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Abstract: We prove local well-posedness for the periodic derivative nonlinear
Schrédinger equation, which is L? critical, in Fourier-Lebesgue spaces which scale
like H*(T) for s > 0. Our result is optimal in the sense that it covers the full subcritical
regime. In particular we close the existing gap in the subcritical theory by improving
the result of Griinrock and Herr (SIAM J Math Anal 39(6):1890-1920, 2008), which
established local well-posedness in Fourier-Lebesgue spaces which scale like H*(T)
for s > }‘. We achieve this result by a delicate analysis of the structure of the solution
and the construction of an adapted nonlinear submanifold of a suitable function space.
Together these allow us to construct the unique solution to the given subcritical data.
This constructive procedure is inspired by the theory of para-controlled distributions
developed by Gubinelli et al. (Forum Math Pi, 3:75, 2015) and Catellier and Chouk
(Ann Probab 46(5):2621-2679, 2018) in the context of stochastic PDE. Our proof and
results however, are purely deterministic.

1. Introduction

The derivative nonlinear Schrodinger equation
. 2, _ . 2
iuy + 0gu = idy(Jul"u), (1.1)

where (¢, x) € (=T, T) x T (periodic) or (—7, T') x R (non-periodic), is a Hamiltonian
PDE obtained in a long-wave, weakly nonlinear scaling regime from the nonlinear propa-
gation of compressible magneto-hydrodynamic wave trains parallel to the magnetic field
in an ideal plasma with dispersion due to Hall currents in the Ohm law [12,47,51,52].
Equation (1.1) is well-known to be a completely integrable system after work by Kaup
and Newell, who showed in [48] the general scheme for solving (1.1) in terms of the
inverse scattering method (see also [44—47] and references therein). In particular (1.1)
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conserves mass and energy. However, unlike the usual one dimensional cubic NLS,
equation, (1.1) is not Galilean invariant. Global in time existence of solutions in the
Schwartz class on R was shown by Lee in [49].

The Cauchy initial value problem problem for (1.1) is scale invariant for data in L2,
that is, if u (¢, x) is a solution then so is u, (¢, x) = k%u(ﬂt, Ax) with the same L2
norm. Thus a priori one expects local well-posedness for (1.1) with initial data in H®
for s > 0. However, while local well-posedness in H* for (1.1) is known for s > %

[40,63], one has ill-posedness in H® for s < % [3,40,63]. One way to close the gap
between the scaling heuristics and actual local well-posedness results is by considering
data in the Fourier-Lebesgue spaces HJ, where p > 2. These spaces are defined as

luoll g == [1(k)"wo (k) .r 1.2)

(with L,f replaced by Zf in the periodic case). These spaces have naturally arisen in the
literature and we refer the reader to e.g. [15,24-27,42,68] for some instances. Note that
in one dimension the Fourier-Lebesgue space H} has the same scaling! as the Sobolev
space H* for

1

s=0+ P (1.3)
1 1

in particular, H3, has the scaling of L2, and H, = H?.

In the non-periodic case, Griinrock [25] proved optimal local well-posedness for (1.1)
in Hy (R) foro > % and p < oo, which allows the corresponding Sobolev regularity s to
be arbitrarily close to 0, thus covering the full subcritical range. The proof combines the
gauge transformation introduced in [37] (used also in [38,39,61,63]) and new bilinear
and trilinear estimates for the gauged equation in an appropriate variant of Bourgain’s
Fourier restriction norm spaces [8] (see Sect. 3 below for details) which follow from the
dispersion and the smoothing properties of the Schrédinger propagator on R.

In the periodic case, however, local well-posedness for (1.1) in HI‘,’ (T) is only known

foro > % and 2 < p < 4, which scaling-wise correspond to Sobolev regularity s > ‘—1‘.
This is the work of Griinrock and Herr [27]. Their proof is based on the adapted periodic
gauge transformation in [40] and new multilinear estimates for the gauged equation in
adapted variants of the Fourier restriction norm spaces. Moreover, it is proved in [27]
that the crucial trilinear estimates? become false when p > 4, so this result as well as
the existing gap in the local well-posedness theory between s > 1/4 and the scaling
prediction s > 0, cannot be improved within the framework of [27].

In this paper we close this existing gap in the periodic case. More precisely, we prove
local well-posedness for (1.1) in Hg (T) for o > % and p < oo which covers the entire
subcritical regime, hence yielding optimal local well-posedness. Our main theorem is
stated as follows:

Theorem 1.1. Fixo > % and py < oo. Forany A > 0, there exists T = T (pg, A) > 0,
such that if ”L‘OHHEO < A, then there exists a unique solution u € Z C C?HI‘,’O(J) to
(1.1) with initial data u(0) = ug, where J = [—T, T]. Here Z is an explicitly defined

1 Here and henceforth we mean that the homogenous part of the Fourier-Lebesgue norm scales like the
corresponding homogeneous Sobolev norm.

2 More precisely the trilinear estimates containing as one of their inputs the derivative term.
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sub-manifold of C,OHI‘,’O(J), see Definition 4.3 below. The map ug +— u is continuous

with respect to the C? H,‘,’0 (J) metric.

Remark 1.2. The solution we construct solves (1.1) in the sense that it solves the integral
equation

t
u(t) = ey +f I8 (lu(s)Pu(s)) ds. (1.4)
0

It is also the unique limit of smooth solutions: given A > 0, and any smooth initial data
uq in the A-ball of HI‘,’O, the classical solution exists for time 7 = T (pg, A) > 0, and the
data-to-solution map extends continuously to all of this ball. Moreover, if pg < 4, our
solution coincides with the solution constructed in [27], for as long as the latter exists.

Remark 1.3. We will only prove Theorem 1.1 with o = % and pg > 4. The extension

too > % is standard (see Proposition 7.1 for a sketch), and when 2 < py < 4 the result
follows directly from [40].

Remark 1.4. In the periodic case, we suspect that local well-posedness for (1.1) in the
1

scaling critical spaces (e.g. L%(T) and HZ(T)) is false. Fora dyadic number N, consider
some carefully chosen initial data uo whose Fourier transform ig(k) is supported in
1

{k € Z : k ~ N} and is of size N_%. Then it directly follows that ug € LN HL
uniformly in N. Denote by uj;j its linear evolution el 2 ug, and consider the second order
iteration® up) = (i0; + 8)%)_18x(|uhn|2uhn) and the third order iteration u 3 := (i9; +
83)_13x(|u(2)|2u(2)). Then, the spacetime Fourier transform i(2)(k, &) of the second

iterate u () is supported in {(k,§) € Z x R : |§ + k2| < N2} and has size at least

N—2 |€+k2|~! by some simple calculations from the linear evolution and the definition of
u(2). Similarly, the spacetime Fourier transform I/T(3\) (k, &), evenrestricted to |& +k2 | ~1,

will have size at least N2 log(N). This log divergence implies that the third iteration
1

1(3) has already left the data space C?L? or C? HZ,. In fact, similar log divergences also
appears in the Cauchy problem for the one-dimensional quintic* and two-dimensional
cubic periodic nonlinear Schrodinger equations with data in L where Bourgain showed
in particular the failure of the LO(T) and L*(T?) Strichartz estimates for data in L2(see
[8]). In fact in both cases the local well posedness in L? remain open to date.

Remark 1.5. Global well-posedness for the Cauchy problem for (1.1) is known to hold
for data in HS, s > % both on R [16,17,50] and on T [40,53,69]. Furthermore, one
has almost sure global well posedness for data in Fourier Lebesgue spaces H (T) that

have the scaling of H e (T), e > 0[58,59]. In this paper our primary goal is to close
the gap in the local well-posedness Cauchy theory. One may then study the question

of deterministic global well-posedness below H %(T) which requires quite different
techniques such as for example exploiting the integrability of the equation and seeking

. . I
suitable new conservation laws below H 2.

3 The operator (id; + 3%)*1 is just the Duhamel operator [ as in (2.14). For technical reasons, here we in
fact use the truncated version of the Duhamel operator Z as in (2.16).

4 Note that for data with finite mass, Eq. (1.1) is in fact gauged equivalent to (1.5).
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1.1. The standard approach, and difficulties. Generally speaking the difficulty one faces
in solving (1.1) is a derivative loss arising from the term i|u|2 uy in the nonlinearity of
(1.1), and hence for low regularity data the key is to somehow make up for this loss.
The first step towards this goal is a gauge transformation [37—40,63] which removes
this bad resonant term in the nonlinearity that loses derivatives and makes the estimates
uncontrollable. Matters are then reduce to studying the gauged derivative nonlinear
Schrodinger equation which we schematically write as

(& — 0% =Cv,v,v) + Qv -+, v), (1.5)

where the nonlinearity o, (|u |2u) has been transformed into the sum of the ‘better’ cubic
term

C(v,v,v) ~ivy - vz,

plus a quintic term which contains no derivative terms in it and which we momentarily
neglect in this discussion as being ‘lower order’. Once the bad nonlinear term is gauged
away from (1.1), the solution v to (1.5) is constructed by a fixed point argument, which
follows from proving multilinear estimates in suitable Fourier restriction norm function
spaces adapted to the data space. In the non-periodic case [25] these spaces in conjunction
with the dispersion and smoothing effects available on R suffice, as we mentioned above,
to prove optimal local well—posedness5 for (1.5) and hence for (1.1) in H g ,where o > %
and p < oo. In the periodic case however, the authors need to introduce in [27] a fourth
parameter ¢ in the Fourier restriction norm function spaces, namely they define®

lull oo = 1106)7 (& +K2) (k. £)llp 1

and prove that, if o = % and p < 4 the trilinear estimate

3
Iy I/l 1 (1.6)
1

t
; 2
/ 9% (3,71 - vov3) ds
0

pq j= P‘I

holds true for (b, q) = (%+, 2). Furthermore, they construct explicit counterexamples
showing that for o = % and p > 4, the trilinear estimate (1.6) fails for any choice
of (b, q) [27]. In other words, when o = % and p > 4, which in the Sobolev scale
corresponds to regularity 0 < s < 4—1‘, the local solution to (1.5) cannot be constructed

directly by a contraction mapping argument.’

To prove our Theorem 1.1 we must and will take a different approach. After per-
forming the gauge transformation, our point of departure is the following observation:
leto = % and p > 4. If one compares the profiles of the counterexamples constructed
in [27] with the profiles of the terms occurring in the formal Picard iterations of (1.5),
then they will never coincide, although they belong to exactly the same adapted Fourier

5 Local well-posedness for the gauged equation (1.5) implies local existence, uniqueness and continuity of
the flow map for (1.1) [27,40].

6 When p = q = 2 these spaces coincide with Bourgain’s Fourier restriction norm spaces associated to
the Schrédinger equation, and are simply denoted by X* b,

7 In principle, it might be possible that a trilinear estimate holds in some exotic Banach space not of form
X [‘,Z but, if not unlikely, this would at least require a rather sophisticated construction.
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restriction norm X ‘;:g spaces. In particular, let us consider two functions: (1) the sec-
ond iteration u* in a formal expansion corresponding to a ‘high-low—low’ interaction
(high in the derivative term) where the high input is uj;, (as in Remark 1.4) and the two
low inputs are just spacetime Schwartz functions; (2) the ‘intruding’ term u** whose
spacetime Fourier transform is supported in |k| ~ N, |(& + k%) — 2k| ~ 1 and has size
~ N~!. We can check that spacetime Fourier transform of «* is actually supported in

{lk| ~ N, |(§+k2) 2k2| ~ 1} and has size ~ N’% Note that both ™ and u** belong to

the same X go ,q Space, namely When b < 5, however, u* is an iteration term that actually
appears in the solution, while u™* is precisely the ‘intruding’ term that leads to the coun-
terexample of (1.6) in [27]. Namely, if one inputs in the cubic derivative nonlinearity
an ‘intruding’ term with derivative, a linear evolution uj;, and a spacetime Schwartz

function, then the output function, even restricted to frequencies k = 0 and |&| ~ 1,

will have size ~ N 5 which yields a contradiction to (1.6). Therefore it is reasonable
to imagine that, the solution v to (1.5) still exists in one of these spaces—say b = §+
and g = 2 for definiteness—but will have some specific structure such that it precisely
avoids the counterexamples constructed in [27]. To that effect we will construct v in a

1
. . 3+ .. . .
nonlinear submanifold VV of the Banach space X ; 5 containing functions of a specific

structure whence the trilinear estimate (1.6) will actually hold true when o = % and
p > 4. The heart of this paper will be to identify this precise structure.

