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ABSTRACT. We prove a decomposition formula of logarithmic Gromov-Witten
invariants in a degeneration setting. A one-parameter log smooth family X —
B with singular fibre over by € B yields a family .#(X/B, ) — B of moduli
stacks of stable logarithmic maps. We give a virtual decomposition of the fibre
of this family over by in terms of rigid tropical maps to the tropicalization of
X/B. This generalizes one aspect of known results in the case that the fibre
X,
explicit examples.

is a normal crossings union of two divisors. We exhibit our formulas in
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1. INTRODUCTION

1.1. Statement of results. One of the main goals of logarithmic Gromov—
Witten theory is to relate the Gromov—Witten invariants of a smooth projective
variety to invariants of a degenerate variety Xj.

Consider a logarithmically smooth and projective morphism X — B, with
B a logarithmically smooth curve having a single closed point by € B where
the logarithmic structure is nontrivial. In the language of [IKXIXNS, AK], this is
the same as saying that the underlying schemes X and B are provided with a
toroidal structure such that X — B is a toroidal morphism, and {by} C B is the
toroidal divisor. One defines as in [(:S1], see also [('h, AC], an algebraic stack
M (X/B, ) parameterizing stable logarithmic maps f : C — X with discrete
data B = (g, A, Up,, ..., up,) from logarithmically smooth curves to X. Here

e g is the genus of C,

e Ais the homology class f [C], which we assume is supported on fibres of
X — B, and B

® U, ,...,up, arethe contact orders of the marked points with the logarith-
mic strata of X.

Writing 8 = (g, k, A) for the non-logarithmic discrete data, there is a natural
morphism .#(X/B, ) — #(X/B, ) “forgetting the logarithmic structures”,
which is proper and representable [A(,’R[\\', Thm. 1.1.1). The map .#(X/B, ) —
A (X /B, ) is in fact finite, see [WilGa, Cor. 1.2]. There is also a natural mor-
phism .#(X/B, 3) — B, and we denote its fibre over b € B by .#(X,/b, 3).

Since X — B is logarithmically smooth there is a perfect relative obstruc-
tion theory E® — L _4(x/B,3)/Log, in the sense of [BI], hence defining a virtual
fundamental class [.#(X/B, 8)]""" and logarithmic Gromov—Witten invariants.

An immediate consequence of the formalism is the following (this is indicated
after [GS51, Thm. 0.3]):
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Theorem 1.1 (Logarithmic deformation invariance). For any point {b} < B
one has

Gl (X BB = [ (Xo/b, B)"™.

This implies, in particular, that Gromov—Witten invariants of X, agree with
those of Xy = Xj,. Now holomorphic curves in Xy come in various families
depending on the intersection pattern with the irreducible components of Xj.
Thus one may hope that logarithmic Gromov-Witten invariants similarly group
according to some discrete data reflecting such intersection patterns. The main
result of this paper shows that this is indeed the case, with the intersection
patterns recorded in an interesting and very transparent fashion in terms of the
underlying tropical geometry.

Theorem 1.2 (The logarithmic decomposition formula; Theorem 3.11 below).
Suppose the morphism Xo — by is logarithmically smooth and X is simple. Then
we have the following equality in the Chow group of A (Xo/bo, 5) with coefficients
in Q:

mr

[ (Xo/bo, )] = Z mjﬂ [ (X, 7).
F=(r.A)

See Definition 2.1 for the notion of simple logarithmic structures. The notations
M (Xo,T), m, and jr are briefly explained as follows. First, the tropicalization of
Xo — by defines a polyhedral complex A(Xj) (§2.1.4 and §2.5.4), and 7 stands
for a rigid tropical map to A(X) (Definition 3.6). Each such rigid 7 comes with
a multiplicity m, € N, the smallest integer such that scaling A(X) by m, leads
to a tropical curve with integral vertices and edge lengths.

The symbol A stands for a partition of the curve class A € Hy(X) into classes
A(v), one for each vertex v in the graph underlying .

The moduli stack .# ( Xy, 7) is the stack parameterizing basic stable logarithmic
maps to X over by decorated by 7 = (7, A) (Definition 2.31). The marking
exhibits 7 as a degeneration of the tropicalization of any stable logarithmic map
in this moduli stack. The map jz : A4 (Xo,T) — 4 (Xo/bo, B) forgets the marking
by 7.

