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Abstract: We prove local well-posedness for the periodic derivative nonlinear
Schrödinger equation, which is L2 critical, in Fourier-Lebesgue spaces which scale
like Hs(T) for s > 0. Our result is optimal in the sense that it covers the full subcritical
regime. In particular we close the existing gap in the subcritical theory by improving
the result of Grünrock and Herr (SIAM J Math Anal 39(6):1890–1920, 2008), which
established local well-posedness in Fourier-Lebesgue spaces which scale like Hs(T)

for s > 1
4 . We achieve this result by a delicate analysis of the structure of the solution

and the construction of an adapted nonlinear submanifold of a suitable function space.
Together these allow us to construct the unique solution to the given subcritical data.
This constructive procedure is inspired by the theory of para-controlled distributions
developed by Gubinelli et al. (Forum Math Pi, 3:75, 2015) and Catellier and Chouk
(Ann Probab 46(5):2621–2679, 2018) in the context of stochastic PDE. Our proof and
results however, are purely deterministic.

1. Introduction

The derivative nonlinear Schrödinger equation

iut + ∂2x u = i∂x (|u|2u), (1.1)

where (t, x) ∈ (−T, T )×T (periodic) or (−T, T )×R (non-periodic), is a Hamiltonian
PDEobtained in a long-wave,weakly nonlinear scaling regime from the nonlinear propa-
gation of compressible magneto-hydrodynamic wave trains parallel to themagnetic field
in an ideal plasma with dispersion due to Hall currents in the Ohm law [12,47,51,52].
Equation (1.1) is well-known to be a completely integrable system after work by Kaup
and Newell, who showed in [48] the general scheme for solving (1.1) in terms of the
inverse scattering method (see also [44–47] and references therein). In particular (1.1)
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conserves mass and energy. However, unlike the usual one dimensional cubic NLS,
equation, (1.1) is not Galilean invariant. Global in time existence of solutions in the
Schwartz class on R was shown by Lee in [49].

The Cauchy initial value problem problem for (1.1) is scale invariant for data in L2,

that is, if u(t, x) is a solution then so is uλ(t, x) = λ
1
2 u(λ2t, λx) with the same L2

norm. Thus a priori one expects local well-posedness for (1.1) with initial data in Hs

for s ≥ 0. However, while local well-posedness in Hs for (1.1) is known for s ≥ 1
2

[40,63], one has ill-posedness in Hs for s < 1
2 [3,40,63]. One way to close the gap

between the scaling heuristics and actual local well-posedness results is by considering
data in the Fourier-Lebesgue spaces Hσ

p , where p ≥ 2. These spaces are defined as

‖u0‖Hσ
p

:= ‖〈k〉σ û0(k)‖L p
k

(1.2)

(with L p
k replaced by �

p
k in the periodic case). These spaces have naturally arisen in the

literature and we refer the reader to e.g. [15,24–27,42,68] for some instances. Note that
in one dimension the Fourier-Lebesgue space Hσ

p has the same scaling1 as the Sobolev
space Hs for

s = σ +
1

p
− 1

2
; (1.3)

in particular, H
1
2∞ has the scaling of L2, and H

1
2
2 = H

1
2 .

In the non-periodic case, Grünrock [25] proved optimal local well-posedness for (1.1)
in Hσ

p (R) for σ ≥ 1
2 and p < ∞, which allows the corresponding Sobolev regularity s to

be arbitrarily close to 0, thus covering the full subcritical range. The proof combines the
gauge transformation introduced in [37] (used also in [38,39,61,63]) and new bilinear
and trilinear estimates for the gauged equation in an appropriate variant of Bourgain’s
Fourier restriction norm spaces [8] (see Sect. 3 below for details) which follow from the
dispersion and the smoothing properties of the Schrödinger propagator on R.

In the periodic case, however, local well-posedness for (1.1) in Hσ
p (T) is only known

for σ ≥ 1
2 and 2 ≤ p < 4, which scaling-wise correspond to Sobolev regularity s > 1

4 .
This is the work of Grünrock and Herr [27]. Their proof is based on the adapted periodic
gauge transformation in [40] and new multilinear estimates for the gauged equation in
adapted variants of the Fourier restriction norm spaces. Moreover, it is proved in [27]
that the crucial trilinear estimates2 become false when p ≥ 4, so this result as well as
the existing gap in the local well-posedness theory between s > 1/4 and the scaling
prediction s > 0, cannot be improved within the framework of [27].

In this paper we close this existing gap in the periodic case. More precisely, we prove
local well-posedness for (1.1) in Hσ

p (T) for σ ≥ 1
2 and p < ∞ which covers the entire

subcritical regime, hence yielding optimal local well-posedness. Our main theorem is
stated as follows:

Theorem 1.1. Fix σ ≥ 1
2 and p0 < ∞. For any A > 0, there exists T = T (p0, A) > 0,

such that if ‖u0‖Hσ
p0

≤ A, then there exists a unique solution u ∈ Z ⊂ C0
t H

σ
p0(J ) to

(1.1) with initial data u(0) = u0, where J = [−T, T ]. Here Z is an explicitly defined

1 Here and henceforth we mean that the homogenous part of the Fourier-Lebesgue norm scales like the
corresponding homogeneous Sobolev norm.

2 More precisely the trilinear estimates containing as one of their inputs the derivative term.
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sub-manifold of C0
t H

σ
p0(J ), see Definition 4.3 below. The map u0 
→ u is continuous

with respect to the C0
t H

σ
p0(J ) metric.

Remark 1.2. The solution we construct solves (1.1) in the sense that it solves the integral
equation

u(t) = eit∂
2
x u0 +

∫ t

0
ei(t−s)�∂x (|u(s)|2u(s)) ds. (1.4)

It is also the unique limit of smooth solutions: given A > 0, and any smooth initial data
u0 in the A-ball of Hσ

p0 , the classical solution exists for time T = T (p0, A) > 0, and the
data-to-solution map extends continuously to all of this ball. Moreover, if p0 < 4, our
solution coincides with the solution constructed in [27], for as long as the latter exists.

Remark 1.3. We will only prove Theorem 1.1 with σ = 1
2 and p0 ≥ 4. The extension

to σ > 1
2 is standard (see Proposition 7.1 for a sketch), and when 2 ≤ p0 < 4 the result

follows directly from [40].

Remark 1.4. In the periodic case, we suspect that local well-posedness for (1.1) in the

scaling critical spaces (e.g. L2(T) and H
1
2∞(T)) is false. For a dyadic number N , consider

some carefully chosen initial data u0 whose Fourier transform û0(k) is supported in

{k ∈ Z : k ∼ N } and is of size N− 1
2 . Then it directly follows that u0 ∈ L2 ∩ H

1
2∞

uniformly in N . Denote by ulin its linear evolution eit∂
2
x u0, and consider the second order

iteration3 u(2) := (i∂t + ∂2x )
−1∂x (|ulin|2ulin) and the third order iteration u(3) := (i∂t +

∂2x )
−1∂x (|u(2)|2u(2)). Then, the spacetime Fourier transform û(2)(k, ξ) of the second

iterate u(2) is supported in {(k, ξ) ∈ Z × R : |ξ + k2| � N 2} and has size at least

N− 1
2 |ξ+k2|−1 by some simple calculations from the linear evolution and the definition of

u(2). Similarly, the spacetime Fourier transform û(3)(k, ξ), even restricted to |ξ +k2| ∼ 1,

will have size at least N− 1
2 log(N ). This log divergence implies that the third iteration

u(3) has already left the data space C0
t L

2 or C0
t H

1
2∞. In fact, similar log divergences also

appears in the Cauchy problem for the one-dimensional quintic4 and two-dimensional
cubic periodic nonlinear Schrödinger equations with data in L2 where Bourgain showed
in particular the failure of the L6(T) and L4(T2) Strichartz estimates for data in L2(see
[8]). In fact in both cases the local well posedness in L2 remain open to date.

Remark 1.5. Global well-posedness for the Cauchy problem for (1.1) is known to hold
for data in Hs, s ≥ 1

2 both on R [16,17,50] and on T [40,53,69]. Furthermore, one
has almost sure global well posedness for data in Fourier Lebesgue spaces Hσ

p (T) that

have the scaling of H
1
2−ε(T), ε > 0 [58,59]. In this paper our primary goal is to close

the gap in the local well-posedness Cauchy theory. One may then study the question

of deterministic global well-posedness below H
1
2 (T) which requires quite different

techniques such as for example exploiting the integrability of the equation and seeking

suitable new conservation laws below H
1
2 .

3 The operator (i∂t + ∂2x )−1 is just the Duhamel operator I as in (2.14). For technical reasons, here we in
fact use the truncated version of the Duhamel operator I as in (2.16).

4 Note that for data with finite mass, Eq. (1.1) is in fact gauged equivalent to (1.5).
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1.1. The standard approach, and difficulties. Generally speaking the difficulty one faces
in solving (1.1) is a derivative loss arising from the term i |u|2 ux in the nonlinearity of
(1.1), and hence for low regularity data the key is to somehow make up for this loss.
The first step towards this goal is a gauge transformation [37–40,63] which removes
this bad resonant term in the nonlinearity that loses derivatives and makes the estimates
uncontrollable. Matters are then reduce to studying the gauged derivative nonlinear
Schrödinger equation which we schematically write as

(∂t − i∂2x )v = C(v, v, v) +Q(v, · · · , v), (1.5)

where the nonlinearity ∂x (|u|2u) has been transformed into the sum of the ‘better’ cubic
term

C(v, v, v) ∼ ivx · v2,

plus a quintic term which contains no derivative terms in it and which we momentarily
neglect in this discussion as being ‘lower order’. Once the bad nonlinear term is gauged
away from (1.1), the solution v to (1.5) is constructed by a fixed point argument, which
follows from proving multilinear estimates in suitable Fourier restriction norm function
spaces adapted to the data space. In the non-periodic case [25] these spaces in conjunction
with the dispersion and smoothing effects available onR suffice, as wementioned above,
to prove optimal local well-posedness5 for (1.5) and hence for (1.1) in Hσ

p , where σ ≥ 1
2

and p < ∞. In the periodic case however, the authors need to introduce in [27] a fourth
parameter q in the Fourier restriction norm function spaces, namely they define6

‖u‖Xσ,b
p,q

= ‖〈k〉σ 〈ξ + k2〉bû(k, ξ)‖�
p
k L

q
ξ

and prove that, if σ = 1
2 and p < 4 the trilinear estimate

∥

∥

∥

∥

∫ t

0
ei(t−s)∂2x (∂xv1 · v2v3) ds

∥

∥

∥

∥

X
1
2 ,b
p,q

�
3
∏

j=1

‖v j‖
X

1
2 ,b
p,q

(1.6)

holds true for (b, q) = ( 12+, 2). Furthermore, they construct explicit counterexamples
showing that for σ = 1

2 and p ≥ 4, the trilinear estimate (1.6) fails for any choice
of (b, q) [27]. In other words, when σ = 1

2 and p ≥ 4, which in the Sobolev scale
corresponds to regularity 0 < s ≤ 1

4 , the local solution to (1.5) cannot be constructed
directly by a contraction mapping argument.7

To prove our Theorem 1.1 we must and will take a different approach. After per-
forming the gauge transformation, our point of departure is the following observation:
let σ = 1

2 and p ≥ 4. If one compares the profiles of the counterexamples constructed
in [27] with the profiles of the terms occurring in the formal Picard iterations of (1.5),
then they will never coincide, although they belong to exactly the same adapted Fourier

5 Local well-posedness for the gauged equation (1.5) implies local existence, uniqueness and continuity of
the flow map for (1.1) [27,40].

6 When p = q = 2 these spaces coincide with Bourgain’s Fourier restriction norm spaces associated to
the Schrödinger equation, and are simply denoted by Xs,b .

7 In principle, it might be possible that a trilinear estimate holds in some exotic Banach space not of form

Xs,b
p,q but, if not unlikely, this would at least require a rather sophisticated construction.
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restriction norm Xσ,b
p,q spaces. In particular, let us consider two functions: (1) the sec-

ond iteration u∗ in a formal expansion corresponding to a ‘high–low–low’ interaction
(high in the derivative term) where the high input is ulin (as in Remark 1.4) and the two
low inputs are just spacetime Schwartz functions; (2) the ‘intruding’ term u∗∗ whose
spacetime Fourier transform is supported in |k| ∼ N , |(ξ + k2) − 2k| ∼ 1 and has size
∼ N−1. We can check that spacetime Fourier transform of u∗ is actually supported in

{|k| ∼ N , |(ξ +k2)−2k2| ∼ 1} and has size∼ N− 3
2 . Note that both u∗ and u∗∗ belong to

the same X
1
2 ,b
∞,q space, namely when b ≤ 1

2 ; however, u
∗ is an iteration term that actually

appears in the solution, while u∗∗ is precisely the ‘intruding’ term that leads to the coun-
terexample of (1.6) in [27]. Namely, if one inputs in the cubic derivative nonlinearity
an ‘intruding’ term with derivative, a linear evolution ulin and a spacetime Schwartz
function, then the output function, even restricted to frequencies k = 0 and |ξ | ∼ 1,

will have size ∼ N
1
2 which yields a contradiction to (1.6). Therefore it is reasonable

to imagine that, the solution v to (1.5) still exists in one of these spaces—say b = 1
2+

and q = 2 for definiteness—but will have some specific structure such that it precisely
avoids the counterexamples constructed in [27]. To that effect we will construct v in a

nonlinear submanifold W of the Banach space X
σ, 12 +
p,2 containing functions of a specific

structure whence the trilinear estimate (1.6) will actually hold true when σ = 1
2 and

p ≥ 4. The heart of this paper will be to identify this precise structure.
In order tomotivate our approachwe take a step back and review some of themethods

developed in the probabilistic (random data, or stochastically forced) context. We note
in passing that an immediate corollary of our main Theorem 1.1 is that for random initial
data of form

uω(0) :=
∑

k∈Z

gk(ω)

〈k〉 1
2 +θ

eikx (1.7)

where gk are i.i.d Gaussian random variables, 〈k〉 := √

1 + |k|2, and θ > 0 is fixed but
arbitrary, the solution to (1.1) or equivalently (1.5) almost surely exists for a positive
time.

1.2. Ideas from the probabilistic setting. In the probabilistic PDE context (i.e. random
data theory for dispersive and wave equations or parabolic stochastic PDEs) where one
deals with randomized initial data or a random forcing term, the idea of exploiting the
structure of the solution has been used for a long time, see for example Bourgain [6,7]
in the context of the defocusing (Wick ordered) cubic nonlinear Schrödinger equation,8

and Da Prato-Debussche [19,20] in the context of the stochastic Navier–Stokes and
the stochastic quantization equations. More recently this idea has been exploited in a
large body of work by many authors. See for example [4–7,10,18,22,23,41,60,66,70]
and references therein for some works on the random data local Cauchy theory in the
context of nonlinear Schrödinger equations. The key point is that, if one considers the
linear evolution of random data (or random forcing), then almost surely, it enjoys much
better estimates than arbitrary functions of the same regularity. In turn this allows one
to re-center the solution around the linear evolution of random data (or around higher
order iterates), and conclude that the difference between the two belongs to a Banach

8 See also, later work by Burq and Tzvetkov in the context of nonlinear wave equations [9].
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space of higher regularity than the one dictated by the (weaker) regularity of the random
initial data.