In order to motivate our approach we take a step back and review some of the methods
developed in the probabilistic (random data, or stochastically forced) context. We note
in passing that an immediate corollary of our main Theorem 1.1 is that for random initial
data of form

u®(0) _Z g"(‘“) otk (1.7)

where g are i.i.d Gaussian random variables, (k) := /1 + |k|2, and 6 > 0 is fixed but
arbitrary, the solution to (1.1) or equivalently (1.5) almost surely exists for a positive
time.

1.2. Ideas from the probabilistic setting. In the probabilistic PDE context (i.e. random
data theory for dispersive and wave equations or parabolic stochastic PDEs) where one
deals with randomized initial data or a random forcing term, the idea of exploiting the
structure of the solution has been used for a long time, see for example Bourgain [6,7]
in the context of the defocusing (Wick ordered) cubic nonlinear Schrodinger equation,’
and Da Prato-Debussche [19,20] in the context of the stochastic Navier—Stokes and
the stochastic quantization equations. More recently this idea has been exploited in a
large body of work by many authors. See for example [4-7,10,18,22,23,41,60,66,70]
and references therein for some works on the random data local Cauchy theory in the
context of nonlinear Schrodinger equations. The key point is that, if one considers the
linear evolution of random data (or random forcing), then almost surely, it enjoys much
better estimates than arbitrary functions of the same regularity. In turn this allows one
to re-center the solution around the linear evolution of random data (or around higher
order iterates), and conclude that the difference between the two belongs to a Banach

8 See also, later work by Burq and Tzvetkov in the context of nonlinear wave equations [9].
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space of higher regularity than the one dictated by the (weaker) regularity of the random
initial data.

For example, in Bourgain [6], which deals with the cubic nonlinear Schrodinger
equation on T2, the initial data ¢® belongs to Sobolev H ~¢ almost surely, for any & > 0,

- . . - el
whence its linear evolution only belongs to the Fourier restriction norm spaces X %27+
almost surely. On the other hand, the equation is L? critical, so if one were to try to
prove local well posedness via a fixed point argument, the needed trilinear estimates

. . R . .
would fail for arbitrary functions in X —% 27, Instead, Bourgain [6] constructed solutions
u centered around the random linear evolution W® := ¢!/2¢®. That is of the form:

u=wv?+R, where (id;+A)R=NN*+R), (1.8)

and where we have denoted by A the Wick ordered cubic nonlinearity. Then, almost
surely, the needed trilinear estimates for A'(W® + R) hold true and the solution R to the

difference equation in (1.8) can be constructed in a smoother space X * 2+ by a contraction
mapping argument. Heuristically, one should view (1.8) as a ‘hybrid equation’ which
on the one hand behaves subcritically in R, thus locally well-posed in H¢; while on the
other hand the random linear evolutions W® behave better than an arbitrary function in

X2 when they are entries in A/ (W® + R) thanks to large deviation estimates. A similar
phenomenon happens in Da Prato—Debussche’s argument for-for example-the stochastic
Navier—Stokes equation on T2 with spacetime white noise forcing ¢ [19] where the role
of W* is replaced by Z, the linear evolution of white noise, Z; — AZ = ¢.

In both cases, the method can be understood as constructing solutions in a (random
affine) submanifold }V consisting of functions belonging to a ball in a smoother space,
centered at the random linear evolution.

In the past few years, Gubinelli, Imkeller and Perkowski [28,29] (see also [11] and
[30]) developed a far-reaching generalization of this re-centering method based on the
idea of para-controlled distributions. This is an analytic counterpart to the theory of
regularity structures developed by Hairer [33—-36]. Roughly speaking, in addition to the
linear evolution and possibly (suitably renormalized) higher order expressions of the
linear evolution, one moves to the new ‘center’ terms that are ‘para-controlled’ by such
expressions. Here a function f is said to be para-controlled by a function g if, up to
some smoother ‘remainder’ terms, f can be written as the Bony para-product between
high frequencies of g and low frequencies of some auxiliary function 4, namely that

f=TL.(g.h)+R:=) Pyg-Penh+R, (1.9)
N

where for dyadic frequencies N, Py and P are the standard Littlewood-Paley opera-
tors projecting onto frequencies ~ N and < N respectively, and R is smoother than f.
An example is the (parabolic) <I>‘31 model, which is the cubic heat equation on T3 with
white noise forcing [11,28], where one constructs solutions of the form

u=7Z+1(P2)+I0.(P(Z),u—-Z) + R, (1.10)

where Z is the linear evolution of the white noise, P3(Z) consists of other structured
components which themselves are given in term of (suitably renormalized cubic) powers
of Z, I is the Duhamel operator (9, — A)_l, and R is a remainder, that has higher
regularity. Here then the solution consists of the linear evolution Z, a higher order
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expression I (P3(Z)), a para-controlled part term [ 1. (Z 2 4 — 7) and a remainder and
thus belongs to a random submanifold which is much more nonlinear.

These ideas have been extensively used in various stochastic contexts in recent years
by many authors. We refer the reader for example to work by Mourrat and Weber [56]
and to Mourrat, Weber and Xu [57] and to references therein for further work in the
context of the @‘3‘ model and to Chandra and Weber [13] and references therein for a
nice survey of these ideas. See also [2]. We also refer to recent work by Gubinelli, Koch
and Oh [31,32] where these ideas were applied to the stochastic nonlinear wave equation
with quadratic nonlinearity in T and in T respectively.

1.3. The deterministic context of DNLS. Inspired by the ideas in the probabilistic setting
described above, in this paper we develop a new deterministic method to describe the
structure of solutions v to the Cauchy initial value problem for (1.1) with data at almost
critical regularity. A review of all of the above examples suggests that, if we were in the
probabilistic setting (i.e. (1.7)), we should look for solutions essentially of form

u = w + (terms para-controlled by w) + (smooth remainders),

where w is the combination of the random linear evolution, and multilinear expressions
dictated by the random linear evolution. The choice of such w is forced upon us (one
can at most choose the order of expansion) by the fact that one needs to (and indeed can)
gain from the exact Gaussian structure.

In the deterministic setting, there is no gain from randomness. One could try to mimic
the probabilistic construction of para-controlled terms in previous works, and arrive at
the ansatz

v=w + [ ng“(axw, v,v) + [ ng)(axw, w, v) + (smooth remainders), (1.11)

where [ is the Duhamel operator
r )
IF(t) =/ ' 1=9% F(s) ds
0

and the cubic para-products are defined by

0 @,w, v, v) = Y Py W - (Penv)’,
N

N2 @w, w,v) = Y Py w - (PywPey). (1.12)
N

However unlike the probabilistic setting, we are no longer guided by the Gaussians and

need to find the right w ourselves. The naive choice of linear evolution for w is doomed to

fail, and even if one includes multilinear expressions of the linear evolution, calculations

show that in the absence of randomness, one would need to expand to a very high (if

not infinite) order before unearthing ‘smooth remainders’ that have enough regularity
1

(namely Hf_ due to [27]) to close the estimates. With a high order of expansion, the
terms involved then quickly become too complex to control in our setting. Work in
this direction was considered by the second author together with Chanillo, Czubak,
Mendelson and Staffilani in the context of the nonlinear wave equation with quadratic
derivative nonlinearities, see [14] for details.
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To get out of this maze, in this paper we will give up the idea of fixing w to be
some explicit multilinear expression dictated by the linear evolution. Instead we will
construct this w, which ‘para—controls’9 the solution v, dynamically. That is, we take
all the linear and higher order terms in the above-mentioned expansion, as well as the
presumed smooth error terms, and put them into a single ‘center’ w. This leads to the
new ansatz

v=w+ ITTYGw, v, v) + I TTP0,W, w, v), (1.13)

where w is the ‘center’ which itself moves together with v and belongs to some subspace

1
,5+ . . : ;
of X ; % , p = 4. As it turns out, uncovering the final structure of v is slightly more

complex but (1.13) conveys the main philosophy!® (see Sect. 4 for details). Since w
does not have a specific multilinear structure, one difficulty is identifying the right space
where w will lie. By carefully analyzing the terms that are expected to appear in w, we

1
can specify this space'! to be X Z:;Oi.

A final complication comes from the fact that unlike the parabolic setting where
the Duhamel operator / automatically gains two derivatives, such gain is not automatic
for the Schrodinger equation. Rather, it has to be manually induced by performing a
[frequency cut-off also in the Fourier variable of time, so as to restrict to the region where
the parabolic weight in frequency (which is the one that appears in the X f,’,bq norms) is
large. In principle this would require that we replace in our ansatz (1.13) the Duhamel
operator I by a frequency cut-off version of it, which would introduce non-locality in
time which could be incompatible with local in time solutions. Fortunately the frequency
cut-off can be substituted by a suitable time convolution

t
TF(t) :=/ Y (K21 — 5))e' 9% F(s)ds (1.14)
0

which has the same effect for some carefully chosen y. See Sect. 4.1 for details.
With the above discussion, we can now fix the submanifold YV, in which the solution
v to (1.5) is uniquely constructed, to be

1 ~
W = {v € X;:; tv=w+1 1‘19(8@, v, v)

~ 1q9_
T2 0w, w,v), weX2y ). (1.15)

pP,o0—

1
3.1-
p.0o—>
1

and that the trilinear estimates (1.6), which fail for arbitrary input functions in X ;’y?,
p > 4 are actually true for input functions in Y. These together will then allow one to
construct the solution v € YV by a contraction mapping argument. Finally, by inverting
the gauge transform, one can construct the solution # to (1.1) in Z, which is the preimage
of W under the gauge transform. See Sect. 4 for details.

We will show that the submanifold W is well-defined, parametrized by w € X

9 More precisely, here the solution v is supposed to contain three parts: w, a term paracontrolled by 9w
and a term paracontrolled by d,w w as in (1.13).

10 Note that the decomposition of v is nonlinear both in w and in the para-controlled terms.

1
5.,1-28 . .
T More precisely for § > 0 and ¢ = %, the right space is sz’q . See Sect. 3 for precise definitions.
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1q_
Remark 1.6. Note that in the submanifold W defined in (1.15), the function w € X 2,1

Pr0O—
1
. 5t . . . .
is not smoother than v € X:% in space but rather gains regularity relative to the
parabolic weight |& + k2| (see the defintion (3.3)) over v. Hence w allows more room

to close the estimates for I HS)(axw, v, v) and T n(f)(axw, w, v) when T in principle
restricts these two terms to the region where the parabolic weight is large.

Remark 1.7. Nonlinear transformations based on para-products have been used in some
other equations, see for example [1,43,65]. Our nonlinear transform v <> w is neither a
para-linearized normal form nor a gauge transform, and is thus different from the ones
appearing in the literature.

Remark 1.8. We conclude this introductory discussion by noting that there is a large
body of work that has contributed to our current understanding of the Cauchy problem
for (1.1) for data in the Sobolev spaces H*, s > % both in the periodic and non-periodic
settings; we refer the reader to [3,16,17,37-40,45,46,48,50,54,55,61-64,67,69] and
references therein for a more comprehensive treatment.

1.4. Plan of the paper. The paper is organized as follows. In Sect. 2 we recall the
periodic gauge transformation used in [27] and perform such transformation to (1.1).
Then, we lay out the set up and frequency interactions splitting of the nonlinearities in
the gauged derivative Schrodinger equation which will guide our analysis. In Sect. 3
we define and set up our function spaces, prove the main linear estimates and prove an
improved divisor bound which is used in some of our estimates. In Sect. 4 we discuss the
structure of the solution, identifying the para-controlled terms and the precise solution
submanifold V¥V where v will belong. In Sect. 5 we prove a priori bounds for the para-
controlled terms. Section 6 constitutes the heart of the paper. Here we find w and prove
all the underlying multilinear estimates involved in its construction. In the course of the
proof we show in particular that all relevant nonlinearities are well defined as space-time
distributions whence the integral equation (1.4) for u will be equivalent to the integral
equation formulation of (1.5) (see Sect. 2.4 for details). Finally in Sect. 7 we prove a
preservation of regularity result.

1.5. Notations and parameters. We will use the notation
1
Poh = — | hdx, P.oh =h—Poh.
0 . /T #0 0
The space, time and spacetime Fourier transforms are respectively defined as

uk) = Fouk) = %/Te*ikxu(x)dx, WE) = FuE) = %/Re*ié’u(z)dt,

1
(2m)?

ik, &) = Zuk, &) = / e TR HED (¢ x) drdx
RxT

0 .7 is reserved for the spacetime Fourier transform. As for iz, whether it means space,
time or spacetime Fourier transform will be clear from the context. The integral over the
set

(s ) s A £t 4 = p1)
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for fixed p will be with respect to the Lebesgue measure dAj - - - dA,—1. We denote by
1p the characteristic function of a property P.

