12), and recall the notational conventions in 1.4. Let vb(ω) → C be the total space of

the vector bundle corresponding to the dualizing sheaf ωU on C. The cosection construction

applies when the morphism Z → C factors as

Z
W−→ vb(ω)→ C.

We also assume that the base U is smooth for constructing an absolute cosection in the

next section.

The morphism W induces a canonical map

ω∨Sec = Ln∗LW∗Lvb(ω)/C → Ln∗LZ/C .

Tensoring this morphism with ω•Sec, applying Rπ∗, taking the (derived) dual, and finally

composing with the canonical map (Rπ∗(OCSec [1]))∨ −→ OSec[−1], we get a cosection for

the obstruction theory as a morphism in the derived category:

(27) σ : E∨Sec(Z/C)/U → (Rπ∗(OCSec [1]))∨ −→ OSec[−1].

The map (Rπ∗(OCSec [1]))∨ −→ OSec[−1] is the dual of a shift of the map OSec → Rπ∗(OCSec)

induced via adjunction by π∗OSec = Lπ∗OSec → OCSec . The cosection σ of the ob-

struction theory induces a cosection σ1 of the relative obstruction sheaf ObSec(Z/C)/U :=

h1(E∨Sec(Z/C)/U), defined to be h1 applied to (27):

(28) σ1 : h1(E∨Sec(Z/C)/U)→ h1(π∗(OCSec [1]))∨)
∼−→ OSec(Z/C),

where the second map is now an isomorphism. The degeneracy locus of σ (or of σ1) is the

closed subset of Sec(Z/C) where the fiber of σ1 vanishes. We denote it Sec(Z/C)(σ).

The cosection (27) has the useful property that it vanishes on the image of the intrinsic

normal cone in h1/h0(E∨Sec(Z/C)). This is the content of the next lemma.

Lemma 4.1.1. The map of cones induced by σ ◦ φ∨ is zero.

Proof. Let Sec(vb(ω)/C) be the moduli of sections of vb(ω)→ C over U. By [13, Prop 2.2]

for orbifold curves, the morphism Sec(vb(ω)/C)→ U is smooth and representable by affine
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schemes. Composing sections of Z → C with W induces a morphism µ : Sec(Z/C) →
Sec(vb(ω)/C). From the left square in (56), we have a commuting square

(µ∗ESec(vb(ω)/C)/U)∨ (ESec(Z/C)/U)∨

(µ∗LSec(vb(ω)/C)/U)∨ (LSec(Z/C)/U)∨

σ̂

φ∨Sec(Z/C)/U

where σ̂ is the morphism

E∨Sec(Z/C)/U → (Rπ∗(OCSec [1]))∨

from (27) followed by a quasi-isomorphism. After applying h1/h0 to this diagram, the

composition ↑← vanishes because

h1/h0((µ∗LSec(vb(ω)/C)/U)∨) = NSec(vb(ω)/C)/U = 0,

where N denotes the intrinsic normal sheaf, because Sec(vb(ω)/C) → U is smooth and

representable by affine schemes. On the other hand, the desired map of cones factors

through the composition ← ↑. �

4.2. The family cosection. Let M = M(Y,E−Y ) with fiber Mc over a closed point

c ∈ A1. Recall the perfect obstruction theory φ : EM/MA1
→ LM/MA1

and its specialization

φc : Ec = EMc/M → LMc/M, see (22) and Proposition 3.2.1.

In this section, we apply the general construction of (27) to get a cosection

σ : E∨M/MA1
→ OM[−1].

To do so, let $ → CA1 be the C∗-torsor of ω = ωCA1
so that ω = $ ×C∗ C, hence Z =

$ ×C∗ (E−Y )∨. Let vb(ω) → CA1 be the total space of ω. Taking the product of (10) with

$ and then quotienting by C∗, we see that W descends to a map

W : Z → vb(ω)

over CA1 , so we get the relative cosection σ above.

4.3. Degeneracy locus. The inclusion X → Y induces a closed immersion Sec(C ×
X/C) ↪→ Sec(C× Y/C) by Lemma A.1.4. Let M(X) denote the intersection

M(X) := Sec(C×X/C)×Sec(C×Y/C)M(Y ).

The closed embedding X × A1 ⊂ Z (inclusion in Y followed by the zero section) induces a

closed embedding M(X)× A1 ⊂M(Y,E−Y ) over A1 by Lemma A.1.4.

In this section we compute the degeneracy locus M(σ) ⊂ M. Our main result is the

following.

Proposition 4.3.1. As closed sets, M(σ) =M(X)× A1.

After describing the points of M(σ) in more detail, we will prove each containment in

Proposition 4.3.1 separately. The forward containment uses our assumption that X ∩Y 0 is

smooth.
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Let (C, n, c) be a closed point in M, with C a twisted curve, n : C → Z a map over CA1

and c ∈ A1 a closed point. By definition, (C, n, c) is in M(σ) if the fiber σ|(C,n,c) vanishes.

We have a commuting diagram

Z vb(ω)

C × Yc C

WZ

where Z = Z ×CA1
C, vb(ω)→ C is the vector bundle of ωC , and WZ is the restriction of

W. Restricting (27), we see that σ|(C,n,c) is h1 of the map

(Rπ∗(Ln
∗LZ/C ⊗ ω•))∨ → (Rπ∗OC [1])∨

followed by a quasi-isomorphism (we have used flatness of Z → CA1). Both the source and

target of this map are (quasi-isomorphic to) complexes of vector bundles in [0,1]. Cancelling

the shifts and taking duals, we see that the fiber of the cosection vanishes if and only if

(29) R0π∗(OC)→ R0π∗(Ln
∗LZ/C ⊗ ωC)

is zero. Since base points are discrete, the sheaf hi(ωC ⊗ n∗LZ/C) is torsion if i 6= 0. Using

a spectral sequence, we obtain that

R0π∗(Ln
∗LZ/C ⊗ ωC) = R0π∗

(
h0(Ln∗LZ/C ⊗ ωC)

)
.

Therefore, σ|(C,n,c) = 0 if and only if

(30) h0(Ln∗(dWZ)) : ω∨C → h0(Ln∗LZ/C)

vanishes, where dWZ denotes the canonical map of cotangent complexes induced by WZ .

The forward containment of Proposition 4.3.1 follows from the next lemma and Lemma

2.2.2 (the notation is defined in Section 2.2).

Lemma 4.3.2. If (C, n, c) is in M(σ), then n factors through CA1 ×A1 Crit(W 0).

Proof. Let Z0 = Z ×C×Yc (C ×Y0
c ) and let C0 ⊂ C be the complement of the base locus—

i.e., C0 = n−1(Z0). If (30) vanishes, its restriction to C0 also vanishes. But the restriction

h0(Ln∗LZ/C)|C0 is equal to Ω1
Z0/C0 since Z0 → C0 is smooth and Deligne–Mumford, so we

know that if (30) vanishes then

n∗C0dWZ0 : n∗C0W∗Z0Ω1
C |C0 → n∗C0Ω1

Z0/C0

vanishes; that is, nC0 factors through Crit(WZ0).

On the other hand, recall that we have the following diagram:

$ × (E0)∨ $ × C

Z0 V b(ωC)|C0

id×W 0

WZ0

where $ is the C∗-torsor on C such that $×C∗ C = ωC where C∗ acts on C via multiplica-

tion. This diagram realizes the top row as a C∗-torsor over the bottom row; in particular the

square is fibered. By functoriality of the map of cotangent sheaves, the locus Crit(WZ0)

is the quotient of $ × Crit(W 0) by C∗. We know from Lemma 2.2.2 that Crit(W 0) is

C∗-invariant, so this quotient is precisely C×Crit(W 0). Hence, by the previous paragraph,
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nC0 factors through C × Crit(W 0). Taking closure, topology forces n to factor through

C × Crit(W 0). �

For the backwards containment of Proposition 4.3.1, we claim that if (C, n, c) is a closed

point in M such that n factors through CA1 ×X, then the map h0(Ln∗(dWZ)) of (30) is

zero. The claim is a consequence of the following lemma.

Lemma 4.3.3. Let Y → S be a morphism of algebraic stacks, let L be a line bundle on S,

and let E be a vector bundle on Y with a section s with zero locus X. Let W : L⊗E∨ → L

be the morphism induced by s. Then dW |X : L∨ ∼= LL/S |X → LY/S |X is the zero morphism.

