
JFP 31, e10, 26 pages, 2021. © The Author(s), 2021. Published by Cambridge University Press 1
doi:10.1017/S0956796821000083

Explainable dynamic programming

MARTIN ERWIG AND PRASHANT KUMAR
School of EECS, Kelley Engineering Center 3047, Oregon State University, Corvallis, Oregon, 97331, USA

(e-mails: erwig@oregonstate.edu, kumarpra@oregonstate.edu)

Abstract

In this paper, we present a method for explaining the results produced by dynamic programming (DP)
algorithms. Our approach is based on retaining a granular representation of values that are aggregated
during program execution. The explanations that are created from the granular representations can
answer questions of why one result was obtained instead of another and therefore can increase the
confidence in the correctness of program results.

Our focus on dynamic programming is motivated by the fact that dynamic programming offers a
systematic approach to implementing a large class of optimization algorithms which produce deci-
sions based on aggregated value comparisons. It is those decisions that the granular representation
can help explain. Moreover, the fact that dynamic programming can be formalized using semir-
ings supports the creation of a Haskell library for dynamic programming that has two important
features. First, it allows programmers to specify programs by recurrence relationships from which
efficient implementations are derived automatically. Second, the dynamic programs can be formu-
lated generically (as type classes), which supports the smooth transition from programs that only
produce result to programs that can run with granular representation and also produce explanations.
Finally, we also demonstrate how to anticipate user questions about program results and how to
produce corresponding explanations automatically in advance.

1 Introduction

Which properties should a program have? The answers given by most computer scien-
tist would be correctness and efficiency. Many functional programmers may want to add
elegance, generality, and maybe succinctness. As a software engineer you might want to
point out maintainability. Ackley (2013) and more recently Vardi (2020) added robustness
and resilience. In this paper, we argue that explainability is another desirable property of
programs. Especially, the dynamic behavior of a program might be surprising and in need
of an explanation even if its static description looks clear and correct.
A program can be in need of explanations in different situations. For example, when

a program is to be edited, any changes should be made based on a good understanding
of how the existing code works. Here we have explainability supporting maintainability.
Whenever programs are used in a teaching context, they need to be explained as well.
Finally, whenever the result of a program execution is surprising, an explanation of why
the result is correct is required to ensure confidence in the correctness of the program. More
generally, if it is unclear whether and how a program works, a user may not feel confident
in using the results produced by the program.
In situations when a program behaves in unexpected ways, the mismatch between pro-

gram behavior and user expectation may be due to a bug in a program or due to wrong

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of

https://doi.org/10.1017/S0956796821000083
https://orcid.org/0000-0002-7471-4554
mailto:erwig@oregonstate.edu
mailto:kumarpra@oregonstate.edu
https://crossmark.crossref.org/dialog?doi=10.1017/S0956796821000083&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


2 M. Erwig and P. Kumar

expectations on the part of the user. To find out what is the case, a programmer may
employ a debugger to gain an understanding of the program’s behavior (Murphy et al.,
2006; Roehm et al., 2012). However, by focusing on fault localization debuggers are often
not effective tools for gaining program understanding, since they force the user to think in
terms of implementation details. In fact, as has been observed by Parnin & Orso (2011),
debuggers typically already assume an understanding of the program by the programmer.
In addition, it is well known that debugging is very costly and time-consuming (Vessey,
1986). The work on customizable debugging operations is additional testimony to the limi-
tations of generic debugging approaches, see Marceau et al. (2007) and Khoo et al. (2013).
Finally, debugging is not an option for most users of software, simply because they are not
programmers. Therefore, debuggers are not the right tool for explaining program behavior.
Our approach to explaining program behavior is based on the idea that a user’s con-

fidence and belief in the correctness of a specific result can be supported by providing
reasons for why it is to be preferred over potential alternative results. To this end, we track
data that is aggregated during a computation and keep the unaggregated representation
alongside so that it can be queried later to explain the effects of the performed compu-
tation. Specifically, we employ so-called value decompositions to maintain unaggregated
representations of data that are the basis for decisions in computations that might require
explanations. We illustrate this strategy in Section 2 through a simple example before we
introduce the concept formally in Section 3.

To make our explanation approach work effectively for a large class of optimization
algorithms, we illustrate in Section 4 how dynamic programming (DP) algorithms can be
expressed as recurrence equations over semirings, and we present a Haskell implementa-
tion to demonstrate that the idea is feasible in practice. Our approach builds on previous
work by Goodman (1999) and Rush (2009). In Section 5, we demonstrate how to use
this implementation to operate with value decompositions and produce explanations. In
Section 6, we present two additional examples to illustrate how to apply our approach and
the library in other situations.
Value decompositions produce explanations for decisions. Specifically, they are used to

answer questions such as “Why was A chosen over alternative B?”. Such explanations are
an instance of so-called contrastive explanations in the philosophy literature (Lipton, 1990,
2004), which specifically compare two phenomena and justify “Why this rather than that?”
(Garfinkel, 1981). Alternatives against which decisions are to be explained are typically
provided by users, but as we demonstrate in Section 7, sometimes they can be anticipated,
which means that comparative explanations can be generated automatically. Finally, we
compare our approach with related work in Section 8 and present some conclusions in
Section 9. The main contributions of this paper are as follows.

• A framework based on semirings for expressing dynamic programming algorithms
that supports computation with value decompositions.

• An extension of this framework to enable the automatic generation of explanations.
• A method for the automatic creation of counterexamples and preemtive explana-
tions.

• An implementation of the approach as a Haskell library.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 3

type Profile = [Int]
type Distance = [Int]
type Score = Int

dist :: Profile -> Profile -> Distance
dist p = map abs . zipWith (-) p

score :: Profile -> Profile -> Score
score p = sum . dist p

matches :: Profile -> [Profile] -> [(Score,Profile)]
matches p ps = sort [(score p q,q) | q <- ps]

best :: Profile -> [Profile] -> (Score,Profile)
best p = head . matches p

buddies :: [Profile]
buddies = [alice,bob,carol]

where alice = [2,2,7]
bob = [3,1,2]
carol = [3,4,2]

Fig. 1. Finding closest matches by aggregating profile distances.

2 Motivating example

In this section, we illustrate the basic idea of generating explanations by computing with
value decompositions. Consider a friend-finding application in which users can express
their preferences within specific categories of interest using integers between 0 and 10.
Assuming for simplicity that the categories are numbered starting from 0, a user’s interest
profile can be represented by a list p of integers, so that interest in category k is represented
by the list element p!!k. We can then compute a “proximity score” for a pair of profiles
as the sum of the absolute differences between the scores for each category. For a given
query profile p, the best match from a pool of profiles ps is the profile with the smallest
proximity score to p. An implementation of this idea is shown in Figure 1.1

Suppose now that we try to find the best match for dan = [2,2,3] among the profiles
buddies.

> best dan buddies
[3,1,2]

The program correctly computes Bob as the closest match. However, Dan might wonder
why it isn’t Alice, since she is a perfect match for the first two categories whereas Bob has
a nonzero distance to Dan in all categories. The obvious answer is that the proximity score
for Bob is less than that for Alice, which we can easily check in this case by computing all
matches.

> matches dan buddies
[(3,[3,1,2]),(4,[2,2,7]),(4,[3,4,2])]

1 Formally, a profile list of length n represents a point in an n-dimensional space, and the function score
computes the Manhattan distance between points in that space.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


4 M. Erwig and P. Kumar

matches :: Profile -> [Profile] -> [(Distance,Profile)]
matches p ps = sortBy (compare `on` sum.fst) [(dist p q,q) | q <- ps]

best :: Profile -> [Profile] -> (Distance,Profile)
best p = head . matches p

Fig. 2. Finding closest matches while keeping profile distances.