For example, in Bourgain [6], which deals with the cubic nonlinear Schrödinger
equation onT

2, the initial data φω belongs to Sobolev H−ε almost surely, for any ε > 0,

whence its linear evolution only belongs to the Fourier restriction norm spaces X−ε, 12 +

almost surely. On the other hand, the equation is L2 critical, so if one were to try to
prove local well posedness via a fixed point argument, the needed trilinear estimates

would fail for arbitrary functions in X−ε, 12 +. Instead, Bourgain [6] constructed solutions
u centered around the random linear evolution �ω := eit�φω. That is of the form:

u = �ω + R, where (i∂t + �)R = N (�ω + R), (1.8)

and where we have denoted by N the Wick ordered cubic nonlinearity. Then, almost
surely, the needed trilinear estimates forN (�ω + R) hold true and the solution R to the

difference equation in (1.8) can be constructed in a smoother space Xε, 12 + by a contraction
mapping argument. Heuristically, one should view (1.8) as a ‘hybrid equation’ which
on the one hand behaves subcritically in R, thus locally well-posed in H ε; while on the
other hand the random linear evolutions �ω behave better than an arbitrary function in

X−ε, 12 + when they are entries inN (�ω+R) thanks to large deviation estimates. A similar
phenomenon happens in Da Prato–Debussche’s argument for-for example-the stochastic
Navier–Stokes equation on T

2 with spacetime white noise forcing ζ [19] where the role
of �ω is replaced by Z , the linear evolution of white noise, Zt − �Z = ζ.

In both cases, the method can be understood as constructing solutions in a (random
affine) submanifold W consisting of functions belonging to a ball in a smoother space,
centered at the random linear evolution.

In the past few years, Gubinelli, Imkeller and Perkowski [28,29] (see also [11] and
[30]) developed a far-reaching generalization of this re-centering method based on the
idea of para-controlled distributions. This is an analytic counterpart to the theory of
regularity structures developed by Hairer [33–36]. Roughly speaking, in addition to the
linear evolution and possibly (suitably renormalized) higher order expressions of the
linear evolution, one moves to the new ‘center’ terms that are ‘para-controlled’ by such
expressions. Here a function f is said to be para-controlled by a function g if, up to
some smoother ‘remainder’ terms, f can be written as the Bony para-product between
high frequencies of g and low frequencies of some auxiliary function h, namely that

f = �>(g, h) + R :=
∑

N

PN g · P�Nh + R, (1.9)

where for dyadic frequencies N , PN and P�N are the standard Littlewood-Paley opera-
tors projecting onto frequencies ∼ N and � N respectively, and R is smoother than f .
An example is the (parabolic) �4

3 model, which is the cubic heat equation on T
3 with

white noise forcing [11,28], where one constructs solutions of the form

u = Z + I (P3(Z)) + I �>(P2(Z), u − Z) + R, (1.10)

where Z is the linear evolution of the white noise, P3(Z) consists of other structured
components which themselves are given in term of (suitably renormalized cubic) powers
of Z , I is the Duhamel operator (∂t − �)−1, and R is a remainder, that has higher
regularity. Here then the solution consists of the linear evolution Z , a higher order
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expression I (P3(Z)), a para-controlled part term I �>(Z2, u− Z) and a remainder and
thus belongs to a random submanifold which is much more nonlinear.

These ideas have been extensively used in various stochastic contexts in recent years
by many authors. We refer the reader for example to work by Mourrat and Weber [56]
and to Mourrat, Weber and Xu [57] and to references therein for further work in the
context of the �4

3 model and to Chandra and Weber [13] and references therein for a
nice survey of these ideas. See also [2]. We also refer to recent work by Gubinelli, Koch
and Oh [31,32] where these ideas were applied to the stochastic nonlinear wave equation
with quadratic nonlinearity in T

2 and in T
3 respectively.

1.3. The deterministic context of DNLS. Inspired by the ideas in the probabilistic setting
described above, in this paper we develop a new deterministic method to describe the
structure of solutions v to the Cauchy initial value problem for (1.1) with data at almost
critical regularity. A review of all of the above examples suggests that, if we were in the
probabilistic setting (i.e. (1.7)), we should look for solutions essentially of form

u = w + (terms para-controlled by w) + (smooth remainders),

where w is the combination of the random linear evolution, and multilinear expressions
dictated by the random linear evolution. The choice of such w is forced upon us (one
can at most choose the order of expansion) by the fact that one needs to (and indeed can)
gain from the exact Gaussian structure.

In the deterministic setting, there is no gain from randomness. One could try to mimic
the probabilistic construction of para-controlled terms in previous works, and arrive at
the ansatz

v = w + I �(1)
> (∂xw, v, v) + I �(2)

> (∂xw,w, v) + (smooth remainders), (1.11)

where I is the Duhamel operator

I F(t) =
∫ t

0
ei(t−s)∂2x F(s) ds

and the cubic para-products are defined by

�(1)
> (∂xw, v, v) =

∑

N

PN ∂xw · (P�Nv)2,

�(2)
> (∂xw,w, v) =

∑

N

PN ∂xw · (PNwP�Nv). (1.12)

However unlike the probabilistic setting, we are no longer guided by the Gaussians and
need to find the rightw ourselves. The naive choice of linear evolution forw is doomed to
fail, and even if one includes multilinear expressions of the linear evolution, calculations
show that in the absence of randomness, one would need to expand to a very high (if
not infinite) order before unearthing ‘smooth remainders’ that have enough regularity

(namely H
1
2
4− due to [27]) to close the estimates. With a high order of expansion, the

terms involved then quickly become too complex to control in our setting. Work in
this direction was considered by the second author together with Chanillo, Czubak,
Mendelson and Staffilani in the context of the nonlinear wave equation with quadratic
derivative nonlinearities, see [14] for details.
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To get out of this maze, in this paper we will give up the idea of fixing w to be
some explicit multilinear expression dictated by the linear evolution. Instead we will
construct this w, which ‘para-controls’9 the solution v, dynamically. That is, we take
all the linear and higher order terms in the above-mentioned expansion, as well as the
presumed smooth error terms, and put them into a single ‘center’ w. This leads to the
new ansatz

v = w + I �(1)
> (∂xw, v, v) + I �(2)

> (∂xw,w, v), (1.13)

wherew is the ‘center’ which itself moves together with v and belongs to some subspace

of X
σ, 12 +
p,2 , p ≥ 4. As it turns out, uncovering the final structure of v is slightly more

complex but (1.13) conveys the main philosophy10 (see Sect. 4 for details). Since w

does not have a specific multilinear structure, one difficulty is identifying the right space
where w will lie. By carefully analyzing the terms that are expected to appear in w, we

can specify this space11 to be X
1
2 ,1−
p,∞−.

A final complication comes from the fact that unlike the parabolic setting where
the Duhamel operator I automatically gains two derivatives, such gain is not automatic
for the Schrödinger equation. Rather, it has to be manually induced by performing a
frequency cut-off also in the Fourier variable of time, so as to restrict to the region where
the parabolic weight in frequency (which is the one that appears in the Xs,b

p,q norms) is
large. In principle this would require that we replace in our ansatz (1.13) the Duhamel
operator I by a frequency cut-off version of it, which would introduce non-locality in
timewhich could be incompatible with local in time solutions. Fortunately the frequency
cut-off can be substituted by a suitable time convolution

˜I F(t) :=
∫ t

0
χ(k2(t − s))ei(t−s)∂2x F(s)ds (1.14)

which has the same effect for some carefully chosen χ . See Sect. 4.1 for details.
With the above discussion, we can now fix the submanifoldW , in which the solution

v to (1.5) is uniquely constructed, to be

W = {

v ∈ X
σ, 12 +
p,2 : v = w + ˜I �(1)

> (∂xw, v, v)

+˜I �(2)
> (∂xw,w, v), w ∈ X

1
2 ,1−
p,∞−

}

. (1.15)

We will show that the submanifold W is well-defined, parametrized by w ∈ X
1
2 ,1−
p,∞−,

and that the trilinear estimates (1.6), which fail for arbitrary input functions in X
σ, 12 +
p,2 ,

p ≥ 4 are actually true for input functions in W . These together will then allow one to
construct the solution v ∈ W by a contraction mapping argument. Finally, by inverting
the gauge transform, one can construct the solution u to (1.1) inZ , which is the preimage
ofW under the gauge transform. See Sect. 4 for details.

9 More precisely, here the solution v is supposed to contain three parts: w, a term paracontrolled by ∂xw
and a term paracontrolled by ∂xw w as in (1.13).
10 Note that the decomposition of v is nonlinear both in w and in the para-controlled terms.

11 More precisely for δ > 0 and q = 1
4δ , the right space is X

1
2 ,1−2δ
p,q . See Sect. 3 for precise definitions.
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Remark 1.6. Note that in the submanifoldW defined in (1.15), the functionw ∈ X
1
2 ,1−
p,∞−

is not smoother than v ∈ X
σ, 12 +
p,2 in space but rather gains regularity relative to the

parabolic weight |ξ + k2| (see the defintion (3.3)) over v. Hence w allows more room
to close the estimates for ˜I �

(1)
> (∂xw, v, v) and ˜I �

(2)
> (∂xw,w, v) when ˜I in principle

restricts these two terms to the region where the parabolic weight is large.

Remark 1.7. Nonlinear transformations based on para-products have been used in some
other equations, see for example [1,43,65]. Our nonlinear transform v ↔ w is neither a
para-linearized normal form nor a gauge transform, and is thus different from the ones
appearing in the literature.

Remark 1.8. We conclude this introductory discussion by noting that there is a large
body of work that has contributed to our current understanding of the Cauchy problem
for (1.1) for data in the Sobolev spaces Hs, s ≥ 1

2 both in the periodic and non-periodic
settings; we refer the reader to [3,16,17,37–40,45,46,48,50,54,55,61–64,67,69] and
references therein for a more comprehensive treatment.

1.4. Plan of the paper. The paper is organized as follows. In Sect. 2 we recall the
periodic gauge transformation used in [27] and perform such transformation to (1.1).
Then, we lay out the set up and frequency interactions splitting of the nonlinearities in
the gauged derivative Schrödinger equation which will guide our analysis. In Sect. 3
we define and set up our function spaces, prove the main linear estimates and prove an
improved divisor bound which is used in some of our estimates. In Sect. 4 we discuss the
structure of the solution, identifying the para-controlled terms and the precise solution
submanifold W where v will belong. In Sect. 5 we prove a priori bounds for the para-
controlled terms. Section 6 constitutes the heart of the paper. Here we find w and prove
all the underlying multilinear estimates involved in its construction. In the course of the
proof we show in particular that all relevant nonlinearities are well defined as space-time
distributions whence the integral equation (1.4) for u will be equivalent to the integral
equation formulation of (1.5) (see Sect. 2.4 for details). Finally in Sect. 7 we prove a
preservation of regularity result.

1.5. Notations and parameters. We will use the notation

P0h = 1

2π

∫

T

h dx, P�=0h = h − P0h.

The space, time and spacetime Fourier transforms are respectively defined as

û(k) = Fxu(k) = 1

2π

∫

T

e−ikxu(x) dx, û(ξ) = Ft u(ξ) = 1

2π

∫

R

e−iξ t u(t) dt,

û(k, ξ) = Fu(k, ξ) = 1

(2π)2

∫

R×T

e−i(kx+ξ t)u(t, x) dtdx

soF is reserved for the spacetime Fourier transform. As for û, whether it means space,
time or spacetime Fourier transform will be clear from the context. The integral over the
set

{(λ1, · · · , λr ) : λ1 ± · · · ± λr = μ}
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for fixed μ will be with respect to the Lebesgue measure dλ1 · · · dλr−1. We denote by
1P the characteristic function of a property P .

Recall that p0 is fixed; we will fix a small parameter 0 < δ � 1 depending on p0,
and define the other parameters (b0, b1, q0, q1, r0, r1, r2) as follows:

b0 = 1 − 2δ, b1 = 1 − δ, q0 = 1

4δ
, q1 = 1

(4.5)δ
,

1

r0
= 1

2
+ δ,

1

r1
= 1

2
+ 2δ,

1

r2
= 1

2
+ 3δ. (1.16)

We also use θ to denote a generic positive quantity that is sufficiently small depending
on δ (so θ may have different values at different instances.)

We will fix A as in the statement of Theorem 1.1, and let A1 be large depending on
A, A2 be large depending on A1, etc. All implicit constants below will depend on these
A j ’s and the above parameters. The time length T will also be fixed, and small enough
depending on these implicit constants.

2. The Gauge Transform and Other Reductions

2.1. The gauge transform. Notice that P0|u|2 is conserved under the flow of (1.1).
Consider the gauge transform, see [27],

v(t, x) = (Gu)(t, x) := (G0u)
(

t, x − 2P0|u|2 · t), (G0u)(t, x) := e−iG(t,x) · u(t, x),

(2.1)

where

G = ∂−1
x P�=0(|u|2) (2.2)

is the unique mean-zero antiderivative of P�=0|u|2. This gauge transform is easily in-
verted, with inverse given by

u(t, x) = (G−1v)(t, x) = eiG(t,x) · v0(t, x), G = ∂−1
x P�=0|v0|2, (2.3)

where

v0(t, x) = v(t, x + 2P0|v|2 · t). (2.4)

Proposition 2.1. The maps G and G−1 are continuous from C0
t H

1
2
p0(J ) to itself for any

interval J , and map bounded sets to bounded sets.

Proof. Notice that G = G1G0, where

G0u = exp(−i∂−1
x P�=0|u|2) · u, G−1

0 u = exp(i∂−1
x P�=0|u|2) · u,

and

G1u(t, x) = u(t, x − 2P0|u|2 · t), G−1
1 u(t, x) = u(t, x + 2P0|u|2 · t).
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In [27], Lemma 6.2 and Lemma 6.3, it is proved that G0 : H
1
2
p0 → H

1
2
p0 is locally bi-

Lipschitz, and that G1 : C0
t H

1
2
p0(J ) → C0

t H
1
2
p0(J ) is a homeomorphism. Moreover, it is

easily checked that

‖G1u‖
C0
t H

1
2
p0 (J )

= ‖G−1
1 u‖

C0
t H

1
2
p0 (J )

= ‖u‖
C0
t H

1
2
p0 (J )

,

so G and G−1 map bounded sets to bounded sets. ��

2.2. The transformed equation. We calculate that v = Gu satisfies the equation

(∂t − i∂2x )v = C(v, v, v) +Q(v, · · · , v), (2.5)

where the cubic and quintic nonlinearities are defined as

FxC(v1, v2, v3)(k) =
∑

V3

k1M3(k, k1, k2, k3) · v̂1(k1)v̂2(k2)v̂3(k3), (2.6)

and

FxQ(v1, · · · , v5)(k) =
∑

V5

M5(k, k1, · · · , k5) · v̂1(k1)v̂2(k2)v̂3(k3)v̂4(k4)v̂5(k5).

(2.7)

The sets V3 and V5 are defined by

V3 = {

(k1, k2, k3) ∈ Z
3 : k2 + k3 − k1 = k, |k2| ≥ |k3|, k �∈ {k2, k3}

} ∪ {(k, k, k)},
V5 = {

(k1, · · · , k5) ∈ Z
5 : k1 − k2 + k3 − k4 + k5 = k

}

,

(2.8)

‘and the coefficients Mj are explicitly defined functions, with |Mj | � 1 for j ∈ {3, 5}.
They also have the right symmetry so that (2.5) conservesP0|v|2. See [27] for the precise
formulas.

Remark 2.2. For integers k, k1, k2 and k3 such that k2 + k3 − k1 = k, we will rely
throughout the proofs on the quantity � := k2 + k21 − k22 − k23.

2.3. Splitting the cubic nonlinearity. We will further split the cubic nonlinearity C into
four parts: a “high–high” part,12 a “low–low” part, a “semilinear” part and a “non-
resonant” part. Decompose V3 into four subsets:

XH = {

(k1, k2, k3) ∈ V3 : |k3| ≥ 2−20|k|},
XL = {

(k1, k2, k3) ∈ V3 : |k2| < 2−20|k|},
XS = {

(k1, k2, k3) ∈ V3 : 2−10|k1| ≤ |k3| < 2−20|k|},
XN = V3 − (XH ∪ XL ∪ XS).

(2.9)

The following properties of this splitting are elementary and so we omit the proof.