Recall that pg is fixed; we will fix a small parameter 0 < § < 1 depending on py,
and define the other parameters (bg, b1, qo, g1, 10, '1, 2) as follows:

| | 11
bo=1-28. bi=1-8 gqom . g=— L_1.s

0 : D=3 "= Gss 2

Vo bigs 1o biss (1.16)
”1_2 ’ r2_2 ’ :

We also use 6 to denote a generic positive quantity that is sufficiently small depending
on § (so & may have different values at different instances.)

We will fix A as in the statement of Theorem 1.1, and let A be large depending on
A, Aj be large depending on Ay, etc. All implicit constants below will depend on these
A j’s and the above parameters. The time length 7" will also be fixed, and small enough
depending on these implicit constants.

2. The Gauge Transform and Other Reductions

2.1. The gauge transform. Notice that ]P’0|u|2 is conserved under the flow of (1.1).
Consider the gauge transform, see [27],

v(t, %) = (Gu)(t, %) := (Gou) (£, x = 2Polul* - 1), (Gow)(t, %) := ™' u(r, x),
2.1

where
G =97 Pro(ul) 2.2)

is the unique mean-zero antiderivative of P¢0|u|2. This gauge transform is easily in-
verted, with inverse given by

u(t, x) = (G )(r,x) = O ug(r,x), G = a7 "Polvol?, (2.3)
where

vo(t, x) = v(t, x + 2Pg|v|? - 1). (2.4)

1
Proposition 2.1. The maps G and G~ are continuous from C ,0 Hp,(J) to itself for any
interval J, and map bounded sets to bounded sets.

Proof. Notice that G = GG, where
Gou = exp(—id; "Poolul®) -u, Gy'u =exp(id; Prolul®) - u,
and

Gru(t, x) = u(t, x = 2Polul* - 1), Gy 'ut, x) = u(t, x +2Polul* - 1).
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In [27], Lemma 6.2 and Lemma 6.3, it is proved that Gy : H — H is locally bi-

Lipschitz, and that G; : C,; 'H po(J ) —> CO (J ) is a homeomorphism. Moreover, it is
easily checked that

-1
”gl"t” o % _”gl ul| 0 1 = [lul|

CYHZ () CYHR (J) CYHR (J)

soGand G! map bounded sets to bounded sets. |

2.2. The transformed equation. We calculate that v = Gu satisfies the equation
(@ — i)V =C(v,v,0) + Q.-+ , V), (2.5)

where the cubic and quintic nonlinearities are defined as

FxC(v1, v2, v3) (k) = Z/qMa(k, ki, ka, k3) - 01 (k1) 2 (k2)v3(k3), (2.6)
V3

and

FQr, - vs)(k) = Y Ms(k. ki, ks) - 01 (k1) 2 (ko) 03 (k3) T (ka) 05 (k).

2.7
The sets V3 and V5 are defined by

Vs = {(ki, ka, k3) € Z° s ko + k3 — ki =k, |ka| > |ks|, k & {ka, k3}} U {(k, k, b)),
Vs = {(ki, - ks) € Z° 1 k1 — ko + k3 — ka + ks = k},
(2.8)

‘and the coefficients M are explicitly defined functions, with |M;| < 1 for j € {3, 5}.

They also have the right symmetry so that (2.5) conserves Pg|v|2. See [27] for the precise
formulas.

Remark 2.2. For integers k, ki, kp and k3 such that k» + k3 — k1 = k, we will rely
throughout the proofs on the quantity A := k> + k% - k% — k%.

2.3. Splitting the cubic nonlinearity. We will further split the cubic nonlinearity C into
four parts: a “high-high” part,!? a “low—low” part, a “semilinear” part and a “non-
resonant” part. Decompose V3 into four subsets:

Xp = {(ki, k2. k3) € V3 : |ks| = 272|k|},

Xy = {(k1, ko, k3) € V3 : [ka| < 2721k},

Xs = {(k1. k. k3) € V3 : 27ky| < Jks| < 272Jk|},
Xy = V3 — (Xg UX, UXg).

(2.9)

The following properties of this splitting are elementary and so we omit the proof.

12 Here “high” and “low” are with respect to the frequencies k> and k3.
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Proposition 2.3. We have the following properties for the sets X, wherex € {H, L, S, N}:

(1) For (ky, k2, k3) € Xp we have |ka| > |kz| > 27 20|k].

(2) For (ky, ka, k3) € X; wehave [k|/2 < |ki| < 2|k|and min([k|, |k;[) > 2'8 max(|ka],
3 |Iff(jq'()).(kl,kz,ks) € Xg we have |k|/2 < |ka| < 2lk|, [k| > 22°lk3| and |k3| >
4) 12vloor (Viz]l,"kz,kg € Xy we have |ka| > 272 max(|k|, |k|) and min(|k|, |ki]) >
(®)] 12’70r|](€li|1., ko, k3) € Xy U Xg we have

1

=

kil - (k1) (k) (k3)) ™2 S (k)72 (2.10)
(6) For (ki, ko, k3) € Xz U Xy we have
|A| ~ (k) (k1), where A=k>+ki —k3—ki = 2(k — ka)(k — k3).
(2.11)

Remark 2.4. The splitting (2.9), namely Xy, Xy, Xg, X in Proposition 2.3, can be
interpreted as a way to compare (ky, k2, k3) with k. In this way, the set X; can be
understoond as a region for the ‘high—low—low’ (|k| ~ |k1| > |ka| > |k3]|) interaction.
Similarly, Xz, X5 and X} in principle can be viewed as the regions for ‘high/low—high—
high’, ‘low—high—low’ and ‘high-high—low’ interactions. The corresponding trilinear
operators restricted to the region X, such as C, and E, (x € {H, L, S, N}) will be
widely used in the following sections.

We also need the following result, which will be used in analyzing the quintic terms
in Sect. 6. Once again these properties are elementary. We omit the proof.

Proposition 2.5. Suppose
ky+k' —ki =k, (ki, ko, k') € Xy; kga+ks —ks =k', (ks, kq, ks) € Xa,
where x, # € {H, L, S, N} and where here
A=FK+kl-k*—k3 and N =K*+k3—ki-k3.
Moreover let us define,

. |ktllks]
o =
(A)

_ Ikillks| . kI3

ayay VT Ay

. B

Then we have the followings:
(1) Assume = € {H, S} and # € {L, N}. Then either (1a) |y| S 1 or (1b) * = H and

k1| = 2%1K’|. In case (1b),
() if# = L, orif# = N and |k3| < 2°°|k'|, then we have that,

(k1)
ki1/2 < ka| < 2lk1], k1| =20 kil < ,
|k11/2 < |ka| < 2|ky], k1| = 312;;1;45I il Wl S max((a) . (ea) . (ks (k)

that ki # kp, and that max(|ks3|, lksl, |ks|]) = |kj| for j = 3 if # = L and,
JEB3. 4 if#=N;
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(i) if# = N and |k3| = 2°°|k’|, then we have that
lk11/2 < lka| < 2lk1], k31/2 < |ka| < 2|k3],

5 (k1)
k1| = 2° max(|k], |ks]), laf < max((). s, (k1 £ k)’

(2) Assume x,# € {L, N}, then either 2a) |a| < 1 or (2b) # = N and |k3| > 2*0k|.
In case (2b),
() if ¥ = L or ifx = N and |k{| < 2°°|k|, then we have

(k)
sl/2 < kel < 20ksl, W3 =25 max WKl Iyl < ,
3I/2 = Tkl < 2kl ksl = 27 max s Kl WS o k), oy, )

that k3 # k4, and that max(|ky|, |kz|, |ks|) = |k;| for j = 1if x = L and,
jell2)ifx=N;
(ii) if x = N and |k{| > 23°|k|, then we have that

k11/2 < |k2| < 2[ki], lk3|/2 < [k4| < 2[k3],

k
k3| = 2° max k|, ks|), | S )

— |k ks|.
S max(l). s’ 7

(3) Assume *, # € {L, N}, then we have that

1
< -
PIs (k) (k3 & ka)”
Now, for % € {H, L, S, N} define C, by
FCa(vi, v2, v3)(K) = Y kiM3(k, ki, ko, k3) - D1 (k)03 (k) B3 (K3),  (2.12)
Xy

(k) Z (ks).

then we have

C=Cyg+Cr+Cs+Cy. (2.13)

2.4. The full setup. When all the relevant nonlinearities are well-defined as spacetime
distributions, which we will see in the course of the proof, the integral equation (1.4) for
u will be equivalent to the integral equation

t
v(t) = vy + 1(C(v, v, v) + Q(v, - -+ , V), IF(t):/ IR E(5)ds, (2.14)
0

for v, where the nonlinearities C and Q are as in (2.6)—(2.8), and the initial data
vo = exp(—idy 'Pxoluol?) - uo, (2.15)
which satisfies ||vg]l 1 < Ajp given that |Jug] 1 < A.
H} H}

PO PO
In the proof we will be extending the function v, which is definedon J = [T, T'], to
the whole line R;; to this end we fix a smooth function ¢(#) thatis 1 for || < 1 and O for
|t| > 2, and define the truncated versions of the linear solution and Duhamel operator

V() = ot) - % vy, TF(t) = g@t) - 1(g(s) - F(s)). (2.16)

For later uses we will also define @7 (¢) = go(T’] t).
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3. Preparations

In this section we define and set up our function spaces, prove the main linear estimates
and prove an improved divisor bound which is used in some of our estimates.

3.1. Function spaces. We begin by properly defining the functions spaces that play a
role in our proof. Denote!? the Fourier-Lebesgue norms H ;, (T), where p € [2, c0) an
s € R, by

el g = 11CKk) wCo) - (3.1)

In one dimension, H ; has the same scaling as the Sobolev space H" for
y=s+———. 3.2)

When p > 2 we have y < s, which allows the regularity index y to decrease while
keeping s > %

The associated Fourier restriction norm spaces X f,’fl, where p € [2,00),q € [1, 00)
and s, b € R, are then defined by

lull s = 14K)° (& + K2 (K, )Ml gp - (33)

For 2 < pg < oo fixed and 0 < § < 1 small depending on pg also fixed, let the
parameters (b, b1, qo, q1, 1o, '1, 2) be defined as in (1.16). We define the four spaces
in which the estimates are proved as follows:

1 1

1 1
_ 2°2 _ 2°2
Yo = Xporos Y1 = Xpors (3.4)
1 1 :
5.bo 7.b1
_ y2 _ y2
Zo = Xpy.qor Z1 = Xpoqo-

Note that by Holder we have

s'.b' b . ’ ’ 1 , 1 , 1
, C X3 provided p<p,q=<q, s+—<s5+—, b+—<b+z,

X, ,
ra P p p q

(3.5)

1
in particular Zo C Yo C C ,0 H . Finally, for any finite interval / and any spacetime
norm )/, define

lullycy = inf {[[v]ly : v =wuonI}. (3.6)

13 Note that in [27] this same space is denoted by H ; ,(T) where % + # =1.



Optimal Local Well-Posedness for the DNLS Equation 1075

3.2. Linear estimates. We will be using the following notation for a spacetime function
F:

Flk,2) = ZF(k,A) := F(k, A — k?), (3.7)
where F is the spacetime Fourier transform.