While this explanation is technically correct, it is also not satisfying, since it doesn’t
directly address the question. In this case, we would like to say that the large distance
in the third category countervails the close proximity for the first two categories. In this
small example, the counteracting effect of the third category is easy enough to identify,
but in applications with dozens of categories the reasons can be more intricate, and they
can become more difficult to pinpoint. Moreover, the effects generally have also a more
complicated structure. For example, an unexpected counterbalance might be caused not by
a single category but rather by a group of categories.
To prepare for providing better explanations, we can extend our program such that it

preserves as part of the generated output the contributions of the individual components
of the input. The granular output can then later be exploited to generate a more targeted
explanation.
A minor change to the function matches is sufficient to track the contribution of individ-

ual preferences to the computed result. Specifically, instead of aggregating the differences
of the profile components with score, we use the dist function to return the difference
between profiles as a vector of differences between individual categories. We then have to
adapt the sorting function, so that it compares the sums of the first component of each dis-
tance pair, see Figure 2.2 For completeness, we also repeat the code for the best function,
since its type has changed.
Computing the matches for Dan with this changed implementation yields the following

result:

> matches dan buddies
[([1,1,1],[3,1,2]),([0,0,4],[2,2,7]),([1,2,1],[3,4,2])]

This output is not meant to be an explanation by itself, nor should it even be presented to
users, but it contains enough information to explain why Alice is not the best match for
Dan. In this case, it is the large distance contained in the third component. Interestingly,
the decomposition of the individual numbers in the decomposed values not only explains
why Alice is not the best match for Dan, but also why Dan might consider Alice a best
match in the first place. This fact can be exploited to automatically generate seemingly
plausible alternatives to be used as counterfactual explanations, a topic we will discuss in
Section in Section 7.
To systematically analyze and compare the proximity scores based on individual cat-

egories, we can compute their differences, which shows their relative effect on the
aggregated values on which decisions, such as finding a closest match, are based. For

2 The sorting criterion passed to sortBy uses the predefined function on to apply the binary function compare
to the values obtained from applying sum.fst to the list elements being compared.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 5

example, the difference between Dan’s proximity scores for Bob and Alice shows the
following:

delta :: Distance -> Distance -> Distance
delta = zipWith (-)

> (delta `on` (dist dan)) alice bob
[1,1,-3]

The result reveals that while Dan has a greater distance to Bob than to Alice with regard
to the two first categories, this is more than made up by his greater proximity in the third
category.
If the number of factors gets large, the advantage of one solution over another might not

be easy to see. In a practical application, a user’s interest profile may consist of dozens of
components. To illustrate the potential problems, let’s consider the following profiles with
just 10 components:

alice = [6,2,7,8,9,9,5,4,6,2]
bob = [2,3,6,7,2,2,4,8,7,4]
dan = [6,5,6,8,8,1,9,9,5,7]

Again, Bob is a better match for Dan than Alice, since the sum of the distance for him is
25, compared with Alice’s, which is 28. But why exactly is Bob a better match than Alice?
If we compare their distances, we can observe two perfect matches (i.e., the distance is 0)
and three close matches (distance 1) for Alice, whereas we can see only one perfect and
three close matches for Bob.

> dist dan alice
[0,3,1,0,1,8,4,5,1,5]

> dist dan bob
[4,2,0,1,6,1,5,1,2,3]

How can we explain that Bob is indeed a better match without resorting simply to the total
score? The difference between Bob’s and Alice’s distances shows the categories in which
Dan is closer to Bob as negative values. Correspondingly, the categories closer to Alice
are represented by positive numbers.

> (delta `on` (dist dan)) alice bob
[4,-1,-1,1,5,-7,1,-4,1,-2]

To conclude that Bob is a better match, all we need to show is that the negative numbers
outweigh the positive numbers, but, crucially, we don’t necessarily need all the negative
numbers to make that point. It is sufficient to find the smallest subset of negative numbers
whose sum (taken as an absolute value) is greater than the sum of all positive numbers.
In this example, categories 6, 8, and 10 with a sum of -13 constitute such a set, since the
absolute value of −7+ −4+ −2= −13 exceeds the total sum of all positive differences
4+ 1+ 5+ 1+ 1= 12. We call a subset, such as {−7,−4,−2}, aminimal dominating set,
orMDS for short. An MDS can explain decisions based on decomposed values but uses as
few as possible data and thus makes explanations easier to process and comprehend.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


6 M. Erwig and P. Kumar

We could take this idea one step further and ask which of the positive components are
required to force the MDS to be as large as it is—providing a kind of meta-explanation
or explanation justification. In our scenario, we could ask, for example, why do we need
these three components to justify Bob’s closeness, and why aren’t just two sufficient?
Again, instead of just reporting all categories with a positive difference, we want to find
the smallest subset whose sum exceeds the absolute value of any proper MDS subset. We
call this set the minimal forcing set orMFS for short. In our example, the subset {−7,−4}
with a total of -11 is the one to “beat,” which means that no proper subset of the positive
numbers will suffice to force the inclusion of -2 in the MDS. In other words, the MFS
contains all categories with a positive difference to justify the MDS in this case. Since
the examples we employ don’t have very many categories, the additional explanatory use
provided by the notion of an MFS doesn’t apply. We will therefore not pursue this idea
any further in this paper.
Obviously, the presented application was quite small and was chosen to easily trans-

form a program so that it can work with value decompositions and produce explanations.
In general, however, the situation is not so simple, and to keep the burden of adding value
decompositions to programs low, we will integrate our explanation approach into a frame-
work for specifying dynamic programming algorithms based on semirings. To this end, we
first formalize value decompositions and minimal dominating sets in Section 3 and then
explain the semiring framework in Section 4.

3 Formalizing value decompositions and minimal dominating sets

Many decision and optimization algorithms select one or more alternatives from a set based
on data gathered about different aspects for each alternative. In the following, we formalize
this view through the concepts of value decomposition and valuation.
Given a set of categories C, a mapping v :C →R is called a value decomposition (with

respect to C). The (total) value v̂ of a value decomposition is defined as the sum of its com-
ponents, that is, v̂ = ∑

(c,x)∈v x.
3 A valuation for a set S (with respect to the set of categories

C) is a function ϕ that maps elements of S to corresponding value decompositions, that is,
ϕ : S → (C →R). We write ϕ̂(A) to denote the total value of A’s value decomposition.4

The elements of S can be ordered based on the valuation totals in the obvious way:

∀A, B ∈ S. A> B :⇔ ϕ̂(A)> ϕ̂(B)

In the following, we consider an arbitrary but fixed finite set of categories C. When a user
asks about a program execution why A was selected over B, the obvious explanation is
ϕ̂(A)> ϕ̂(B), reporting the valuation totals. However, such an answer might not be useful,
since it ignores the categories that link the raw numbers to the application domain and
thus lacks a context for the user to interpret the numbers. If the value decomposition is
maintained during the computation, we can generate a more detailed explanation. First, we

3 This definition can be extended to include different weights for the different components. While this would
slightly complicate all the following definitions, it wouldn’t change the overall structure of explanations and
wouldn’t contribute to the insights gained from working with dominating sets. We therefore stick to the simpler
definition.

4 ϕ̂(A)= v̂ where v = ϕ(A).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 7

can rewrite ϕ̂(A)> ϕ̂(B) as ϕ̂(A)− ϕ̂(B)> 0, which suggests the definition of the valuation
difference between two elements A and B as follows:

δ(A, B)= {(c, x− y) | (c, x) ∈ ϕ(A)∧ (c, y) ∈ ϕ(B)}
The total of the value difference δ̂(A, B) is given by the sum of all components, just like
the total of a value decomposition.
It is clear that the value difference generally contains positive and negative entries and

that for δ(A, B)> 0 to be true the sum of the positive entries must exceed the absolute value
of the sum of the negative entries. We call the negative components of a value difference
its barrier. It is defined as follows:

δ−(A, B)= {(c, x) | (c, x) ∈ δ(A, B)∧ x< 0}
The total value ˆδ−(A, B) is again the sum of all the components. The decision to select
A over B needs as support some, but not necessarily all, of the positive components of
δ(A, B), which are called the dominator components and which are defined as follows:

δ+(A, B)= {(c, x) | (c, x) ∈ δ(A, B)∧ x> 0}
Any subset of δ+(A, B) whose total is larger than | ˆδ−(A, B)| will suffice as an explanation.
We call such a subset a dominator. The set of all dominators is defined as follows:

�(A, B)= {D | D⊆ δ+(A, B)∧ D̂> | ˆδ−(A, B)|}
The fewer elements a dominator has, the better it is suited as an explanation, since it
requires fewer details to explain how the barrier is overcome. We therefore define the
minimal dominating set (MDS) as follows:

�(A, B)= {D | D ∈ �(A, B)∧ ∀D′ ⊂D.D′ /∈ �(A, B)}
Note that � may contain multiple elements, which means that minimal dominators are not
unique. In other words, a decision may have different minimally sized explanations.