Remark 1.3. In general, the sum over 7 will be infinite, but because the moduli
space . (Xo/bo, B) is of finite type, all but a finite number of the moduli spaces
M (Xo,T) will be empty. In practice one uses the balancing condition [ ,
Prop. 1.15] to control how curves can break up into strata of X,. This is carried
out in some of the examples in §5.

Theorems 1.1 and 1.2 form the first two steps toward a general logarithmic
degeneration formula. In many cases this is sufficient for meaningful computa-
tions, as we show in §5. These results have precise analogies with results in [Li],
as explained in §5.1. Theorem 1.1 is a generalization of [l.i, Lem. 3.10], while
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Theorem 1.2 is a generalization of part of [li, Cor. 3.13], where the notation
M(V7 UYL m) describes an object playing the role of our . (X, 7).

The current paper does not, however, include a description of the moduli stack
M (Xo,T) analogous to that given in the proof of [Li, Lem. 3.14]. There, the
moduli space is described by gluing together relative stable maps to the individual
components of Xy. However, in general this will not be the case: while a curve in
A (Xo, T) may be glued schematically from stable maps to individual components
of Xy, it is not possible to do this at the logarithmic level, in the sense that
the maps to individual components of X, may not be interpretable as relative
maps. We give an example in §5.2 in which X, has three components meeting
normally, with one triple point. Our example features a log curve contributing
to the Gromov-Witten invariant which has a component contracting to the triple
point, and this curve cannot be interpreted as a relative curve on any of the three
irreducible components of Xj.

In fact, a new theory is needed to give a more detailed description of the
moduli spaces .#(Xo,7T) in terms of pieces of simpler curves. In the follow-
up paper | | we define stable punctured maps admitting negative contact
orders to replace the relative curves in Jun Li’s gluing formula. Crucially, we
will explain how punctured curves can be glued together to describe the moduli
spaces A (Xo, T).

The results described here are analogous to results of Brett Parker proved in
his category of exploded manifolds. He defines Gromov-Witten invariants in this

category in the series of papers [Pal, , , ]. The analogue of logarithmic
deformation invariance, Theorem 1.1 above, is proved in [Pa4, Thms. 5.20 and
5.22], while Theorem 1.2 is analogous to parts of [Pa4, Thm. 5.22 and Lem. 7.3].

A gluing formula in terms of Gromov-Witten invariants of individual irreducible
components of Xy is given in [Pab, Thms. 4.7 and 5.2]. The aim in proving a
general gluing formula is a full logarithmic analogue of these theorems.

This paper has a somewhat long genesis, with the main ideas contained in draft
versions first presented in a talk by B.S. at the conference “Algebraic, Analytic,
and Tropical Geometry” in Ein Gedi/Israel in Spring 2013. A first full version
was posted on Q.C.’s website in October 2016. The follow-up paper | | has
furthermore been distributed via M.G.’s website since March 2017.

Several related works have appeared during this long period of preparation.
The 2016 version has been used in [MR]. Concerning the decomposition formula,
the one closest to our point of view is | ], giving a formula of logarithmic
Gromov-Witten invariants of the central fiber X of a degeneration with smooth
singular locus in terms of Gromov-Witten invariants of the reducible components.
This paper is a full logarithmic analogue of Jun Li’s formula in [Li], without
using expanded degenerations. This case is considerably simpler than the case
with points of multiplicity greater than 2 and in particular does not require the
introduction of punctured Gromov-Witten invariants, see 5.1 and [ ].
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A gluing formula for a special case has also been proved by Tony Yue Yu in his
developing theory of Gromov-Witten invariants in rigid analytic geometry [Yu,
Thm. 1.2].

Very recently, Ranganathan has suggested an alternative approach to fully
general gluing formulas for logarithmic Gromov-Witten invariants using expanded
degenerations [Ra].

The structure of the paper is as follows. In §2, we review various aspects of
logarithmic Gromov-Witten theory, with a special emphasis on the relationship
with tropical geometry. We develop tropical geometry in the setup of generalized
cone complexes, introduced in §2.1. While this point of view was present in
[ |, we make it more explicit here, and in particular discuss tropicalization
in a sufficient degree of generality as needed here. As an application, in 2.6
we introduce the refined moduli spaces (X, 7) appearing in the decomposition
formula. §2.2 reviews the notion of Artin fans, an algebraic stack associated to any
generalized cone complex. Our decomposition result is based on a decomposition
of the fundamental class in a moduli space of stable log maps to the Artin fan of
X over by.