Lemma 3.1. Define the function

K(A,o):i[/ $O = W = o) du—a(x)/ Mdu}, (3.8)
R M R M

where integrations are defined as principal value limits, then it satisfies

K(u o)l < <L+;)i (3.9)
OB (v —0)B ) (o) '
for any B > 0, and we have
TF(k, x)zf K., 0)F(k, o) do. (3.10)
R

Proof. In [21], Lemma 3.3, it is derived that

TF(k, 1) ZCO/ P —w

du/ P(u —0)F(k,0)do
R R

. du R ~
+c1<p(x>-f —f F(u — o) F(k, o) do,
R M R

where cg and ¢ are numerical constants, and integrations are defined as principal value
limits. By our convention with Fourier transform, we can calculate that ¢9 = i and
¢1 = —i, which gives the formula (3.8). The bound (3.9) follows easily, using that @ is
a Schwartz function. O

Proposition 3.2. Suppose u is a smooth function such that u(0) = 0. Then we have the
estimates

lor - ullyy, < TONully,, lor - ullzy < T Nullz,. (3.11)
Proof. First notice that, by (3.5),

lall gy Sl = lllz,

Po-41 P0-490

Then, by separating different Fourier modes and conjugating by e** 1 at Fourier mode

e it suffices to prove that for any function g = g () satisfying g(0) = 0,
11 N
1P @ * @GP (Wlle £ TT 7 1{0) 8 (@)l a (3.12)
provided oo > g > ¢ > 1andb+,;= > 1> b.Let g = g1 + g» where

§1(0) =1, 127-1(0)8(0),  §:(0) = Ly _7-1(0)8(0),
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we will actually prove that

1_1 ~
1@+ e Ml STT 4 (o) 8(0) 7. (3.13)
and
11 N
1) (@ * @) Wie S T4 (0)"8(0) 14 (3.14)
To prove (3.13), we can reduce it to the L7 — L4 bound for the operator
_ N _ %
g(o) — R(x,0)g(o)do, RM,0)=1sp-1 -To(T(A—0))—.
R 7= (0)?
Since
(WP _ (TP b
Lyj>7-1 o) S (Toyb ST —0)),

-~ b 1—1 1_1 1 1 1
TGN TPl ST P =TT 0, —=14+-—=,
" B 9 q
which proves (3.13).
To prove (3.14), notice that
(@2 *or)(X) = —=To(Th) g(o)do

lo|=T-!
—/ T3(0)[@(T1) — §(T (A —0))]do
lo|<T—1
since g(0) = 0; thus
(@ *er) W) Sp T(T2) P / min(1, |To |)[2(o)|do
R
for any B > 0. Since by an elementary calculation we can prove
/ min(1, |To)|2(0)|do S [1(6)°8(0) 17 - [l min(1, |Tol) (o) |1y
R

< b=t _ b 1
Y q

’

and that

1
IT(TA) B aP e ST "3,

we deduce (3.14). O

Remark 3.3. The requirement ©(0) = 0 is necessary. Below (3.11) will be applied only
for those u of form

t
u(t) = / (expression),
0

namely u = Z(---) oru = &£}(---), see Sect. 4.1 for the definition of £, so u(0) = 0
will always be true.
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3.3. Adivisor bound. Finally,inthis subsection we prove and record an improved divisor
bound that will be handy later on in some parts of the proof.'4

Lemma 3.4.(1) Let R = Z or Zlw)], where = exp(2wi/3), and fix ¢ > 0. Let
k,q € Rand p > 0 be such that |q| > |k|® > 0. Then the number of divisorsr € R
of k that satisfies |r — q| < p is at most Og(p®).

(2) Consider the system

+a £ b= c=const
(3.15)

F a? F b? F ¢ = const.

where the signs are arbitrary, but the signs of +a and Fa* etc. are always opposite.
Assume also that there is no pairing, where a pairing means that (say) a = b and
the signs of a and b in (3.15) are opposite. Then the number of solutions that satisfy
la| ~ Ny, |b| ~ Ny and |c| ~ N3 is S¢ N, where N is the second largest of the

Nj

Proof.
ey

2

(a)

(b)

’s.

It is well-known that R has unique factorization and satisfies the standard divisor
bound: the number of divisors of k # 0 is at most O, (|k|®). Thus the result
is trivial if p > |k|®, where 8§ = &*. Now suppose |p| < |k|® (and |k| is large
enough), we claim that the number of divisors r is at most m — 1, where m ~ ¢~
is an integer.

In fact, suppose dj, where 1 < j < m are distinct divisors, then by unique
factorization we know that k is divisible by lem(d, - - - , d),), and hence divisible
by

H’}’zldj o
[Ti<icj<meged(didj)

On the other hand, since ged(d;, d;) divides d; — d, we know | gcd(d;, d;)| <
|di —dj| <2p.Asalso |d;| 2 |k|®, we conclude that

2 2
k| = k'] Z k™ o™ =[]0,

which is impossible for sufficiently large |k|, due to our choices of m and §.

By symmetry we may assume N’ := max(N, N3) < N 11/ 10 (the other case will
follow from the same argument below, using standard divisor bounds). There are
three cases to consider: when b + ¢ — a = const. (and b2 + ¢Z — a% = const.),
when a + b — ¢ = const., and when a + b + ¢ = const.

Suppose b + ¢ —a = £ is constant and b*> + ¢> — a? is also constant. Then
200 —b)( —¢) = £2 — (b*> + ¢*> — a*) =: D is also constant, and D # 0 as
there is no pairing. Now choosing R = Z,k = D/2,q = £ and p ~ N’ in part
(1) yields the result.

Suppose a+b—c = £ and a?+b%—c?isconstant. Then similarly 2(b—c)(£—b) =:
D is a nonzero constant. Considering the divisor £ — b and choosing R = Z,
k= D/2,q =¢and p ~ N’ in part (1) yields the result.

14 We note that a weaker version of Lemma 3.4 here already appeared in [27], Lemma 3.1.
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(c) Suppose a +b+c = £ and a® + b* + ¢? is constant. Then letting u = 3a — £ and
v = 3b — £, we have that

(u — wv)(u —a)zv) =u’ +uv+0v’ = 9(a2+b2+c2) —30>=:D

is constant. Considering the divisor # — wv and choosing R = Z[w], k = D,
g = (w+2)¢ and p ~ N’ in part (1) yields the result.

4. Structure of the Solution

In this section we discuss the structure of the solution, identifying the para-controlled

terms and the precise solution submanifold W where v will belong. From now on

we will focus on the Eq. (2.14). The submanifold Z in Theorem 1.1 will be defined

as Z = G~'W, where G is the gauge transform (2.1), and W is a submanifold of
1

Yo(J) C CtO H EO(J ), in which the solution solution v of (2.14) will be constructed. To
define JV we need some further preparations.

4.1. Splitting the Duhamel operator. Let n(t) be a Schwartz function that satisfies the
cancellation condition

) =0, Hpl) =1, 4.1)

where H is the Hilbert transform (principal value convolution by 1/§). For x € {N, L},
consider the trilinear operator E, := IC,. Recall that E, satisfies that

yxE*(vls v2, U3)(k7 t)

t
=Y kiMs(k, ki k2, k) / eI G (kL 5B (k. 5) T3 (k3. 5) ds. (4.2)
0
Xy

As before let A = k% + k% - k% — k% (we always have |A| > 1), we will define the
modified trilinear operators E) and EJ by

FLEL (1, v2, v3) (k, 1)
t
—i(t— 2 =7 .~ o~
=Zk1M3<k,k1,kz,k3>/O eI (A — )01 (ki )83 (ka, 5)T3 (ks, 5) ds
X

4.3)

(Y indicates that this term is to be estimated in the Y space) and

FEX (1,02, 03)(k, 1) = ) kiM3(k, ki, ka, k3)
X

t
fo e IR (A — )T k1, ) DKk, ) T3 ks, s)ds (44)
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(X is for “extra”). Clearly IC, = E, = EX + EX. As with I, we will also define the
time truncated versions

EX (v1, v2,v3) = 9(t) - EX (p(s)v1, v2, 13),
EX i, v2,v3) = 0(1) - EX (p(s)v1, v2, v3). 4.5)

Proposition 4.1. For x € {N, L} we have the expressions:

L EL (i, v2,v3)(k, ) = Y kiMs(k, ki, ka, k3)
Xs

/ KX()»,O)dU/ v1(k1, A)va(k2, A2)03(k3, A3),
R M+A3—A1=0—A

4.6)
L EX (1, v2, v3)(k, 1) =Y ki M3 (k, ki, ko, k3)
Xy
/ Kﬁ(x,o)do/ ST D53 ks, )5 ks, A3),
R M+A3—A1=0—A

where A = k* + k12 - k% - k%, and the functions KX and Ki( satisfy the bounds

KX, 0)| <p ;min<L,L>+ ! min<L,i>, 4.7
~ (A —o)bB (A) (o) (A —o0) (A" (A)

KX, 0)] <p I fo=4) min((i,i>

050) " =)y \(A) (o)
2
R (L, L) . (4.8)
=0y "\ ay W

Proof. Fix x € {N,L}.Let K X be the integral kernel of the linear operator

t
F(s) r—>/ (At —s))F(s)ds
0

on the Fourier side, i.e.
t
ﬁ(f n(A(t—S))F(S)dS>()~)=/ KX+, 0)F(0)do,
0 R

and K g =K — KX where K is defined in (3.8). By making Fourier expansion in x
twisting by e*/! ¥* on the time-Fourier side at mode k, one can see that (4.6) holds with
exactly the same kernels K X and K g .

It then suffices to calculate these kernels; by an argument similar to [21], Lemma 3.3,

we have
Y A~ —~ 1 n
Kx(,0) =lf<p()\—u)<p(u—o)z(7ﬁﬂ(z> du
R

A~ I (1
—l/Rw(/\—u)zn<z>(7i@(u—0)du- (4.9)
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Since 77 and ¢ are Schwartz functions, their Hilbert transforms will decay like (A)~!,
thus

’%(H@(%)’ < min (i, i>, ((HP) (it — 0)] <

(A) " () (w—o)

Then, by elementary estimates of the integral, the first term on the right hand side of
(4.9) is bounded by the first term on the right hand side of (4.7), and the second term
on the right hand side of (4.9) is bounded by the second term on the right hand side of
4.7).

As with K f , using (4.9) and (3.8) we can calculate

X P B N e ®
KA()MG)—I/RQD()\ W U)[u A(Hﬁ)(A>]dM

PU=9) 4\ (4.10)
"

~ 1 ~
4i / 0. — u)zn(%)m@w o) du - igam/
R R

The third term on the right hand side of (4.10) is bounded by the first term on the right
hand side of (4.8). The first term on the right hand side of (4.10) can be bounded by the
second term on the right hand side of (4.8), once we can prove

1 I (w—A4A) . 1
S —HH(E) <2 —
‘u A m(A)‘“ (1) mm<<A> <u>)

for |;| > 1, but this follows from rescaling and the assumption H7(1) = 1. Similarly,
the second term on the right hand side of (4.10) can be bounded by the third term on the
right hand side of (4.8), due to the estimate

L] < i [ 1)\?
35| 5 - amin(75.55)

and the fact that 77(1) = 0. |

Remark 4.2. Note that the first term on the right hand side of (4.7) is bounded by the
second term, so we have

1 1 1
KX S min (— —>. @.11)
(A —o) (A) (M)
Moreover, by (4.8) we can write K X—-K X’O +K X’Jr, where
1 1 1\
X,0 .
LONMBS 1<a>z(A>m +1;_4)>(o—a) - Min <E U) . (412)
1 (0 — A) . 1 1
|KX’+| <pl A + min (—,—)
A <A 0Bla) T (= 0)B (o) (A) (o)
+1 =8 (L LY .13)
_ _ min [ —, — | . .
(A—o)(o—A) ()\ _ O_) (A) ()»)

We will define the terms Ef’o and &f“ accordingly, for x € {N, L}.
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4.2. The submanifold V. We can now define WV as follows.
Definition 4.3. Suppose that A,, A3 and T are fixed. Let J = [T, T']. We define
W= {v € Yo(J) : Ivllygs) < A3, and there exists w with ||w(lz,(s) < A2,

such that v = w + EX (w, w, v)+E{(w,v,v)}. 4.14)

1

This is a submanifold of Yo(J) C C ? Hp,(J). Moreover, we will define the submanifold
1

Z of C,OHPZO(J) in the statement of Theorem 1.1 by Z = G~ 'W.

We will need the following proposition, whose proof is postponed to Sect. 5.

Proposition 4.4. For any w which satisfies ||w| z,(jy < A2 there is a unique v satisfying
lvllv) < As, such that

v=w+EN(w, w,v)+E} (w, v, v). (4.15)

This mapping w +— v = v[w] is Lipschitz from the Ay-ball of Zo(J) to the A3z-ball of
Yo(J). The submanifold VV of Yo(J) is the image of this mapping.

Remark 4.5. Based on Remark 2.4, E; can be understood as the ‘high—low—low’ (|k1| >
|ky| > |k3|) interaction and E{ in principle is Ep, restricted ! to the region where the

parabolic weight in frequency is large (|& + k| > k?), as in (1.14) and Sect. 4.1.
Similarly E ,{, can be understood as the ‘high—high—low’ (|kz| 2 |k1| > |k3|) interaction

with the restriction that the parabolic weight is large. Now it is clear that E 1’\',(w, w, v)

and E { (w, v, v) in the ansatz (4.15) can be viewed as two para-controlled terms where
w is located at the comparable ‘high’ inputs of the trilinear operator and v is located at
the comparable ‘low’ inputs.