4 Dynamic programming with semirings

Dynamic programming (DP) is a powerful optimization technique that can be used for the
efficient implementation of many problems. The (Bellman–Ford) shortest path algorithm
(Ford & Fulkerson, 1956; Bellman, 1958), an algorithm for solving the knapsack problem
(Dantzig, 1957; Bellman, 1957b; Bartholdi, 2008), and the value iteration algorithm for
solving Markov decision processes (MDPs) (Bellman, 1957a) are all examples of dynamic
programming algorithms. One approach to developing a dynamic programming algorithm
for a problem is to formulate a recurrence relation, which can then be solved efficiently
through the dynamic programming approach.
We first motivate the use of a dynamic programming library in Section 4.1 by illustrating

how turning inefficient Haskell function definitions into more efficient dynamic program-
ming algorithms can be tedious. Then we demonstrate how to represent DP algorithms by
semirings (Section 4.2) and how such a representation can automatically generate efficient
DP implementations from recursive specifications in Haskell (Section 4.3). We illustrate
the use of the library with an extended example in Sections 4.4 and 4.5. The semiring basis

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


8 M. Erwig and P. Kumar

type Table = [(Integer,Integer)]

fibS :: Integer -> State Table Integer
fibS 0 = return 0
fibS 1 = return 1
fibS n = do t <- get

case lookup n t of
Just f -> return f
Nothing -> do f1 <- fibS (n-1)

f2 <- fibS (n-2)
let f = f1+f2
modify $ \t -> (n,f):t
return f

fib :: Integer -> Integer
fib n = fst (runState (fibS n) [])

Fig. 3. Dynamic programming implementation of fib using the State monad.

for DP does not only provide a uniform, high-level formulation of DP problems, it also
allows the systematic integration of explanations. We will discuss this aspect in Section 5.

4.1 Ad hoc dynamic programming

To illustrate the benefits of using a semiring-based DP library for implementing DP algo-
rithms, we consider the computation of Fibonacci numbers as a simple example where a
dynamic programming algorithm can lead to a significantly more efficient solution. Here
is the well-known recurrence that defines the Fibonacci numbers:

F1 = 0

F2 = 1

Fn = Fn−1 + Fn−2 for n> 2

The naive Haskell implementation of the Fibonacci function captures the recursive equa-
tions quite nicely, but it is very inefficient because it calculates the intermediate Fibonacci
values multiple times:

fib :: Int -> Int
fib 1 = 0
fib 2 = 1
fib n = fib (n-1) + fib (n-2)

This implementation runs in O(2n) time. However, one could save intermediate results in
a table and reuse them later: When a subproblem arises that has been solved before, its
solution is retrieved from the table rather than solving it again (Michie, 1968).

This idea can be directly realized in Haskell by defining a function that uses a table
maintained within a state monad, see Figure 3. The helper function fibS first tries to find
the Fibonacci number of n in the table that is the state of the monadic computation.5 If
found, it simply returns that value. Otherwise, fibS (n-1) and fibS (n-2) are recursively

5 The runtime can, of course, be improved by representing tables with a balanced binary search trees instead of
lists.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 9

Fig. 4. Semiring axioms and examples.

computed using, if available, already stored values. Then the sum of both results defines
the result of fibS n, which is stored in the table before it is returned.
Although conceptually simple, implementing this optimization requires some work on

behalf of the programmer and can be quite tedious. This implementation sacrifices the sim-
plicity of the original program structure and its similarity to the recurrence relation. In the
following, we describe a mechanism for efficiently implementing dynamic programming
algorithms without sacrificing the simplicity that was offered by the naive implementations
of their corresponding recurrence relation.

4.2 Semirings and dynamic programming

A semiring is an algebraic structure (S,⊕,⊗, 0, 1), which consists of a set S with binary
operations for addition (⊕) and multiplication (⊗) plus neutral elements zero (0) and one
(1) (Golan, 1999). Figure 4 lists the axioms that a semiring structure has to satisfy and
several semiring examples.
The semiring framework allows us to convert a naive implementation to an optimized

one while maintaining the structural simplicity of the naive implementation. The follow-
ing equations, called semiring recurrence representation, look very similar to the original
ones, except for the use of the constants and binary operation from the semiring:

F1 = 0

F2 = 1

Fn = Fn−1 ⊕ Fn−2 for n> 2

Along with the semiring recurrence representation, one also needs to know the semiring
over which this representation is defined. In the case of Fibonacci, it is the Counting semi-
ring. The semiring recurrence representation and the semiring over which it is defined
determine the computation they represent. Describing recurrence relations more abstractly
provides a uniform way to talk about recurrence relations, and consequently about the
various dynamic programming algorithms whose computation they represent. These ideas
originate from Joshua Goodman’s work (1999) on semiring parsing and the Semirings
library for Haskell by Sasha Rush (2009).

Why are semirings appropriate to model dynamic programming? Mohri (2002)
describes the correspondence between the optimal substructure property of dynamic
programming algorithms and the monotonicity property of semirings. The optimal
substructure property says that the optimal solution of a dynamic programming problem

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


10 M. Erwig and P. Kumar

contains the optimal solutions of the subproblems into which the original problem was
divided. Monotonicity is defined as follows.

Definition 4.1 (Monotonic Semiring). A semiring (S,⊕,⊗, 0, 1) with a partial order ≤
over S is monotonic if ∀s, t, u ∈ S.s≤ t ⇒ s⊕ u≤ t ⊕ u∧ s⊗ u≤ t ⊗ u∧ u⊗ s≤ u⊗ t.

A monotonic semiring ensures the optimal substructure property as follows. Suppose
the values s and t in Definition 4.1 correspond to the two solutions of a subproblem such
that s is a better solution than t (i.e., s≤ t). Suppose further that u is the optimal solution
of a set of subproblems that does not include the subproblems producing the values s and
t. The monotonicity property ensures that s combined with u (and not t combined with u)
always results in the optimal solution when the aforementioned subproblem is combined
with the set of subproblems.
Since DP computations generally produce correct solutions only for monotonic semir-

ings, we need to ensure that the semiring employed by a DP library is monotonic. Lemma
4.2 is a standard result that delegates the task of checking for monotonicity to the task of
checking for idempotence via an induced natural ordering (Mohri, 2002).

Definition 4.2 (Idempotent Semiring). A semiring (S,⊕,⊗, 0, 1) is called an idempotent
semiring if ∀s ∈ S, s⊕ s= s.

Idempotency gives rise to a partial-order definition, which makes a semiring monotonic.

Lemma 4.1 (Natural Order). For any idempotent semiring (S,⊕,⊗, 0, 1), the relation ≤
defined by a≤ b ⇔ a⊕ b= a is a partial order over S, called the natural order over S.

The shown definition of natural order was chosen to fit into the context of Min-Plus
semiring; it might be different in other text about semirings.

Lemma 4.2 (Monotonicity). An idempotent semiring (S,⊕,⊗, 0, 1) with the natural
order ≤ over S is monotonic.

Idempotency is typically easier to check than monotonicity. For example, it is obvi-
ous that the Min-Plus and Max-Plus semirings are idempotent, since min(s, s)= s and
max(s, s)= s.