12 Here “high” and “low” are with respect to the frequencies k2 and k3.
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Proposition 2.3. Wehave the followingproperties for the setsX∗ where∗ ∈ {H, L , S, N }:
(1) For (k1, k2, k3) ∈ XH we have |k2| ≥ |k3| ≥ 2−20|k|.
(2) For (k1, k2, k3) ∈ XL wehave |k|/2 ≤ |k1| ≤ 2|k|andmin(|k|, |k1|) ≥ 218 max(|k2|,

|k3|).
(3) For (k1, k2, k3) ∈ XS we have |k|/2 ≤ |k2| ≤ 2|k|, |k| ≥ 220|k3| and |k3| ≥

2−10|k1|.
(4) For (k1, k2, k3) ∈ XN we have |k2| ≥ 2−22 max(|k|, |k1|) and min(|k|, |k1|) ≥

210|k3|.
(5) For (k1, k2, k3) ∈ XH ∪ XS we have

|k1| · (〈k1〉〈k2〉〈k3〉)− 1
2 � 〈k〉− 1

2 . (2.10)

(6) For (k1, k2, k3) ∈ XL ∪ XN we have

|�| ∼ 〈k〉〈k1〉, where � = k2 + k21 − k22 − k23 = 2(k − k2)(k − k3).

(2.11)

Remark 2.4. The splitting (2.9), namely XH , XL , XS, XN in Proposition 2.3, can be
interpreted as a way to compare (k1, k2, k3) with k. In this way, the set XL can be
understoond as a region for the ‘high–low–low’ (|k| ∼ |k1| � |k2| ≥ |k3|) interaction.
Similarly,XH ,XS andXN in principle can be viewed as the regions for ‘high/low–high–
high’, ‘low–high–low’ and ‘high–high–low’ interactions. The corresponding trilinear
operators restricted to the region X∗ such as C∗ and E∗ (∗ ∈ {H, L , S, N }) will be
widely used in the following sections.

We also need the following result, which will be used in analyzing the quintic terms
in Sect. 6. Once again these properties are elementary. We omit the proof.

Proposition 2.5. Suppose

k2 + k′ − k1 = k, (k1, k2, k
′) ∈ X∗; k4 + k5 − k3 = k′, (k3, k4, k5) ∈ X#,

where ∗, # ∈ {H, L , S, N } and where here

� = k2 + k21 − k′2 − k22 and �′ = k′2 + k23 − k25 − k24 .

Moreover let us define,

α := |k1||k3|
〈�〉 , β := |k1||k3|

〈�〉〈�′〉 , γ := |k1||k3|
〈�′〉 .

Then we have the followings:

(1) Assume ∗ ∈ {H, S} and # ∈ {L , N }. Then either (1a) |γ | � 1 or (1b) ∗ = H and
|k1| ≥ 240|k′|. In case (1b),
(i) if # = L, or if # = N and |k3| ≤ 230|k′|, then we have that,

|k1|/2 ≤ |k2| ≤ 2|k1|, |k1| ≥ 25 max
3≤ j≤5

|k j |, |γ | � 〈k1〉
max(〈k3〉, 〈k4〉, 〈k5〉, 〈k〉) ,

that k1 �= k2, and that max(|k3|, |k4|, |k5|) = |k j | for j = 3 if # = L and,
j ∈ {3, 4} if # = N;
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(ii) if # = N and |k3| ≥ 230|k′|, then we have that

|k1|/2 ≤ |k2| ≤ 2|k1|, |k3|/2 ≤ |k4| ≤ 2|k3|,
|k1| ≥ 25 max(|k|, |k5|), |α| � 〈k1〉

max(〈k〉, 〈k5〉, 〈k1 ± k2〉) .

(2) Assume ∗, # ∈ {L , N }, then either (2a) |α| � 1 or (2b) # = N and |k3| ≥ 240|k|.
In case (2b),
(i) if ∗ = L or if ∗ = N and |k1| ≤ 230|k|, then we have

|k3|/2 ≤ |k4| ≤ 2|k3|, |k3| ≥ 25 max
j∈{1,2,5} |k j |, |γ | � 〈k3〉

max(〈k1〉, 〈k2〉, 〈k5〉, 〈k〉) ,
that k3 �= k4, and that max(|k1|, |k2|, |k5|) = |k j | for j = 1 if ∗ = L and,
j ∈ {1, 2} if ∗ = N;

(ii) if ∗ = N and |k1| ≥ 230|k|, then we have that

|k1|/2 ≤ |k2| ≤ 2|k1|, |k3|/2 ≤ |k4| ≤ 2|k3|,
|k3| ≥ 25 max(|k|, |k5|), |α| � 〈k3〉

max(〈k〉, 〈k5〉) , |k| �= |k5|.
(3) Assume ∗, # ∈ {L , N }, then we have that

|β| � 1

〈k〉〈k3 ± k4〉 , 〈k〉 � 〈k5〉.
Now, for ∗ ∈ {H, L , S, N } define C∗ by

FxC∗(v1, v2, v3)(k) =
∑

X∗
k1M3(k, k1, k2, k3) · v̂1(k1)v̂2(k2)v̂3(k3), (2.12)

then we have

C = CH + CL + CS + CN . (2.13)

2.4. The full setup. When all the relevant nonlinearities are well-defined as spacetime
distributions, which we will see in the course of the proof, the integral equation (1.4) for
u will be equivalent to the integral equation

v(t) = eit∂
2
x v0 + I (C(v, v, v) +Q(v, · · · , v)), I F(t) =

∫ t

0
ei(t−s)∂2x F(s) ds, (2.14)

for v, where the nonlinearities C and Q are as in (2.6)–(2.8), and the initial data

v0 = exp(−i∂−1
x P�=0|u0|2) · u0, (2.15)

which satisfies ‖v0‖
H

1
2
p0

≤ A1 given that ‖u0‖
H

1
2
p0

≤ A.

In the proof we will be extending the function v, which is defined on J = [−T, T ], to
the whole line Rt ; to this end we fix a smooth function ϕ(t) that is 1 for |t | ≤ 1 and 0 for
|t | ≥ 2, and define the truncated versions of the linear solution and Duhamel operator

ψ(t) = ϕ(t) · eit∂2x v0, IF(t) = ϕ(t) · I (ϕ(s) · F(s)). (2.16)

For later uses we will also define ϕT (t) = ϕ(T−1t).
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3. Preparations

In this section we define and set up our function spaces, prove the main linear estimates
and prove an improved divisor bound which is used in some of our estimates.

3.1. Function spaces. We begin by properly defining the functions spaces that play a
role in our proof. Denote13 the Fourier-Lebesgue norms Hs

p(T), where p ∈ [2,∞) an
s ∈ R, by

‖u‖Hs
p

= ‖〈k〉s û(k)‖�
p
k
. (3.1)

In one dimension, Hs
p has the same scaling as the Sobolev space Hγ for

γ = s +
1

p
− 1

2
. (3.2)

When p > 2 we have γ < s, which allows the regularity index γ to decrease while
keeping s ≥ 1

2 .

The associated Fourier restriction norm spaces Xs,b
p,q , where p ∈ [2,∞), q ∈ [1,∞)

and s, b ∈ R, are then defined by

‖u‖Xs,b
p,q

= ‖〈k〉s〈ξ + k2〉bû(k, ξ)‖�
p
k L

q
ξ
. (3.3)

For 2 ≤ p0 < ∞ fixed and 0 < δ � 1 small depending on p0 also fixed, let the
parameters (b0, b1, q0, q1, r0, r1, r2) be defined as in (1.16). We define the four spaces
in which the estimates are proved as follows:

Y0 = X
1
2 , 12
p0,r0 , Y1 = X

1
2 , 12
p0,r1 ,

Z0 = X
1
2 ,b0
p0,q0 , Z1 = X

1
2 ,b1
p0,q0 .

(3.4)

Note that by Hölder we have

Xs′,b′
p′,q ′ ⊂ Xs,b

p,q , provided p ≤ p′, q ≤ q ′, s +
1

p
< s′ + 1

p′ , b +
1

q
< b′ + 1

q ′ ,

(3.5)

in particular Z0 ⊂ Y0 ⊂ C0
t H

1
2
p0 . Finally, for any finite interval I and any spacetime

norm Y , define

‖u‖Y(I ) = inf
{‖v‖Y : v = uonI

}

. (3.6)

13 Note that in [27] this same space is denoted by ̂Hs
p′ (T) where 1

p + 1
p′ = 1.
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3.2. Linear estimates. We will be using the following notation for a spacetime function
F :

˜F(k, λ) = X F(k, λ) := ̂F(k, λ − k2), (3.7)

where ̂F is the spacetime Fourier transform.

Lemma 3.1. Define the function

K (λ, σ ) = i

[ ∫

R

ϕ̂(λ − μ)ϕ̂(μ − σ)

μ
dμ − ϕ̂(λ)

∫

R

ϕ̂(μ − σ)

μ
dμ

]

, (3.8)

where integrations are defined as principal value limits, then it satisfies

|K (λ, σ )| �B

(

1

〈λ〉B +
1

〈λ − σ 〉B
)

1

〈σ 〉 (3.9)

for any B > 0, and we have

˜IF(k, λ) =
∫

R

K (λ, σ )˜F(k, σ ) dσ. (3.10)

Proof. In [21], Lemma 3.3, it is derived that

˜IF(k, λ) = c0

∫

R

ϕ̂(λ − μ)

μ
dμ

∫

R

ϕ̂(μ − σ)˜F(k, σ ) dσ

+ c1ϕ̂(λ) ·
∫

R

dμ

μ

∫

R

ϕ̂(μ − σ)˜F(k, σ ) dσ,

where c0 and c1 are numerical constants, and integrations are defined as principal value
limits. By our convention with Fourier transform, we can calculate that c0 = i and
c1 = −i , which gives the formula (3.8). The bound (3.9) follows easily, using that ϕ̂ is
a Schwartz function. ��
Proposition 3.2. Suppose u is a smooth function such that u(0) = 0. Then we have the
estimates

‖ϕT · u‖Y0 � T θ‖u‖Y1 , ‖ϕT · u‖Z0 � T θ‖u‖Z1 . (3.11)

Proof. First notice that, by (3.5),

‖u‖
X

1
2 ,b0
p0,q1

� ‖u‖
X

1
2 ,b1
p0,q0

= ‖u‖Z1 .

Then, by separating different Fourier modes and conjugating by e±i tk2 at Fourier mode
eikx , it suffices to prove that for any function g = g(t) satisfying g(0) = 0,

‖〈λ〉b(ĝ ∗ ϕ̂T )(λ)‖Lq � T
1
q̃ − 1

q ‖〈σ 〉bĝ(σ )‖Lq̃ , (3.12)

provided ∞ > q > q̃ > 1 and b + 1
q̃ > 1 > b. Let g = g1 + g2 where

ĝ1(σ ) = 1|σ |≥T−1(σ )ĝ(σ ), ĝ2(σ ) = 1|σ |<T−1(σ )ĝ(σ ),
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we will actually prove that

‖〈λ〉b(ĝ1 ∗ ϕ̂T )(λ)‖Lq � T
1
q̃ − 1

q ‖〈σ 〉bĝ(σ )‖Lq̃ , (3.13)

and

‖〈λ〉b(ĝ2 ∗ ϕ̂T )(λ)‖Lq � T
1
q̃ − 1

q ‖〈σ 〉bĝ(σ )‖Lq̃ . (3.14)

To prove (3.13), we can reduce it to the Lq̃ → Lq bound for the operator

ĝ(σ ) 
→
∫

R

R(λ, σ )ĝ(σ ) dσ, R(λ, σ ) = 1|σ |≥T−1 · T ϕ̂(T (λ − σ))
〈λ〉b
〈σ 〉b .

Since

1|σ |≥T−1 · 〈λ〉b
〈σ 〉b � 〈Tλ〉b

〈Tσ 〉b � 〈T (λ − σ)〉b,

it follows from Schur’s estimate that this Lq̃ → Lq bound is at most

‖T ϕ̂(Tμ)〈Tμ〉b‖
Lβ

μ
� T 1− 1

β = T
1
q̃ − 1

q ,
1

β
= 1 +

1

q
− 1

q̃
,

which proves (3.13).
To prove (3.14), notice that

(ĝ2 ∗ ϕ̂T )(λ) = −T ϕ̂(Tλ)

∫

|σ |≥T−1
ĝ(σ ) dσ

−
∫

|σ |<T−1
T ĝ(σ )

[

ϕ̂(Tλ) − ϕ̂(T (λ − σ))
]

dσ

since g(0) = 0; thus

|(ĝ2 ∗ ϕ̂T )(λ)| �B T 〈Tλ〉−B
∫

R

min(1, |Tσ |)|̂g(σ )| dσ

for any B > 0. Since by an elementary calculation we can prove
∫

R

min(1, |Tσ |)|̂g(σ )| dσ � ‖〈σ 〉bĝ(σ )‖Lq̃ · ‖min(1, |Tσ |)〈σ 〉−b‖Lγ

� T b− 1
γ = T b+ 1

q̃ −1
,

1

γ
= 1 − 1

q̃
,

and that

‖T 〈Tλ〉−B〈λ〉b‖Lq � T 1−b− 1
q ,

we deduce (3.14). ��
Remark 3.3. The requirement u(0) = 0 is necessary. Below (3.11) will be applied only
for those u of form

u(t) =
∫ t

0
(expression),

namely u = I(· · · ) or u = E∗∗ (· · · ), see Sect. 4.1 for the definition of E , so u(0) = 0
will always be true.
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3.3. A divisor bound. Finally, in this subsectionweprove and record an improved divisor
bound that will be handy later on in some parts of the proof.14

Lemma 3.4. (1) Let R = Z or Z[ω], where ω = exp(2π i/3), and fix ε > 0. Let
k, q ∈ R and ρ > 0 be such that |q| ≥ |k|ε > 0. Then the number of divisors r ∈ R
of k that satisfies |r − q| ≤ ρ is at most Oε(ρ

ε).
(2) Consider the system

{ ± a ± b ± c = const.

∓ a2 ∓ b2 ∓ c2 = const.
(3.15)

where the signs are arbitrary, but the signs of ±a and ∓a2 etc. are always opposite.
Assume also that there is no pairing, where a pairing means that (say) a = b and
the signs of a and b in (3.15) are opposite. Then the number of solutions that satisfy
|a| ∼ N1, |b| ∼ N2 and |c| ∼ N3 is �ε N ε, where N is the second largest of the
N j ’s.

Proof.

(1) It is well-known thatR has unique factorization and satisfies the standard divisor
bound: the number of divisors of k �= 0 is at most Oε(|k|ε). Thus the result
is trivial if ρ ≥ |k|δ , where δ = ε4. Now suppose |ρ| ≤ |k|δ (and |k| is large
enough), we claim that the number of divisors r is at mostm−1, wherem ∼ ε−2

is an integer.
In fact, suppose d j , where 1 ≤ j ≤ m are distinct divisors, then by unique
factorization we know that k is divisible by lcm(d1, · · · , dm), and hence divisible
by

∏m
j=1 d j

∏

1≤i< j≤m gcd(di , d j )
=: k′.

On the other hand, since gcd(di , d j ) divides di − d j , we know | gcd(di , d j )| ≤
|di − d j | ≤ 2ρ. As also |d j | � |k|ε, we conclude that

|k| ≥ |k′| � |k|εm |ρ|−m2 ≥ |k|εm−δm2
,

which is impossible for sufficiently large |k|, due to our choices of m and δ.
(2) By symmetry we may assume N ′ := max(N2, N3) ≤ N 1/10

1 (the other case will
follow from the same argument below, using standard divisor bounds). There are
three cases to consider: when b + c − a = const. (and b2 + c2 − a2 = const.),
when a + b − c = const., and when a + b + c = const.

(a) Suppose b + c − a = � is constant and b2 + c2 − a2 is also constant. Then
2(� − b)(� − c) = �2 − (b2 + c2 − a2) =: D is also constant, and D �= 0 as
there is no pairing. Now choosing R = Z, k = D/2, q = � and ρ ∼ N ′ in part
(1) yields the result.