4.3. Reducing to an equation for w. The next step is to reduce (2.14) to an equation
for w. We will construct a function w satisfying ||w|| z,s) < A2, such that the function
v = v[w] defined by Proposition 4.4 satisfies (2.14). By direct calculation, we see that
(2.14) reduces to

w = eit8§v0 +1Q(v, -+ ,v)+ICyg(v,v,v)+ICs(v, v, V)
+I(Cn(,v,v) —Cn(w, w,v))+I(CL(v,v,v) —Cr(w,v,v)) (4.16)
+ E,)f,(w, w,v) + Ei‘(w, v, V)
where v = v[w] (we will always assume this below) and satisfies
v=w+EN(w, w,v)+E} (w,v,v). 4.17)
It is now clear that Theorem 1.1 will be a consequence of the following result.

Proposition 4.6. The mapping that maps w to the right hand side of (4.16) is a contrac-
tion mapping from the Az-ball of Zo(J) to itself.

This proposition will be proved in Sect. 6.

15 The difference between E L and E }j —same for Ey—which we call E I{( as defined in (4.4) will appear
in the Eq. (4.16) for w.
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5. Proof of Proposition 4.4

In this section we prove a priori bounds for the para-controlled terms which will crucially
enter in the next section. We start by noting that Zo(J) C Yp(J). In order to prove
Proposition 4.4, it suffices to prove the trilinear estimates

IEN (i, v2, v3)lIvoen) S TP Hvillzo 2]l zo() 103l vo () (5.1)

IEY (vi, v2, v3)llvow) S T vl zon 021l vown 103l ve (- (5.2)

In fact, these would imply that given w which satisfies [|w]|z,s) < A2, the mapping
Vi w+ E}\/,(w, w, V) + EZ(w, v, v)

is a contraction mapping from the Az-ball of Yy(J) to itself. It then has a unique fixed
point v = v[w], and the Lipschitz property of the mapping w > v is also easily checked.

In order to prove (5.1) and (5.2), we will assume that w* and v* are extensions
of w and v respectively, such that ||w+||z0 < 2A, and ||v||Y0 < 2Aj. Recall that

or(t) = (T~ '1), clearly @7 - 8}:, (w*t, w*, v*) and @7 - SY(w , vt) are extensions
of EY vy, w,v)and E; Y(w, v, v) respectlvely Using also Proposmon 3.2, we canreduce
Proposmon 4.4 to the followmg

Proposition 5.1. We have the following bounds
€N (i v2. vy, S Tvillzgllv2llzo 03y, (5.3)
1€} 1. v2. vy, S villze w2 llv 1031y, (5.4)

Proof. Let + € {N, L}, using the embedding Zp C Yy, we only need to prove the
stronger result

Y
1€ (i, v2,v3)llyy S Ivillzg llvz2llyg w3y, (5.5)

Let £ = Sf (v1, v2, v3), we may assume the norms on the right hand side are all equal
to 1. Recall from (4.6) and (4.11) that

1

3
~ 1 1
Ek, A 52 ki|min [ —, — — ki)l
s 2| "mm<<A> <x>>/w3+x4 i Ga) I:I ik 2

(5.6)

where A = 2(k — k) (k — k3) by (2.11). We may restrict to the dyadic region (k2) ~ N>
and (k3) ~ N3 (so Ny 2 N3), where N, and N3 are powers of two.
Recall that % = % + 38 (so rp < rg). Notice that

) 1 bo ~ 1 bo ~
1) 2810 < 101 Q)25 oo S 100 E PGl o0 < 1

by Holder and Minkowski, and similarly

I R A S e L Ly

j ||L;°/z;2

1 1 Lo
S k™ f>/'f0< ATz S 1062 )25l S 1
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for j € {2,3}. We may then fix (A1, A2, A3) which we eventually integrate over, and
denote

~ _1 ~ (- )
101 r )] = (k)2 fik, 155001 = NV g, 2 < j <3,
where (after a further normalization)
Ifillgo S L Uil S 1 G =2.3), (5.7)

and it will suffice to prove that for any fixed (= A2 + 23 — 11) € R,

3
L1 T 1 1 1
H (k)2 ()2 ) " (k1)? min (E’ m)m 11:11 ik

PO 71
Xy b Ly,

< (N2 N3) (=YD o=t (5.8)
In the above summation over (ki, k2, k3) € X,, we may first fix A and sum over
(k1, ko, k3) € X, that correspond to this fixed A.

We first assume * = L, which is the slightly harder case. Note that (k) ~ (k{), by
Lemma 3.4, we can bound the left hand side of (5.8) by

H(k)(k)i Y Fik A)min( P ) ! (5.9)
= (&) () = A=) o1 '
where
3 3 Lz
F, o)=Y J]fitn s N§( > 11 f,-(lcj)") :
(k1,k2,k3)eXy  j=I1 (k1,k2,k3)eXy  j=I1
Kk —k3—k3=A K+k3—k3—k3=A
Using the facts that
1 1
min (—, —) S(A)TTE, (A) ~ (02
(A) (A)
and by Schur’s estimate, we can bound
H<k><x>%ZF(k A)min( . 1) 1 SIFG, D)
) T e o . . ~ k) 2
= (A)" (W) ) (= A=u) 0 ‘4
for each fixed k. By the definition of F(k, A), it then suffices to prove that
3 1
)‘2 _ _
N3 (ZHf,-(k,-)”) H S NN I o (5.10)
X, j=I &

Let fj(kj)"? = g;(k;) and B = (po/r2), it suffices to prove (for a possibly different 6)
that

> gilka+ks — k)ga(ka)ga(ks)

[ka|~N>
[k3|~N3

y < (N2N3)V2(1—\/S)/P0N2—9.
k
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As ||g1 ”zf = || All"%, < 1, by Minkowski we can bound the above by

PO~
Zk

g2l g3l = IA207 1Lf3107 S 1 (.11
k k

using (5.7). This finishes the case * = L.
When x = N, we will further assume (k) ~ Ng and (k1) ~ Nj, then the proof will
be the same as above, using the fact that

(k)2 (k)2 ~ NoNy ~ (A)2.

The sum over Ny and N is then taken care of using the positive power of N on the
right hand side of (5.10), and the fact that Ny 2 max(No, Ni) when (k1, k2, k3) € Xy.
O

6. Proof of Proposition 4.6

This section constitutes the heart of the paper. Here we find w and prove all the underlying
multilinear estimates involved in its construction. In the course of the proof we show
in particular that all relevant nonlinearities are well defined as space-time distributions
whence the integral equation (1.4) for u will be equivalent to the integral equation
formulation of (1.5) from Sect. 2.4.

Given w satisfying ||w] z,(s) < Az, let w* be an extension of w such that [|[w™* ||z, <
2A,. By the proof of Proposition 4.4 in Sect. 5, we know that there is a unique v* =
v [w*] such that |v*]ly, < A3, and

vt =wt o - EX(wh, wh v +or - EF (wh, vt vh). (6.1)
Moreover this v* is an extension of v = v[w]. Therefore, recall that  := <p(t)ei’ 2 V0,
the function
2=V +or -IQWY, - v +or - ICH (W v ) +or - ICs(vF, vF, v
+or - ZCN*, v ") —Cy(wh, w™, v))
+or - ZCL v, vh) = Cr(w®, v, vh))

+ o7 - S,)\f(w+, wh v +or - 5§(w+, vhovh)

6.2)

will be an extension of the right hand side of (4.16).

6.1. Splitting the formula of 7. Now that w*, v* and z are defined for all time, we can
further manipulate the expression of z, as this manipulation sometimes requires inserting
time-frequency cutoffs. We will analyze each term in (6.2) separately. The initial data
term 1 is trivial. For the other terms, we will remove the ¢7 factor in front, and bound
the corresponding terms in the stronger space Z1; Proposition 3.2 then allows us to gain
a factor 7% which provides the required smallness.

(1) The term ZQ(v*, ..., v™). This is a single term, we will name it

211 =ZQwt, ..., vh). (6.3)
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(2) The term g7 - Z(Cy + Cs)(v™, v*, v™). Here decomposing v* by (6.1), we can
obtain the following terms

221 =Z(Cx +Cs)(w™, w*, w),
22 = Z(Cr +Cs)(gr - Ey(w™, w*, v"), v*, 0",
223 = Z(Cpy +Cs)(or - €] (w*, 0", v"), v* 0",
224 = I(Cy +C)(w*, o - Ey (™, w*, v, v, (6.4)
225 =Z(Ch +Cs)w™, o1 - Ef (w*, v*,v%), v"),
226 = Z(Cp +Cs)(w™, w*, o7 - Ex (w*, w*, v*)),
227 = I(Cp +Cs)(w* w*, g7 - & (w*, v, v").
Here z5; is a cubic expression, and the others are quintic expressions.

(3) The term Z(Cy (v*, v*, v*) — Cy(w™, wt, v*)). Similar to (2), we can obtain the
terms

231 =ZCnlpr - Ey(w*, w*, v"), v* v,
232 = ICn(gr - € (W v* v, 0" 05,
233 = Z(Cn(w™, o7 - EL (W™, w*, v™), v7),

234 = Z(Cy(w*, o7 - EF (w*, v*, vh), v™).

(6.5)

They are all quintic expressions.
(4) The term Z(Cp (v*, v*, v*) — Cp(w*, v*, v*)). In the same way we get two terms

241 = o1 - ZCLER (wF, wh, vh), vF, v,

Yo+ .+ + + o+ (6.6)
Z42=Z(CL((pT.gL(w7v7v)7vav)'

They are both quintic expressions.
(5) The term 51)\/( (wt, wr, v + Ei((er, v*, v™). This term requires a little more care.
Let x € {N, L}, recall that from Proposition 4.1 and Remark 4.2, we have

ZET i, v2,v3)(k, 0) = Y kiM3(k, ki, ko, k3) /R Kx*(, 0)do
Xs

/ Tk ok, 2) ks, 2). (6.7
AM+A3—A1=0—A
We may further decompose this expression into

eXr=gllvef?+ el (6.8)

. oX,j .
where in £,/ we make the restriction

= 0> g —
121 llélglél)»el, [Aj] 2 lo — Al (6.9)
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Now if ¥ = N and j = 3,0or* = L and j € {2, 3}, we will make decompose the v*
corresponding to frequency A ; using (6.1). This gives the following terms

251 = EpP +ENT HESH (W, w*, v,
750 = 51)\,(’3(w+, wt, wh),

253 = Ex (wh, w, or - EN W wt,vh)),
754 = 5§’3(w+, wh, or - Ef (w*, vt 7)),
755 = (52(’0 + 52(’])(10", vt vh),

256 = £ 2w, wt, v, (6.10)
257 = 2w, or - EF(w*, wt, v, v,
s = &P or - £ (wh vt v, v,
750 = 51{(’3(w+, vt w®),

zsa =& wh vt pr - ERwh, wt vh),
758 = 52(’3(w+, vt or - EF (wh, vt uh)).

Some of these are cubic expressions, and some of them are quintic.

(6) An operation on quintic terms. Each of the above z j’s is a multilinear expression,
either cubic or quintic; we will always list its input functions from left to right. Consider
now a general quintic term. Let k and k;, where 1 < j < 5, be the (space) frequencies
of the output and input functions, then it will involve a summation

Z (expression).

+ky--tks=k
As with Lemma 3.4, we say a pairing (i, j) happens, if k; = k; and the signs of k; and
k; in the expression =k - - - & ks are opposite.
For each tuple (k;), we will choose an index i € {1, -- -, 5} as follows: if there is no
pairing, then leti € {1, --- , 5} be such that |k;| is the maximum; if there is a pairing,

say (1, 2), and there is no pairing in {3, 4, 5}, then let i € {3, 4, 5} be such that |k;| is
the maximum; if there is a pairing in {3, 4, 5}, say (3, 4), then leti = 5. It is clear that
we always have |k;| 2 |k|.

This procedure then decomposes this quintic term into five parts; once an i is fixed,
and if the input function corresponding to this i in this quintic term happens to be v*
(instead of w*), we will decompose this v* using (6.1), so that this quintic term is
decomposed into a quintic and two septic terms.