Proof. As a first example, let Y1 = Cn with coordinates x1, . . . , xn, let S1 be a point and

L1 = C be trivial, set E1 = Y1 × Y1 and s1 = (x1, . . . , xn), so that X1 is the origin.

Then E∨1 ⊗ L1 = Y1 × Y ∨1 ⊗ L1
∼= Cn × Cn with coordinates x1, . . . , xn, p1, . . . , pn, and

W1 : E∨1 ⊗ L1 → L1 is given by

W1(x1, . . . , xn, p1, . . . , pn) = p1x1 + · · ·+ pnxn = 〈p, s〉,

where p = (p1, . . . , pn). It follows that dW1 : LL1/S1
|E∨1 = OE∨1 → ΩE∨1 = LL1⊗E∨1 /S1

is

given by

dW1 =

n∑
i=1

(pidxi + xidpi) = 〈p, ds〉+ 〈s, dp〉,

and hence dW1|X1
= 0 since p and s vanish on X1.

Now consider a second example that is the quotient of the above example. We let C∗ act

on L1 → S1 by scaling L1
∼= C, and we let G = GL(n)×C∗ act diagonally on E1 → Y1 via

the standard representation of GL(n) on Y1 and the trivial action of C∗. In the resulting

example we have Y2 = [Y1/G], S2 = BC∗, L2 = [L1/C∗], and E2 = [(Y1 × Y1)/G]. The

section s2 is still the diagonal one and its vanishing locus X2 is BG ⊂ Y2. Note that

E∨2 ⊗ L2 = [(Y1 × Y ∨1 ⊗ L1)/G]. We wish to show that the map of cotangent complexes

dW2 for the diagram

(31)

E∨2 ⊗ L2 [L1/C∗]

BC∗ BC∗

W2

vanishes after pulling back to X2. For this it suffices to check that the pull-back (dW2)|X1
of

(dW2)|X2 along X1 = pt→ X2 vanishes. Consider the commutative diagram of solid arrows

where the bottom sequence is the pullback along X1 → E∨1 ⊗ L1 of triangle associated to

the quotient map E∨1 ⊗ L1 → E∨2 ⊗ L2:

LL1
|X1

ϕ

tt

(dW2)|X1

��

(dW1)|X1
=0

))

L(E∨1 ⊗L1)/(E∨2 ⊗L2)|X1 [−1] // LE∨2 ⊗L2
|X1

// LE∨1 ⊗L1
|X1

//

The vanishing (dW1)|X1
= 0 implies that (dW2)|X1

factors through ϕ. Since both LL1
and

L(E∨1 ⊗L1)/(E∨2 ⊗L2)|X1
are locally free in degree 0, we observe ϕ = 0, hence (dW2)|X1

= 0.
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Finally, we claim that the general case factors through the second example. Indeed,

given Y, S,E, L, and s as in the statement of Lemma 4.3.3, we get a commuting cube whose

left and right sides are fibered:

E∨2 ⊗ L2 L2

E∨ ⊗ L L

Y2 S2

Y S

W2

W

The map Y → Y2 = [Y1/G] = [Y1/GL(n)] × BC∗ is induced the vector bundle E and its

section s (which yield a map Y → [Y1/GL(n)]) and the pullback of L (which yields the map

Y → BC∗). From the functoriality of the cotangent complex (see e.g. [49, Lem 2.2.12] we

get a commuting square

LL2/S2
LE∨2 ⊗L2/S2

LL/S LE∨⊗L/S

dW2

∼

dW

Since dW2 vanishes, so does dW . �

4.4. Specialization. We can specialize σ to obtain relative cosections σc : E∨Mc/M
→

OMc
[−1]. Let ιc :Mc →M be the inclusion.

Definition 4.4.1. The specialization σc of σ is the restriction

σc : Lι∗cE∨M/MA1

Lι∗cσ−−−→ Lι∗c(Rπ∗(OCM [1]))∨ −→ Lι∗c(OM[−1]) = OMc
[−1].

Applying h1 we get a cosection σ1
c of ObMc/M.

We could also define a cosection for E∨Mc/M
by applying the construction (28) to the

restriction Wc : Zc → vb(ω)c of W, using the identification in (23). Call this alternate

cosection ρ.

Lemma 4.4.2. The cosections σc and ρ are canonically isomorphic.

Proof. By the functoriality of the cotangent complex we have a commuting square

Lι∗cLW∗Lvb(ω)/CA1
Lι∗cLZ/CA1

LW∗cLvb(ω)c/C LZc/C

∼ ∼

where all arrows are canonical morphisms of cotangent complexes except for the left arrow,

which differs from a canonical arrow by a quasi-isomorphism. The two vertical arrows are

isomorphisms because Z and vb(ω) are both flat over C. After applying Ln∗c , tensoring

with ω•, applying R(πc)∗ and dualizing, we obtain the square

Lι∗c(Rπ∗OCM [1])∨ E∨Mc/M

(R(πc)∗OCMc
[1])∨ (R(πc)∗(Ln

∗
cLZc/C ⊗ ω•))∨

∼ ∼
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where the right vertical arrow is the dual of the left vertical arrow in (23). Composing with

the adjunction homomorphisms, the top horizontal arrow becomes σc, while the bottom

horizontal arrow becomes ρ. �

This together with Lemma 4.1.1 implies that the relative cosections σc have the property

that the map of cones induced by σc ◦ φ∨c is zero. Moreover, combining this result with

Lemma 2.2.1 and Proposition 4.3.1 we have the following.

Corollary 4.4.3. The specialization σc for c 6= 0 is induced by the section s ∈ Γ(Y,E ), and

σ0 is induced by the tautological section of E |NX/Y ' E |EX . In either case, the degeneracy

locus Mc(σc) of the specialized cosection is equal to M(X) ⊂Mc.

4.5. Cosection localized virtual cycles. We have the necessary data to define cosection

localized virtual cycles on M =M(Y,E−Y ) and its fibers Mc. Specifically, set

[M]vir
σ := 0!

σ([CM/MA1
]) ∈ A∗(M(X)× A1) [Mc]

vir
σc := 0!

σc([CMc/M]) ∈ A∗(M(X))

where the cosection localized Gysin maps 0!
• are defined in [34, (3.5)]. By Proposition

B.0.1 these classes agree with the ones defined in [34] using the corresponding absolute

obstruction theory and cosection, so that in particular by [34, Theorem 5.2], we have

(32) ι∗[M]vir
σ = [M]vir ι∗[Mc]

vir
σc = [Mc]

vir,

where the virtual classes [M]vir and [Mc]
vir were defined in Corollary 3.4.1. Recall that by

definition, [M(Y,E)]vir is equal to the class [Mc]
vir for c 6= 0.

These cosection localized virtual cycles are related by the following lemma, which is

[16, Theorem 4.6]. Our proof below follows exactly that of (loc. cit.); we include it for

completeness.

Lemma 4.5.1. The constructed virtual cycles satisfy

ι!c[M]vir
σ = [Mc]

vir
σc

where ι!c is the Gysin map for the regular embedding ιc : Mc →M.

Proof. This argument follows that of [16, Theorem 4.6]. We have morphisms of algebraic

stacks M → M × A1 → M and a relative perfect obstruction theory φ : EM/M×A1 →
LM/M×A1 with a cosection σ. By Proposition B.0.1 there is a relative perfect obstruction

theory EM/M → LM/M on M with a cosection ρ such that ρ descends to an absolute co-

section and [M]vir
ρ = [M]vir

σ . Moreover, restricting the morphism of distinguished triangles

(67) to Mc ⊂ M, we obtain the top two rows of the following diagram of distinguished

triangles:

(33)

EM/M|Mc
EM/M×A1 |Mc

q∗LM×A1/M[1]|Mc

LM/M|Mc LM/M×A1 |Mc q∗LM×A1/M[1]|Mc

LM/M|Mc LMc/M LMc/M
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the bottom row is the canonical triangle and the dotted arrow is induced by the mapping

cone axiom. The middle column is precisely the specialization φc in (23) which by Proposi-

tion 3.2.1 is isomorphic to the perfect obstruction theory on Mc. The morphisms between

the top and bottom rows of (33) are the compatibility required to apply [34, Thm 5.2]. By

that result, ι![M]vir
ρ = [Mc]

vir
σc as desired. �

5. Calculation in the special fiber

In this section we investigate the special fiber M0 of M =M(Y,E−Y ). Recall from (17)

that

M0 =M(X)×Sec(C×X/C) Sec(Z0/C) with Z0 = V bC×X(EX ⊕ ω ⊗ E ∨X ).