§3 proves the main theorem, the decomposition formula. In §3.1 we first prove
a general decomposition of the fundamental class for a space log smooth over the
standard log point. The main insight in §3.2 is that replacing X, with its relative
Artin fan, the moduli space of stable log maps becomes unobstructed, hence has
a fundamental class that can be decomposed. The main theorem then follows in
§3.3 by lifting this decomposition to the virtual level.

The remainder of the paper is devoted to applications. As a preparation, §4
closes a gap in the literature, building on work of Nishinou and Siebert in [N5].
This concerns the logarithmic enhancement problem, the problem of constructing
stable logarithmic maps with a given usual stable map, previously considered only
in special cases. We address the problem through a two-step process. In the first
step, we use the tropical geometry of the situation to identify a proper, birational,
logarithmically étale map — a logarithmic modification — which reduces the
problem to a situation where no irreducible component of the domain curve maps
into the singular locus of Xy and maps no node into strata of X, of codimension
larger than 1. The second step is the main result of §4, Theorem 4.13, giving
the number of logarithmic enhancements in fully general situations, including
non-reduced Xj.

§5 employs these formulas in the discussion of a number of hopefully instructive
examples. §5.1 contains the already announced discussion of our decomposition
formula in the traditional situation of [L.i]. In §5.2 we retrieve the classical number
12 of nodal plane sections of a cubic surface passing through two points via a
degeneration into three P?’s, blown up in 0, 3 and 6 points, respectively. The topic
of §5.3 is an interpretation of the imposing of point conditions in tropical geometry
via degenerating scheme-theoretic point conditions in the trivial product Y x Al
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The decomposition formula in this case (Theorem 5.4) provides an alternative
view on tropical map counting with point conditions as in [Mi, NS]. The final
section §5.4 features an example with two rigid tropical maps such that only one
of them arises as the tropicalization of a stable log map, but the contribution to
the virtual count comes from the other, non-realizable rigid tropical map.

1.2. Acknowledgements. That there are analogies with Parker’s work is not
an accident: We received a great deal of inspiration from his work and had many
fruitful discussions with him. We also benefited from discussions with Steffen
Marcus, Dhruv Ranganathan, Ilya Tyomkin, Martin Ulirsch and Jonathan Wise.

1.3. Conventions. All logarithmic schemes and stacks we consider here are fine
and saturated and defined over an algebraically closed field k of characteristic 0.
We will usually only consider toric monoids, i.e., monoids of the form P = PN M
for M ~ 7", PR C Mr = M ®z R a rational polyhedral cone. For P a toric
monoid, we write

PY =Hom(P,N), PY=Hom(P,Rs,), P*=Hom(P,Z).

For @) a toric monoid and ¢ : ) — R a homomorphism to the multiplicative
monoid of the k-algebra R, the notation Spec(() — R) denotes Spec R with the
log structure induced by ¢. For our conventions concerning graphs see §2.3.6.

2. PRELIMINARIES
2.1. Cone complexes associated to logarithmic stacks.

2.1.1. The category of cones. We consider the category of rational polyhedral
cones, which we denote by Cones. The objects of Cones are pairs o = (og, N)
where N ~ Z" is a lattice and og C Ng = N ®z R is a top-dimensional strictly
convex rational polyhedral cone. A morphism of cones ¢ : 07 — 09 is a homo-
morphism ¢ : N; — N, which takes o1 into o9r. Such a morphism is a face
morphism if it identifies o with a face of o9 and N; with a saturated sublattice
of N,. If we need to specify that N is associated to o we write N, instead.

2.1.2. Generalized cone complezes. Recall from | , IL1] and | ] that a
generalized cone complex is a topological space with a presentation as the colimit
of an arbitrary finite diagram in the category Cones with all morphisms being
face morphisms. If ¥ denotes a generalized cone complex, we write o € ¥ if o
is a cone in the diagram yielding ¥, and write |X| for the underlying topological
space. A morphism of generalized cone complexes f : ¥ — ¥/ is a continuous
map f : || — |¥'| such that for each or € ¥, the induced map o — |¥'| factors
through a morphism ¢ — ¢’ € ¥'. For a cone o € Cones, we use the same
symbol o to also denote the cone complex of all its faces.