(7) Summary. Now we have decomposed z into a superposition of multilinear expres-
sions z j¢ (including those coming from step (6) above), either cubic or quintic or septic,
with input functions being either w* or v*. Moreover, if we consider two different w
and w’, then we may choose extensions w* and (w’)* such that

[(wH* —w*| 1, <2lw —wl 1,
7 X2
4 pa
Let v* and (v")" be defined from w* and (w’)* by (6.1), then we also have
y

/ / /
I = v* Iy S I —w*l oy, Sl —wl
Yl’ X[’-q Xl’v‘i
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Then z and 7/, which are defined by (6.2) using w and w’, satisfy that z —z’ is an extension
of the difference of the right hand sides of (4.16) corresponding to w and w’. Therefore,
in order to prove Proposition 4.6, it will suffice to prove the following result.

Proposition 6.1. All these terms z j¢, including those coming from step (6) above, satisfy
the multilinear estimates

lzjeCur, ... v)lizy S lloill -+ ol

where r € {3,5,7}, and for each i, v; is measured in the Zo norm if the corresponding
input function in z j¢ is w*, and in the Yo norm if the input is v*. For example the estimate
for zap will be

5
lza2 (1. vs)lizy S lvillzy [T ) lw-
j=2

Remark 6.2. We make a further remark about the operation in step (6) above. For some
quintic terms zj, this operation is necessary; for others it is not. However, even in the
latter case, performing this operation will not affect the proof: if z ;¢ itself satisfies a
multilinear estimate where this input function v* is measured in the Yy norm, then by
Propositions 3.2 and 5.1, after decomposing this v* using (6.1), the resulting quintic and
septic terms will also satisfy the right multilinear estimate. For example, we will see
below that

4

lz26(1. - o)z S [ Ivillze - llvslve-
j=1

Then, even after performing this operation (with the chosen index i = 5) we still have

4
261, vs)lizy < T T Hvillzo - lvslive,
Jj=1
6
Y
lz26 (V1. - .., va. o7 - EX (s, v, v 2y < [ [ 01120 - 07 11ve
j=1
5
Y
22601, - .. vas @7 - EN s, ve, v Izy S T [ Hvsllzo - vl 1v7v,.-

j=1

The following subsections are devoted to the proof of Proposition 6.1.

6.2. Cubic terms. In this subsection we treat the cubic terms, which are zp; and the
cubic zs, terms. First we deal with the z; term in the following proposition.

Proposition 6.3. Let 71 be defined as in (6.4). We have the following bound

3
lz21(v1, v2, 13)llz, S l_[ lvjllzy- (6.11)
i=1
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Proof. Let x € {H, S}, we need to show the following bound

3
1ZCs(v1, v2, v3) 1z, S 1_[ lvjllz,- (6.12)
j=1

We may assume the norms on the right hand side are all equal to 1. Recall from (3.9)
and (3.10) that for any B > 0,

|ZC. (v1, 02, v3) (k, 1)

<Z|k1|f

A2+A3—

w

1 1
s T G e 6
1=0— j

where A = 2(k — kp)(k — k3) as before.
It will suffice to prove that

00 ’”Zumf

M+A3—A1=0— A

3
]"[|v,-(k,-,xj>| S

(oL
(6.14)

by the definition of the Y; norm (3.4) and the following inequality

<L+;>L<; (615)
ME - (h—0)B) (o) Y (M —o0) ‘

for B large enough.
Recall thatby = 1—26 and 1/qo = 46 and hence similarly to the proof of Proposition
5.1 we have for j € {1, 2, 3},

1 ~ 1 ~ 1 ~
1602 05l 1o S NGk )2 ()0 1 o gro S 1142 ()00l gro oo S 1
by Holder and Minkowski. We may then fix (A1, A2, A3) which we eventually integrate
over, and denoting

107 (kj, 21 = Gke) =20 ) 70 fiky) (1< j <3),
it will suffice to prove that for any fixed (= A2 + A3 — A1) € R,

1

(k)? | 1
1 1 | S 1
(n)? xz*<k1>z<kz> Yika)d = A = ) ()5 (1) (3)? H Jil e
k A

(6.16)

Then applying the inequality (2.10), we see that it will suffice to prove

3
! |
el Breem eyt § A DR

20 7 490
Zk L)»
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In the above summation over (ki, k2, k3) € X, we again first fix A and sum over
(k1, k2, k3) € X, corresponding to this fixed A. Using the fact that

(M) (A3)(Aa) (A (A — A = )’ 2 (A)° (6.18)
and the divisor bound!® in Lemma 3.4, we can bound the left hand side of (6.17) by

1
DBy Ty

A

(6.19)

sFk, A)

PO 1 90
oL

where

1

Po

3 3
F.oy= Y Jlif<@Y Yo [Lir| - 620

(k1 k2, k3)eX,  j=1 (k1,k2,k3)eX,  j=1
2(k—ko) (k—k3)=A 2(k—ka)(k—k3)=A
By choosing pg such that § < ﬁ and 6 < §, and using Schur’s estimate we can bound
1 F(k, A
2 (A—A— )1‘5<A>8F(k’ o H <(A>8 ) » (21
A K Lo £ho
Then we sum over k to obtain that
1 3
< .
; A aoapt e S TT 5l (6.22)

eoLio =1

by (6.20) and (6.21). Finally we integrate (6.22) over (11, X2, A3) to conclude this proof.
O

Next let us consider the cubic zs, terms (i.e. 251, 252, 255, 256 and z59). The following
proposition gives the desired bounds for zs1, z52, 255, 256 and zs59 in Proposition 6.1.

Proposition 6.4. For x € {N, L}, j € {0, 1,2, 3} and 5:” defined in (4.6) and (6.8)—
(6.9), we have the following bounds.

(1) If j = 0, we obtain that

X0, vy, v3) ” S Ivillizollvzllivg vz v - (6.23)
(2) If j = 1, we obtain that
XN i, v2. v3) ” S vl zellvzllive vz livg- (6.24)

B Ifjef2,3}andi € {2,3} — {j}, we obtain that

X,j
& (v1, v, v3) , S Ivillizollvjll zo llvill vy - (6.25)
1

16 The divisor bound applies when A ## 0; however when A = 0 we must have k = k| = ko = k3 by the
definition of V3, so the bound is still true.
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Proof. Recall from (4.6) that

3
50w v ) 1S va/ KX o) [T 185201
M+r3—r1=0—A i1
(6.26)
and for j € {1, 2, 3}
3
|5 T (o1, v2, v3)(k, M| S Z|k1|/xz+x3—xl=a—A IKX" (0, o) 1_[ |57 (kju A
X |4j1=max<¢<3 |Ac| j=1
(6.27)

where A = 2(k — k) (k — k3) as before.
(1) Let us consider the case when j = 0 and * € {N, L}, and then left hand side of
the bound (6.23) can be bounded by

3
ol ~
)2 >b12|k1|f KX o)l [ 107Kk 2)] - (6.28)
M+A3—A1=0—A j=1 470 190
k “A
Recall (4.12) whence it will suffice to prove that
1 1 >
Lob ~
(k)2 (1) 'Z|k1| Wn'vj(kjs)"jﬂ
K s =1 oL
S Ivillizellvzllve vz livg- (6.29)

To prove (6.29), we first use Minkowski’s inequality and integrate over A to bound the
left hand side of (6.29) by

Zlkllf e ]_[Iv,(k,,/\ ]| (6.30)

A1,A2,A3 o0
k

Next, we may fix (A1, A2, A3) which we eventually integrate over. In the summation in
(6.30) over (ky, ko, k3) € X, we may first fix A and sum over (ky, k2, k3) € X, that
correspond to this fixed A. Moreover, as before we may restrict to the dyadic region
(k3) ~ N3 and (ka) ~ N3 (so N2 = N3), where N, and N3 are dyadic numbers. Hence
we are reduced to bound

3
Z'k” y1—45 Z l_[ |05 (kj, A )] (6.31)

(k1,k2,k3)eXy  j=1
(k—kp) (k—k3)=A
[k2|~N2,|k3|~N3 f;fo
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where (A) ~ (k)(k;) and Ny ~ |ko| 2 max(|k|, |ki|) (by Proposition 2.3). By the
divisor bound in Lemma 3.4 and Holder’s inequality as in the proof of Proposition 5.1
we obtain that

1o S Lo
1€k 01l gpo [l ¢h2) 20 02 2 (| (K3) 270 03 172

_28—0
2pg
WA

6.31) <

, (6.32)
N;”O
where r; is defined in (1.16). Then we may integrate over A; A> and A3 and sum over

(N2, N3). By using the negative power of N, (suppose § < 1/(4po)) and the following
facts (similarly as before):

1o
k) 20tll 1 gro S Hlvillzgs  l1(k2)? 0 0l S vl

A
106 75 83112 S sl (6.33)

we conclude the proof of (6.23).

Before proving parts (2) and (3), let us prove an easier bound for |K §’+|. Suppose
|Aj] = maxj<¢<3 and |A;| 2 |0 — Al. Recall that by = 1 — 28 and by = 1 —§, then we
obtain that

(nh 1

G yhs 51K A g S AT - (6.34)

We may then fix the other two Ay (£ # j) and A, and integrate over A ; and A to obtain
the following bound:

1 b~
PR Ty
b 4k —da— 3 — A) (( i vk f)> o

<” \bo— 3~

/7

(6.35)

by Schur’s estimate. For | j| = maxye1,2,3) [A¢], to prove the parts (2) and (3), it will
suffice to consider the norm

ZI e H( APk A )HL I1 15eke 20l

i eef1,2,3)—(j) o0

k
(6.36)

by (6.34) and (6.35).
(2) Let us consider the case when j = 1. By (6.36), it will suffice to bound
(k1)? L
1 1
R NS [Tire&ol| . (6.37)
X, (ko) 0 (ks) o =1 oo

where fi(ki) = (ki)Z[|{3.1)? i g and felke) = (ke)2”0 lvelly for & = 2,3.
Similarly to the proof of Proposition 5. 1 we also have the bounds:

Il f1 ”z,f‘) S il zgs ”ff”g? S llvellyg
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for £ = 2, 3. We may use dyadic decomposition on (k2, k3) and sum over (k1, k2, k3) €
X for fixed A and then sum over A and k. Following the same proof as in the part (1), the
negative power of N5 help us bound (6.37) by [|v1 |z, llv2lly, lv3lly,. when 8§ < 1/(6po).
This finishes the proof of (6.24).

(3) Let us consider the case when j € {2, 3} and denote by i the other number in
{2, 3}. Just as we did above, it will suffice to bound

1 3
k 1 ‘

o = s [ kol (6.38)
=1

%, (k2) 20 {k3) 0 o

1

1~ 1 e 1
where fi (ki) = (k)2 llvillz1, fi(kj) = (kj)*ro 1?0 Svj”LZI and f;(k;) = (ki) >0
oill, e Similarly to the proof of Proposition 5.1, we also have the bounds:

I fellgro S Mvellzos W fillyr2 S Nvillyg

for £ = 1, j. Following the same proof of the part (2), (6.38) can be bounded by
lvillzollvjll o llvilly, when 8 < 1/(6po). This finishes the proof of (6.25). O

6.3. The canonical quintic term. The majority of z ;¢ are quintic terms; in fact the ma-
jority of them can be treated in the same way, using the following estimate.

Proposition 6.5. Consider a quintic expression R that satisfies

|%R(Ulv ] US)(ks )\)|

do
< Z /JR (M= — o)=Y /ﬁ =0-8
k 1:tk2:|:--~:|:)»5—0'—.:uj

thyt-ths=

5

|07 (kj, 2 ),
1

(6.39)

where B := k> T k12 F---F k% (the signs are arbitrary, but the signs of £k ; and :ijz
are always opposite). Then after the operation in Sect. 6.1, step (6), the resulting terms
satisfy the corresponding multilinear estimates. In particular, suppose the chosen index
during this operation is i = 1, then we have

5
IR ... v5)llzy S llvillze [ 101w (6.40)
Jj=2
;
IR(pr - EX (01, v2, v3), vay ..., VD)l zy S vtz V2l 4 l_[ lvjlly,, (6.41)
j=3

7
IR(pr - EF (1, v2, v3), v4, ..., vz, S Hlvillz, 1_[ lvjlly,- (6.42)
=2
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Proof. (1) We first prove (6.40). Assume all the norms on the right hand side are 1. By
a dyadic decomposition, we may restrict to the reglon where (k;) ~ N;for2 < j <5;
by symmetry we may assume No > --- > N5. As in the proof of Proposmon 5.1 we
have

1o
Itk 2 0l 1o <1
and

Il (k >(1 f)/PoU || 12 < Ik )(1 f)/POv || 1,2 <1

for 2 < j < 5. We may then again fix A; for 1 < j < 5, which we eventually integrate
over, and assume

1o 1—+/8 ~ .
filtky) = ()T 0l fiG) = NP5 G ) @< <5),
such that (after a further normalization)

Ifillgpo < 1, Ml fille ST 2 =) =95). (6.43)

Using also that (k) < (k), it then suffices to prove that

5
D S R = L
j=1

+ki £ Fks=

oLy
SNy % (NyN3 Ny Ns) 1=/ po (6.44)

for any fixed p (which is a linear combination of A ; for 1 < j < 5). Using the fact that
b1 < 1 — 6 and Schur’s estimate, we can bound for fixed k,

5
D S e |
j=1

kit ths=

SIF &, E)llya,
L% &
where

5
F(k, B) = > 1))
thyotks=k =1
+k} - k2=E—k?

As E is determined by (k2, k3, k4, k5) and hence the number of different E’s does not
4

exceed O(N3), we can bound the ¢% norm of F(k, E) by N," times its £ norm.