(b) Supposea+b−c = � anda2+b2−c2 is constant. Then similarly 2(b−c)(�−b) =:
D is a nonzero constant. Considering the divisor � − b and choosing R = Z,
k = D/2, q = � and ρ ∼ N ′ in part (1) yields the result.

14 We note that a weaker version of Lemma 3.4 here already appeared in [27], Lemma 3.1.
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(c) Suppose a + b + c = � and a2 + b2 + c2 is constant. Then letting u = 3a − � and
v = 3b − �, we have that

(u − ωv)(u − ω2v) = u2 + uv + v2 = 9(a2 + b2 + c2) − 3�2 =: D
is constant. Considering the divisor u − ωv and choosing R = Z[ω], k = D,
q = (ω + 2)� and ρ ∼ N ′ in part (1) yields the result.

��

4. Structure of the Solution

In this section we discuss the structure of the solution, identifying the para-controlled
terms and the precise solution submanifold W where v will belong. From now on
we will focus on the Eq. (2.14). The submanifold Z in Theorem 1.1 will be defined
as Z = G−1W , where G is the gauge transform (2.1), and W is a submanifold of

Y0(J ) ⊂ C0
t H

1
2
p0(J ), in which the solution solution v of (2.14) will be constructed. To

define W we need some further preparations.

4.1. Splitting the Duhamel operator. Let η(t) be a Schwartz function that satisfies the
cancellation condition

η̂(1) = 0, Hη̂(1) = 1, (4.1)

whereH is the Hilbert transform (principal value convolution by 1/ξ ). For ∗ ∈ {N , L},
consider the trilinear operator E∗ := IC∗. Recall that E∗ satisfies that

Fx E∗(v1, v2, v3)(k, t)

=
∑

X∗
k1M3(k, k1, k2, k3)

∫ t

0
e−i(t−s)k2 v̂1(k1, s)v̂2(k2, s)v̂3(k3, s) ds. (4.2)

As before let � = k2 + k21 − k22 − k23 (we always have |�| ≥ 1), we will define the
modified trilinear operators EY∗ and EX∗ by

Fx E
Y∗ (v1, v2, v3)(k, t)

=
∑

X∗
k1M3(k, k1, k2, k3)

∫ t

0
e−i(t−s)k2η(�(t − s))v̂1(k1, s)v̂2(k2, s)v̂3(k3, s) ds

(4.3)

(Y indicates that this term is to be estimated in the Y space) and

Fx E
X∗ (v1, v2, v3)(k, t) =

∑

X∗
k1M3(k, k1, k2, k3)

∫ t

0
e−i(t−s)k2 [1 − η(�(t − s))]v̂1(k1, s)v̂2(k2, s)v̂3(k3, s) ds (4.4)
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(X is for “extra”). Clearly IC∗ = E∗ = EX∗ + EY∗ . As with I , we will also define the
time truncated versions

EY∗ (v1, v2, v3) = ϕ(t) · EY∗ (ϕ(s)v1, v2, v3),

E X∗ (v1, v2, v3) = ϕ(t) · EX∗ (ϕ(s)v1, v2, v3). (4.5)

Proposition 4.1. For ∗ ∈ {N , L} we have the expressions:
X EY∗ (v1, v2, v3)(k, λ) =

∑

X∗
k1M3(k, k1, k2, k3)

∫

R

KY
�(λ, σ ) dσ

∫

λ2+λ3−λ1=σ−�

ṽ1(k1, λ1)ṽ2(k2, λ2)ṽ3(k3, λ3),

X E X∗ (v1, v2, v3)(k, λ) =
∑

X∗
k1M3(k, k1, k2, k3)

∫

R

K X
�(λ, σ ) dσ

∫

λ2+λ3−λ1=σ−�

ṽ1(k1, λ1)ṽ2(k2, λ2)ṽ3(k3, λ3),

(4.6)

where � = k2 + k21 − k22 − k23 , and the functions KY
� and K X

� satisfy the bounds

|KY
�(λ, σ )| �B

1

〈λ − σ 〉B min

(

1

〈�〉 ,
1

〈σ 〉
)

+
1

〈λ − σ 〉 min

(

1

〈�〉 ,
1

〈λ〉
)

, (4.7)

|K X
�(λ, σ )| �B

1

〈λ〉B〈σ 〉 +
〈σ − �〉

〈λ − σ 〉B〈σ 〉 min

(

1

〈�〉 ,
1

〈σ 〉
)

+
〈λ − �〉
〈λ − σ 〉 min

(

1

〈�〉 ,
1

〈λ〉
)2

. (4.8)

Proof. Fix ∗ ∈ {N , L}. Let KY
� be the integral kernel of the linear operator

F(s) 
→
∫ t

0
η(�(t − s))F(s) ds

on the Fourier side, i.e.

Ft

(∫ t

0
η(�(t − s))F(s) ds

)

(λ) =
∫

R

KY
�(λ, σ )̂F(σ ) dσ,

and K X
� = K − KY

� where K is defined in (3.8). By making Fourier expansion in x

twisting by e±i tk2 on the time-Fourier side at mode k, one can see that (4.6) holds with
exactly the same kernels KY

� and K X
� .

It then suffices to calculate these kernels; by an argument similar to [21], Lemma 3.3,
we have

KY
�(λ, σ ) = i

∫

R

ϕ̂(λ − μ)ϕ̂(μ − σ)
1

�
(Hη̂)

(

μ

�

)

dμ

−i
∫

R

ϕ̂(λ − μ)
1

�
η̂

(

μ

�

)

(Hϕ̂)(μ − σ) dμ. (4.9)
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Since η̂ and ϕ̂ are Schwartz functions, their Hilbert transforms will decay like 〈λ〉−1,
thus

∣

∣

∣

∣

1

�
(Hη̂)

(

μ

�

)∣

∣

∣

∣

� min

(

1

〈�〉 ,
1

〈μ〉
)

, |(Hϕ̂)(μ − σ)| � 1

〈μ − σ 〉 .

Then, by elementary estimates of the integral, the first term on the right hand side of
(4.9) is bounded by the first term on the right hand side of (4.7), and the second term
on the right hand side of (4.9) is bounded by the second term on the right hand side of
(4.7).

As with K X
� , using (4.9) and (3.8) we can calculate

K X
�(λ, σ ) = i

∫

R

ϕ̂(λ − μ)ϕ̂(μ − σ)

[

1

μ
− 1

�
(Hη̂)

(

μ

�

)]

dμ

+i
∫

R

ϕ̂(λ − μ)
1

�
η̂

(

μ

�

)

(Hϕ̂)(μ − σ) dμ − i ϕ̂(λ)

∫

R

ϕ̂(μ − σ)

μ
dμ. (4.10)

The third term on the right hand side of (4.10) is bounded by the first term on the right
hand side of (4.8). The first term on the right hand side of (4.10) can be bounded by the
second term on the right hand side of (4.8), once we can prove

∣

∣

∣

∣

1

μ
− 1

�
(Hη̂)

(

μ

�

)∣

∣

∣

∣

� 〈μ − �〉
〈μ〉 min

(

1

〈�〉 ,
1

〈μ〉
)

for |μ| ≥ 1, but this follows from rescaling and the assumption Hη̂(1) = 1. Similarly,
the second term on the right hand side of (4.10) can be bounded by the third term on the
right hand side of (4.8), due to the estimate

∣

∣

∣

∣

1

�
η̂

(

μ

�

)∣

∣

∣

∣

� 〈μ − �〉min

(

1

〈�〉 ,
1

〈μ〉
)2

and the fact that η̂(1) = 0. ��
Remark 4.2. Note that the first term on the right hand side of (4.7) is bounded by the
second term, so we have

|KY
�| � 1

〈λ − σ 〉 min

(

1

〈�〉 ,
1

〈λ〉
)

. (4.11)

Moreover, by (4.8) we can write K X
� = K X,0

� + K X,+
� , where

|K X,0
� | � 1〈σ 〉�〈�〉

1

〈λ〉B〈�〉 + 1〈λ−σ 〉�〈σ−�〉 · min

(

1

〈�〉 ,
1

〈λ〉
)2

, (4.12)

|K X,+
� | �B 1〈σ 〉�〈�〉

1

〈λ〉B〈σ 〉 +
〈σ − �〉

〈λ − σ 〉B〈σ 〉 min

(

1

〈�〉 ,
1

〈σ 〉
)

+1〈λ−σ 〉�〈σ−�〉
〈σ − �〉
〈λ − σ 〉 min

(

1

〈�〉 ,
1

〈λ〉
)2

. (4.13)

We will define the terms E X,0∗ and E X,+∗ accordingly, for ∗ ∈ {N , L}.
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4.2. The submanifold W . We can now define W as follows.

Definition 4.3. Suppose that A2, A3 and T are fixed. Let J = [−T, T ]. We define

W = {

v ∈ Y0(J ) : ‖v‖Y0(J ) ≤ A3, and there exists w with ‖w‖Z0(J ) ≤ A2,

such that v = w + EY
N (w,w, v) + EY

L (w, v, v)
}

. (4.14)

This is a submanifold of Y0(J ) ⊂ C0
t H

1
2
p0(J ). Moreover, we will define the submanifold

Z of C0
t H

1
2
p0(J ) in the statement of Theorem 1.1 by Z = G−1W .

We will need the following proposition, whose proof is postponed to Sect. 5.

Proposition 4.4. For anyw which satisfies ‖w‖Z0(J ) ≤ A2 there is a unique v satisfying
‖v‖Y0(J ) ≤ A3, such that

v = w + EY
N (w,w, v) + EY

L (w, v, v). (4.15)

This mapping w 
→ v = v[w] is Lipschitz from the A2-ball of Z0(J ) to the A3-ball of
Y0(J ). The submanifold W of Y0(J ) is the image of this mapping.

Remark 4.5. Based onRemark 2.4, EL can be understood as the ‘high–low–low’ (|k1| �
|k2| ≥ |k3|) interaction and EY

L in principle is EL restricted15 to the region where the
parabolic weight in frequency is large (|ξ + k2| � k2), as in (1.14) and Sect. 4.1.
Similarly EY

N can be understood as the ‘high–high–low’ (|k2| � |k1| � |k3|) interaction
with the restriction that the parabolic weight is large. Now it is clear that EY

N (w,w, v)

and EY
L (w, v, v) in the ansatz (4.15) can be viewed as two para-controlled terms where

w is located at the comparable ‘high’ inputs of the trilinear operator and v is located at
the comparable ‘low’ inputs.

4.3. Reducing to an equation for w. The next step is to reduce (2.14) to an equation
for w. We will construct a function w satisfying ‖w‖Z0(J ) ≤ A2, such that the function
v = v[w] defined by Proposition 4.4 satisfies (2.14). By direct calculation, we see that
(2.14) reduces to

w = eit∂
2
x v0 + IQ(v, · · · , v) + ICH (v, v, v) + ICS(v, v, v)

+ I (CN (v, v, v) − CN (w,w, v)) + I (CL(v, v, v) − CL(w, v, v))

+ EX
N (w,w, v) + EX

L (w, v, v)

(4.16)

where v = v[w] (we will always assume this below) and satisfies

v = w + EY
N (w,w, v) + EY

L (w, v, v). (4.17)

It is now clear that Theorem 1.1 will be a consequence of the following result.

Proposition 4.6. The mapping that maps w to the right hand side of (4.16) is a contrac-
tion mapping from the A2-ball of Z0(J ) to itself.

This proposition will be proved in Sect. 6.

15 The difference between EL and EY
L—same for EN—which we call EX

L as defined in (4.4) will appear
in the Eq. (4.16) for w.
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5. Proof of Proposition 4.4

In this sectionwe prove a priori bounds for the para-controlled termswhichwill crucially
enter in the next section. We start by noting that Z0(J ) ⊂ Y0(J ). In order to prove
Proposition 4.4, it suffices to prove the trilinear estimates

‖EY
N (v1, v2, v3)‖Y0(J ) � T θ‖v1‖Z0(J )‖v2‖Z0(J )‖v3‖Y0(J ), (5.1)

‖EY
L (v1, v2, v3)‖Y0(J ) � T θ‖v1‖Z0(J )‖v2‖Y0(J )‖v3‖Y0(J ). (5.2)

In fact, these would imply that given w which satisfies ‖w‖Z0(J ) ≤ A2, the mapping

v 
→ w + EY
N (w,w, v) + EY

L (w, v, v)

is a contraction mapping from the A3-ball of Y0(J ) to itself. It then has a unique fixed
point v = v[w], and the Lipschitz property of themappingw 
→ v is also easily checked.

In order to prove (5.1) and (5.2), we will assume that w+ and v+ are extensions
of w and v respectively, such that ‖w+‖Z0 ≤ 2A2 and ‖v‖Y0 ≤ 2A3. Recall that
ϕT (t) = ϕ(T−1t), clearly ϕT · EY

N (w+, w+, v+) and ϕT · EY
L (w+, v+, v+) are extensions

of EY
N (w,w, v) and EY

L (w, v, v) respectively. Using also Proposition 3.2, we can reduce
Proposition 4.4 to the following

Proposition 5.1. We have the following bounds

‖EY
N (v1, v2, v3)‖Y1 � ‖v1‖Z0‖v2‖Z0‖v3‖Y0 , (5.3)

‖EY
L (v1, v2, v3)‖Y1 � ‖v1‖Z0‖v2‖Y0‖v3‖Y0 . (5.4)

Proof. Let ∗ ∈ {N , L}, using the embedding Z0 ⊂ Y0, we only need to prove the
stronger result

‖EY∗ (v1, v2, v3)‖Y1 � ‖v1‖Z0‖v2‖Y0‖v3‖Y0 . (5.5)

Let E = EY∗ (v1, v2, v3), we may assume the norms on the right hand side are all equal
to 1. Recall from (4.6) and (4.11) that

|˜E(k, λ)| �
∑

X∗
|k1|min

(

1

〈�〉 ,
1

〈λ〉
)∫

λ2+λ3+λ4−λ1=λ−�

1

〈λ4〉
3
∏

j=1

|ṽ j (k j , λ j )|,

(5.6)

where � = 2(k− k2)(k− k3) by (2.11). We may restrict to the dyadic region 〈k2〉 ∼ N2
and 〈k3〉 ∼ N3 (so N2 � N3), where N2 and N3 are powers of two.

Recall that 1
r2

= 1
2 + 3δ (so r2 < r0). Notice that

‖〈k1〉 1
2 ṽ1‖L1

λ�
p0
k

� ‖〈k1〉 1
2 〈λ1〉b0 ṽ1‖Lq0

λ �
p0
k

� ‖〈k1〉 1
2 〈λ1〉b0 ṽ1‖�

p0
k L

q0
λ

� 1

by Hölder and Minkowski, and similarly

‖〈k j 〉(1−
√

δ)/p0 ṽ j‖L1
λ�

r2
k

� ‖〈k j 〉(1−
√

δ)/p0〈λ j 〉 1
2 ṽ j‖Lr0λ �

r2
k

� ‖〈k j 〉(1−
√

δ)/p0〈λ j 〉 1
2 ṽ j‖�

r2
k L

r0
λ

� ‖〈k j 〉 1
2 〈λ j 〉 1

2 ṽ j‖�
p0
k L

r0
λ

� 1



Optimal Local Well-Posedness for the DNLS Equation 1083

for j ∈ {2, 3}. We may then fix (λ1, λ2, λ3) which we eventually integrate over, and
denote

|ṽ1(k1, λ1)| = 〈k1〉− 1
2 f1(k1), |ṽ j (k j , λ j )| = N−(1−√

δ)/p0
j f j (k j ), 2 ≤ j ≤ 3,

where (after a further normalization)

‖ f1‖�
p0
k

� 1, ‖ f j‖�
r2
k

� 1 (k = 2, 3), (5.7)

and it will suffice to prove that for any fixed μ(= λ2 + λ3 − λ1) ∈ R,

∥

∥

∥

∥

〈k〉 1
2 〈λ〉 1

2
∑

X∗
〈k1〉 1

2 min

(

1

〈�〉 ,
1

〈λ〉
)

1

〈λ − � − μ〉
3
∏

j=1

f j (k j )

∥

∥

∥

∥

�
p0
k L

r1
λ

� (N2N3)
(1−√

δ)/p0−θ . (5.8)

In the above summation over (k1, k2, k3) ∈ X∗, we may first fix � and sum over
(k1, k2, k3) ∈ X∗ that correspond to this fixed �.