Note that two generalized cone complexes can be isomorphic yet not have the
same presentation. This phenomenon does not occur for so-called reduced pre-
sentations, which have the defining property that every face of a cone in the
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diagram is in the diagram, and every isomorphism in the diagram is a self-map.
By | , Prop. 2.6.2] any generalized cone complex has such a reduced presenta-
tion. In this paper we only work with reduced presentations of generalized cone
complexes.

2.1.3. Generalized polyhedral compleres. We can similarly define a generalized
polyhedral complez, where in the above set of definitions pairs (og, N) live in the
category Poly of rationally defined polyhedra. This is more general than cones,
as any cone o is in particular a polyhedron (usually unbounded). For example,
an affine slice of a fan is a polyhedral complex.

2.1.4. The tropicalization of a logarithmic scheme. Now let X be a Zariski fs log
scheme of finite type. For the generic point 1 of a stratum of X, its characteristic
monoid M, defines a dual monoid (Mx,)" := Hom(Mx,,, N) lying in the
group (Mx,,)* := Hom(Mx,,, Z), see §1.3, hence a dual cone

(2.1) On = ((mX,n)I\éa (MXJI)*)'

If n is a specialization of 7, then there is a well-defined generization map
Mx,n — ﬂxmf since we assumed X is a Zariski logarithmic scheme. Dualizing,
we obtain a face morphism o,y — o,. This gives a diagram of cones indexed by
strata of X with face morphisms, and hence gives a generalized cone complex
Y (X). We call this the tropicalization of X, following | , Appendix B].! For
o € X(X) we denote by

X, CX

the closure of the corresponding stratum of X, endowed with the reduced induced
scheme structure. We refer to these subschemes with reduced induced structure
as closed strata of X.

This construction is functorial: given a morphism of log schemes f : X — Y,
the map f° : f~'"My — My induces a map of generalized cone complexes
N(f): 2(X) = 2(Y).

Definition 2.1. | , Def. B.2] We say X is monodromy free if X is a Zariski
log scheme and for every o € ¥(X), the natural map ¢ — |X(X)| is injective on
the interior of any face of 0. We say X is simple if the map is injective on every
o

Here is an example of a Zariski log structure that is monodromy free, but not
simple. Take X to be the Neron 2-gon, the fibred sum of two P'’s joined at two
pairs of points, Thus X has two irreducible components X7, X5 and two nodes
q1, q2. Take a log structure M x on X with M x constant with fibres N2 along X1,
with fibers N on X5 N\ {q1,¢2} and with generization maps My, = N? — N to

IThis terminology differs slightly from that of [Ul1], where the tropicalization is a canonically
defined map from the Thuillier analytification X= of X to the compactified cone complex.
Hopefully this will not cause confusion.
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the generic point of X5 the two projections. See also | , Expl. B.1] for another
example.

Simplicity is, however, true in the Zariski log smooth case over a trivial log
point. Such log schemes can in fact be viewed as toroidal pairs without self-
intersections and the statement follows readily from the classical treatment in

[ , p-70-72]:

Proposition 2.2. Let X be a Zariski log scheme, log smooth over Speck with
the trivial log structure. Then X is simple.

As remarked in | |, more generally we can define the generalized cone com-
plex associated with a finite type logarithmic stack X, in particular allowing for
logarithmic schemes X in the étale topology. In fact, one can always find a cover
X’ — X in the smooth topology with X’ a union of simple log schemes, and with
X" = X' xx X'; then define X(X) to be the colimit of ¥ (X"”) = X(X’). The
resulting generalized cone complex is independent of the choice of cover. This
process is explicitly carried out in | ] and [U12].

Examples 2.3. (1) If X is a toric variety with the canonical toric logarithmic
structure, then (X)) is abstractly the fan defining X. It is missing the embedding
of |X(X)| as a fan in a vector space Ng, and should be viewed as a piecewise linear
object.

(2) Let k be a field and X = Spec(N — k) the standard log point with
My =k* x N. Then ¥(X) consists of the ray Rx.