4.3 A Haskell library for dynamic programming

We have implemented a library for dynamic programming and semirings that is based
on the DP library by Sasha Rush (2009).6 The first component is a representation of
semirings. The semiring structure can be nicely captured in a Haskell type class. Of
course, the required laws cannot be expressed in Haskell; it’s the programmer’s obligation
to ensure that the laws hold for their instance definitions.
6 See http://hackage.haskell.org/package/DP. The code has not been maintained in some time and
doesn’t seem to work currently. Our implementation is available at https://github.com/prashant007/
XDP.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

http://hackage.haskell.org/package/DP
https://github.com/prashant007/XDP
https://github.com/prashant007/XDP
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 11

class Semiring a where
zero, one :: a
(<+>), (<.>) :: a -> a -> a

ssum :: Semiring a => [a] -> a
ssum = foldr (<+>) zero

A Semiring type class has already been defined as part of several Haskell packages (some of
which are defunct). In general, previous approaches have the advantage that they integrate
the Semiring class more tightly into the existing Haskell class hierarchy. For example, zero
and <+> are essentially mempty and mappend of the class Monoid. Mainly for presentation
reasons, we decided to define the Semiring type class independently, since it allows the
definition of instances through a single definition instead of being forced to split it into
several ones.
The Counting semiring that is needed for implementing the function for computing

Fibonacci numbers is obtained by defining a number type as an instance of the Semiring

class in the obvious way.

instance Semiring Integer where
{zero = 0; one = 1; (<+>) = (+); (<.>) = (*)}

The semiring recurrence representation shown in Section 4.2 can be represented in Haskell
using the DP library as follows:

fibT :: DP Integer Integer
fibT 0 = zero
fibT 1 = one
fibT n = memo (n-1) <+> memo (n-2)

fib :: Integer -> Integer
fib n = runDP fibT n

The definition of fibT looks very similar to the naive implementation. A noticeable differ-
ence is that the recursive function calls are made using memo to indicate when intermediate
results of recursive calls should be stored in a table. The implementation is similar to the
one shown in Figure 3 that is based on the state monad and consists of two parts, (a) the
definition of the recurrence relation that denotes a table-based, efficient implementation,
and (b) an interface to execute the code.
The definition makes use of the following building blocks provided by the dynamic

programming library. (We will see the use of the function inj in later examples.)

• The functions <+> and <.> correspond to semiring addition (⊕) and multiplication
(⊗), respectively.

• The type DP t r represents a dynamic programming computation. Parameter t rep-
resents the argument, corresponding to the table index, on which recursion occurs,
and r is the result type of the computation.

• The function memo takes an index as input. The index can be thought of as the input
to the smaller subproblems that need to be solved while solving a dynamic program-
ming problem; it is the quantity on which the algorithm is recursively invoked. With

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


12 M. Erwig and P. Kumar

memo a subproblem for a given input value is solved only once, and the result is stored
in a table for later reuse.

• The function inj turns any semiring value (different from 0 and 1) into a DP value.
• The function runDP executes a dynamic programming specification DP t r that works
on tables indexed by a type t. The function runDP yields a function that computes
results of type r from an initial value of type t.

Note that the Counting semiring is not idempotent but still monotonic. Thus, the
implementation of Fibonacci numbers is still correct.

4.4 Computing the lengths of shortest paths

Next, we consider the shortest-path problem as a more realistic DP example for a com-
putation that can actually benefit from explanations based on value decompositions. In its
simplest form, a shortest-path algorithm takes a graph together with a source and des-
tination node as inputs and computes the length of the shortest path between the two
nodes.
In the following, we show how to implement an algorithm for computing shortest paths

using the semiring library. Specifically, we employ the Bellman–Ford algorithm (Ford
& Fulkerson, 1956; Bellman, 1958), which can be concisely described by the following
recurrence relation, in which SPs(v, i) denotes the length of the shortest path with at most i
number of edges between the start node s and any other node v. This algorithm works only
for graphs with nonnegative edge weights.

SPs(v, i)=
⎧⎨
⎩

0 i= 0 and v = s
∞ i= 0 and v �= s
min(SPs(v, i− 1), min(u,v)∈E(SPs(u, i− 1)+w(u, v))) otherwise

Here E is the set of edges in the graph, and w(u, v) denotes the weight of edge (u, v). This
algorithm incrementally updates connection information between nodes. When all edge
labels in a graph with n nodes are positive, the shortest path contains at most n− 1 edges.
Therefore, the shortest path to a node t can be obtained by the expression SPs(t, n). The
algorithm in each step considers nodes that are one more edge away from the target node
and updates the distance of the currently known shortest path.
The computation described by the recurrence relation is captured by the Min-Plus semi-

ring (see Figure 4): The min function of the recurrence is represented by the semiring
addition ⊕, and the numeric addition is represented by semiring multiplication ⊗. The
constants 0 and 1 represent the additive and the multiplicative identity and stand for ∞
and 0, respectively. Written in terms of the semiring operations the recurrence relation
looks as follows:

SPs(v, i)=
⎧⎨
⎩

1 i= 0 and v = s
0 i= 0 and v �= s
SPs(v, i− 1)⊕ ⊕

(u,v)∈E(SPs(u, i− 1)⊗w(u, v)) otherwise

Note that this formulation of the algorithm is actually more general than the original, since
the operations can be instantiated with operations of a different semiring to express differ-
ent computations. We will later take advantage of this generality by generating, in addition

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 13

type Node = Int
type Edge = (Node,Node)
type Graph l = [(Edge,l)]

noNodes :: Graph l -> Int
noNodes = length . nub . concatMap (\((p,q),_) -> [p,q])

class Semiring r => SP l r where
result :: (Edge,l) -> r

sp :: Graph l -> Node -> DP (Node,Int) r
sp g s (v,0) = if s==v then one else zero
sp g s (v,i) = memo (v,i-1) <+>

ssum [memo (u,i-1) <.> (inj.result) e | e@((u,v'),_)<-g, v'==v]

shortestPath :: Graph l -> Node -> Node -> r
shortestPath g s t = runDP (sp g s) (t,noNodes g-1)

Fig. 5. Generic shortest path implementation.

to the shortest path value, decomposed values, the path itself, and explanations. To make
use of the semiring framework, we show how the shortest-path algorithm can be expressed
as a dynamic programming algorithm in our library.
The Min-Plus semiring is implemented in Haskell through a class instance definition for

the type constructor Large that adds ∞ to a number type. We need ∞ to represent the case
when there isn’t a path between two nodes.

data Large a = Finite a | Infinity deriving (Eq,Ord)

instance (Num a,Ord a) => Semiring (Large a) where
{zero = Infinity; one = Finite 0; (<+>) = min; (<.>) = (+)}

The instance definitions for Functor and Applicative are straightforward (they are basically
the same as for Maybe), and we omit them here for brevity. The instance definition for Num is
also standard; it uses liftA2 for binary functions and fmap for unary functions. One subtle,
but important, difference between Large and Maybe is that Infinity is defined as the second
constructor in the data definition, which makes it the largest element of the Large data type
when an Ord instance is automatically derived.
For the Haskell implementation of the algorithm, we represent edges as pairs of

nodes and a graph as a list of edges paired with their weights, see Figure 5. We use a
multi-parameter type class SP to facilitate a generic implementation of the shortest-path
function that works for different edge label types (type parameter l) and types of results
(type parameter r). As in the Fibonacci example, the implementation consists of two parts:
(a) the recurrence specification of the DP algorithm (the function sp) and the function
for running the described computation (the function shortestPath). Both functions have a
default implementation that doesn’t change for different class instances. The class consists
of an additional member result that turns labeled edges into values of the DP result type
r. The definition of the sp function is directly derived from the semiring representation of
the Bellman–Ford recurrence relation. Note that the memo function in the definition of sp

takes pairs as input and effectively denotes a recursion of the sp function, memoizing the
output of each recursive call for later reuse. The second argument of the <+> function in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


14 M. Erwig and P. Kumar

1

2

5

3

4

14

26

9
18

3

7

5

1

2

5

3

4

(10
, 3,

1, 0
)

(14, 9, 2, 1)

(6, 0, 2, 1)

(13, 2, 1, 2)

(3, 0, 0, 0)

(4, 1, 1, 1)

(3,
1, 1

, 0)

Fig. 6. Left: An edge-labeled graph (g). Right: A version of g with decomposed edge-labels (gd).

the recursive case of the sp function implements the part
⊕

(u,v)∈E(SPs(u, i− 1)⊗w(u, v))
of the recurrence relation. The function ssum takes a list of values, namely all incoming
edges at node v, and combines these using the semiring addition function <+>. Finally,
the actual computation of a shortest path between two nodes is initiated by the function
shortestPath through calling sp and passing the number of nodes of the graph as an
additional parameter (computed by the helper function noNodes).

To execute the shortestPath function for producing path lengths for graphs with
non-decomposed edge labels, we need to create an instance of the SP type class with the cor-
responding type parameters. Since the functions sp and shortestPath are already defined,
we only need to provide a definition of the function result.

instance SP Double (Large Double) where
result (_,l) = Finite l

The result of running the shortest-path algorithm on the non-decomposed graph shown on
the left of Figure 6 produces the following output:

> shortestPath g 1 4 :: Large Double
30.0

Specifying the result type (r) to be Large Double selects the implementation in which the
result function maps a labeled edge to the DP result type as shown. In addition to the length
of the shortest path, we may also want to know the path itself. We develop a solution based
on semirings next.