We first assume ∗ = L , which is the slightly harder case. Note that 〈k〉 ∼ 〈k1〉, by
Lemma 3.4, we can bound the left hand side of (5.8) by

∥

∥

∥

∥

〈k〉〈λ〉 1
2
∑

�

F(k,�)min

(

1

〈�〉 ,
1

〈λ〉
)

1

〈λ − � − μ〉
∥

∥

∥

∥

�
p0
k L

r1
λ

, (5.9)

where

F(k,�) =
∑

(k1,k2,k3)∈XL
k2+k21−k22−k23=�

3
∏

j=1

f j (k j ) � N θ
2

(

∑

(k1,k2,k3)∈XL
k2+k21−k22−k23=�

3
∏

j=1

f j (k j )
r2

) 1
r2

.

Using the facts that

min

(

1

〈�〉 ,
1

〈λ〉
)

� 〈�〉− 1
2 〈λ〉− 1

2 , 〈�〉 ∼ 〈k〉2

and by Schur’s estimate, we can bound
∥

∥

∥

∥

〈k〉〈λ〉 1
2
∑

�

F(k,�)min

(

1

〈�〉 ,
1

〈λ〉
)

1

〈λ − � − μ〉
∥

∥

∥

∥

L
r1
λ

� ‖F(k,�)‖
�
r2
�

for each fixed k. By the definition of F(k,�), it then suffices to prove that

N θ
2

∥

∥

∥

∥

(

∑

XL

3
∏

j=1

f j (k j )
r2

) 1
r2
∥

∥

∥

∥

�
p0
k

� (N2N3)
(1−√

δ)/p0N−θ
2 . (5.10)

Let f j (k j )r2 = g j (k j ) and β = (p0/r2), it suffices to prove (for a possibly different θ )
that

∥

∥

∥

∥

∑

|k2|∼N2|k3|∼N3

g1(k2 + k3 − k)g2(k2)g3(k3)

∥

∥

∥

∥

�
β
k

� (N2N3)
r2(1−

√
δ)/p0N−θ

2 .



1084 Y. Deng, A. R. Nahmod, and H. Yue

As ‖g1‖�
β
k

= ‖ f1‖r2
�
p0
k

� 1, by Minkowski we can bound the above by

‖g2‖�1k
‖g3‖�1k

= ‖ f2‖r2
�
r2
k

‖ f3‖r2
�
r2
k

� 1 (5.11)

using (5.7). This finishes the case ∗ = L .
When ∗ = N , we will further assume 〈k〉 ∼ N0 and 〈k1〉 ∼ N1, then the proof will

be the same as above, using the fact that

〈k〉 1
2 〈k1〉 1

2 ∼ N0N1 ∼ 〈�〉 1
2 .

The sum over N0 and N1 is then taken care of using the positive power of N2 on the
right hand side of (5.10), and the fact that N2 � max(N0, N1) when (k1, k2, k3) ∈ XN .
��

6. Proof of Proposition 4.6

This section constitutes the heart of the paper.Herewefindw and prove all the underlying
multilinear estimates involved in its construction. In the course of the proof we show
in particular that all relevant nonlinearities are well defined as space-time distributions
whence the integral equation (1.4) for u will be equivalent to the integral equation
formulation of (1.5) from Sect. 2.4.

Given w satisfying ‖w‖Z0(J ) ≤ A2, let w+ be an extension of w such that ‖w+‖Z0 ≤
2A2. By the proof of Proposition 4.4 in Sect. 5, we know that there is a unique v+ =
v+[w+] such that ‖v+‖Y0 ≤ A3, and

v+ = w+ + ϕT · EY
N (w+, w+, v+) + ϕT · EY

L (w+, v+, v+). (6.1)

Moreover this v+ is an extension of v = v[w]. Therefore, recall that ψ := ϕ(t)eit∂
2
x v0,

the function

z := ψ + ϕT · IQ(v+, · · · , v+) + ϕT · ICH (v+, v+, v+) + ϕT · ICS(v
+, v+, v+)

+ ϕT · I(CN (v+, v+, v+) − CN (w+, w+, v+))

+ ϕT · I(CL(v+, v+, v+) − CL(w+, v+, v+))

+ ϕT · E X
N (w+, w+, v+) + ϕT · E X

L (w+, v+, v+)

(6.2)

will be an extension of the right hand side of (4.16).

6.1. Splitting the formula of z. Now that w+, v+ and z are defined for all time, we can
further manipulate the expression of z, as this manipulation sometimes requires inserting
time-frequency cutoffs. We will analyze each term in (6.2) separately. The initial data
term ψ is trivial. For the other terms, we will remove the ϕT factor in front, and bound
the corresponding terms in the stronger space Z1; Proposition 3.2 then allows us to gain
a factor T θ which provides the required smallness.

(1) The term IQ(v+, . . . , v+). This is a single term, we will name it

z11 = IQ(v+, . . . , v+). (6.3)
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(2) The term ϕT · I(CH + CS)(v+, v+, v+). Here decomposing v+ by (6.1), we can
obtain the following terms

z21 = I(CH + CS)(w+, w+, w+),

z22 = I(CH + CS)(ϕT · EY
N (w+, w+, v+), v+, v+),

z23 = I(CH + CS)(ϕT · EY
L (w+, v+, v+), v+, v+),

z24 = I(CH + CS)(w+, ϕT · EY
N (w+, w+, v+), v+),

z25 = I(CH + CS)(w+, ϕT · EY
L (w+, v+, v+), v+),

z26 = I(CH + CS)(w+, w+, ϕT · EY
N (w+, w+, v+)),

z27 = I(CH + CS)(w+, w+, ϕT · EY
L (w+, v+, v+)).

(6.4)

Here z21 is a cubic expression, and the others are quintic expressions.
(3) The term I(CN (v+, v+, v+) − CN (w+, w+, v+)). Similar to (2), we can obtain the

terms

z31 = I(CN (ϕT · EY
N (w+, w+, v+), v+, v+),

z32 = I(CN (ϕT · EY
L (w+, v+, v+), v+, v+),

z33 = I(CN (w+, ϕT · EY
N (w+, w+, v+), v+),

z34 = I(CN (w+, ϕT · EY
L (w+, v+, v+), v+).

(6.5)

They are all quintic expressions.
(4) The term I(CL(v+, v+, v+) − CL(w+, v+, v+)). In the samewaywe get two terms

z41 = ϕT · I(CL(EY
N (w+, w+, v+), v+, v+),

z42 = I(CL(ϕT · EY
L (w+, v+, v+), v+, v+).

(6.6)

They are both quintic expressions.
(5) The term E X

N (w+, w+, v+) + E X
L (w+, v+, v+).This term requires a littlemore care.

Let ∗ ∈ {N , L}, recall that from Proposition 4.1 and Remark 4.2, we have

X E X,+∗ (v1, v2, v3)(k, λ) =
∑

X∗
k1M3(k, k1, k2, k3)

∫

R

K X,+
� (λ, σ ) dσ

∫

λ2+λ3−λ1=σ−�

ṽ1(k1, λ1)ṽ2(k2, λ2)ṽ3(k3, λ3). (6.7)

We may further decompose this expression into

E X,+∗ = E X,1∗ + E X,2∗ + E X,3∗ , (6.8)

where in E X, j∗ we make the restriction

|λ j | = max
1≤�≤3

|λ�|, |λ j | � |σ − �|. (6.9)
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Now if ∗ = N and j = 3, or ∗ = L and j ∈ {2, 3}, we will make decompose the v+

corresponding to frequency λ j using (6.1). This gives the following terms

z51 = (E X,0
N + E X,1

N + E X,2
N )(w+, w+, v+),

z52 = E X,3
N (w+, w+, w+),

z53 = E X,3
N (w+, w+, ϕT · EY

N (w+, w+, v+)),

z54 = E X,3
N (w+, w+, ϕT · EY

L (w+, v+, v+)),

z55 = (E X,0
L + E X,1

L )(w+, v+, v+),

z56 = E X,2
L (w+, w+, v+),

z57 = E X,2
L (w+, ϕT · EY

N (w+, w+, v+), v+),

z58 = E X,2
L (w+, ϕT · EY

L (w+, v+, v+), v+),

z59 = E X,3
L (w+, v+, w+),

z5A = E X,3
L (w+, v+, ϕT · EY

N (w+, w+, v+)),

z5B = E X,3
L (w+, v+, ϕT · EY

L (w+, v+, v+)).

(6.10)

Some of these are cubic expressions, and some of them are quintic.
(6) An operation on quintic terms. Each of the above z j�’s is amultilinear expression,

either cubic or quintic; we will always list its input functions from left to right. Consider
now a general quintic term. Let k and k j , where 1 ≤ j ≤ 5, be the (space) frequencies
of the output and input functions, then it will involve a summation

∑

±k1···±k5=k

(expression).

As with Lemma 3.4, we say a pairing (i, j) happens, if ki = k j and the signs of ki and
k j in the expression ±k1 · · · ± k5 are opposite.

For each tuple (k j ), we will choose an index i ∈ {1, · · · , 5} as follows: if there is no
pairing, then let i ∈ {1, · · · , 5} be such that |ki | is the maximum; if there is a pairing,
say (1, 2), and there is no pairing in {3, 4, 5}, then let i ∈ {3, 4, 5} be such that |ki | is
the maximum; if there is a pairing in {3, 4, 5}, say (3, 4), then let i = 5. It is clear that
we always have |ki | � |k|.

This procedure then decomposes this quintic term into five parts; once an i is fixed,
and if the input function corresponding to this i in this quintic term happens to be v+

(instead of w+), we will decompose this v+ using (6.1), so that this quintic term is
decomposed into a quintic and two septic terms.

(7) Summary. Nowwe have decomposed z into a superposition of multilinear expres-
sions z j� (including those coming from step (6) above), either cubic or quintic or septic,
with input functions being either w+ or v+. Moreover, if we consider two different w

and w′, then we may choose extensions w+ and (w′)+ such that

‖(w′)+ − w+‖
X

1
2 ,1
p,q

≤ 2‖w′ − w‖
X

1
2 ,1
p,q (J )

.

Let v+ and (v′)+ be defined from w+ and (w′)+ by (6.1), then we also have

‖(v′)+ − v+‖
Y

1
2
p

� ‖(w′)+ − w+‖
X

1
2 ,1
p,q

� ‖w′ − w‖
X

1
2 ,1
p,q (J )

.
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Then z and z′, which are defined by (6.2) usingw andw′, satisfy that z−z′ is an extension
of the difference of the right hand sides of (4.16) corresponding to w and w′. Therefore,
in order to prove Proposition 4.6, it will suffice to prove the following result.

Proposition 6.1. All these terms z j�, including those coming from step (6) above, satisfy
the multilinear estimates

‖z j�(v1, . . . , vr )‖Z1 � ‖v1‖ · · · ‖vr‖,
where r ∈ {3, 5, 7}, and for each i , vi is measured in the Z0 norm if the corresponding
input function in z j� isw+, and in the Y0 norm if the input is v+. For example the estimate
for z42 will be

‖z42(v1, . . . , v5)‖Z1 � ‖v1‖Z0

5
∏

j=2

‖v j‖Y0 .

Remark 6.2. We make a further remark about the operation in step (6) above. For some
quintic terms z j� this operation is necessary; for others it is not. However, even in the
latter case, performing this operation will not affect the proof: if z j� itself satisfies a
multilinear estimate where this input function v+ is measured in the Y0 norm, then by
Propositions 3.2 and 5.1, after decomposing this v+ using (6.1), the resulting quintic and
septic terms will also satisfy the right multilinear estimate. For example, we will see
below that

‖z26(v1, . . . , v5)‖Z1 �
4
∏

j=1

‖v j‖Z0 · ‖v5‖Y0 .

Then, even after performing this operation (with the chosen index i = 5) we still have

‖z26(v1, . . . , v5)‖Z1 �
4
∏

j=1

‖v j‖Z0 · ‖v5‖Y0 ,

‖z26(v1, . . . , v4, ϕT · EY
N (v5, v6, v7))‖Z1 �

6
∏

j=1

‖v j‖Z0 · ‖v7‖Y0 ,

‖z26(v1, . . . , v4, ϕT · EY
N (v5, v6, v7))‖Z1 �

5
∏

j=1

‖v j‖Z0 · ‖v6‖Y0‖v7‖Y0 .

The following subsections are devoted to the proof of Proposition 6.1.

6.2. Cubic terms. In this subsection we treat the cubic terms, which are z21 and the
cubic z5∗ terms. First we deal with the z21 term in the following proposition.

Proposition 6.3. Let z21 be defined as in (6.4). We have the following bound

‖z21(v1, v2, v3)‖Z1 �
3
∏

j=1

‖v j‖Z0 . (6.11)
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Proof. Let ∗ ∈ {H, S}, we need to show the following bound

‖IC∗(v1, v2, v3)‖Z1 �
3
∏

j=1

‖v j‖Z0 . (6.12)

We may assume the norms on the right hand side are all equal to 1. Recall from (3.9)
and (3.10) that for any B > 0,

|˜IC∗(v1, v2, v3)(k, λ)|

�
∑

X∗
|k1|

∫

λ2+λ3−λ1=σ−�

(

1

〈λ〉B +
1

〈λ − σ 〉B
)

1

〈σ 〉
3
∏

j=1

|ṽ j (k j , λ j )|, (6.13)

where � = 2(k − k2)(k − k3) as before.
It will suffice to prove that
∥

∥

∥

∥

∥

∥

〈k〉 1
2 〈λ〉b1

∑

X∗
|k1|

∫

λ2+λ3−λ1=σ−�

1

〈λ〉 〈λ − σ 〉
3
∏

j=1

|ṽ j (k j , λ j )|
∥

∥

∥

∥

∥

∥

�
p0
k L

q0
λ

� 1

(6.14)

by the definition of the Y1 norm (3.4) and the following inequality
(

1

〈λ〉B +
1

〈λ − σ 〉B
)

1

〈σ 〉 � 1

〈λ〉〈λ − σ 〉 (6.15)

for B large enough.
Recall that b0 = 1−2δ and 1/q0 = 4δ and hence similarly to the proof of Proposition

5.1 we have for j ∈ {1, 2, 3},

‖〈k j 〉 1
2 〈λ j 〉δṽ j‖L1

λ�
p0
k

� ‖〈k j 〉 1
2 〈λ j 〉b0 ṽ j‖Lq0

λ �
p0
k

� ‖〈k j 〉 1
2 〈λ j 〉b0 ṽ j‖�

p0
k L

q0
λ

� 1

by Hölder and Minkowski. We may then fix (λ1, λ2, λ3) which we eventually integrate
over, and denoting

|ṽ j (k j , λ j )| = 〈k j 〉− 1
2 〈λ j 〉−δ f j (k j ) (1 ≤ j ≤ 3),

it will suffice to prove that for any fixed μ(= λ2 + λ3 − λ1) ∈ R,
∥

∥

∥

∥

∥

∥

〈k〉 1
2

〈λ〉δ
∑

X∗

|k1|
〈k1〉 1

2 〈k2〉 1
2 〈k3〉 1

2

1

〈λ − � − μ〉〈λ1〉δ〈λ2〉δ〈λ3〉δ
3
∏

j=1

| f j |
∥

∥

∥

∥

∥

∥

�
p0
k L

q0
λ

� 1.