(3) Let C' be a curve with an étale logarithmic structure with the property
that M has stalk N2 at any geometric point, but has monodromy of the form
(a,b) — (b, a), so that the pull-back of M¢ to an unramified double cover C' — C
is constant but M is only locally constant. Then %(C) can be described as the
quotient of R2, by the automorphism (a,b) — (b,a). If we use the reduced
presentation, i(C) has three cones, one each of dimension 0, 1 and 2.

2.2. Artin fans. Let X be a fine and saturated algebraic log stack. We are quite
permissive with algebraic stacks, as delineated in [Ol, (1.2.4)—(1.2.5)], since we
need to work with stacks with non-separated diagonal. An Artin stack logarith-
mically étale over Speck is called an Artin fan.

The logarithmic structure of X is encoded by a morphism X — Log to Olsson’s
stack Log of fine log structures, see [O1]. One crucial idea developed in the context
of the present paper is a refinement of the stack Log by an Artin fan that takes
into account the stratification of X defined by M x. Following preliminary notes
written by two of us (Chen and Gross), the paper [AW] introduces a canonical
Artin fan Ax associated to a logarithmically smooth fs log scheme X. This was
generalized in | , Prop. 3.1.1]:

Theorem 2.4. Let X be a logarithmic algebraic stack over Speck which is locally
connected in the smooth topology. Then there is an initial strict étale morphism
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Ax — Log over which X — Log factors. Moreover, the morphism Ax — Log is
representable by algebraic spaces.

Note that Ay in the theorem is indeed an Artin fan because Log is logarith-
mically étale over Speck.

If X is a Deligne-Mumford stack, Ax can be constructed from the cone complex
¥ (X) as follows. For any cone o C Ng, let P = ¢¥ N M be the corresponding
monoid. We write

(2.2) A, = Ap := [ Speck[P]/ Speck[P#"]].

This stack carries the standard toric logarithmic structure induced by descent
from the global chart P — k[P]. Then Ax is the colimit

(2.3) Ax = lim A,

ceX(X)

in the category of sheaves over Log.

Remark 2.5. Unlike ¥(X), the formation of Ay is not functorial for all logarith-
mic morphisms Y — X. This is a result of the fact that the morphism Y — Log
is not the composition Y — X — Log, unless Y — X is strict. Note also that not
all Artin fans A are of the form Ay, since A — Log may fail to be representable.

Our next aim is to prove functoriality of the formation of Artin fans for maps
with Zariski log smooth domains, stated as Proposition 2.8 below. We need two
lemmas.

Lemma 2.6. Suppose X is a log smooth scheme over the trivial log point Speck
and with Zariski log structure. Then Ax admits a Zariski open covering {A, C
Ax o e 3(X)}.

Proof. Since X has Zariski log structure, we may select a covering {U — X} by
Zariski open sets such that U — A,,, is the Artin fan of U. By the log smoothness
of X, the morphism X — Ay is smooth, and hence the image U C Ay of U is
an open substack.

It remains to show that U is the Artin fan of U. By [AW, §2.3 and Defini-
tion 2.3.2(2)], this amounts to show that U parameterizes the connected compo-
nents of the fibres of U — Log. Since both X — Log and U — Log are smooth
morphisms between reduced stacks, it suffices to consider each geometric point
T — Log. Since U C X is Zariski open, Up =T X0 U C X7 =T Xy X is also
Zariski open. Thus, for each connected component V' C Ur, there is a unique
connected component V' C X7 containing V' as a Zariski open dense set. As the
set of connected components of X is parameterized by T' X1, Ax, we observe
that the set of connected components of Ur is parameterized by the subscheme
TXLOgUCTXLOg.Ax. ®



10 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

Lemma 2.7. Suppose X is a log smooth scheme with Zariski log structure and
7 € Cones. Then any morphism X — A, has a canonical factorization through

AX —>.A7—.

Proof. By Lemma 2.6, we may select a Zariski covering C := {A, C Ax} of Ay,
hence a Zariski covering {U, := A, x4, X C X} of X. We may assume that if
o' C o is a face, then A,» C A, C Ax is also in C.

Locally, the morphism U, — A, induces a morphism 7" — T'(U,, My, ) = 0",
hence a canonical ¢, : A, — A, through which U, — A, factors.