4.5 Computing shortest paths

To compute shortest paths in addition to their lengths using our DP library, we need an
instance of Semiring for the type (Large Double,[Edge]). A first attempt could be to define
pairs of semirings as semirings. This would require both components to be semirings them-
selves, but since there is not a straightforward instance of lists as semirings, we have to
adopt a different strategy.
If we look at this example more closely, we can observe that the DP computation of

a shortest path is solely driven by the first component of the pair type and that the paths
are computed alongside. This means that the path type doesn’t really need to support the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 15

data View a b = View a b

class Selector a where
first :: a -> a -> Bool

instance Ord a => Selector (Large a) where
first = (<=)

instance (Selector a,Semiring a,Monoid b) => Semiring (View a b) where
zero = View zero mempty
one = View one mempty
l@(View x _) <+> r@(View y _) = if first x y then l else r
l@(View x a) <.> r@(View y b) | l == zero || r == zero = zero

| otherwise = View (x <.> y) (mappend a b)

Fig. 7. The View semiring.

Semiring structure. We can exploit this fact by defining a semiring instance for pairs that
relies for its semiring semantics only on the semiring instance of its first component. To
handle the combination of values in its second component, we require that the type be
a monoid and use the binary operation of the monoid in the instance definition for the
<.> function. The <+> function acts as a selector of the two values, and the selection is
controlled by a selection function that the first type parameter has to support through a
corresponding instance definition for the class Selector. The function first implements a
selection decision between two values; it returns True if the first argument is selected and
False otherwise. The complete code is shown in Figure 7. Note that we can’t simply replace
Selector by Ord, since we might also want to be able to use < as comparison function for
making Large (i.e., a Max-Plus semiring) a View instance.

The conditional used in the definition of <+> ensures that the absorption rule (a⊗ 0=
0⊗ a= 0) holds and that View is thus a semiring.

With the help of the View semiring, we can obtain a DP algorithm that computes the paths
alongside the lengths. To this end, we represent a path p and its length l as a value View l p

so that the length provides a view on the path on which the DP computation operates.

type Path l = View l [Edge]

The shortest-path algorithm results from an instance of the SP type class for the result type
Path (Large Double), which again only requires the definition of the result function to map
labeled edges to the DP result type.

instance SP Double (Path (Large Double)) where
result (e,l) = View (Finite l) [e]

The result of running the shortest-path algorithm on the non-decomposed graph produces
the following output.7 Again, we specify the result type of the DP computation to select
the appropriate implementation of result and thus sp.

> shortestPath g 1 4 :: Path (Large Double)
30.0 <~ [(1,2),(2,5),(5,4)]

7 We pretty-print values View x y of the View data type as x <~ y to indicate that the value y is viewed as,
and represented in computations by, x.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


16 M. Erwig and P. Kumar

This is the correct result, but we don’t get an explanation why it is faster than, say, the path
[(1,3),(3,4)]. In the next section, we develop a version of the shortest-path program that
can answer questions like this.

5 Explaining dynamic programming with value decomposition

In our introductory example from Section 2, we have represented decomposed values as
lists and then could simply aggregate these lists into values where needed to make deci-
sions (see function match in Figure 2). For programs implemented using the DP library,
however, this simple strategy does not work in general, since the programs employ the
constants one and zero, which need to be instantiated to lists of different lengths depend-
ing on the context. For example, in the Min-Plus semiring setting, we would expect 1 to
denote [0, 0] in the context of [1, 2]⊗ 1, while it should denote [0, 0, 0] in the context of
[1, 2, 3]⊗ 1. We can achieve this behavior by defining a data type for decomposed values
and providing a Num instance definition in which by default decomposed values consist of
singleton lists but will be padded to match the length of potentially longer arguments. The
code for this is not complicated but a bit lengthy and can be found in the supplemental
material.

newtype Decomposed a = Values {values :: [a]}

We also need an Ord and Eq instance, which are used in the code later. Both instances use
the sum of the elements of the lists contained in the Values constructors to perform the
comparison.

instance (Eq a,Num a) => Eq (Decomposed a) where
(==) = (==) `on` sum.values

instance (Ord a,Num a) => Ord (Decomposed a) where
(<=) = (<=) `on` sum.values

These definitions ensure that decomposed values are treated in comparisons as the sums
they represent.
With a Num instance the Decomposed data type can be used in implementing versions of the

shortest-path algorithm that can handle graphs with decomposed edge values. Specifically,
we can obtain two more versions of the shortest-path algorithm as an instance of the SP

type class, one for computing lengths only, and another one for computing paths alongside
lengths. The type of the edge labels is [Double] to reflect the decomposed edge labels
in the input graphs. The result types for the DP computations are either the path lengths
represented as decomposed edge labels or the view of paths as decomposed values. Here
are the corresponding instance definitions.

instance SP [Double] (Large (Decomposed Double)) where
result (_,l) = Finite (Values l)

instance SP [Double] (Path (Large (Decomposed Double))) where
result (e,l) = View (Finite (Values l)) [e]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 17

Running either of the shortest-path algorithms has to use the graph gd with decomposed
edge labels (shown on the right of Figure 6) and needs to specify the desired output type.

> shortestPath gd 1 4 :: Large (Decomposed Double)
[20.0,4.0,4.0,2.0]

> shortestPath gd 1 4 :: Path (Large (Decomposed Double))
[20.0,4.0,4.0,2.0] <~ [(1,2),(2,5),(5,4)]

With value decompositions available, we can now compute valuation differences and
minimal dominating sets to compare results with alternative solutions. For example,
the decomposed length of the alternative path [(1,3),(3,4)] between nodes 1 and 4 is
[17,10,3,1] (as can be easily verified by adding the edge label components of the graph gd

in Figure 6). Since Decomposed and Large are Num instances, we can immediately compute
the valuation difference with respect to the shortest path to be [3.0,-6.0,1.0,1.0]. Before
we can implement a function for computing minimal dominating sets, we need two more
things: first, we have to extract the decomposed values (of type Decomposed Double) from the
semiring values (of type Large (Decomposed Double)) produced by the shortest-path func-
tion. Second, when sorting the components of the valuation difference into positive and
negative parts, we need to decide which parts constitute the barrier and which parts are
supporting components of the computed optimal value. This decision actually depends on
the semiring on which the computation to be explained is based. In the shortest path exam-
ple, we have used the Min-Plus semiring for which positive value differences constitute
barriers and negative values overcome the barrier. In general, a value s is a supporting
value (for overcoming a barrier) if:

s⊕ 1= s

We can realize both requirements through a (multi-parameter) type class Decompose that
relates semiring types with the types of values used in decompositions, see Figure 8.8

With this type class, we can directly implement the definition of � from Section 3 as
a function for computing the smallest sublist of supporting values whose (absolute) sum
exceeds the sum of the barrier, in this case it’s the singleton list [-6.0]. However, the
number itself doesn’t tell us what category provides this dominating advantage. To assign
a meaning to the bare numbers, we can employ a data type Labeled that pairs values with
strings.

data Labeled a = Label String a

unlabel :: Labeled a -> a
unlabel (Label _ x) = x

Creating a Num instance for Labeled allows us to assign labels to the individual numbers
of a Decomposed value and apply the computation of dominating sets to work with labeled

8 The additional argument of type a for supportive is required for technical reasons to keep the types in
the multi-parameter type class unambiguous. As can be seen in the instance definition, it is not really used.
Unfortunately also, we can’t give the generic definition for supportive indicated by the equation, since that
would as well lead to an ambiguous type.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


18 M. Erwig and P. Kumar

class Semiring a => Decompose a b | a -> b where
dec :: a -> Decomposed b
supportive :: a -> b -> Bool

instance Decompose (Large (Decomposed Double)) Double where
dec Infinity = Values []
dec (Finite vs) = vs
supportive _ x = x<0

withCategories :: Decomposed a -> [String] -> Decomposed (Labeled a)
withCategories d cs = Values (map Label cs) <*> d

explainWith :: (Decompose a b,Ord b,Num b) => [String] -> a -> a
-> Decomposed (Labeled b)
explainWith cs d d' = Values $ head $ sortBy (compare `on` length) doms

where (support,barrier) = partition sup $ values delta
doms = [d | d <- sublists support, abs (sum d) > abs (sum barrier)]
delta = dec d `withCategories` cs - dec d' `withCategories` cs
sup = supportive d . unlabel

Fig. 8. Minimal dominators and explanations.

numbers, resulting in the function explainWith. If p is the result of the shortest-path function
shown above and p' is the corresponding value for the alternative path considered, we can
explain why p is better than p' by invoking the function.