(6.16)

Then applying the inequality (2.10), we see that it will suffice to prove
∥

∥

∥

∥

∥

∥

1

〈λ〉δ
∑

X∗

1

〈λ − � − μ〉〈λ1〉δ〈λ2〉δ〈λ3〉δ
3
∏

j=1

| f j |
∥

∥

∥

∥

∥

∥

�
p0
k L

q0
λ

� 1. (6.17)
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In the above summation over (k1, k2, k3) ∈ X∗, we again first fix � and sum over
(k1, k2, k3) ∈ X∗ corresponding to this fixed �. Using the fact that

(〈λ1〉〈λ3〉〈λ3〉〈λ〉〈λ − � − μ〉)δ � 〈�〉δ (6.18)

and the divisor bound16 in Lemma 3.4, we can bound the left hand side of (6.17) by
∥

∥

∥

∥

∥

∑

�

1

〈λ − � − μ〉1−δ〈�〉δ F(k,�)

∥

∥

∥

∥

∥

�
p0
k L

q0
λ

(6.19)

where

F(k,�) =
∑

(k1,k2,k3)∈X∗
2(k−k2)(k−k3)=�

3
∏

j=1

| f j | � 〈�〉θ
⎛

⎜

⎜

⎝

∑

(k1,k2,k3)∈X∗
2(k−k2)(k−k3)=�

3
∏

j=1

| f j |p0
⎞

⎟

⎟

⎠

1
p0

. (6.20)

By choosing p0 such that δ < 1
5p0

and θ < δ, and using Schur’s estimate we can bound

∥

∥

∥

∥

∥

∑

�

1

〈λ − � − μ〉1−δ〈�〉δ F(k,�)

∥

∥

∥

∥

∥

L
q0
λ

�
∥

∥

∥

∥

F(k,�)

〈�〉δ
∥

∥

∥

∥

�
p0
�

. (6.21)

Then we sum over k to obtain that
∥

∥

∥

∥

∥

∑

�

1

〈λ − � − μ〉1−δ〈�〉δ F(k,�)

∥

∥

∥

∥

∥

�
p0
k L

q0
λ

�
3
∏

j=1

‖ f j‖�
p0
k

(6.22)

by (6.20) and (6.21). Finally we integrate (6.22) over (λ1, λ2, λ3) to conclude this proof.
��

Next let us consider the cubic z5∗ terms (i.e. z51, z52, z55, z56 and z59). The following
proposition gives the desired bounds for z51, z52, z55, z56 and z59 in Proposition 6.1.

Proposition 6.4. For ∗ ∈ {N , L}, j ∈ {0, 1, 2, 3} and E X, j∗ defined in (4.6) and (6.8)–
(6.9), we have the following bounds.

(1) If j = 0, we obtain that
∥

∥

∥E X,0∗ (v1, v2, v3)

∥

∥

∥

Z1
� ‖v1‖Z0‖v2‖Y0‖v3‖Y0 . (6.23)

(2) If j = 1, we obtain that
∥

∥

∥E X,1∗ (v1, v2, v3)

∥

∥

∥

Z1
� ‖v1‖Z0‖v2‖Y0‖v3‖Y0 . (6.24)

(3) If j ∈ {2, 3} and i ∈ {2, 3} − { j}, we obtain that
∥

∥

∥E X, j∗ (v1, v2, v3)

∥

∥

∥

Z1
� ‖v1‖Z0‖v j‖Z0‖vi‖Y0 . (6.25)

16 The divisor bound applies when � �= 0; however when � = 0 we must have k = k1 = k2 = k3 by the
definition of V3, so the bound is still true.
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Proof. Recall from (4.6) that

|˜E X,0∗ (v1, v2, v3)(k, λ)| �
∑

X∗
|k1|

∫

λ2+λ3−λ1=σ−�

|K X,0
� (λ, σ )|

3
∏

j=1

|ṽ j (k j , λ j )|,

(6.26)

and for j ∈ {1, 2, 3}

|˜E X, j∗ (v1, v2, v3)(k, λ)| �
∑

X∗
|k1|

∫

λ2+λ3−λ1=σ−�
|λ j |=max1≤�≤3 |λ�|

|K X,+
� (λ, σ )|

3
∏

j=1

|ṽ j (k j , λ j )|,

(6.27)

where � = 2(k − k2)(k − k3) as before.
(1) Let us consider the case when j = 0 and ∗ ∈ {N , L}, and then left hand side of

the bound (6.23) can be bounded by

∥

∥

∥

∥

∥

∥

〈k〉 1
2 〈λ〉b1

∑

X∗
|k1|

∫

λ2+λ3−λ1=σ−�

|K X,0
� (λ, σ )|

3
∏

j=1

|ṽ j (k j , λ j )|
∥

∥

∥

∥

∥

∥

�
p0
k L

q0
λ

. (6.28)

Recall (4.12) whence it will suffice to prove that

∥

∥

∥

∥

∥

∥

〈k〉 1
2 〈λ〉b1

∑

X∗
|k1|

∫

λ1,λ2,λ3

1

〈λ〉1+4δ〈�〉1−4δ

3
∏

j=1

|ṽ j (k j , λ j )|
∥

∥

∥

∥

∥

∥

�
p0
k L

q0
λ

� ‖v1‖Z0‖v2‖Y0‖v3‖Y0 . (6.29)

To prove (6.29), we first use Minkowski’s inequality and integrate over λ to bound the
left hand side of (6.29) by

∥

∥

∥

∥

∥

∥

〈k〉 1
2
∑

X∗
|k1|

∫

λ1,λ2,λ3

1

〈�〉1−4δ

3
∏

j=1

|ṽ j (k j , λ j )|
∥

∥

∥

∥

∥

∥

�
p0
k

. (6.30)

Next, we may fix (λ1, λ2, λ3) which we eventually integrate over. In the summation in
(6.30) over (k1, k2, k3) ∈ X∗, we may first fix � and sum over (k1, k2, k3) ∈ X∗ that
correspond to this fixed �. Moreover, as before we may restrict to the dyadic region
〈k3〉 ∼ N2 and 〈k2〉 ∼ N3 (so N2 � N3), where N2 and N3 are dyadic numbers. Hence
we are reduced to bound

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

〈k〉 1
2
∑

�

|k1| 1

〈�〉1−4δ

∑

(k1,k2,k3)∈X∗
(k−k2)(k−k3)=�
|k2|∼N2,|k3|∼N3

3
∏

j=1

|ṽ j (k j , λ j )|

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

�
p0
k

(6.31)
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where 〈�〉 ∼ 〈k〉〈k1〉 and N2 ∼ |k2| � max(|k|, |k1|) (by Proposition 2.3). By the
divisor bound in Lemma 3.4 and Hölder’s inequality as in the proof of Proposition 5.1
we obtain that

(6.31) �
‖〈k1〉 1

2 ṽ1‖�
p0
k

‖〈k2〉
1

2p0 ṽ2‖�
r2
k

‖〈k3〉
1

2p0 ṽ3‖�
r2
k

N
1

2p0
−2δ−θ

2 N
1

2p0
3

, (6.32)

where r2 is defined in (1.16). Then we may integrate over λ1 λ2 and λ3 and sum over
(N2, N3). By using the negative power of N2 (suppose δ < 1/(4p0)) and the following
facts (similarly as before):

‖〈k1〉 1
2 ṽ1‖L1

λ�
p0
k

� ‖v1‖Z0 , ‖〈k2〉
1

2p0 ṽ2‖L1
λ�

r2
k

� ‖v2‖Y0 ,
‖〈k3〉

1
2p0 ṽ3‖L1

λ�
r2
k

� ‖v3‖Y0 , (6.33)

we conclude the proof of (6.23).
Before proving parts (2) and (3), let us prove an easier bound for |K X,+

� |. Suppose
|λ j | = max1≤�≤3 and |λ j | � |σ − �|. Recall that b0 = 1− 2δ and b1 = 1− δ, then we
obtain that

〈λ〉b1
〈λ j 〉b0−δ

|K X,+
� | � 1

〈�〉1−6δ〈σ − λ〉 . (6.34)

We may then fix the other two λ� (� �= j) and �, and integrate over λ j and λ to obtain
the following bound:
∥

∥

∥

∥

∥

∫

λ j

1

〈λ1 + λ − λ2 − λ3 − �〉
(

〈λ j 〉b1 ṽ j (k j , λ j )
)

∥

∥

∥

∥

∥

L
q0
λ

�
∥

∥

∥〈λ j 〉b0−δṽ j (k j , λ j )

∥

∥

∥

L
q1
λ j

(6.35)

by Schur’s estimate. For |λ j | = max�∈{1,2,3} |λ�|, to prove the parts (2) and (3), it will
suffice to consider the norm
∥

∥

∥

∥

∥

∥

〈k〉 1
2
∑

X∗
|k1| 1

〈�〉1−6δ

∥

∥

∥〈λ j 〉b0−δṽ j (k j , λ j )

∥

∥

∥

L
q1
λ j

∏

�∈{1,2,3}−{ j}
‖ṽ�(k�, λ�)‖L1

λ�

∥

∥

∥

∥

∥

∥

�
p0
k

(6.36)

by (6.34) and (6.35).
(2) Let us consider the case when j = 1. By (6.36), it will suffice to bound

∥

∥

∥

∥

∥

∥

〈k〉 1
2
∑

X∗

〈k1〉 1
2

〈k2〉
1

2p0 〈k3〉
1

2p0

1

〈�〉1−6δ

3
∏

�=1

| f�(k�)|
∥

∥

∥

∥

∥

∥

�
p0
k

, (6.37)

where f1(k1) = 〈k1〉 1
2 ‖〈λ1〉b0−δṽ1‖Lq1

λ
and f�(k�) = 〈k�〉

1
2p0 ‖ṽ�‖L1

λ
for � = 2, 3.

Similarly to the proof of Proposition 5.1, we also have the bounds:

‖ f1‖�
p0
k

� ‖v1‖Z0 , ‖ f�‖�
r2
k

� ‖v�‖Y0
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for � = 2, 3. We may use dyadic decomposition on (k2, k3) and sum over (k1, k2, k3) ∈
X∗ for fixed� and then sum over� and k. Following the same proof as in the part (1), the
negative power of N2 help us bound (6.37) by ‖v1‖Z0‖v2‖Y0‖v3‖Y0 , when δ < 1/(6p0).
This finishes the proof of (6.24).

(3) Let us consider the case when j ∈ {2, 3} and denote by i the other number in
{2, 3}. Just as we did above, it will suffice to bound

∥

∥

∥

∥

∥

∥

〈k〉 1
2
∑

X∗

〈k1〉 1
2

〈k2〉
1

2p0 〈k3〉
1

2p0

1

〈�〉1−6δ

3
∏

�=1

| f�(k�)|
∥

∥

∥

∥

∥

∥

�
p0
k

, (6.38)

where f1(k1) = 〈k1〉 1
2 ‖ṽ1‖L1

λ
, f j (k j ) = 〈k j 〉

1
2p0 ‖〈λ j 〉b0−δṽ j‖Lq1

λ
and fi (ki ) = 〈ki 〉

1
2p0

‖ṽi‖L1
λ
. Similarly to the proof of Proposition 5.1, we also have the bounds:

‖ f�‖�
p0
k

� ‖v�‖Z0 , ‖ fi‖�
r2
k

� ‖vi‖Y0

for � = 1, j . Following the same proof of the part (2), (6.38) can be bounded by
‖v1‖Z0‖v j‖Z0‖vi‖Y0 when δ < 1/(6p0). This finishes the proof of (6.25). ��

6.3. The canonical quintic term. The majority of z j� are quintic terms; in fact the ma-
jority of them can be treated in the same way, using the following estimate.

Proposition 6.5. Consider a quintic expression R that satisfies

|X R(v1, · · · , v5)(k, λ)|

�
∑

±k1±···±k5=k

∫

R

dσ

〈λ〉1−θ 〈λ − σ 〉1−θ

∫

±λ1±λ2±···±λ5=σ−�

5
∏

j=1

|ṽ j (k j , λ j )|,

(6.39)

where � := k2 ∓ k21 ∓ · · · ∓ k25 (the signs are arbitrary, but the signs of ±k j and ∓k2j
are always opposite). Then after the operation in Sect. 6.1, step (6), the resulting terms
satisfy the corresponding multilinear estimates. In particular, suppose the chosen index
during this operation is i = 1, then we have

‖R(v1, . . . , v5)‖Z1 � ‖v1‖Z0

5
∏

j=2

‖v j‖Y0 , (6.40)

‖R(ϕT · EY
N (v1, v2, v3), v4, . . . , v7)‖Z1 � ‖v1‖Z0‖v2‖Z0

7
∏

j=3

‖v j‖Y0 , (6.41)

‖R(ϕT · EY
L (v1, v2, v3), v4, . . . , v7)‖Z1 � ‖v1‖Z0

7
∏

j=2

‖v j‖Y0 . (6.42)
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Proof. (1) We first prove (6.40). Assume all the norms on the right hand side are 1. By
a dyadic decomposition, we may restrict to the region where 〈k j 〉 ∼ N j for 2 ≤ j ≤ 5;
by symmetry we may assume N2 ≥ · · · ≥ N5. As in the proof of Proposition 5.1 we
have

‖〈k1〉 1
2 ṽ1‖L1

λ�
p0
k

� 1

and

‖〈k j 〉(1−
√

δ)/p0 ṽ j‖L1
λ�2k

� ‖〈k j 〉(1−
√

δ)/p0 ṽ j‖L1
λ�

r2
k

� 1

for 2 ≤ j ≤ 5. We may then again fix λ j for 1 ≤ j ≤ 5, which we eventually integrate
over, and assume

f1(k1) = 〈k1〉 1
2 |ṽ1(k1, λ1)|, f j (k j ) = N (1−√

δ)/p0
j |ṽ j (k j , λ j )| (2 ≤ j ≤ 5),

such that (after a further normalization)

‖ f1‖�
p0
k

≤ 1, ‖ f j‖�2k
� 1 (2 ≤ j ≤ 5). (6.43)

Using also that 〈k〉 � 〈k1〉, it then suffices to prove that

∥

∥

∥

∥

〈λ〉b1
∑

±k1±···±k5=k

∫

R

1

〈λ〉1−θ 〈λ − � − μ〉1−θ

5
∏

j=1

f j (k j )

∥

∥

∥

∥

�
p0
k L

q0
λ

� N−θ
2 (N2N3N4N5)

(1−√
δ)/p0 (6.44)

for any fixed μ (which is a linear combination of λ j for 1 ≤ j ≤ 5). Using the fact that
b1 < 1 − θ and Schur’s estimate, we can bound for fixed k,

∥

∥

∥

∥

〈λ〉b1
∑

±k1±···±k5=k

∫

R

1

〈λ〉1−θ 〈λ − � − μ〉1−θ

5
∏

j=1

f j (k j )

∥

∥

∥

∥

L
q0
λ

� ‖F(k, �)‖
�
q1
�

,

where

F(k, �) =
∑

±k1···±k5=k
±k21 ···±k25=�−k2

5
∏

j=1

f j (k j ).

As � is determined by (k2, k3, k4, k5) and hence the number of different �’s does not

exceed O(N 4
2 ), we can bound the �

q1
� norm of F(k, �) by N

4
q1
2 times its �∞

� norm.

(a) Assume N3 ≥ N 4
√

δ
2 . For fixed k and �, by assumption we know that either there

is no pairing,17 or there is a pairing, say (2, 3), and there is no pairing in {1, 4, 5}, or there
are two pairings, say (2, 3) and (4, 5). In the first case, for fixed (k2, k3) (or (k4, k5)),
the number of choices for (k1, k4, k5) (or (k1, k2, k3)) is at most O(N θ

2 ) by Lemma 3.4,
so using (6.43) we have that

17 Here we mean pairings as defined in Lemma 3.4.



1094 Y. Deng, A. R. Nahmod, and H. Yue

F(k, �) �
∑

k2,k3

∑

k1,k4,k5

f1(k1) f2(k2)
2 f3(k3)

2

+
∑

k4,k5

∑

k1,k2,k3

f1(k1) f4(k4)
2 f5(k5)

2 � N θ
2 sup

|k1−k|�N2

f1(k1).