(a) Assume N3 > N; *f. For fixed k and E, by assumption we know that either there
is no pairing,17 or there is a pairing, say (2, 3), and there is no pairing in {1, 4, 5}, or there
are two pairings, say (2, 3) and (4, 5). In the first case, for fixed (k», k3) (or (k4, k5)),
the number of choices for (ki, k4, k5) (or (k1, ko, k3)) is at most O(Ng) by Lemma 3.4,
so using (6.43) we have that

17 Here we mean pairings as defined in Lemma 3.4.
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F,BYS Y Y filkn) faka)? f3(ks)?

ka,k3 ky,k4,ks
+Y Y Ak fatka)* fs(ks)® S NS sup  filk).
ka.ks ki.ka.k3 ki —k| SN2

In the other two cases this estimate can be similarly established. This gives

1

Ik, 5)”6?5%9( > |f1(k1)|P°)p°,

k1 —k| SN2
and hence the left hand side of (6.44) is bounded by

4 1

1
P0 O+—+—-
( ) |f1(k1)|”°>p0” SN, TH
oo

|k —k| SN2

o+-+
a
N2

using (6.43). As N3 > N;‘/g, 4/g1 = O(6), 6 is small enough depending on pg and 6
is small enough depending on 8, this implies (6.44).

(b) Assume N3 < N;“/g. Then in estimating F(k, E), we may fix the choices of

(k3, k4, ks) and eventually sum over them. In this process we lost at most N20 (‘/g). Then,
with (k3, ka, ks) fixed, we know that (k1, k») is uniquely determined by k and E, since
by assumption (1, 2) cannot be a pairing. Thus, with (k3, k4, k5) fixed, we have

|Fk, 8)| S sup Sfiltk — € —ka) f2(k2),
2

where £ is a linear combination of (k3, k4, k5). As

| sup fitk — € — ko) fa(ka) | oo
ky k

1
PO
s H(Z filk =€~ kz>"°fz<kz>"°) H = Aol all o
kyp Zk

. . F+0(V5)
and || fall,p0 S ||f2||£% < 1, this bounds the left hand side of (6.44) by Nz’l ,
k
which also suffices as § is small enough depending on pyg.
(2) Next we will prove (6.41) and (6.42). By (6.39) and (4.6)-(4.7), we can write
(where x € {N, L})

7
~ do ~
REMIS Y /wm- Hf k21
Ak kg tooedky =k VR o ENEhatFAr=0—8 4
>l [ 1me! - e
kp+k3 —k1 =k’ R
(k1,k2,k3)€X
11 do’ / S
mn|{—, — | —— lvitki, Ai)l|. (6.45)
A@ <<A/> <u’>><w—o’> A2+x3—xlza’—A’H s

j=1
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Here & = k> F (K)> Fk; F---Fk3,and A’ = (k')>+k? — k3 — k3. This can be reduced
to

k1| T
2 IAI’I RR('\’T)dT/ /li[lw./(k/,k,;)l, (6.46)

kg =k FhEedh=T—E
where &' = k% F k3 F - - - F k3, and the kernel
dé
(t—&)

Here we can verify that A’ — 0’ = t — o, and £ is the variable such that§ —o = 1" —
and 1 — & = ' — o’. Using the fact that |[T@(T€)| < (€)1, we can easily bound the
above by

IRG.. 7)] 5/ do

& 00— o)1= fRT“’(T@ ~7)

/

1
(A)l—‘)(k _ .L->1—29 :

IR, T S

We may then restrict to the dyadic region (k) ~ No, (k') ~ N’ and (k;) ~ N; for
1 < j < 7. Let N* be the maximum of all the N;’s. Then we have N' 2 Ny, and
|A/| ~ N'Nj.

(a) Assume N < N’, we will then measure v, in the ¥y norm. By repeating the

~

above proof and fixing A; for 1 < j <7, we may reduce to proving

_1 1
IF (k. &)l pogos, S N *N'NY - (Ny -~ Np) A=V po=QlaD (N =0 (6.47)

where
7
F(k, &) = > [175Gn, (6.48)
ki +-thky=k  j=1
k3L tk3=k>—E

and

Il f1 II,zlfo =L Wfillg=1C=j=7. (6.49)
First assume max(Na, ..., N7) > (N*)‘/g, then with fixed k, k1 and E, by using Lemma

3.4 and similar arguments as in the above proof, we can easily show that (whether or not
there is any pairing in {2, 3, ...,7})

7

7
Yoo A6 Smaxva o M) T2 (6.50)

+ky=---tky=const. j=2 Jj=2
:I:k%:l:n-:l:kgzconst.

therefore
=/ 0 0 17(%)
|F(k, )| S max(Na, ..., N)? Y filkn) S max(Na, ..., No)* N,
ki
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pointwise in (k, E'), thus

Lo
”F(k’ E/)Hell;()zc’):o/ ,S NOPO Nl Po .

Using the fact that N' 2 max(Ng, N1) and max(Na, ..., N7) > (N+)*/§, this easily
implies (6.47). Next assume max(N3, ..., N7) < (N+)*/§, then N* ~ N’, and by fixing

(ka, ..., k7) we easily deduce that | F (k, )| < (N)°™9_ from which (6.47) follows
trivially.

(b) Assume N > N/, then we must have * = N and N; ~ Ny > N’ > Ny. In
particular vy will be measured in the Zy norm, so we may reduce to proving

_1 _g_ 5
| F(k, E/)Hzlfolicj < N, 2N'N; - (N3 - ..N7)(1—\/5)/p0(N+) =4 , (6.51)
where F(k, ) is as (6.48), and
Ifillgo = 1, M f2llpo = L N fillg =1 G=j=T. (6.52)

Here we argue in the same way as case (1), using (6.50), but make the additional obser-
vation that for fixed k1 we must have |k, — k1| ~ N’. Therefore

U +160 U +16 / i-L
Yo TTAe @ Tl -1 Yok llp S NHTND200,
+ko+---+ky=const. j=2 j=3
Lk k2 =const.
and hence

1 1

Loy 1
1F (K Ellgpoge, S No® Ny " (N2 70 (NHY.

Using the fact that Ng < N/, this implies (6.51). |

Remark 6.6. From the proof above we actually deduce something slightly stronger: the
bounds (6.40)—(6.42) remain true if the right hand side of (6.39) gets multiplied by (k+)9
where |k*| is the maximum of all relevant frequencies, unless (k) ~ (k1) 2> NZIOO. This
fact will be used in the analysis of the zs, terms of Sect. 6.4.

To apply Proposition 6.5, we will verify that 711, z2¢ (2 < £ <5),z3¢, (1 <€ < 4)
and z4¢ (1 < £ < 2) all have the form (6.39). The claim for z;; follows from (3.9).
For the other terms, let us look at z>; as an example. By (3.9) and (4.6) we have, for
220 = z22(v1, - -+, v5), that

kDI Ss Y, K]

k4+k5 —k'=k
(k' kg ,ks)eXygUXg

/( b )d’/ | (ks 200115 ks, 1)
—_— | — 0 , U5 (ks,
R \(ME (A —1)8 ) (1) L sns—n=r-n R AT A

Y. Ikl fR TOT (O — ) du/

ko+k3—k1 =k’
(k1,k2,k3)eX N
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3

/min (L L) 1 dO'/'/ l_[|17(k ). (6.53)
SV YATET TR WRnwev 5 Leh i

=1

where A = k2 +(K')> =k —k% and A’ = (k")2+k} — k3 — k3. Note that |A'] ~ (k) (k1 ),
the above can be written as

5
k R MM —A2—A3+A4+A5=0—E =1

k1 —kz—k3+k4+k5=

WhereE:A—A/:kz—k%+k§+k§—k3—k§,and

|R(x,o)|§/ (i+%)d—’/mna—s»i.
MR e & E—1)

Here we can verify that A’ — o’ = o — 7, and £ is the variable such thato —& = 1 —
and £ — t = p/ — o’. The above integral can easily be bounded by (1)~ #¢ (A — o) ~1+0,
so Proposition 6.5 can be applied.

The other z7¢, z3¢ and z4, terms can be treated in the same way; in fact the kernel
R (A, o) will have exactly the same form, the only difference is that the weight

k| - k1]
|A]

!/

will be replaced by different weights depending on which input function gets substituted
by €Y, and which X, subset we are in. For the terms 227, 223, 231, 232, 241 and z42 one can
directly check that this weightis < 1; for the terms 224, 225, 733 and z34, this weightis < 1
as it follows from Proposition 2.3 that |ky| 2 |k1| when (k1, k2, k3) € Xy U X5 U Xy.
Thus Proposition 6.1 has been proved for these terms.

6.4. Remaining quintic terms. The remaining quintic terms, namely z¢, z27 and quintic
754 terms, may not have the canonical form (6.39). In fact these terms will be estimated
directly without preforming the operation in step (6) of Sect. 6.1, see Remark 6.2. For
them we need two extra estimates, which we state in the following two propositions.

Proposition 6.7. Suppose a quintic term R satisfies

R do
Reols > atkk,-- ,ks)/ _ _
ko ks =k R (M)A —o0)

5
/ 1155, )1, (6.54)
thiEdhs=0—8 ]

where as usual & = k* F k% F-o-F k52 Then we have the following (below |k*| will
denote the maximum of all relevant frequencies):
(1) Assume |ki]/2 < |ka| < 2[kil, [k1| = 2°|ks], |ks| ~ max(|ks], |ks|, ks|) and

(k1)
max((k3), (ka), (ks), (k))’

| S (kh)Y (6.55)
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moreover assume (1, 2) is not a pairing. Then we have that
IRz, < lvillzollvallzolvsllzg - vallvg lvsllygs (6.56)

(2) Assume |ki1/2 < |ka| < 2|k, [k3]/2 < |ka| < 2lk3], k1| = 25 max(|ks], |k])
and

0 (k1)
loe| S (k) max (k). (6 (6.57)

Moreover assume (1, 2) is not a pairing, and that, either |\k| # |ks|, or the stronger
bound

ol < (k17 (k1) (6.58)
~ max((ks), (k), (£ki £ kz))

holds. Then we have

IRz, < Mvtllzollv2lizo vl zollvalizg - vslly,- (6.59)

Proof. We may restrict to the region where (k;) ~ N;, where 1 < j <5, and (k) ~ Ny
and (k*) ~ N*.

(1) By the same arguments as in the proof of Propositions 5.1 and 6.5, we may fix
Aj (1 < j <5) and reduce to estimating

1 du -
H Sy /R )T w7 L1
j=1

dky e -kks =k —E-u GoLy
1
N'NZ(NsN (1-+/8)/po
< vy NN (NS) , (6.60)
Ng
where N/ = max(Ny, N3), and f ' satisfies that
”fj”glf(’() <1, 1<j<3 "fj”g%fl, 4<j<5. (6.61)

By the same argument as in the proof of Proposition 6.5, we may apply Schur’s estimate
and reduce to proving

N/N3% (N4N5)(1*~/5)/P0
1

IF (k. )l grogar < (N7 . Fk.B)

No

5
> [15i&p. (6.62)

Lk Lhs=k  j=1
kit tk2=k2—8

By fixing (k4, k5) we get that

1K, E)llgar S W fallg 175111 sup IFe.p (ks E)llgrogar,  Feplk, E)
Z ) Z
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3
= DR § TNt
tkythothkz=k+t j=1
£k} LIS £k =k>—E+p
while since there is no pairing in {1, 2, 3}, by the divisor estimate in Lemma 3.4, we
have

3 €L
—_ 0 PO
| Fop (k. a>|5(N+>( > ]_[fj(k,-)’”’) ,
+kythkothkz=k+t j=1
LKLk =k>—E+p

and hence || Fy, ,(k, E)Ilefo,zgl S N Fep(k, E)”efoe’io < (N*")?. Using also Holder we
obtain ) -

1
IF (k. E)llgrogn S (NaNs)Z(N)°.

Comparing with (6.62) and using that N’ ~ max(Ng, N3) and max(Ng, Ns) < N3,
we see that (6.62) is proved, except for the loss (N*)?. Clearly this loss can be covered
it N > Nll/lo; now suppose max(Ng, N3, Ny, N5) < Nll/lo, then since (1, 2) is not a

pairing, we must have |E| 2> N*, which gives
max([A1l, ..., [Asl, Al |A = B — pu]) 2 N7,
where p is a linear combination of Ap, ... As. Now, in estimating (6.60) we can gain a

power ()= =b1 > (315/2. in the process of fixing A j we can also gain a power ()»,-)5/2,
as

12 ey =D

— ~ — 1
SN ENEIIPG 1 S 1K) Y P0G 25

|L;0 62

— L 1 L
SN DI 0 )25 20 S 1K) ()7 55 go 0.