> explainWith ["Distance","Traffic","Weather","Construction"] p p'
[Traffic:-6.0]

The result says that, considering traffic alone, p has an advantage over p', since the traffic
makes the path of p faster by 6.

6 Additional examples

The generation of explanation works in much the same way for other DP algorithms. The
general workflow is as follows.

• Identify the appropriate semiring for the optimization problem. This might require
the definition of a new Haskell data type and its Semiring instance. The View semi-
ring offers opportunities to realize a variety of computations that produce results on
different levels of detail.

• Implement the DP algorithm as a type class that contains the main recurrence, a
wrapper to run the described computation, plus the function result that ties the DP
computation to different result types.

• Define a value decomposition for the result type. The categorization of the type of
values to be optimized allows the function explainWith to compare optimal results
with alternatives and produce explanations based on value categories.

We briefly illustrate these steps with two more examples. In the following, we only show
the programs. Our library additionally contains encoded actual examples.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 19

type Index = Int
type Table v = [(Capacity,v)]

class Semiring r => KS v r where
result :: (Index,v) -> r

ks :: Table v -> DP (Int,Capacity) r
ks t (0,_) = one
ks t (_,0) = one
ks t (k,c)

| ck > c = memo(k-1,c)
| otherwise = ((inj.result) (k-1,vk) <.> memo (k-1,c-ck)) <+> memo(k-1,c)
where (ck,vk) = t !! (k-1)

knapSack :: Table v -> Capacity -> r
knapSack t b = runDP (ks t) (length t,b)

Fig. 9. Dynamic programming solution to the Knapsack problem.

Solving Knapsack problems

The first example is the DP algorithm for solving knapsack problems, that is, optimization
problems for finding a selection of items that maximizes their combined value while not
exceeding a certain capacity with their total cost. Assume that C is the total capacity of the
knapsack, and let ci and vi denote the cost and the value, respectively, of the ith element.
If KS(k,C) denotes the value of the highest-valued solution that uses items from the set
{1, 2, . . . , k}, then KS can be defined through the following recurrence:

KS(k,C)=
⎧⎨
⎩

0 if k = 0∨C = 0
KS(k − 1,C) if ck >C
max(vk +KS(k − 1,C − ck),KS(k − 1,C)) otherwise

Since the optimization aims at maximizing the total value of the items placed in knapsacks,
we observe in the first step that we need to work with theMax-Plus semiring. Therefore, we
need a data type Small (dual to Large with a constructor for representing negative infinity)
together with its straightforward Eq, Ord, and Semiring instances.

In the second step, we can describe the class of knapsack DP computations using a type
class KS shown in Figure 9, which is quite similar to the SP class from in Figure 5.
Finally, we need to model the decomposition of the values for different items to be

placed in the knapsack. This step depends, of course, on the application domain in which
the optimization is used. For example, in the case of planning investments with limited
funds, the value of individual investment options could be decomposed into their current
value, their stability, and growth expectation.
The fact that we can define the value decomposition after deciding on the application

illustrates nicely how we can specialize the explanations for one DP algorithm to different
application domains independently of the implementation of the algorithm itself.

Solving decoding problems in hidden Markov models

Hidden Markov models (HMMs) relate hidden states and observations. HMMs have many
applications in reinforcement learning and temporal pattern recognition, including speech,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


20 M. Erwig and P. Kumar

type TTable a c = [((a,a),c)]
type ETable a b c = [((a,b),c)]

class (Ord a,Ord b,Num c,Ord c,Semiring r) => Viterbi a b c r where
result :: (a,b,Small c) -> r

viterbi :: (TTable a c,ETable a b c) -> [b] -> DP (Int,a) r
viterbi (ts,es) xs (i,k)

| length xs==i = res (k,xs!!0,one)
| otherwise = ssum [memo(i+1,j) <.> res (k,xs!!0,Finite' p) <.>

(res.lookupE (j,xs!!i) k) es | ((s,j),p) <- ts, s==k]
where res = inj . result

viterbiPath :: (TTable a c ,ETable a b c) -> [b] -> a -> r
viterbiPath tes xs s = runDP (viterbi tes xs) (0,s)

lookupE :: (Ord a,Eq b) => (a,b) -> a -> ETable a b c -> (a,b,Small c)
lookupE x@(p,q) s = maybe (s,q,NegInfinity) (\v->(s,q,Finite' v)) . lookup x

Fig. 10. Dynamic programming implementation of the Viterbi recurrence.

handwriting, and gesture recognition, bioinformatics, transportation, etc. One HMM appli-
cation is the so-called decoding problem, which is to infer a sequence of hidden states from
a sequence of observations. The Viterbi algorithm is a dynamic programming algorithm
that can be used for this purpose. An HMM is represented by a table tkj of so-called tran-
sition probabilities between hidden states k and j. In addition, ek(xi) is a table of so-called
emission probabilities of making observation xi in state k. The recurrence relation for the
Viterbi algorithm for a list of observations x1, . . . , xn is shown below. V (i, k) represents
the maximum probability value of observing xi in state k:

V (i, k)=
{

1 i= n
maxij{V (i+ 1, j)× tkj × ek(xi)} otherwise

Again, in the first step, we have to identify the proper semiring for performing the compu-
tations. With maximization as the selection function and multiplication (of probabilities)
as aggregation, the Viterbi semiring shown in Figure 4 seems like the obvious choice.
However, while we could decompose probabilities into contributing factors, we cannot
compute value differences and minimal dominating sets. Therefore, we apply a log-
transformation, that is, map all probabilities to their log-values, which allows us to operate
with theMax-Plus semiring. We then have to use the Small data type in the implementation,
as we did in the knapsack example.
In the second step, we describe the class of Viterbi DP computations using a type class

Viterbi shown in Figure 10. Apart from the more complicated input (two probability
tables), storing more information in the DP result, and some additional auxiliary
definitions, the encoding of the recurrence in Haskell is again mostly straightforward,
with the one notable exception that we have to log-transform the probabilities from a
multiplicative structure into an additive structure so that we can deal with them within the
Max-Plus semiring. (This happens when examples are fed into computations and is not
shown here; it can be seen in the supplemental material.)
The third step again selects an application domain and defines a value decomposition

that can support the explanation of solutions.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 21

7 Proactive generation of explanations

In the previous section, we have demonstrated how value decompositions can help provide
succinct explanations for why solutions obtained by dynamic programming algorithms are
better than any given alternative. In those scenarios, it is the user who has to supply such
alternatives as an argument for the function explainWith. It turns out that in many cases
such examples can be automatically generated, which means that the questions users might
have about computed solutions can be anticipated and preemptively answered.
In the case of finding shortest paths, a result may be surprising—and therefore might

prompt the user to question it—if the suggested path is not the shortest one in terms of
traveled distance. This is because the travel distance retains a special status among all cost
categories in that it is always a determining factor in the solution and can never be ignored.
This is different for other categories, such as traffic or weather, which may be 0 and in that
case play no role in deciding between different path alternatives.
In general, we can distinguish between those categories that always influence the out-

come of the computation and those that only may do so. We call the former principal
categories and the latter minor categories. We can try to exploit knowledge about prin-
cipal and minor categories to anticipate user questions by executing the program with
decomposed values but keeping only the values for the principal categories. If the result
is different from the one produced when using the complete value decomposition, it is an
alternative result worthy of an explanation, and we can compute the minimal dominating
set accordingly.
Unfortunately, however, this strategy doesn’t work as expected, because if we remove