Recall from Proposition 3.2.1 and (23) thatM0 has a canonical relative perfect obstruction

theory

φ0 : Rπ∗(Ln
∗LZ0/C ⊗ ω

•)→ LM0/M

where n : CM0
→ Z0 is the universal section, and by Corollary 4.4.3 it carries a cosection

σ0 induced by the tautological section of E |EX . The degeneracy locus of the cosection is

contained in M(X) ⊂ M0, embedded via the zero section. The goal of this section is to

prove the following.

Theorem 5.0.1. We have an equality of virtual classes

[M0]vir
σ0

= (−1)χ(E,M(X))[M(X)]vir in A∗(M(X)).

Here, (−1)χ(E,M(X)) ∈ A0(M(X)) is the locally constant function defined via (3).

Remark 5.0.2. In Theorem 5.0.1, the function χ(E,M(X)) is constant on each connected

component of M(X). If {Mi}mi=1 are the connected components of M(X), then we define

(−1)χ(E,M(X))[M(X)]vir =

m⊕
i=1

(−1)χ(E,Mi)[Mi]
vir

as a class in A∗(M(X)) =
⊕
A∗(Mi).

Explicitly, by Riemann–Roch for twisted curves [2, Theorem 7.2.1]

(34) χ(E,Mi) = rk(E )(1− g) +

∫
β

c1(E )−
n∑
j=1

agej(E )

where agej(E ) is the age of f∗E at the jth marking, which is constant on Mi.

The proof of Theorem 5.0.1 uses cosection localized torus localization [12, Thm 3.4]. We

recall two definitions from there. First, if X is a Deligne–Mumford stack with a C∗-action,

the fixed locus XC∗ is defined étale-locally as follows. Let Spec(A)→ X be an étale affine

chart, equivariant after reparametrization (such charts exist by [5, Thm 4.3]); then A is a

Z-graded ring and in this chart the fixed locus is cut out by the ideal generated by elements

of positive weight. One can check that a closed point x ∈ X(C) is in the fixed locus if and

only if tx is isomorphic to x for every t ∈ C∗ (see for example [5, Prop 5.23]).

Second, if E is a perfect complex of sheaves on X, we say that E = A ⊕ B is a de-

composition into fixed and moving parts if given an equivariant étale chart U → X and
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a quasi-isomorphism f : E|U → F with F a bounded complex of vector bundles, f in-

duces quasi-isomorphisms A → F fix and B → Fmov to the fixed and moving parts of F ,

respectively.

In preparation to apply torus localization, we prove the following lemmas. The proof

of the first was explained to us by Bumsig Kim and Jeongseok Oh (see also [21, Foot-

note 1, p. 35]).

Lemma 5.0.3. Let M be a Deligne-Mumford stack of finite type and let π : C → M be a

family of prestable twisted curves as in [4]. If there exists a π-relatively ample line bundle

on C, then for any vector bundle E on C, the complex Rπ∗E is globally isomorphic to a

2-term complex of vector bundles.

Proof. Factor π as the composition C p−→ C
q−→ M where C is the relative coarse moduli

space [3, Thm 3.1]. By assumption, there exists a q-relatively ample line bundle O(1) on

C, meaning that for any affine scheme U →M the pullback of O(1) to C ×M U is ample.

Let O(n) denote O(1)⊗n.

Choose n� 0 such that

(1) R1q∗O(n) = 0,

(2) R1q∗(p∗(E)⊗ O(n)) = 0, and

(3) q∗q∗O(n)→ O(n) is surjective.

Indeed, this is possible whenM is an affine scheme by [32, Thm III.8.8]. We cover a general

M with finitely many affine schemes and take the maximum value of the respective n’s.

Now points (3) and (1) yield a surjection of vector bundles π∗q∗O(n)→ p∗O(n). Let K

denote the kernel of this map, also a vector bundle. Taking the dual of the resulting short

exact sequence and tensoring with p∗O(n)⊗ E yields an exact sequence of vector bundles

(35) 0→ E → (π∗q∗O(n))∨ ⊗ p∗O(n)⊗ E → K∨ ⊗ p∗O(n)⊗ E → 0.

Using the projection formula twice, we compute

R1π∗

(
(π∗q∗O(n))∨ ⊗ p∗O(n)⊗ E

)
= H1

(
Rπ∗

(
(π∗q∗O(n))∨ ⊗ p∗O(n)⊗ E

))
= H1

(
(q∗O(n))∨ ⊗L Rq∗(O(n)⊗L Rp∗E)

)
Since p∗ is exact (see e.g. [43, Prop 11.3.4]) we may replace Rp∗E with p∗E; in particular

this is a coherent sheaf. Moreover since O(n) and q∗O(n) are vector bundles (by (1))

we may replace the derived tensor products ⊗L with the usual one. Since tensoring with

(q∗O(n))∨ commutes with taking cohomology, we see that (2) above implies that the sheaf

R1π∗

(
(π∗q∗O(n))∨ ⊗ p∗O(n) ⊗ E

)
= 0. Now the long exact sequence for Rπ∗ applied to

(35) produces the desired resolution of Rπ∗E. �

Lemma 5.0.4. The moduli space M0 has a C∗-action such that

(1) As closed sets, the fixed locus F of the action is naturally identified with M(X)

(2) There is a decomposition into fixed and moving parts

EM0/M|F = Efix ⊕ Emov

where Efix = EM(X)/M and Emov = Rπ∗(f
∗E ∨ ⊗ ω• ⊕ f∗E [1]), with π : CM(X) →

M(X) the universal curve and f : CM(X) → X the universal map.
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Proof. The torus C∗ acts on Z0 by scaling its fibers over C×X: let it act with weight 1 on

E and weight −1 on E∨ ⊗ ω. The fixed locus for this action is X.

The C∗-action on Z0 induces one onM0; let F be the fixed locus. Suppose (n : C → Z0)

is a closed point of F for some twisted curve C. Then n factors through C ×X ⊂ Z0 for

purely topological reasons as follows. Let P(Z0) be the projective closure of Z0 as a vector

bundle over C × X. Because (C, n) is fixed, if t ∈ C∗ is any closed point, then (C, n) is

isomorphic to (C, t◦n) as points ofM0, where t also denotes the function on Z0 defined by

t ∈ C∗. In particular, the image n(C) is invariant under the C∗-action. Invariance implies

that if n(C) contains some point of Z0 not in C×X, then it contains the entire fiber F of

Z0 containing this point. Then the composition

ñ : C
n−→ Z0 → P(Z0)

is proper and hence closed, so it is surjective onto its image which must contain the pro-

jective closure of F . This is a contradiction since ñ factors through Z0. Conversely, if n

factors through C×X then (n : C → Z0) is C∗-fixed. This proves (1).

Now let ι : C×X → Z0 be the inclusion of the zero section. The C∗-equivariant sequence

of maps Z0 −→ C × X → C produces a distinguished triangle of C∗-equivariant tangent

complexes which we can restrict to C×X, obtaining

(36) LC×X/C → Lι∗LZ0/C → Lι∗LZ0/C×X → .

In fact, this triangle splits by the canonical map Lι∗LZ0/C → LC×X/C induced by ι. Let

πF : CF → F and nF : CF → Z0 be the restrictions of π and n to CF , the restriction of

the universal curve to F . We have seen that nF = ι ◦ f for a morphism f : CF → C ×X.

Because π is flat we have

EM0/M|F =
(
Rπ∗(Ln

∗LZ0/C ⊗ ω
•)
)
|F = R(πF )∗(Lf

∗Lι∗LZ0/C ⊗ ω
•).