Finally, in the process of using Schur’s estimate to reduce (6.60) to (6.62), we can
also replace the power (A — & — )~ *? by a slightly higher power to gain a power
(A, — 8 — u)%*. In this way we can gain a power of at least (N*)%/4 which suffices to
cover the (N*)? loss.

(2) If there is no pairing in {1, 2, 3}, then similar to (1), we may fix A ; and reduce to
proving

(1=/8)/p
260 N'Nj3 - Ns ’
] b

Ny

5
= Z ]_[ fitk)), (6.63)

thitks=k  j=I
kit tk2=k>—8

F(k, B)

IF Gk, Bl ypogn S (N

where N* = max(Np, N3), N/ = max(Ny, Ns) and
”fj”[lf() <L 1=<j=4 ”fS”g% <1 (6.64)
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Then we may fix k4 and k5 and argue as in part (1) to get

1—(Ly 1
IF K Dlgogar < NI fally 1 S5l © NH'Ny 7 NS

which implies (6.63) except for the loss (N *+)?, which can be covered in the same way
as part (1) by considering E.

If there is a pairing in {1, 2, 3}, say (1, 3), then % < Ni/N3 < 2.1If (2,4) is not
a pairing, then we can fix (k3, k5) and repeat the above argument to get the same (in
fact better) estimate; so we may assume (2,4) is also a pairing. This forces 2 = 0
and k = ks, in particular the stronger bound (6.58) holds. Let (k; &+ k») ~ Ng and
N” = max(N’, Ne). In this case we will still fix 2;(1 < j < 4) but will not fix As.
Instead, let 1 be a linear combination of A;(1 < j < 4) and is thus fixed, and notice
that E = 0, we have

Rk, DI SNy

[ky[~1ka|~N)
|k1k2|~Ne
d ~
fR T e 10 k) fo (k) ko) T3k, £ 2 o),

where || f; ”e,f" < 1for 1 < j < 4. This implies that
1) Rk, )20
_ _ 1o
SNCINDYTE YT Atk falka) 3 (k) fak) [[(s) 2 D3 (K, As)llpro
[ky|~k2|~Ny
[k1tka|~Neg

and hence

1402 ()T R (K. M) o 0

1 1

S NSOV THIK) 2 (1s) 2 05k, 25) gro 70
kT

Y k) k) fa k) fatka),

[k1|~ka|~Ny
|k1tka|~Ne

while the latter sum is bounded by

1- % 1—2
Y filk) f3Gk) - Ng " N fallgp fallgp S (NiNg) ™ 70,
ki
which gives the desired estimate as N” 2> Ng. O
Proposition 6.8. Suppose a quintic term 'R satisfies

~ 1
Rk 0| S 5708 > Blkiki. e ks)
+ki £ tks=k

5
/RS [T15Gkj. 21y - dis, (6.65)
j=1
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where (as usual |k*| is the maximum of all relevant frequencies)

Ve 1
1Bl < (k7) Wk £ k) (k) 2 (ks) (6.66)

then we have
IRIz S TTIvilv- (6.67)

Note that all the norms on the right hand side are Y (in particular the bound is symmetric
in vi and vo, v3 and vy).

Proof. As before we will restrict to the region where (kj) ~ Nj forl < j <5,
(k) ~ No, and (k3 £ ks4) ~ Ne.Let N* ~ (k*). This time we will not fix A ; instead we
first integrate in them. We may assume all the norms on the right hand side are 1. Let

1 ~
NG (ks Al = (k)

then || f; ”/z,fo < lasvj € Yp. By (6.65), it suffices to prove that

~

Hmblm“o‘3 > Hf,(k)

PO qu
dky+-tks=k j=1
< (V)25 No(NoN1 N2 N3 Nas)?. (6.68)
where
||fj||£lf0 <1, 1<j<5. (6.69)
By symmetry we may assume Ni < N and N3 < N4. By the choice of power of A, the
LZ" part is easily estimated, so we only need to bound the Ef  norm

> ]_[f,

+ki£-Fhs=k j=1

By Young’s inequality, this is bounded by the E,f ® norm of f» (whichis ~ 1), multiplied
by

>0 k) f3(ks) falks) fs(ks).

k1.k3,kq,ks

1
The sum over k 1 and k5 gives (by Holder) (N N5) ~ 70 ; when k3 is ﬁxed the sum over

/’0

1
k4 gives N as |ks + k4| < Ng, and finally the sum over k3 gives N 70 This gives

the bound

_1 _ 1
(N\N3NsNg)' 70 < (N*)" % Ng(NoNy N2N3NyNs)?,
as N < Np, N3 < Ngand Ny 2 Ns. 0
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Using Propositions 6.7, we can easily deal with the terms z7¢ and z»7. For these two
terms, by repeating the arguments for z5; detailed above, we are led to considering the
tuple (k1, ko, k') and (k3, k4, ks), such that

ky+k' — ki =k, (ki,ky, k') e Xy UXg;
ky+ky —ks = k', (ks, ka, ks) € Xy UXp,

and a weight

|k1llks]|
(ary

alk, ki, ... ks) ~

noticing that |A’| > 1. By Proposition 2.5, this term can be bounded using either
Proposition 6.5, or Proposition 6.7, (1) or (2).

6.4.1. The z5, terms Finally let us consider quintic zs, terms. By (4.6)-(4.7) and (4.13)
we write, where z5, = z54(v1, ..., vs5) and %, # € {N, L}, that (strictly speaking z57
and zsg have a different formula, but taking into account that the set X is symmetric
with respect to k> and k3 - apart from the artificial restriction |k2| > |k3| - they can be
treated in exactly the same way):

|25 (k. M| S | 1|/ [

k2+k/ k]
(ky ko k' )EX*

(t—A) . (1 1) (t—A) . (1 1)2}
+—————min| —, — | + min| —, — dr
(A —1)B(1) (A) (1) A—1) (A) ()

/ 11> je—afl01 k1, A0 02(k2, 22)]
M+A —A=T—A

> tal [ 16 -y
kyq+ks—kz=k R
(k3,ka,ks)eXy

(1 | /
/ min VI TN do
R (A7) (u) ) (n" — o)
/ |03 (k3, A3) |04 (ka, Xa) |05 (ks, As5)I, (6.70)
Ag+rs—Az=c’—A’

where A = k? + k3 — k3 — (kK)? and A’ = (K')* + k3 — k3 — k2. The above can be
reduced to

5
) fm oo [ [T15 ;.21 671

— ey +hy —k3 g s = —A1+K2—A3+k4+k5:0—5j 1

where E = A+ A = k% + k12 — k% + k32 - kﬁ — k%, and the kernel!8

RG. )—/[ L Ut min<i L)
= Ll wEe T ek ™\ Ay @

18 This kernel depends on kj and Aj, but we will write it as R(X, o) for simplicity.
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2
+M min (L’ L) } d‘r
(A—1) (A) (&)
1

—~ / / . 1 1
|k1k3|1m2|rfA|/RT‘P(T()\ — 1)) min <m m)m

/

du'.
(6.72)

Here ' =7 — A+A; — Ay and ¢’ = A4 + A5 — A3 + A’ are defined in terms of T and
(kj, A;). First fix  and integrate in '; this integral is bounded by

1 (11 1 /
f , /mm< wf)ﬁdﬂ’
R (A —p) (A7) Aw) )" —a’)

and we separate two cases.
(1) Assume |o’| <« |A/], then we can calculate that

1 / 1 dy < ! 1 R
(A Je =i = o) T ) =) (A

Note that [A’| = |t — A|, we can then bound the resulting integral in 7 by

[ A ema
lr—AlS ) LAVE(T) (A —1)B(7) (A) (1)

1 fe=4) o (L Lﬂ L
A—1)L(t—A) h—1) (A) ’ ) (A/> (r — A)l—& s

which is then bounded by

\\V8 4\ —1—108
(AHA/)(mJaX(k,)) ()

by actually performing the integration in t. By bounding the weight

_ Ikliks|

P (A)(A)

using Proposition 2.5, we can apply Proposition 6.8 and conclude the estimate for this
term.
(2) Assume |o’| 2 |A'|, then we can calculate that

/ 1 < ] 1
B (/= @ )=o) ) = o)

Note that A" — ¢’ = t — o, and using the fact that |A'| = |t — Al, we can bound the
resulting integral in t by

/[1<a><<<A> P Gl B, <L L)
r [ (M) (A —1)B(r) (A)" (7)

(t—A) . 1 1)? 1 1
+ min [ —, — dr,
(A —1) (( ) (M) }(T—A)l_g (t—o)l-?
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which can be bounded by
1 1
k:))100 -
X ) =T = oy (a)
By bounding the weight
_ lhallks]
(A)

using Proposition 2.5, we can apply either Proposition 6.5, or Proposition 6.7, (1) or (2).
In the case we apply Proposition 6.5, we will also use Remark 6.6 to cover the
loss (max; (k -))109, which can be done unless for some j we have |k;| ~ [k| 2

1
maxy; |k71'90; in this final case we can check that the stronger bound || < |k|™2

holds, so the loss can still be covered. This completes the proof of Proposition 6.1.

7. Preservation of Regularity

Finally in this section we prove a preservation of regularity result. More precisely, we
prove the properties of our solution stated in Remark 1.2. The following proposition is
standard:

Proposition 7.1. Given s > % and 2 < po < 0o, all the arguments in the previous
. . 5.b; 5.5 .
sections carry over to H IS,O (and correspondingly X,Y,O;L]O and X;,O%r_/ for j € {0, 1}).
1

Moreover, in these arguments T still depends only on the H pio (instead of H‘,S,0 ) size of
the initial data.

Proof. This follows from the elementary inequality that

(k=3 < max <k,>v—(%>, ifk =4k £---+k-, re{3,5,7).

I<j<r
Thus, any previously proved multilinear estimate will continue to be true if the exponent

% in the output function space is replaced by s, provided that the exponent % in one
appropriate input function space is replaced by s.
1

Suppose the initial data has H 30 norm A and H ;O norm L, then for T = T (A), all

the X 1%0 40 (J)—and s1mllarly for X o, r (J )—contraction mappings proved before will
still be contraction mapping under the norm

-1 .. 1
. +L . . similarl . + L~
-l iy -0l s 0y y Il a -1,

S, S,
i) Xpo:a0 Xjo.r; () pz, o)

O
Now consider a smooth initial data uq. Proposition 7.1 implies that, if ||ug]| 1 <A,

)
then for T = T (A), we can construct a solution to (1.1) on J = [T, T] that belongs
to C,0 H $ (J ) for s sufficiently large. This is clearly the classical solution to (1.1). If a

(n) (n) ”

sequence of smooth initial data u, * satisfies [|u, % < A and u(()") — ugp in szo,

PO
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1
then by continuity of the data-to-solution map in H, (which follows from the previous
1

proofs), the corresponding solutions ™ will converge to u in C,0 H ,?0, where u is the

solution we construct in Theorem 1.1 with initial data ug. This shows that our solution
is the unique limit of smooth solutions.
Finally, suppose pg < 4, then the gauged solution v we construct belongs to the
11
space X ;7. (J) where ro < 2. It can be shown that
L b gk
Xporo () C X235 N X2 ()

for any interval J of length not exceeding 1, so our solution belongs to the function space
defined in [27] in which the authors have proved uniqueness. Therefore when py < 4,
our solution must coincide with the one constructed in [27], as long as the latter exists.
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