In the other two cases this estimate can be similarly established. This gives

‖F(k, �)‖�∞
�

� N θ
2

(

∑

|k1−k|�N2

| f1(k1)|p0
) 1

p0
,

and hence the left hand side of (6.44) is bounded by

N
θ+ 4

q1
2

∥

∥

∥

∥

(

∑

|k1−k|�N2

| f1(k1)|p0
) 1

p0
∥

∥

∥

∥

�
p0
k

� N
θ+ 4

q1
+ 1

p0
2

using (6.43). As N3 ≥ N 4
√

δ
2 , 4/q1 = O(δ), δ is small enough depending on p0 and θ

is small enough depending on δ, this implies (6.44).

(b) Assume N3 ≤ N 4
√

δ
2 . Then in estimating F(k, �), we may fix the choices of

(k3, k4, k5) and eventually sum over them. In this process we lost at most NO(
√

δ)
2 . Then,

with (k3, k4, k5) fixed, we know that (k1, k2) is uniquely determined by k and �, since
by assumption (1, 2) cannot be a pairing. Thus, with (k3, k4, k5) fixed, we have

|F(k, �)| � sup
k2

f1(k − � − k2) f2(k2),

where � is a linear combination of (k3, k4, k5). As
∥

∥ sup
k2

f1(k − � − k2) f2(k2)
∥

∥

�
p0
k

�
∥

∥

∥

∥

(

∑

k2

f1(k − � − k2)
p0 f2(k2)

p0

) 1
p0
∥

∥

∥

∥

�
p0
k

= ‖ f1‖�
p0
k

‖ f2‖�
p0
k

and ‖ f2‖�
p0
k

� ‖ f2‖�2k
� 1, this bounds the left hand side of (6.44) by N

4
q1

+O(
√

δ)

2 ,
which also suffices as δ is small enough depending on p0.

(2) Next we will prove (6.41) and (6.42). By (6.39) and (4.6)-(4.7), we can write
(where ∗ ∈ {N , L})

|˜R(k, λ)| �
∑

±k′±k4±···±k7=k

∫

R

dσ

〈λ〉1−θ 〈λ − σ 〉1−θ

∫

±λ′±λ4±···±λ7=σ−�

7
∏

j=4

|ṽ j (k j , λ j )|
∑

k2+k3−k1=k′
(k1,k2,k3)∈X∗

|k1|
∫

R

T ϕ̂(T (λ′ − μ′)) dμ′

∫

R

min

(

1

〈�′〉 ,
1

〈μ′〉
)

dσ ′

〈μ′ − σ ′〉
∫

λ2+λ3−λ1=σ ′−�′

3
∏

j=1

|ṽ j (k j , λ j )|. (6.45)
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Here� = k2∓ (k′)2∓k24 ∓· · ·∓k27, and�′ = (k′)2 +k21 −k22 −k23. This can be reduced
to

∑

±k1±···±k7=k

|k1|
|�′|

∫

R

R(λ, τ ) dτ
∫

±λ1±···±λ7=τ−�′

7
∏

j=1

|ṽ j (k j , λ j )|, (6.46)

where �′ = k2 ∓ k21 ∓ · · · ∓ k27, and the kernel

|R(λ, τ )| �
∫

R

dσ

〈λ〉1−θ 〈λ − σ 〉1−θ

∫

R

T ϕ̂(T (ξ − σ))
dξ

〈τ − ξ 〉 .

Here we can verify that λ′ −σ ′ = τ −σ , and ξ is the variable such that ξ −σ = λ′ −μ′
and τ − ξ = μ′ − σ ′. Using the fact that |T ϕ̂(T ξ)| � 〈ξ 〉−1, we can easily bound the
above by

|R(λ, τ )| � 1

〈λ〉1−θ 〈λ − τ 〉1−2θ .

We may then restrict to the dyadic region 〈k〉 ∼ N0, 〈k′〉 ∼ N ′ and 〈k j 〉 ∼ N j for
1 ≤ j ≤ 7. Let N+ be the maximum of all the N j ’s. Then we have N ′ � N0, and
|�′| ∼ N ′N1.

(a) Assume N1 � N ′, we will then measure v2 in the Y0 norm. By repeating the
above proof and fixing λ j for 1 ≤ j ≤ 7, we may reduce to proving

‖F(k, �′)‖
�
p0
k �∞

�′ � N
− 1

2
0 N ′N

1
2
1 · (N2 · · · N7)

(1−√
δ)/p0−(1/q1)(N+)−θ , (6.47)

where

F(k, �′) =
∑

±k1±···±k7=k
±k21±···±k27=k2−�′

7
∏

j=1

f j (k j ), (6.48)

and

‖ f1‖�
p0
k

≤ 1, ‖ f j‖�2k
≤ 1 (2 ≤ j ≤ 7). (6.49)

First assumemax(N2, . . . , N7) ≥ (N+)
√

δ , then with fixed k, k1 and�, by using Lemma
3.4 and similar arguments as in the above proof, we can easily show that (whether or not
there is any pairing in {2, 3, . . . , 7})

∑

±k2±···±k7=const.
±k22±···±k27=const.

7
∏

j=2

f j (k j ) � max(N2, . . . , N7)
θ

7
∏

j=2

‖ f j‖�2k
, (6.50)

therefore

|F(k, �′)| � max(N2, . . . , N7)
θ
∑

k1

f1(k1) � max(N2, . . . , N7)
θ N

1−( 1
p0

)

1
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pointwise in (k, �′), thus

‖F(k, �′)‖
�
p0
k �∞

�′ � N
1
p0
0 N

1−( 1
p0

)

1 .

Using the fact that N ′ � max(N0, N1) and max(N2, . . . , N7) ≥ (N+)
√

δ , this easily

implies (6.47). Next assume max(N2, . . . , N7) ≤ (N+)
√

δ , then N+ ∼ N ′, and by fixing
(k2, . . . , k7) we easily deduce that |F(k, �′)| � (N ′)O(

√
δ), from which (6.47) follows

trivially.
(b) Assume N1 � N ′, then we must have ∗ = N and N1 ∼ N2 � N ′ � N0. In

particular v2 will be measured in the Z0 norm, so we may reduce to proving

‖F(k, �′)‖
�
p0
k �∞

�′ � N
− 1

2
0 N ′N1 · (N3 · · · N7)

(1−√
δ)/p0(N+)

−θ− 6
q1 , (6.51)

where F(k, �′) is as (6.48), and

‖ f1‖�
p0
k

≤ 1, ‖ f2‖�
p0
k

≤ 1, ‖ f j‖�2k
≤ 1 (3 ≤ j ≤ 7). (6.52)

Here we argue in the same way as case (1), using (6.50), but make the additional obser-
vation that for fixed k1 we must have |k2 − k1| ∼ N ′. Therefore

∑

±k2±···±k7=const.
±k22±···±k27=const.

7
∏

j=2

f j (k j ) � (N+)θ
7
∏

j=3

‖ f j‖�2k
· ‖ f2 · 1|k2−k1|∼N ′ ‖�2k

� (N+)θ (N ′)
1
2− 1

p0 ,

and hence

‖F(k, �′)‖
�
p0
k �∞

�′ � N
1
p0
0 N

1−( 1
p0

)

1 (N ′)
1
2− 1

p0 (N+)θ .

Using the fact that N0 � N ′, this implies (6.51). ��
Remark 6.6. From the proof above we actually deduce something slightly stronger: the
bounds (6.40)–(6.42) remain true if the right hand side of (6.39) gets multiplied by 〈k+〉θ
where |k+| is the maximum of all relevant frequencies, unless 〈k〉 ∼ 〈k1〉 � N 100

2 . This
fact will be used in the analysis of the z5∗ terms of Sect. 6.4.

To apply Proposition 6.5, we will verify that z11, z2� (2 ≤ � ≤ 5), z3� (1 ≤ � ≤ 4)
and z4� (1 ≤ � ≤ 2) all have the form (6.39). The claim for z11 follows from (3.9).
For the other terms, let us look at z22 as an example. By (3.9) and (4.6) we have, for
z22 = z22(v1, · · · , v5), that

|z̃22(k, λ)| �B

∑

k4+k5−k′=k
(k′,k4,k5)∈XH∪XS

|k′|

∫

R

(

1

〈λ〉B +
1

〈λ − τ 〉B
)

dτ

〈τ 〉
∫

λ4+λ5−λ′=τ−�

|ṽ4(k4, λ4)||ṽ5(k5, λ5)|
∑

k2+k3−k1=k′
(k1,k2,k3)∈XN

|k1|
∫

R

T ϕ̂(T (λ′ − μ′)) dμ′
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∫

R

min

(

1

〈�′〉 ,
1

〈μ〉
)

1

〈μ′ − σ ′〉 dσ
′
∫

λ2+λ3−λ1=σ ′−�′

3
∏

j=1

|ṽ j (k j , λ j )|, (6.53)

where� = k2 + (k′)2 −k24 −k25 and�′ = (k′)2 +k21 −k22 −k23. Note that |�′| ∼ 〈k〉〈k1〉,
the above can be written as

∑

k1−k2−k3+k4+k5=k

∫

R

R(λ, σ ) dσ
∫

λ1−λ2−λ3+λ4+λ5=σ−�

5
∏

j=1

|ṽ j (k j , λ j )|,

where � = � − �′ = k2 − k21 + k32 + k23 − k24 − k25, and

|R(λ, σ )| �
∫

R

(

1

〈λ〉B +
1

〈λ − τ 〉B
)

dτ

〈τ 〉
∫

R

T ϕ̂(T (σ − ξ))
dξ

〈ξ − τ 〉 .

Here we can verify that λ′ −σ ′ = σ − τ , and ξ is the variable such that σ − ξ = λ′ −μ′
and ξ − τ = μ′ −σ ′. The above integral can easily be bounded by 〈λ〉−1+θ 〈λ−σ 〉−1+θ ,
so Proposition 6.5 can be applied.

The other z2�, z3� and z4� terms can be treated in the same way; in fact the kernel
R(λ, σ ) will have exactly the same form, the only difference is that the weight

|k| · |k1|
|�′|

will be replaced by different weights depending on which input function gets substituted
by EY , and whichX∗ subset we are in. For the terms z22, z23, z31, z32, z41 and z42 one can
directly check that thisweight is� 1; for the terms z24, z25, z33 and z34, this weight is� 1
as it follows from Proposition 2.3 that |k2| � |k1| when (k1, k2, k3) ∈ XH ∪ XS ∪ XN .
Thus Proposition 6.1 has been proved for these terms.

6.4. Remaining quintic terms. The remaining quintic terms, namely z26, z27 and quintic
z5∗ terms, may not have the canonical form (6.39). In fact these terms will be estimated
directly without preforming the operation in step (6) of Sect. 6.1, see Remark 6.2. For
them we need two extra estimates, which we state in the following two propositions.

Proposition 6.7. Suppose a quintic termR satisfies

|˜R(k, λ)| �
∑

±k1±···±k5=k

α(k, k1, · · · , k5)
∫

R

dσ

〈λ〉1−θ 〈λ − σ 〉1−θ

∫

±λ1±···±λ5=σ−�

5
∏

j=1

|ṽ j (k j , λ j )|, (6.54)

where as usual � = k2 ∓ k21 ∓ · · · ∓ k25 . Then we have the following (below |k+| will
denote the maximum of all relevant frequencies):

(1) Assume |k1|/2 ≤ |k2| ≤ 2|k1|, |k1| ≥ 25|k3|, |k3| ∼ max(|k3|, |k4|, |k5|) and

|α| � 〈k+〉θ 〈k1〉
max(〈k3〉, 〈k4〉, 〈k5〉, 〈k〉) , (6.55)
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moreover assume (1, 2) is not a pairing. Then we have that

‖R‖Z1 � ‖v1‖Z0‖v2‖Z0‖v3‖Z0 · ‖v4‖Y0‖v5‖Y0; (6.56)

(2) Assume |k1|/2 ≤ |k2| ≤ 2|k1|, |k3|/2 ≤ |k4| ≤ 2|k3|, |k1| ≥ 25 max(|k5|, |k|)
and

|α| � 〈k+〉θ 〈k1〉
max(〈k5〉, 〈k〉) . (6.57)

Moreover assume (1, 2) is not a pairing, and that, either |k| �= |k5|, or the stronger
bound

|α| � 〈k+〉θ 〈k1〉
max(〈k5〉, 〈k〉, 〈±k1 ± k2〉) (6.58)

holds. Then we have

‖R‖Z1 � ‖v1‖Z0‖v2‖Z0‖v3‖Z0‖v4‖Z0 · ‖v5‖Y0 . (6.59)

Proof. We may restrict to the region where 〈k j 〉 ∼ N j , where 1 ≤ j ≤ 5, and 〈k〉 ∼ N0
and 〈k+〉 ∼ N+.

(1) By the same arguments as in the proof of Propositions 5.1 and 6.5, we may fix
λ j (1 ≤ j ≤ 5) and reduce to estimating

∥

∥

∥

∥

〈λ〉b1
∑

±k1±···±k5=k

∫

R

dμ

〈λ〉1−θ 〈λ − � − μ〉1−θ

5
∏

j=1

f j (k j )

∥

∥

∥

∥

�
p0
k L

q0
λ

� (N+)−2θ N
′N

1
2
3 (N4N5)

(1−√
δ)/p0

N
1
2
0

, (6.60)

where N ′ = max(N0, N3), and f j satisfies that

‖ f j‖�
p0
k

≤ 1, 1 ≤ j ≤ 3; ‖ f j‖�2k
≤ 1, 4 ≤ j ≤ 5. (6.61)

By the same argument as in the proof of Proposition 6.5, we may apply Schur’s estimate
and reduce to proving

‖F(k, �)‖
�
p0
k �

q1
�

� (N+)−2θ N
′N

1
2
3 (N4N5)

(1−√
δ)/p0

N
1
2
0

, F(k, �)

:=
∑

±k1±···±k5=k
±k21±···±k25=k2−�

5
∏

j=1

f j (k j ). (6.62)

By fixing (k4, k5) we get that

‖F(k, �)‖
�
q1
�

� ‖ f4‖�1k
‖ f5‖�1k

sup
�,ρ

‖F�,ρ(k, �)‖
�
p0
k �

q1
�

, F�,ρ(k, �)
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:=
∑

±k1±k2±k3=k+�

±k21±k22±k23=k2−�+ρ

3
∏

j=1

f j (k j ),

while since there is no pairing in {1, 2, 3}, by the divisor estimate in Lemma 3.4, we
have

|F�,ρ(k, �)| � (N+)θ
(

∑

±k1±k2±k3=k+�

±k21±k22±k23=k2−�+ρ

3
∏

j=1

f j (k j )
p0

) 1
p0

,

and hence ‖F�,ρ(k, �)‖
�
p0
k �

q1
�

� ‖F�,ρ(k, �)‖
�
p0
k �

p0
�

� (N+)θ . Using also Hölder we
obtain

‖F(k, �)‖
�
p0
k �

q1
�

� (N4N5)
1
2 (N+)θ .

Comparing with (6.62) and using that N ′ ∼ max(N0, N3) and max(N4, N5) � N3,
we see that (6.62) is proved, except for the loss (N+)θ . Clearly this loss can be covered
if N ′ � N 1/10

1 ; now suppose max(N0, N3, N4, N5) � N 1/10
1 , then since (1, 2) is not a

pairing, we must have |�| � N+, which gives

max(|λ1|, . . . , |λ5|, |λ|, |λ − � − μ|) � N+,

where μ is a linear combination of λ1, . . . λ5. Now, in estimating (6.60) we can gain a
power 〈λ〉(1−θ)−b1 ≥ 〈λ〉δ/2; in the process of fixing λ j we can also gain a power 〈λ j 〉δ/2,
as

‖〈λ j 〉δ/2〈k j 〉(1−
√

δ)/p0 ṽ j‖L1
λ�2k

� ‖〈λ j 〉δ/2〈k j 〉(1−
√

δ)/p0 ṽ j‖L1
λ�

r2
k

� ‖〈k j 〉(1−
√

δ)/p0〈λ j 〉 1
2 ṽ j‖Lr0λ �

r2
k

� ‖〈k j 〉(1−
√

δ)/p0〈λ j 〉 1
2 ṽ j‖�

r2
k L

r0
λ

� ‖〈k j 〉 1
2 〈λ j 〉 1

2 ṽ j‖�
p0
k L

r0
λ

.