Hence, applying R(πF )∗(Lf
∗(•)⊗ ω•) to the splitting sequence (36) we obtain

EM0/M|F = R(πF )∗(f
∗E ∨ ⊗ ω• ⊕ f∗E [1])⊕ EM(X)/M,

where EM(X)/M is defined in (20) and LZ0/C×X was computed using (17). Since local

sections of E are all scaled with weight 1 by the C∗-action, local sections of f∗E and ω⊗f∗E ∨

are as well with weight ±1, and in particular R(πF )∗(f
∗E [1]) and R(πF )∗(ω

•⊗f∗E ∨) have

pure weights ±1. Likewise, since C × X and hence LC×X/C is C∗-fixed, the cohomology

sheaves of EM(X)/M are C∗-fixed. This proves (2). �

Proof of Theorem 5.0.1. To apply [12, Thm 3.4] we must use an absolute perfect obstruc-

tion theory φabs : EM0
→ LM0

. It may be defined by the morphism of distinguished triangles

(37)

EM0
EM0/M q∗LM[1]

LM0
LM0/M q∗LM[1]

φabs φ

where q : M0 → M is the projection. By Proposition B.0.1, φabs is a perfect obstruction

theory and it carries a cosection σabs, and the induced cosection localized virtual funda-

mental class is equal to [M0]vir
σ . This morphism of distinguished triangles is equivariant

(i.e., pulled back from a morphism of DTs on [M0/C∗]) by Lemma A.3.4. Moreover, note
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that the original cosection σM0/M was equivariant for the C∗-action scaling E , since it was

induced by an equivariant section; so σabs is equivariant as well.

The splitting of EM0/M in Lemma 5.0.4 induces a splitting of EM0 as follows. There is

a commuting diagram where all rows and columns are distinguished:

EM(X) EM(X)/M q∗FLM

EM0
|F EM0/M|F q∗FLM

Emov Emov 0∼

Here EM(X) is the absolute obstruction theory forM(X), defined as in (37), and qF is the

restriction of q to F . To obtain this diagram, begin with the middle horizontal and vertical

triangle, and observe first that the top right square commutes. Note that the splitting

EM0/M|F → EM(X)/M and equality on q∗FLM induce a splitting of the leftmost column.

We conclude that

EM0 |F = EM(X) ⊕ Emov

is a decomposition into fixed and moving parts, respectively. By Lemma 5.0.3 and our

assumptions in Section 1.1, we may find a resolution Rπ∗(f
∗E ) = [E0 → E1] where E0 and

E1 are locally free of ranks r0 and r1, respectively, and of C∗-weight 1. In particular, Emov

has a global resolution and we may apply [12, Thm 3.5], obtaining

[M0]vir
σ0

=
[M(X)]vir

e((Rπ∗(f∗E ∨ ⊗ ω• ⊕ f∗E [1]))∨)
∈ AC∗(M0(σ))⊗Q[t] Q[t, t−1],

where the euler class is the C∗-equivariant one, we have identified the virtual class of the

fixed locus using Lemma 5.0.4, and we have remembered that the degeneracy locus in M0

is contained in M(X) ⊂M0. By Serre duality,

Rπ∗(f
∗E ∨ ⊗ ω•) ∼= (Rπ∗(f

∗E ))∨.

Therefore,

e((Rπ∗(f
∗E ∨ ⊗ ω• ⊕ f∗E [1]))∨) =

e(Rπ∗(f
∗E ))

e((Rπ∗(f∗E ))∨)
.

Using the resolution Rπ∗(f
∗E ) = [E0 → E1], we can write

e((Rπ∗(f
∗E ∨ ⊗ ω• ⊕ f∗E [1]))∨) =

e(E0)

e(E1)

e(E ∨1 )

e(E ∨0 )
=
e(E0)

e(E1)

e(E1)

e(E0)
(−1)r1−r0 = (−1)r0−r1 .

Noting that by definition r0 − r1 is the value of χ(E,M(X)) on the component of M(X)

under consideration, this finishes the proof of the theorem. �

Proof of Theorem 1.1.1. The Gysin maps ι!c : A∗(M(X)× A1)→ A∗(M(X)) are indepen-

dent of c, so fixing some c 6= 0 we have

(38) ι!c[M]vir
σ = ι!0[M]vir

σ ∈ A∗(M(X)).

By Lemma 4.5.1 the left hand side is [Mc]
vir
σc = [M(Y,E)]vir

σc ; combined with (32) this proves

(4). By Lemma 4.5.1 and Theorem 5.0.1 the right hand side of (38) is (−1)χ(E,M(X))[M(X)]vir,

proving (5). �
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6. Applications

We explain how Theorem 1.1.1 applies in various situations, and we relate it to existing

constructions of the moduli of p-fields.

6.1. Application to stable maps. Let Y be a smooth projective Deligne–Mumford stack.

Choose a vector bundle E on Y and a regular section whose zero locus X is smooth. Fix

nonnegative integers g, n and a class β ∈ H2(Y ), where Y denotes the coarse moduli space

of Y .

Proof of Corollary 1.2.1. Let ι : X → Y denote the inclusion, and letM(Y ) be the moduli

space of stable twisted maps Mg,n(Y, β). A priori, Mg,n(Y, β) is an open substack of

HomM(C, Y ×M); by Lemma A.1.1 canonical map Sec(C×Y/C)→ HomM(C, Y ×M) is an

equivalence. Moreover the morphism (18) is the usual obstruction theory on HomM(C, Y ×
M), so by [2, Section 4.5] its restriction toMg,n(Y, β) is perfect. The moduli spaceM(X)

is a disjoint union over β′ ∈ H2(X) with ι∗β
′ = β:

(39) M(X) =Mg,n(X,β) :=
⊔
β′ 7→β

Mg,n(X,β′).

Since degree is constant in (connected) families, each stack Mg,n(X,β′) is open in M(X).

In particular this is a decomposition into connected components. Since X is smooth, the

morphism (18) defines a relative perfect obstruction theory onM(X). By Theorem 1.1.1 we

see there is a moduli space of p-fieldsM(Y,E) containingMg,n(X,β) as a closed substack,

and a class [M(Y,E)]vir
loc satisfying

(40) [M(Y,E)]vir
loc = (−1)χ(E,M(X))[Mg,n(X,β)]vir in A∗(Mg,n(X,β)).

Using the decomposition (39) we rewrite the right hand side of (40) as

(−1)χ(E,M(X))[Mg,n(X,β)]vir =
∑
β′ 7→β

(−1)χ(E,Mg,n(X,β′))[Mg,n(X,β′)]vir,

which completes the proof. �

6.2. Application to quasimaps. Let Y = [W/G] where W is an affine l.c.i. variety and

G is a reductive group acting on W . Choose a character θ of G such that W s
θ = W ss

θ is

smooth and nonempty and has finite G-stabilizers. Let E be a G-equivariant vector bundle

on W with a G-equivariant regular section s whose zero locus U has smooth intersection

with W s
θ . Fix nonnegative integers g, n and a positive rational number ε, and choose a class

β ∈ Hom(PicG(W ),Q).

Proof of Corollary 1.2.4. Observe first that the G-equivariant sheaf E descends to a sheaf E

on [W/G] and that s descends to a regular section s with zero locus X = [U/G]. Moreover,

U is an affine l.c.i. variety with G-action. It is straightforward to check that

(W s
θ ∩ U) ⊂ Usθ ⊂ Ussθ ⊂ (W ss

θ ∩ U),

so W ss
θ = W s

θ implies that Ussθ = Usθ = U ∩W ss
θ , and by assumption this locus is smooth.

Hence we may consider moduli of ε-stable quasimaps to U//θG.

Let ι : U → W denote the inclusion, and let M(Y ) be the moduli space of ε-stable

quasimaps Mε

g,n(W//θG, β). We note that the definition in [20, Def 2.1] guarantees the

existence of an ample line bundle as required in Section 1.1 assumption (4). By Lemma A.2.5
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this is (isomorphic to) an open substack of Sec(C× [W/G]/C) and (18) is a relative perfect

obstruction theory defining the same virtual cycle as the one defined in [20, Sec 2.4.5].

As in the proof of Corollary 1.2.1, the moduli space M(X) is a disjoint union over β′ ∈
Hom(PicG(U),Q) with ι∗β

′ = β. An argument analogous to the one used in Section 6.1

completes the proof of the corollary. �

6.3. Relation to the original construction of Chang–Li. We compare our construc-

tion to that in [13], that is, to their moduli space Mg(P4, d)p and its relative perfect

obstruction theory (defined in [13, 3.1] and [13, Prop 3.1], respectively). The easiest com-

parison is to choose Y = [C5/C∗] and E the line bundle determined by the fifth power of

the regular representation, and set M(Y ) = Mg(P4, d). Observe that M(Y ) is an open

substack of Sec(C×P4/C), which is in turn an open substack of Sec(C× [C5/C∗]/C) via the

embedding P4 ⊂ [C5/C∗]. As before, set Z = V bC×Y (ω ⊗ E ∨).