minor categories to compute an alternative solution, the values of those categories aren’t
aggregated alongside the computation of the alternative and thus are not available for the
MDS computation. Alternatively, instead of changing the underlying decomposition data,
we can change the way their aggregation controls the DP algorithm. Specifically, instead
of ordering decomposed values based on their sum (as in the Ord instance definition shown
at the beginning of Section 5), we can order them based on a primary category (or a sum
of several primary categories). In Haskell, we can achieve this by defining a new data type
Principal, which is basically identical to Decomposed but has a correspondingly altered Ord

instance definition, see Figure 11. We also need a function that can map Principal data
into Decomposed data within the type of the semiring to get two Decomposed values that can
be compared and explained by the function explainWith. With these preparations, we can
define the function explain that takes two instances of the function to be explained, one
for producing Principal values and one for producing Decomposed values. It applies both
functions to the input and if the results differ, that is when the result considering only
the principal categories yields a different result, then the difference is explained as before
using the function explainWith.
To use explain in our example, we have to create another instance for the SP class

for working with Principal data. We also have to create an instance for the function
fromPrincipal, so that we can turn Principal data into Decomposed data inside the Large

type.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


22 M. Erwig and P. Kumar

newtype Principal a = PValues {pvalues :: [a]}

class FromPrincipal f where
fromPrincipal :: f (Principal a) -> f (Decomposed a)

explain :: (FromPrincipal f,Decompose (f (Decomposed a)) b,Eq (f (Decomposed a)),
Ord b,Num b) =>
(i -> f (Decomposed a),i -> f (Principal a)) -> [String] -> i ->
(f (Decomposed a),Maybe (f (Decomposed a),Decomposed (Labeled b)))

explain (f,g) cs i | o==o' = (o,Nothing)
| otherwise = (o,Just (o',explainWith cs o o'))
where (o,o') = (f i,fromPrincipal (g i))

Fig. 11. Automatic explanations.

instance SP [Double] (Large (Principal Double)) where
result (_,l) = Finite (PValues l)

instance FromPrincipal Large where
fromPrincipal = fmap asDecomposed where asDecomposed (PValues xs) = Values xs

Finally, to be able to apply explain we have to normalize the argument type of the shortest-
path function into a tuple.

type SPInput = (Graph [Double],Node,Node)

spD :: SPInput -> Large (Decomposed Double)
spD (g,v,w) = shortestPath g v w

spP :: SPInput -> Large (Principal Double)
spP (g,v,w) = shortestPath g v w

When we apply explain, it will in addition to computing the shortest path also automati-
cally find an alternative path and explain why it is not a better alternative.

> explain (spD,spP) categories (gd,1,4)
([20.0,4.0,4.0,2.0],Just ([17.0,10.0,3.0,1.0],[Traffic:-6.0]))

Of course, the output could be printed more prettily. Moreover, the need to pass two
functions as arguments to explain seems annoying, but unfortunately Haskell’s type class
system doesn’t let us derive, in general, the second function for computing with Principal

data from the function computing with Decomposed data.

8 Related work

In an earlier work, we proposed the idea of preserving the structure of aggregated data
and using it to generate explanations for reinforcement learning algorithms based on‘
so-called minimum sufficient explanations (Erwig et al., 2018; Juozapaitis et al., 2019).
That approach is less general than what we describe here and strictly situated in a machine
learning context that is tied to the framework of adaptation-based programming by Bauer
et al. (2011). The concepts of value decomposition and minimal dominating sets presented
in this paper constitute a general approach to the generation of explanations for a wide

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 23

range of algorithms. The concept of minimal sufficient explanations was also used in
related work on explanations for optimal MDP policies (Khan et al., 2009). That work
is focused on automated planning and on explaining the optimal decision of an optimal
policy. Those explanations tend to be significantly larger than explanations for decisions
to select between two alternatives. Also, that work is not based on value or reward decom-
positions. The idea of explaining the choice of one alternative over another is similar to
the notion of contrastive explanations (Garfinkel, 1981; Lipton, 2004, 1990), which work
by comparing a phenomenon to potential alternatives.
The idea behind provenance semirings (Green et al., 2007; Cheney et al., 2009) is to

describe the origins and history of data over their life cycle. To this end, each tuple in the
original database is annotated with a unique identifier. Queries then generate provenance
expressions for each tuple in the resulting tables. The algebraic operations involved in
this computation form a semiring. We can think of provenance expressions as a kind of
trace, and they can be used to answer questions such as “Which input tuples were used
to produce an output tuple?” and “How are input tuples used to produce a given output
tuple?”. This approach is similar to our technique in that additional information (in the form
of provenance expressions) is generated by semiring computations which are later used for
explanations. However, the two techniques differ in how this additional information is
processed and presented as explanations to the end users.

Debugging

Debugging can be regarded as a process to find explanations for incorrect program behav-
iors. Debugging presumes that a program is incorrect, and its primary purpose is to locate
and eliminate a program fault. In contrast, explanations of program behavior generally
could (and should) work for correct programs as well. Nevertheless, debugging is a widely
used method for understanding program behavior.
Zeller (2002) describes the use of delta debugging to reveal the cause–effect chain of

program failures, that is, the variables and values that caused the failure. Delta debugging
needs two runs of a program, a successful one and an unsuccessful one. It systematically
narrows down failure-inducing circumstances until a minimal set remains, that is, if there
is a test case which produces a bug, then delta debugging will try to trim the code until the
minimal code component which reproduces the bug is found. Delta debugging and the idea
of MDSs are similar in the sense that both try to isolate minimal components responsible
for a certain output. An important difference is that delta debugging produces program
fragments as explanations, whereas an explanation based on value decompositions is a
structured representation of program inputs.
The process of debugging is complicated by the low-level representation of data pro-

cessed by programs. Declarative debugging aims to provide a more high-level approach,
which abstracts away the evaluation order of the program and focuses on its high-level
logical meaning. This style of debugging is discussed by Pope (2005) and is at the heart
of, for example, the Haskell debugger Buddha. The so-called Evaluation Dependence
Tree (EDT) (Nilsson & Sparud, 1997) hides the operational details of programs and is
used as the basis for Freja (Nilsson & Fritzson, 1994), another declarative debugging tool
for lazy functional languages. Though this debugging strategy is more abstract than most

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


24 M. Erwig and P. Kumar

standard debugging strategies, the generated explanations are still too low level to be used
as explanations for program users.
Still another method is observational debugging, employed by the Haskell debugger

Hood (Gill, 2001), which allows the observation of intermediate values within the com-
putation. The programmer has to annotate expressions of interest inside the source code.
When the source code is recompiled and rerun, the values generated for the annotated
expressions are recorded. Like value decomposition, observational debugging expects the
programmers to identify and annotate parts of the programs that are relevant to generate
explanations. A potential problem with the approach is that the number of intermediate
values can become large and not all the intermediate values have explanatory significance.
A large number of intermediate values can impact comprehension as the programmer has
to spend time identifying interesting intermediate values.
TheWhyline system (Ko &Myers, 2004, 2009) inverts the debugging process, allowing

users to ask questions about program values and responding by pointing to parts of the
code responsible for the outcomes. Although this system improves the debugging process
significantly, it can still only point to places in the program, which limits its explanatory
power. In the realm of spreadsheets, the goal-directed debugging approach (Abraham &
Erwig, 2007, 2005) goes one step further and also produces change suggestions that would
fix errors. Change suggestions are a kind of counterfactual explanations.