Finally, in the process of using Schur’s estimate to reduce (6.60) to (6.62), we can
also replace the power 〈λ − � − μ〉−1+θ by a slightly higher power to gain a power
〈λ − � − μ〉δ/4. In this way we can gain a power of at least (N+)δ/4 which suffices to
cover the (N+)θ loss.

(2) If there is no pairing in {1, 2, 3}, then similar to (1), we may fix λ j and reduce to
proving

‖F(k, �)‖
�
p0
k �

q1
�

� (N+)−2θ N
′N3 · N (1−√

δ)/p0
5

N
1
2
0

, F(k, �)

:=
∑

±k1±···±k5=k
±k21±···±k25=k2−�

5
∏

j=1

f j (k j ), (6.63)

where N+ = max(N1, N3), N ′ = max(N0, N5) and

‖ f j‖�
p0
k

≤ 1, 1 ≤ j ≤ 4; ‖ f5‖�2k
≤ 1. (6.64)
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Then we may fix k4 and k5 and argue as in part (1) to get

‖F(k, �)‖
�
p0
k �

q1
�

� (N+)θ‖ f4‖�1k
‖ f5‖�1k

� (N+)θ N
1−( 1

p0
)

3 N
1
2
5 ,

which implies (6.63) except for the loss (N+)θ , which can be covered in the same way
as part (1) by considering �.

If there is a pairing in {1, 2, 3}, say (1, 3), then 1
2 ≤ N1/N3 ≤ 2. If (2, 4) is not

a pairing, then we can fix (k3, k5) and repeat the above argument to get the same (in
fact better) estimate; so we may assume (2, 4) is also a pairing. This forces � = 0
and k = k5, in particular the stronger bound (6.58) holds. Let 〈k1 ± k2〉 ∼ N6 and
N ′′ = max(N ′, N6). In this case we will still fix λ j (1 ≤ j ≤ 4) but will not fix λ5.
Instead, let μ be a linear combination of λ j (1 ≤ j ≤ 4) and is thus fixed, and notice
that � = 0, we have

|˜R(k, λ)| � N−1
1 (N ′′)−1

∑

|k1|∼|k2|∼N1|k1±k2|∼N6
∫

R

dσ

〈λ〉1−θ 〈λ − σ 〉1−θ
f1(k1) f2(k2) f3(k1) f4(k2)|ṽ5(k,±σ ± μ)|,

where ‖ f j‖�
p0
k

≤ 1 for 1 ≤ j ≤ 4. This implies that

‖〈λ〉b1 ˜R(k, λ)‖Lq0
λ

� N−1
1 (N ′′)−1

∑

|k1|∼|k2|∼N1|k1±k2|∼N6

f1(k1) f2(k2) f3(k1) f4(k2)‖〈λ5〉 1
2 ṽ5(k, λ5)‖Lr0λ ,

and hence

‖〈k〉 1
2 〈λ〉b1 ˜R(k, λ)‖

�
p0
k L

q0
λ

� N−1
1 (N ′′)−1‖〈k〉 1

2 〈λ5〉 1
2 ṽ5(k, λ5)‖�

p0
k L

r0
λ

·
∑

|k1|∼|k2|∼N1|k1±k2|∼N6

f1(k1) f2(k2) f3(k1) f4(k2),

while the latter sum is bounded by

∑

k1

f1(k1) f3(k1) · N 1− 2
p0

6 ‖ f2‖�
p
k
‖ f4‖�

p
k

� (N1N6)
1− 2

p0 ,

which gives the desired estimate as N ′′ � N6. ��
Proposition 6.8. Suppose a quintic termR satisfies

|˜R(k, λ)| � 1

〈λ〉1+10δ
∑

±k1±···±k5=k

β(k, k1, · · · , k5)

∫

R5

5
∏

j=1

|ṽ j (k j , λ j )| dλ1 · · · dλ5, (6.65)
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where (as usual |k+| is the maximum of all relevant frequencies)

|β| � 〈k+〉
√

δ 1

〈k〉〈±k3 ± k4〉 , 〈k〉 � 〈k5〉 (6.66)

then we have

‖R‖Z1 �
5
∏

j=1

‖v j‖Y0 . (6.67)

Note that all the norms on the right hand side are Y0 (in particular the bound is symmetric
in v1 and v2, v3 and v4).

Proof. As before we will restrict to the region where 〈k j 〉 ∼ N j for 1 ≤ j ≤ 5,
〈k〉 ∼ N0, and 〈k3 ± k4〉 ∼ N6. Let N+ ∼ 〈k+〉. This time we will not fix λ j ; instead we
first integrate in them. We may assume all the norms on the right hand side are 1. Let

N
1
2
j ‖ṽ j (k j , λ j )‖L1

λ
= f j (k j ),

then ‖ f j‖�
p0
k

� 1 as v j ∈ Y0. By (6.65), it suffices to prove that

∥

∥

∥

∥

〈λ〉b1〈λ〉−1−10δ
∑

±k1±···±k5=k

5
∏

j=1

f j (k j )

∥

∥

∥

∥

�
p0
k L

q0
λ

� (N+)−2
√

δ · N6(N0N1N2N3N4N5)
1
2 , (6.68)

where

‖ f j‖�
p0
k

≤ 1, 1 ≤ j ≤ 5. (6.69)

By symmetry we may assume N1 ≤ N2 and N3 ≤ N4. By the choice of power of λ, the
Lq0

λ part is easily estimated, so we only need to bound the �
p0
k norm

∥

∥

∥

∥

∑

±k1±···±k5=k

5
∏

j=1

f j (k j )

∥

∥

∥

∥

�
p0
k

.

By Young’s inequality, this is bounded by the �
p0
k norm of f2 (which is ∼ 1), multiplied

by
∑

k1,k3,k4,k5

f1(k1) f3(k3) f4(k4) f5(k5).

The sum over k1 and k5 gives (by Hölder) (N1N5)
1− 1

p0 ; when k3 is fixed the sum over

k4 gives N
1− 1

p0
6 as |k3 ± k4| � N6, and finally the sum over k3 gives N

1− 1
p0

3 . This gives
the bound

(N1N3N5N6)
1− 1

p0 � (N+)
− 1

2p0 N6(N0N1N2N3N4N5)
1
2 ,

as N1 ≤ N2, N3 ≤ N4 and N0 � N5. ��
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Using Propositions 6.7, we can easily deal with the terms z26 and z27. For these two
terms, by repeating the arguments for z22 detailed above, we are led to considering the
tuple (k1, k2, k′) and (k3, k4, k5), such that

k2 + k′ − k1 = k, (k1, k2, k
′) ∈ XH ∪ XS;

k3 + k4 − k5 = k′, (k3, k4, k5) ∈ XN ∪ XL ,

and a weight

α(k, k1, . . . , k5) ∼ |k1||k3|
〈�′〉 ,

noticing that |�′| ≥ 1. By Proposition 2.5, this term can be bounded using either
Proposition 6.5, or Proposition 6.7, (1) or (2).

6.4.1. The z5∗ terms Finally let us consider quintic z5∗ terms. By (4.6)-(4.7) and (4.13)
we write, where z5∗ = z5∗(v1, . . . , v5) and ∗, # ∈ {N , L}, that (strictly speaking z57
and z58 have a different formula, but taking into account that the set XL is symmetric
with respect to k2 and k3 - apart from the artificial restriction |k2| ≥ |k3| - they can be
treated in exactly the same way):

|z̃5∗(k, λ)| �B

∑

k2+k′−k1=k
(k1,k2,k′)∈X∗

|k1|
∫

R

[

1

〈λ〉B〈τ 〉

+
〈τ − �〉

〈λ − τ 〉B〈τ 〉 min

(

1

〈�〉 ,
1

〈τ 〉
)

+
〈τ − �〉
〈λ − τ 〉 min

(

1

〈�〉 ,
1

〈λ〉
)2]

dτ
∫

λ2+λ′−λ1=τ−�

1|λ′|�|τ−�||ṽ1(k1, λ1)||ṽ2(k2, λ2)|
∑

k4+k5−k3=k′
(k3,k4,k5)∈X#

|k3|
∫

R

T ϕ̂(T (λ′ − μ′)) dμ′

∫

R

min

(

1

〈�′〉 ,
1

〈μ′〉
)

1

〈μ′ − σ ′〉 dσ
′

∫

λ4+λ5−λ3=σ ′−�′
|ṽ3(k3, λ3)||ṽ4(k4, λ4)||ṽ5(k5, λ5)|, (6.70)

where � = k2 + k21 − k22 − (k′)2 and �′ = (k′)2 + k23 − k24 − k25. The above can be
reduced to

∑

−k1+k2−k3+k4+k5=k

∫

R

R(λ, σ ) dσ
∫

−λ1+λ2−λ3+λ4+λ5=σ−�

5
∏

j=1

|ṽ j (k j , λ j )|, (6.71)

where � = � + �′ = k2 + k21 − k22 + k23 − k24 − k25, and the kernel18

R(λ, σ ) =
∫

R

[

1

〈λ〉B〈τ 〉 +
〈τ − �〉

〈λ − τ 〉B〈τ 〉 min

(

1

〈�〉 ,
1

〈τ 〉
)

18 This kernel depends on k j and λ j , but we will write it as R(λ, σ ) for simplicity.
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+
〈τ − �〉
〈λ − τ 〉 min

(

1

〈�〉 ,
1

〈λ〉
)2]

dτ

|k1k3|1|λ′|�|τ−�|
∫

R

T ϕ̂(T (λ′ − μ′))min

(

1

〈�′〉 ,
1

〈μ′〉
)

1

〈μ′ − σ ′〉 dμ
′.

(6.72)

Here λ′ = τ − � + λ1 − λ2 and σ ′ = λ4 + λ5 − λ3 + �′ are defined in terms of τ and
(k j , λ j ). First fix τ and integrate in μ′; this integral is bounded by

∫

R

1

〈λ′ − μ′〉 min

(

1

〈�′〉 ,
1

〈μ′〉
)

1

〈μ′ − σ ′〉 dμ
′,

and we separate two cases.
(1) Assume |σ ′| � |λ′|, then we can calculate that

1

〈�′〉
∫

R

1

〈λ′ − μ′〉〈μ′ − σ ′〉 dμ
′ � 1

〈�′〉
1

〈λ′ − σ ′〉1−θ
∼ 1

〈�′〉
1

〈λ′〉1−θ
.

Note that |λ′| � |τ − �|, we can then bound the resulting integral in τ by

∫

|τ−�|�|λ1−λ2|

[

1

〈λ〉B〈τ 〉 +
〈τ − �〉

〈λ − τ 〉B〈τ 〉 min

(

1

〈�〉 ,
1

〈τ 〉
)

+1〈λ−τ 〉�〈τ−�〉
〈τ − �〉
〈λ − τ 〉 min

(

1

〈�〉 ,
1

〈λ〉
)2] 1

〈�′〉
1

〈τ − �〉1−θ
dτ,

which is then bounded by

1

〈�〉〈�′〉 (max
j

〈k j 〉)
√

δ〈λ〉−1−10δ

by actually performing the integration in τ . By bounding the weight

β = |k1||k3|
〈�〉〈�′〉

using Proposition 2.5, we can apply Proposition 6.8 and conclude the estimate for this
term.

(2) Assume |σ ′| � |λ′|, then we can calculate that
∫

R

1

〈λ′ − μ′〉〈μ′〉〈μ′ − σ ′〉 dμ
′ � 1

〈λ′〉1−θ

1

〈λ′ − σ ′〉1−θ
.

Note that λ′ − σ ′ = τ − σ , and using the fact that |λ′| � |τ − �|, we can bound the
resulting integral in τ by

∫

R

[

1〈σ 〉�〈�〉
〈λ〉B〈τ 〉 +

〈τ − �〉
〈λ − τ 〉B〈τ 〉 min

(

1

〈�〉 ,
1

〈τ 〉
)

+
〈τ − �〉
〈λ − τ 〉 min

(

1

〈�〉 ,
1

〈λ〉
)2] 1

〈τ − �〉1−θ

1

〈τ − σ 〉1−θ
dτ,
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which can be bounded by

(max
j

〈k j 〉)10θ 1

〈λ〉1−θ 〈λ − σ 〉1−θ

1

〈�〉 .

By bounding the weight

α = |k1||k3|
〈�〉

using Proposition 2.5, we can apply either Proposition 6.5, or Proposition 6.7, (1) or (2).
In the case we apply Proposition 6.5, we will also use Remark 6.6 to cover the

loss (max j 〈k j 〉)10θ , which can be done unless for some j we have |k j | ∼ |k| �
max� �= j |kl |100; in this final case we can check that the stronger bound |α| � |k|− 1

2

holds, so the loss can still be covered. This completes the proof of Proposition 6.1.

7. Preservation of Regularity

Finally in this section we prove a preservation of regularity result. More precisely, we
prove the properties of our solution stated in Remark 1.2. The following proposition is
standard:

Proposition 7.1. Given s > 1
2 and 2 ≤ p0 < ∞, all the arguments in the previous

sections carry over to Hs
p0 (and correspondingly X

s,b j
p0,q0 and X

s, 12
p0,r j for j ∈ {0, 1}).

Moreover, in these arguments T still depends only on the H
1
2
p0 (instead of Hs

p0 ) size of
the initial data.

Proof. This follows from the elementary inequality that

〈k〉s−( 12 ) � max
1≤ j≤r

〈k j 〉s−( 12 ), if k = ±k1 ± · · · ± kr , r ∈ {3, 5, 7}.

Thus, any previously proved multilinear estimate will continue to be true if the exponent
1
2 in the output function space is replaced by s, provided that the exponent 1

2 in one
appropriate input function space is replaced by s.

Suppose the initial data has H
1
2
p0 norm A and Hs

p0 norm L , then for T = T (A), all

the X
1
2 ,b j
p0,q0(J )—and similarly for X

1
2 , 12
p0,r j (J )—contraction mappings proved before will

still be contraction mapping under the norm

‖ · ‖
X

1
2 ,b j
p0,q0 (J )

+ L−1‖ · ‖
X
s,b j
p0,q0 (J )

, similarly ‖ · ‖
X

1
2 , 12
p0,r j (J )

+ L−1‖ · ‖
X
s, 12
p0,r j (J )

.

��
Now consider a smooth initial data u0. Proposition 7.1 implies that, if ‖u0‖

H
1
2
p0

≤ A,

then for T = T (A), we can construct a solution to (1.1) on J = [−T, T ] that belongs
to C0

t H
s
p0(J ) for s sufficiently large. This is clearly the classical solution to (1.1). If a

sequence of smooth initial data u(n)
0 satisfies ‖u(n)

0 ‖
H

1
2
p0

≤ A and u(n)
0 → u0 in H

1
2
p0 ,
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then by continuity of the data-to-solution map in H
1
2
p0 (which follows from the previous

proofs), the corresponding solutions u(n) will converge to u in C0
t H

1
2
p0 , where u is the

solution we construct in Theorem 1.1 with initial data u0. This shows that our solution
is the unique limit of smooth solutions.

Finally, suppose p0 < 4, then the gauged solution v we construct belongs to the

space X
1
2 , 12
p0,r0(J ) where r0 < 2. It can be shown that

X
1
2 , 12
p0,r0(J ) ⊂ X

1
2 , 12
p0,2

(J ) ∩ X
1
2 ,0
p0,1

(J )

for any interval J of length not exceeding 1, so our solution belongs to the function space
defined in [27] in which the authors have proved uniqueness. Therefore when p0 < 4,
our solution must coincide with the one constructed in [27], as long as the latter exists.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
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