Let CM(Y ) →M(Y ) be the universal curve and f : CM(Y ) → [C5/C∗] the universal map.

The moduli spaceMg(P4, d)p is defined to be Sec(f∗E⊗ω/CM(Y )). By Lemmas A.1.2 and

A.1.3 this is canonically isomorphic to our moduli space

M(Y,E) =M(Y )×Sec(C×[C5/C∗]/C) Sec(Z/C).

To compare the perfect obstruction theories, we use the following diagram.

(41)

Z

V b(L⊕5 ⊕ P) C×BC∗

CMp CDg
C

Mp Dg Mg

Here, Dg is the Picard stack of Mg, which is identified with Sec(C × BC∗/C), and L is

its universal line bundle, with P = L −⊗5 ⊗ ω. The stack Mp is M(Y,E) =Mg(P4, d)p.

All quadrilaterals in this diagram are fibered. The obstruction theory of [13, Prop 3.1]

is the canonical one (18) on Mp, relative to Dg; our obstruction theory is the canonical

one (18) relative to Mg. These are related by a morphism of distinguished triangles, and

in particular induce the same virtual cycle, by an argument analogous to that of Lemma

A.2.5.

6.4. Quantum Lefschetz. We will prove Theorem 1.2.3 in this section. Recall that we

assume

H1(C, f∗E ) = 0

for every closed point [f : C → Y ] ∈ M(Y ). Hence the zero section M(Y ) →M(Y,E) is

an isomorphism and R0π∗f
∗E is a locally free sheaf.

Pushing forward (5) under the inclusion ι : M(X)→M(Y,E), gives

(42) ι∗[M(X)]vir = (−1)χ(E,M(Y ))[M(Y,E)]vir in A∗(M(Y )).
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Now [M(Y,E)]vir and [M(Y )]vir are two virtual cycles on the same space but defined via

different obstruction theories.

By Lemma A.2.3, there exists a morphism of distinguished triangles

EM(Y,E)/M EM(Y )/M Rπ∗(Lf
∗LZ/C×Y ⊗ ω•)

LM(Y,E)/M LM(Y )/M LM(Y,E)/M(Y ) ,

so that we have a compatible triple of obstruction theories in the sense of [40, Definition 4.5].

Hence, by [40, Theorem 4.8, Example 3.17], we have

(43) [M(Y,E)]vir = π![M(Y )]vir,

where π! is virtual pullback via the projection M(Y,E)→M(Y ). Note that

(Rπ∗Lf
∗LZ/C×Y ⊗ ω•)∨ = Rπ∗(ω ⊗ f∗E ∨) = Rπ∗(f

∗E )∨ = (R0π∗f
∗E )∨[1].

Going through the definition of virtual pullback ([40, Construction 3.6]), we see that

(44) π![M(Y )]vir = (−1)χ(E,M(Y ))e(R0π∗f
∗E ) ∩ [M(Y )]vir.

Combining (42), (43) and (44), we conclude the proof of Theorem 1.2.3.

Appendix A. Summary of results about the moduli of sections

In this appendix we collect some results about the moduli of sections defined in (13) and

its candidate obstruction theory defined in (18). Most, if not all, of these results are well-

known, but we could not find references for the proofs. Since our argument relies heavily

on these properties, we give a coherent treatment here.

Throughout this appendix, all algebraic stacks a quasi-separated and locally finite type

over C. We fix such an algebraic stack U and π : C → U is a flat finitely-presented family

of connected, twisted (nodal) curves in the sense of [4]. By [49, Prop 2.2.6], such a family

is equipped with a functorial pair (ω•U, trU) where the complex ω•U is represented by ωU[1],

with ωU an invertible sheaf in the lisse-étale site of C; and trU : Rπ∗ω
•
U → OU is a morphism

in the derived category.

A.1. Properties of the moduli. Suppose we have morphisms of algebraic stacks

(45) Z →W → C π−→ U

where both Z → U and W → U have affine stabilizers. We prove some canonical isomor-

phisms of moduli of sections. The following observation will be useful.

Lemma A.1.1. Fix a diagram of algebraic stacks with morphisms as below, so that the

square is fibered (and includes a 2-morphism α):

F D

A B C

z

y

x

Then the arrow F → D induces an equivalence of groupoids

HomB(A,F )
∼−→ HomC(A,D).

Proof. Straightforward; see, for example, [49, Lem 2.3.1]. �
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In the context of (45), on Sec(W/C) we have the universal curve (pullback of C) and

universal section, denoted f : CSec(W/C) →W .

Lemma A.1.2. Let f∗Z denote the fiber product CSec(W/C)×W Z. Then there is a canonical

isomorphism

Sec(f∗Z/CSec(W/C)) ∼= Sec(Z/C)

of stacks over U.

Proof. The canonical morphism Φ: Sec(f∗Z/CSec(W/C))→ Sec(Z/C) is a morphism of cat-

egories fibered in groupoids over U, so to show Φ is an equivalence, it suffices to study the

induced map on fibers over a scheme T → U.

We compute the fiber of F := Sec(f∗Z/CSec(W/C)). The fiber of F over an arrow T →
Sec(W/C) is HomCSec(W/C)(CT , f∗Z); by Lemma A.1.1 this is equivalent to HomW (CT , Z).

Hence F(T → U) is the groupoid of dotted arrows

Z

W

CT C

T U

q

p

i

Specifically, an object of F(T ) is a tuple (z, w, τ, ω) where z : CT → Z and w : CT →W are

1-morphisms, and τ : q ◦ z → w and ω : p ◦w → i are 2-morphisms. An arrow in F(T ) from

(z1, w1, τ1, ω1) to (z2, w2, τ2, ω2) is a pair of 2-morphisms α : w1 → w2 and β : z1 → z2 such

that ω1 = ω2 ◦ p(α) and α ◦ τ1 = τ2 ◦ q(β).

Now let G be the usual construction of the fiber product for the diagram2

G Sec(Z/C)

Sec(W/C) Sec(W/C)

π2

id

The map Φ factors as F Φ′−→ G π2−→ Sec(Z/C). Of course π2 is an equivalence of stacks over

U. On the other hand, we claim that Φ′ induces the literal identity map from F(T ) to

G(T ). By definition, an object of the fiber of F is a tuple (w,ω; z, ζ; τ), where w : CT →W

and z : CT → Z are 1-morphisms, ω : p ◦ w → i and ζ : p ◦ q ◦ z → i are 2-morphisms, and

τ : q ◦ z → w is a 2-morphism such that ζ = ω ◦p(τ). The final condition determines ζ from

the other data, and hence these objects are literally the same as the objects of F . Arrows

in these two groupoids are also literally the same.

�

2Compare with [47, Tag 06N7].
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Lemma A.1.3. Let Z → C → U be as above. Suppose Z ′ → C′ → U′ is another tower of

the same type, and suppose we have a commuting diagram of fibered squares

Z ′ Z

C′ C

U′ U
f

Then there is a canonical isomorphism

(46) Sec(Z ′/C′) ∼= Sec(Z/C)×U U′

of stacks over U′.

Proof. Let F = Sec(Z/C) ×U U′. First, observe that a slight extension of the argument in

[47, Tag 06N7] shows that F is indeed fibered in groupoids over U′. So to show that the

canonical map Φ: Sec(Z ′/C)→ F is an equivalence, it suffices to show it is an equivalence

on the fiber over arbitrary x : T → U′.

The fiber F(T ) has for objects tuples (a, α, n, ν) where (letting Ca = C×U,aT ) a : T → U

and n : Ca → Z are 1-morphisms and α : f ◦x→ a and ν are 2-morphisms (ν witnesses the

commutativity of a triangle, one of whose sides is n). A morphism in F(T ) from (a, α, n, ν)

to (b, β,m, µ) is a tuple (τ, σ) where τ : a → b and σ : n → m ◦ cτ are 2-morphisms (here

cτ : Ca → Cb is the morphism induced by τ), such that (1) β−1 ◦ τ ◦ α is the identity, and

(2) the 2-cell with faces σ, ν, µ, and one other face determined by τ is commutative.

The fiber Sec(Z ′/C′) is by Lemma A.1.1 equal to HomC(CT , Z). This groupoid has for

objects pairs (n, ν) where n : CT → Z is a 1-morphism and ν is a 2-morphism witnessing the

commutativity of the triangle over C. A morphism from (n, ν) to (m,µ) is a 2-morphism

σ : n→ m such that the 2-cell with σ, ν, and µ commutes.