Traces

Traces of program executions are a major source for explaining how outputs were produced
from inputs. While traces are often used as a basis for debugging, they can support more
general forms of explanations as well.
Constructing traces is by itself not difficult. But since traces can get quite large for even

small programs, finding those parts in a trace that are crucial for an explanation poses a
challenge. To address this problem, program slicing mechanisms have been employed to
filter out irrelevant parts. Specifically, dynamic slicing is a technique for isolating segments
of a program that potentially contribute to the value computed at a point of interest. For
example, Biswas (1997) describes the generation of a dynamic slice for a higher-order
programming language, and Ochoa et al. (2004) describe techniques for computing slices
for a first-order lazy programming language.
Perera et al. (2012) describe the use of dynamic slicing on traces to specifically gener-

ate explanations for the executions of functional programs. Their approach supports slicing
criteria that that make it possible to eliminate or select arbitrary portions of the output. This
approach has been extended to imperative functional programs in Ricciotti et al. (2017).
Our approach does not produce traces as explanations. Instead of collecting intermediate
values over the execution of a program, value decomposition maintain a more granular
representation of values that are still aggregated. Our approach requires some additional
work on the part of the programmers in decomposing the inputs (even though in our library
we have tried to minimize the required effort). An advantage of our approach is that we
only record the information relevant to an explanation in contrast to generic tracing mech-
anisms, which generally have to record every computation that occurs in a program, and
require aggressive filtering of traces afterwards.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


Explainable dynamic programming 25

9 Conclusions

We have introduced a general approach to explain the results of dynamic programming
algorithms through value decompositions and minimal dominating sets: value decompo-
sitions offer more details about how decisions were made, and minimal dominating sets
minimize the amount of information a user has to absorb to understand an explanation.
We have demonstrated the wide applicability of the technique by integrating it into a
library for dynamic programming, which requires only little effort from a programmer
to get from a traditional, value-producing program to one that can also produce explana-
tions of its results. This explanation component is modular and allows the explanations
for one DP algorithm to be specialized to different application domains independently of
its implementation. Moreover, the general explanation approach is not limited to dynamic
programming; it can in principle be applied in any application domain. In addition to pro-
ducing explanations in response to user requests, we have also shown how to anticipate
questions about results and how to produce corresponding explanations automatically.

Conflict of Interest

None.

Acknowledgements

We are grateful to Sasha Rush for his DP library (Rush, 2009). Our implementation
depends heavily on his code. This work is partially supported by DARPA under the grant
N66001-17-2-4030 and by the National Science Foundation under the grant CCF-1717300.

References

Abraham, R. & Erwig, M. (2005) Goal-directed debugging of spreadsheets. In IEEE International
Symposium on Visual Languages and Human-Centric Computing, pp. 37–44.

Abraham, R. & Erwig, M. (2007) GoalDebug: A spreadsheet debugger for end users. In 29th IEEE
International Conference on Software Engineering, pp. 251–260.

Ackley, D. H. (2013) Beyond efficiency. Commun. ACM 56(10), 38–40.
Bartholdi, J. J. (2008) The Knapsack Problem. Boston, MA: Springer US, pp. 19–31.
Bauer, T., Erwig, M., Fern, A. & Pinto, J. (2011) Adaptation-based programming in Haskell. In
IFIP Working Conference on Domain-Specific Languages, pp. 1–23.

Bellman, R. (1957a) A Markovian decision process. J. Math. Mech. 6(5), 679–684.
Bellman, R. (1958) On a routing problem. Q. Appl. Math. 16(1), 87–90.
Bellman, R. (1957b) Dynamic Programming, 1st edn. Princeton, NJ, USA: Princeton University
Press.

Biswas, S. K. (1997) Dynamic Slicing in Higher-Order Programming Languages. Ph.D. thesis.
Cheney, J., Chiticariu, L. & Tan, W. (2009) Provenance in databases: Why, how, and where. Found.
Trends Databases 1(4), 379–474.

Dantzig, G. (1957) Discrete-variable extremum problems. Oper. Res. 5, 266–288.
Erwig, M., Fern, A., Murali, M. & Koul, A. (2018). Explaining deep adaptive programs via reward
decomposition. In IJCAI/ECAI Workshop on Explainable Artificial Intelligence, pp. 40–44.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core


26 M. Erwig and P. Kumar

Ford, L. R. & Fulkerson, D. R. (1956) Maximal flow through a network. Canad. J. Math., 8,
399–404.

Garfinkel, P. (1981) Forms of Explanation. New Haven, CT, USA: Yale University Press.
Gill, A. (2001) Debugging Haskell by observing intermediate data structures. Electron. Notes
Theoretical Comput. Sci. 41(1), 1.

Golan, J. S. (1999) Semirings and Their Applications. Dordrecht, Netherlands: Springer.
Goodman, J. (1999) Semiring parsing. Comput. Linguist. 25(4), 573–605.
Green, T., Karvounarakis, G. & Tannen, V. (2007, June). Provenance semirings.
Juozapaitis, Z., Fern, A., Koul, A., Erwig, M. & Doshi-Velez, F. (2019). Explainable reinforce-
ment learning via reward decomposition. In IJCAI/ECAI Workshop on Explainable Artificial
Intelligence, pp. 47–53.

Khan, O. Z., Poupart, P. & Black, J. P. (2009) Minimal sufficient explanations for factored Markov
decision processes. In 19th International Conference on Automated Planning and Scheduling, pp.
194–200.

Khoo, Y. P., Foster, J. S. & Hicks, M. (2013) Expositor: Scriptable time-travel debugging with
first-class traces. In ACM/IEEE International Conference on Software Engineering, pp. 352–361.

Ko, A. J. & Myers, B. A. (2004) Designing the Whyline: A debugging interface for asking questions
about program behavior. In SIGCHI Conference on Human Factors in Computing Systems, pp.
151–158.

Ko, A. J. &Myers, B. A. (2009) Finding causes of program output with the JavaWhyline. In SIGCHI
Conference on Human Factors in Computing Systems, pp. 1569–1578.

Lipton, P. (1990) Contrastive explanation. Royal Inst. Phil. Suppl. 27, 247–266.
Lipton, P. (2004) Inference to the Best Explanation. New York, NY, USA: Routledge.
Marceau, G., Cooper, G. H., Spiro, J. P., Krishnamurthi, S. & Reiss, S. P. (2007). The design
and implementation of a dataflow language for scriptable debugging. Autom. Softw. Eng. 14(1),
59–86.

Michie, D. (1968) “Memo” functions and machine learning. Nature 218, 19–22.
Mohri, M. (2002) Semiring frameworks and algorithms for shortest-distance problems. J. Autom.
Lang. Comb. 7(3), 321–350.

Murphy, G. C., Kersten, M. & Findlater, L. (2006) How are Java software developers using the
eclipse IDE? IEEE Softw. 23(4), 76–83.

Nilsson, H. & Fritzson, P. (1994) Algorithmic debugging for lazy functional languages. J. Funct.
Program. 4(3), 337–369.

Nilsson, H. & Sparud, J. (1997) The evaluation dependence tree as a basis for lazy functional
debugging. Autom. Softw. Eng. 4(2), 121–150.

Ochoa, C., Silva, J. & Vidal, G. (2004) Dynamic slicing based on redex trails. In ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pp. 123–134.

Parnin, C. & Orso, A. (2011) Are automated debugging techniques actually helping programmers?
International Symposium on Software Testing and Analysis, pp. 199–209.

Perera, R., Acar, U. A., Cheney, J. & Levy, P. B. (2012) Functional programs that explain their work.
In 17th ACM SIGPLAN International Confernce on Functional Programming, pp. 365–376.

Pope, B. (2005) Declarative debugging with Buddha. In 5th International Conference on Advanced
Functional Programming, pp. 273–308.

Ricciotti, W., Stolarek, J., Perera, R., & Cheney, J. (2017) Imperative functional programs that
explain their work. Proc. ACM Program. Lang. 1, 14:1–14:28.

Roehm, T., Tiarks, R., Koschke, R. & Maalej, W. (2012) How do professional developers
comprehend software? In 34th International Conference on Software Engineering, pp. 255–265.

Rush, S. (2009) Semirings Library. https://github.com/srush/SemiRings/tree/master
Vardi, M. Y. (2020) Efficiency vs. resilience: What covid-19 teaches computing. Commun. ACM
63(5), 9.

Vessey, I. (1986) Expertise in debugging computer programs: An analysis of the content of verbal
protocols. IEEE Trans. Syst. Man Cybernet. 16(5), 621–637.

Zeller, A. (2002) Isolating cause-effect chains from computer programs. In 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pp. 1–10.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000083
Downloaded from https://www.cambridge.org/core. IP address: 24.21.169.112, on 18 May 2021 at 18:25:29, subject to the Cambridge Core terms of use, available at

https://github.com/srush/SemiRings/tree/master
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000083
https://www.cambridge.org/core

	Explainable dynamic programming
	Introduction
	Motivating example
	Formalizing value decompositions and minimal dominating sets
	Dynamic programming with semirings
	Ad hoc dynamic programming
	Semirings and dynamic programming
	A Haskell library for dynamic programming
	Computing the lengths of shortest paths
	Computing shortest paths

	Explaining dynamic programming with value decomposition
	Additional examples
	Proactive generation of explanations
	Related work
	Conclusions