Let ΦT : Sec(Z ′/C′) → F(T ) be the restriction of Φ to the fiber. Then ΦT sends (n, ν)

to (f ◦ x, id, n, ν) and σ to (id, σ). The map ΦT is essentially surjective because α induces

an isomorphism from an object in the image of ΦT to (a, α, n, ν). It is fully faithful because

if β = α = id, then condition (2) forces τ = id. �

Lemma A.1.4. There is a natural morphism Sec(Z/C) → Sec(W/C). If Z → W is a

closed embedding, then so is Sec(Z/C)→ Sec(W/C).

Proof. Let S′ = Sec(Z/C) and S = Sec(W/C). Since S′ → U is already locally of finite

type, by [47, Tag 04XV] it suffices to show that ι : S′ → S is universally closed and a

monomorphism. The monomorphism property is immediate using the characterization in

[47, Tag 04ZZ]. By Lemma A.1.3, to show that ι is universally closed it suffices to prove

that it is a closed map, and since we already know that ι is a momomorphism, it suffices to

show that ι(S′) is closed in S. Now the set ι(S′) consists of points whose πS-fibers map

completely into Z. Hence, S \ ι(S′) = πS(n−1(W \ Z)). Since πS is flat, and hence open,

this implies that ι(S′) is closed, which finishes the proof of the lemma. �

A.2. Properties of the obstruction theory.



VIRTUAL CYCLES OF STABLE (QUASI-)MAPS WITH FIELDS 29

A.2.1. An adjunction-like morphism. Let D(C) (resp. D(U)) denote the unbounded derived

category of sheaves of O-modules on C (resp. U) in the lisse-étale topology. Let Dqc(C) and

Dqc(U) denote the corresponding subcategories on objects with quasi-coherent cohomology.

Define an adjunction-like morphism

a : HomD(C)(F, π
∗G)→ HomD(U)(Rπ∗(F ⊗ ω•), G)

by sending f : F → π∗G to the composition

Rπ∗(F ⊗ ω•)
Rπ∗(f⊗id)−−−−−−−→ Rπ∗(π

∗G⊗ ω•) ∼←− G⊗Rπ∗ω•
tr−→ G

where the isomorphism is the projection formula and tr is the trace map. Observe that a

is functorial in both arguments, meaning

(1) Given F ′ ∈ D(C) and g ∈ HomD(C)(F
′, F ), we have a(f ◦ g) = a(f) ◦Rπ∗(g ⊗ id).

(2) Given G′ ∈ D(U) and g ∈ HomD(U)(G,G
′), we have a(π∗g ◦ f) = g ◦ a(f).

The next lemma, inspired by [1, Lem 4.1], says that a commutes with pullback.

Lemma A.2.1. The adjunction-like map a commutes with arbitrary basechange. Precisely,

given a fiber square

K C

B U

µK

π π

µB

and a morphism f : F → π∗G, we have µ∗Kf : µ∗KX → µ∗Kπ
∗Y = π∗µ∗BY , and the following

diagram commutes:

µ∗BRπ∗(F ⊗ ω•) µ∗BG

Rπ∗(µ
∗
KF ⊗ ω•)

µ∗Ba(f)

aµ ∼
a(µ∗Kf)

The isomorphism aµ is functorial in X. Moreover, if νB : B′ → B is a morphism of alge-

braic stacks with K ′ := K×BB′ and νK : K ′ → K the projection, then these isomorphisms

satisfy the cocycle condition aµ◦ν = aν ◦ ν∗Kaµ.

Before proving the lemma we note several canonical isomorphisms:

µ∗BRπ∗F → Rπ∗µ
∗
KF F ∈ Dqc(C)(47)

G⊗Rπ∗F → Rπ∗(π
∗G⊗ F ) F ∈ Dqc(C), G ∈ Dqc(U)(48)

µ∗Kω
•
U → ω•B(49)

The first is [30, Cor 4.13], the second is [30, Cor 4.12], and the last is [49, Prop 2.2.6].

Proof of Lemma A.2.1. The desired commuting triangle is equivalent to

µ∗BRπ∗(F ⊗ ω•) µ∗BG

Rπ∗(µ
∗
K(F )⊗ ω•) µ∗BG⊗Rπ∗ω•

Rπ∗(µ
∗
K(π∗G)⊗ ω•) = Rπ∗(π

∗µ∗BG⊗ ω•)

µ∗Ba(f)

aµ

Rπ∗(µ
∗
K(f)⊗ω•)

π
∼

tr
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We demonstrate this diagram as the composition of three. From left to right, the first is

(50)

µ∗BRπ∗(F ⊗ ω•) µ∗BRπ∗(π
∗G⊗ ω•)

Rπ∗(µ
∗
K(F )⊗ ω•) Rπ∗(µ

∗
Kπ
∗G⊗ ω•)

µ∗BRπ∗(f⊗ω
•)

aµ ∼ ∼

Rπ∗(µ
∗
K(f)⊗ω•)

where the vertical arrows are (47) followed by the strong monoidal map (commutativity of

⊗ and µ∗K), and finally (49). It commutes by functoriality of (47) and the strong monoidal

map, and because (49) and f act on different factors of the tensor product. The second

diagram is

(51)

µ∗BRπ∗(π
∗G⊗ ω•) µ∗B(G⊗Rπ∗ω•)

Rπ∗µ
∗
K(π∗G⊗ ω•) µ∗BG⊗ µ∗BRπ∗ω•

Rπ∗(µ
∗
Kf
∗G⊗ µ∗Kω•) = Rπ∗(π

∗µ∗BG⊗ µ∗Kω•) µ∗BG⊗Rπ∗µ∗Kω•

Rπ∗(µ
∗
Kf
∗G⊗ ω•) = Rπ∗(π

∗µ∗BG⊗ ω•) µ∗BY ⊗Rπ∗S

(47)

µ∗B(48)

∼

(47)

(48)

∼

id⊗Rπ∗(49)

(48)

∼

The top cell commutes by [29, Lem A.7(3)] and the bottom cell is functoriality of (48). The

final diagram is

(52)

µ∗B(G⊗Rπ∗ω•) µ∗BG

µ∗BY ⊗ µ∗BRπ∗ω• µ∗BG

µ∗BG⊗Rπ∗µ∗Kω• µ∗BG⊗Rπ∗ω•

µ∗B(id⊗tr)

id⊗µ∗Btr

(47)

id⊗Rπ∗α

id⊗tr

where the bottom cell is the diagram [49, Prop 2.2.6]. One sees from the definition of a that

the composition of the top arrows in (50), (51), and (52) is µ∗Ba(f). Finally, aµ is functorial

in F by its definition, and it satisfies the cocycle condition because each of the morphisms

in its definition do: for (47) the cocycle condition is [47, Tag 0E47] and for (49) it is [49,

Prop 2.2.6]. �

A.2.2. Functoriality. Suppose we have a commuting diagram of algebraic stacks

(53)

Z W

KZ KW C

BZ BW U

π

f

where the squares in the bottom row are fibered. To a diagram of the form (53) we associate

a morphism in Dqc(BZ) as follows. We have a morphism in Dqc(KZ) consisting of canonical

morphisms of cotangent complexes:

(54) Lf∗LZ/W → LKZ/KW
∼←− π∗LBZ/BW .
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We may apply the adjunction-like morphism a to (54), obtaining

(55) φBZ/BW : EBZ/BW → LBZ/BW , EBZ/BW := Rπ∗(Lf
∗LZ/W ⊗ ω•BZ ).

Observe that when KW = W = C, BW = U and BZ = Sec(Z/C) we recover (18).

Remark A.2.2. It follows from the functoriality of a in the first argument that when

either W → C or KW → C is flat, the morphism φBZ/BW defined by the diagram (53) is

isomorphic to φBZ′/BW defined by the diagram obtained from (53) by setting Z ′ = Z×sKW ,

BW = U, and KW = W = C.

The morphism (55) inherits the functoriality properties of the morphisms of cotangent

complexes used to define it.

Lemma A.2.3. Let Z
g−→ W → V be morphisms of algebraic stacks over C. Let BZ , BW ,

and BV be quasi-separated algebraic stacks locally of finite type fitting in a fiber diagram

KZ KW KV C

BZ BW BV U
µ

and suppose we are given morphisms f : KZ → Z, KW → W , and KV → V so that the

analog of (53) commutes. Then there is a morphism of (canonical) distinguished triangles

(56)

Lµ∗EBW /BV EBZ/BV EBZ/BW

Lµ∗LBW /BV LBZ/BV LBZ/BW

Lµ∗φBW/BV
φBZ/BV φBZ/BW

Proof. By the functoriality in [49, Lem 2.2.12] we have a morphism of distinguished triangles

(57)

Lf∗Lg∗LW/V Lf∗LZ/V Lf∗LZ/W

π∗Lµ∗LBW /BV π∗LBZ/BV π∗LBZ/BW

where each vertical arrow is the compositions of two canonical morphisms of cotangent

complexes, one of which is inverted in the derived category. Now apply the adjunction-like

operation a to each vertical arrow. Since a is functorial in both arguments and commutes

with pullback by Lemma A.2.1, we obtain (56).

�

Lemma A.2.4. Suppose we have commuting squares

(58)

W Y BW BY

X Z BX BZ

g µB

where the square on the left consists of stacks over C and the square on the right consists

of stacks over U. Let KW = C ×U BW (similarly for X,Y , and Z) and suppose we have a

map fW : KW →W (and similarly for X, Y , and Z) such that the resulting large diagram
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is commutative. Then there is a commuting diagram

(59)

Lµ∗BEBY /BZ EBW /BX

Lµ∗BLBY /BZ LBW /BX

Lµ∗BφBY /BZ φBW/BX

where the top (resp. bottom) horizontal arrow is an isomorphism if the left (resp. right)

square in (58) is fibered and either X → Z or Y → Z (resp. BX → BZ or BY → BZ) is

flat.

Proof. As in the proof of Lemma A.2.3, apply a to the following commuting diagram of

canonical morphisms of cotangent complexes.

Lf∗WLg
∗LY/Z Lf∗WLW/X

π∗Lµ∗BLBY /BZ π∗LBW /BX

�

A.2.3. A quasimap example. Fix a complex affine reductive group G. Let M = Mtw
g,n denote

the moduli space of prestable orbifold curves of genus g with n markings, and let C be its

universal curve. Denote by B = Sec(C × BG/C) the moduli stack of prestable orbicurves

together with a principal G-bundle, and let P→ CB be the universal principal bundle over

its universal curve.

Now let Y be an affine l.c.i. variety with an action by G. Let θ be a character of G with

Y ssθ = Y sθ smooth. Fix ε > 0 and β ∈ Hom(Pic([Y/G]),Q). Then [20] defines a moduli space

of ε-stable quasimapsMε

g,n([Y/G], β) as an open substack of Sec(P×G Y/CB). By Lemma

A.1.2, the stack Mε

g,n([Y/G], β) is identified with an open substack of Sec(C× [Y/G]/C).

We now investigate the obstruction theory (see also the discussion in [22, Section 5.3]).

Setting M =Mε

g,n([Y/G], β), we have the following commuting diagram.

(60)

C× [Y/G]

P×G Y C×BG

CM C C

M B M

q

u

µ

By Lemma A.2.3 and Remark A.2.2 we have the following morphism of distinguished tri-

angles:

Lµ∗EB/M EM/M EM/B

Lµ∗LB/M LM/M LM/B

Lµ∗φB/M φM/M φM/B

where the morphism in the third column is constructed by setting Z = P×G Y , W = C =

KW = C, and BW = U = B in (53). The map B → M is “relatively Artin” so that the

complex Lµ∗EB/M is perfect in [−1, 1]. It is known that even in this setting, the morphism

φB/M is an obstruction theory, meaning that h1 and h0 of Lµ∗φB/M are isomorphisms and
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h−1 of the same is a surjection (see [7, Ex 8.12] or [49]). Then because hi(Lµ∗EB/M) = 0 for

i < 0 it follows that B→M is smooth and φB/M is a quasi-isomorphism. Then argument

of [35, Prop 3] shows that φM/M and φM/B induce the same virtual class on M.

We have proved the following lemma.

Lemma A.2.5. The stack of ε-stable quasimaps Mε

g,n([Y/G], β) is canonically isomorphic

to an open substack of Sec(C× [Y/G]/C). Moreover, the restriction of (18) to this substack

is a perfect obstruction theory, and it induces the same virtual fundamental class as the

perfect obstruction theory of [23, 4.4.1] and [20, Sec 2.4.5].

A.3. Equivariance. Let G be a flat, separated group scheme, finitely presented over C.

In this section we use the definitions of G-stacks and equivariant morphisms in [46]. If Z is

an algebraic stack with G-action, we say that a complex (resp. diagram of complexes) in

Dqc(Z) is G-equivariant if it is isomorphic to the pullback of a complex (resp. diagram of

complexes) in Dqc([Z/G]).

Lemma A.3.1. Suppose we are given G-equivariant stacks and morphisms Z → W →
C → U. If BZ = Sec(Z/C) and BW = Sec(W/C) in (53), then there are G-actions on all

the stacks in (53) such that the entire diagram is equivariant.

Proof. To simplify the notation we take Z = W and BZ = BW ; the proof in the general

case is similar. We have a commuting diagram

G× Z Z

G× CSec(Z/C) G× C C

G× Sec(Z/C) G× U U

where the left part of the diagram is just the product of G with (53), and the right part

is the equivariance of the right column of (53)—in particular, the horizontal arrows are

all action by G. By the universal property of Sec(Z/C), this diagram factors canonically

through the original one (53). This is the desired equivariance. �

Lemma A.3.2. Suppose we are given equivariant stacks and morphisms Z → C → U.

There is a natural isomorphism

[Sec(Z/C)/G] ' Sec([Z/G]/[C/G])

where the latter moduli space is constructed using the family [C/G]→ [U/G].

Proof. We have a fiber diagram

Z [Z/G]

C [C/G]

U [U/G]
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where the horizontal maps are fppf covers (see [46, Theorem 4.1]). Hence by Lemma A.1.3

we have a fiber square as in the following diagram.

(61)

[Sec(Z/C)/G]

Sec(Z/C) Sec([Z/G]/[C/G])

U [U/G]

F

ρS

q p

ρU

The map ρS is equivariant and hence factors as depicted. In fact, the outer trapezoid is also

fibered, since it is a commuting diagram of G-torsors. Again, both horizontal maps and the

diagonal map are fppf covers, so by descent the map labeled F is an isomorphism. �

Lemma A.3.3. Suppose we are given a diagram (53) consisting of G-equivariant stacks

and morphisms. Then the corresponding morphism φBZ/BW is canonically G-equivariant.

Moreover, the conclusions of Lemmas A.2.3 and A.2.4 hold G-equivariantly.

Proof. For the first claim, observe that there are two fibered squares:

Z [Z/G] BZ [BZ/G]

W [W/G] BW [BW /G]

p

where the square on the left consists of stacks over [C/G] and the square on the right consists

of stacks over [U/G] (that the square on the right is fibered follows from Lemma A.1.3).

The horizontal maps are flat, so Lemma A.2.4 yields a commuting square

p∗E[BZ/G]/[BW /G] EBZ/BW

p∗L[BZ/G]/[BW /G] LBZ/BW

p∗φ[BZ/G]/[BW/G] φBZ/BW

which is the desired equivariance of φBZ/BW .

We prove the equivariant version of Lemma A.2.3 (the proof of Lemma A.2.4 is similar).

Let p : BZ → [BZ/G] be the quotient map. Then p induces a morphism to (57) from the

following morphism of distinguished triangles:

p∗Lf∗Lg∗L[W/G]/[V/G] p∗Lf∗L[Z/G]/[V/G] p∗Lf∗L[Z/G]/[W/G]

p∗π∗µ∗BL[BW /G]/[BV /G] p∗π∗L[BZ/G]/[BV /G] p∗π∗L[BZ/G]/[BW /G]

where we have used f and g for the analogous maps of quotient stacks. In other words, we

consider a commuting diagram that includes four distinguished triangles as the edges of a

rectangular prism. The rest of the argument is as in the proof of Lemma A.2.3, except that

to conclude the final diagram commutes we also use the cocycle condition on aµ proved in

Lemma A.2.1. �

Consider a diagram (53) and define µ to be the map BZ → BW given there. We define an

absolute version of φBZ/BW to be a (shifted) mapping cone fitting in the following diagram,
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where the arrow labeled “F” is defined to make its square commutative:

(62)

EabsBZ/BW EBZ/BW Lµ∗LBW [1]

LBW LBZ/BW Lµ∗LBW [1]

φabsBZ/BW

F

φBZ/BW

Lemma A.3.4. The morphism φabsBZ/BW : EabsBZ/BW → LBZ is naturally equivariant.

Proof. Define E to be a (shifted) mapping cone fitting into the following morphism of

distinguished triangles:

(63)

E Lf∗L[Z/G]/[W/G] π∗Lµ∗L[BW /G]/[•/G][1]

π∗L[BZ/G]/[•/G] π∗L[BZ/G]/[BW /G] π∗Lµ∗L[BW /G]/[•/G][1]

Here • = Spec(C) with the trivial G-action. We likewise have a diagram

(64)

Lf∗LZ/W π∗Lµ∗LBW [1]

π∗LBZ π∗LBZ/BW π∗Lµ∗LBW [1]

Let p : BZ → [BZ/G] denote the qutoient map. Then p induces an isomorphism from

(the relevant portion of) p∗ applied to (63), to the diagram (64). We define the missing

mapping cone in (64) to be p∗E, together with the constructed (iso)morphisms. Now apply

the adjunction-like morphism a and conclude as in the proof of Lemmas A.2.3 and A.3.3. �

Let T = G be a torus and suppose we have a diagram (53) where all stacks and morphisms

are T -equivariant. Suppose moreover that BZ and BW are Deligne-Mumford, that T acts

trivially on BW , and we let F → BZ denote the T -fixed locus. If BW = Spec(C) and

φBZ/BW is a perfect obstruction theory, it is shown in [12] that the following composition

is a perfect obstruction theory for F :

(65) EBZ/BW |
fix
F

φBZ/BW |
fix
F−−−−−−−−→ LBZ/BW |F → LF/BW .

On the other hand, we may construct the morphism φF/BW by simply replacing BZ with

F in (53).

Lemma A.3.5. The morphism (65) is isomorphic to the fixed part of φF/BW ; that is, there

is a commuting square

EBZ/BW |fix
F Efix

F/BW

LBZ/BW |F LF/BW

φBZ/BW |
fix
F

∼

φfix
F/BW

Proof. Before applying the fix functor, this diagram is part of Lemma A.2.3 with Z,W

(there) both equal to Z (here), V (there) equal to W (here), BZ = F , BW = BZ , and

BV = BW (continuing the same notational pattern). Note that in the notation of Lemma

A.2.3, we have EBZ/BW = 0. �
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Appendix B. Absolute versus relative cosection localized virtual classes

Let Z be any smooth algebraic stack locally of finite type. Let X → Z be a morphism

from a finite type, separated Deligne–Mumford stack X with a relative perfect obstruction

theory φ : E → LX/Z . Let σX/Z : E∨X/Z → OX [−1] be a cosection (defined on all of X).

Recall the functor h1/h0(•) from a certain subcategory of the derived category of X to the

category of abelian cone stacks on X (see e.g. [8, Prop 2.4]). Applying this functor to σ

yields a map EX/Z → CX of cone stacks on X, where we define EX/Z = h1/h0(EX/Z) and

CX = h1/h0(OX [−1]). We define the kernel EX/Z(σ) to be the fiber product

EX/Z(σ) = EX/Z ×CX ,0 X.

(Note that the underlying set of EX/Z(σ) is the locus E(σ) in [34, (3.2)].) We do not require

(as in [34]) that σ descends to an absolute cosection, but instead we directly assume that

(66) the map of cone stacks h1/h0(σ ◦ φ∨) is zero.

In this case, by the universal property of EX/Z(σ), the relative intrinsic normal sheaf is

contained in EX/Z(σ), and hence the relative intrinsic normal cone CX/Z is as well. We

define

[X]vir
σX/Z

:= 0!
σX/Z

([CX/Z ]) in A∗(X(σ))

where 0!
σX/Z

is the localized Gysin map s!
EX/Z ,σX/Z

[34, (3.5)] and X(σ) is the degeneracy

locus.

The following proposition shows that in fact, σX/Z defines a cosection σX of an absolute

obstruction theory EX induced by EX/Z , that the absolute intrinsic normal cone CX is

contained in the absolute kernel EX(σ), and finally that our definition of [X]vir
σ agrees with

that of [34] (where [X]vir
σ is defined to be 0!

σX ([CX ]). Our proposition is, however, more

general than this and may be viewed as a cosection localized analog of [35, Proposition 3].

Proposition B.0.1. Fix Z, a smooth algebraic stack locally of finite type. Let X be a

Deligne–Mumford stack and let X → Y → Z be morphisms such that X → Y and X → Z

are separated and finite type, and Y → Z is smooth and locally finite type. Let φ : EX/Y →
LX/Y be a relative perfect obstruction theory and σ : E∨X/Y → O[−1] a cosection such that

h1/h0(σ ◦ φ∨) = 0. Then there is a relative perfect obstruction theory ψ : FX/Z → LX/Z
with induced cosection ρ satisfying h1/h0(ρ ◦ ψ∨) = 0. Moreover, the degeneracy loci X(σ)

and X(ρ) are equal, and the cosection localized virtual cycles induced by (φ, σ) and (ψ, ρ)

agree.

Proof. Let q be the map from X → Y . The relative obstruction theory ψ : FX/Z → LX/Z
is any morphism fitting into a morphism of distinguished triangles

(67)

FX/Z EX/Y q∗LY/Z [1]

LX/Z LX/Y q∗LY/Z [1]

ψ

δ

φ

By the proof of [35, Proposition 3], ψ is indeed a perfect obstruction theory. Dualizing, we

see that σ ◦ δ∨ factors through σ ◦ φ∨ and hence by assumption h1/h0(σ ◦ δ∨) = 0. By [8,
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Lem 2.2], the map σ◦δ∨ is nullhomotopic, and there is a (not necessarily unique) morphism

ρ inducing a morphism of distinguished triangles as below.

(68)

OX [−1] OX [−1] 0

F∨X/Z E∨X/Y (q∗LY/Z [1])∨

ρ σ

δ∨

By [8, Proposition 2.7], from (67) and (68) we get a commuting diagram of abelian cone

stacks whose rows are short exact sequences and K = h1/h0((q∗LY/Z [1])∨):

(69)

0 CX CX 0 0

0 h1/h0(F∨X/Z) h1/h0(E∨X/Y ) K 0

0 NX/Z NX/Y K 0

∼

ρ σ

ψ∨

α

φ∨

Here N denotes an intrinsic normal sheaf. In particular the bottom left square is fibered

and the horizontal arrows in that square are smooth surjections. Because the composition

σ ◦ φ∨ is zero and α is surjective, we also have ρ ◦ ψ∨ = 0.

On the one hand, by the proof of [35, Proposition 3] we may replace the bottom row of

(69) with the exact sequence 0 ← CX/Z ← CX/Y ← K ← 0. On the other hand, we have

a diagram where all squares are fibered and the arrow h1/h0(E∨X/Y ) → h1/h0(F∨X/Z) is a

smooth surjection:

K h1/h0(E∨X/Y )(σ) h1/h0(E∨X/Y )

X h1/h0(F∨X/Z)(ρ) h1/h0(F∨X/Z)

X CX

0

ρ

0

To identify the two leftmost terms in the top row, observe that the composition of the two

right vertical arrows is σ and the composition of the two middle horizontal arrows is the

zero section. Using [8, Def 1.12], we obtain a short exact sequence

(70) 0← h1/h0(F∨X/Z)(ρ)← h1/h0(E∨X/Y )(σ)← K← 0.

Finally, because ρ ◦ψ∨ = σ ◦φ∨ = 0, we may replace the middle row of (69) with (70). We

get a fiber square with horizontal arrows that are smooth surjections:

h1/h0(E∨X/Y )(ρ) h1/h0(F∨X/Z)(σ)

CX/Y CX/Z

α

From here, we can compute the cosection localized virtual class:

[X]vir
ρ = 0!

ρ[CX/Y ] = 0!
ρα
∗[CX/Z ] = 0!

σ[CX/Z ] = [X]vir
σ .
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Here, 0!
σ and 0!

ρ are the cosection localized Gysin maps of [34, Section 2]. The second

equality above is the compatibility of these maps with the usual Gysin maps. �
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