To see the local construction glues, observe that the intersection A,, N A, of
two Zariski charts in C is again covered by elements in C. It suffices to verify that
Goys oy agree on A, € C if A, C A, NA,,. Taking global sections, we observe
that the composition 7¥ — F(Uai,JVUUZ_) — T'(Uy, My_,) = (o) is independent
of i = 1,2 as they are determined by the restriction of U,, — A, to the common
Zariski open Uy. Hence ¢o,|v, = ¢oy|u,- [

Proposition 2.8. Let X — Y be a morphism of log schemes. Suppose X is log
smooth with Zariski log structure. Then there is a canonical morphism Ax — Ay
such that the following diagram commutes

X —Y

|

AX—>AY

Proof. By the claimed uniqueness and étale descent, the statement can be checked
étale locally on Ay. We may then assume Ay = A, for some 7 € Cones, for
which the statement is exactly Lemma 2.7. ®

Using Proposition 2.8 we can also define a relative notion of Artin fan for maps
with log smooth domains.

Definition 2.9. The relative Artin fan for a morphism X — B of log schemes
with X log smooth with Zariski log structure is defined as the fibre product

X:BXAB.AX,

Assuming B smooth over a trivial log point, X has the following explicit de-
scription Zariski-locally. Let PY — @Y be a map of cones in ¥(X) — X(B). Then
the open embedding Ap — Ax from Lemma 2.6 induces the open embedding

[ Speck[P]/ Speck[P®/Q®"]] — X,

and these cover X. Here Speck[PeP/Q®P] acts as the subtorus of Speck|P*P|
defined by the kernel of the map Speck[P#P] — Speck[Q#P].

While not, strictly speaking, needed for this paper, we end this subsection with
the instructive result that giving a log morphism to the Artin fan Ay of a log
scheme X is combinatorial in nature, captured entirely by the induced map of
cone complexes.
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Proposition 2.10. Let X be a Zariski fs log scheme log smooth over Speck.
Then for any fs log scheme T there is a canonical bijection

Homy (T, Ax) — Homeones(X(7), (X)),
which is functorial in T.

Proof. STEP 1. DESCRIPTION OF Ax. By Lemma 2.6, we may select a Zariski
covering C := {A, C Ax}, hence a Zariski covering {U, := A, x4, X C X}. We
may assume that if ¢’ C o is a face, then A, C A, C Ay isalsoin C. Thus X(X)
can be presented by the collection of cones {0} glued along face maps ¢’ — . In
particular, this shows that ¥(X) = X(Ax). Since X is functorial, there is then a
map Hom(7T', Ax) — Hom(X(T), X(X)). We need to construct the inverse.

STEP II. T 18 ATOMIC. Suppose T has unique closed stratum 7 and a global
chart P — M inducing an isomorphism P =~ /VT’E at some point ¢ € Ty — in
the language of [AW, Def. 2.2.4] the logarithmic scheme T is atomic. Then with
7 := Hom(P,R>y), X(T) = 7.

Using the presentation of 3(X) described in Step I, a map o : X(T) —
¥(X) has image a(1) C 0; € ¥(X) for some i. Observe that Hom(T, A,,) =
Hom(Q;, T'(T, Mz)) by [Ol, Prop. 5.17). Now I'(T, M) = P, and giving a ho-
momorphism (); — P is equivalent to giving a morphism of cones 7 — ¢;. Thus
Hom(T', A,,) = Hom(7, ;). In particular, o induces a composed map 7' — A,, C
Ax, yielding the desired inverse map Hom(3(7"), ¥(X)) — Hom(7, Ax).

STEP III. T' GENERAL. In general T" has an étale cover {T;} by atomic log-
arithmic schemes, and each Tj; := T; xp T; also has such a covering {TZ';} by
atomic logarithmic schemes. This gives a presentation [[ X(T};) = [[X(T;) of
¥(T). In particular, a morphism of cone complexes (7)) — (X)) induces mor-
phisms ¥(7;) — X(X) compatible with the maps X(T};) — X(T;), 2(T;). Thus we
obtain unique morphisms 7; — Ay compatible with the morphisms TZ; — 1;, T},
inducing a morphism 7' — Ax. [

Example 2.11. Let X = A! with the toric log structure. Then Ay = Ay =
[A'/G,,]. Given an ordinary scheme T, a morphism f : T — Ay is equivalent to
giving a strict log morphism 7' — Ay, by endowing T with the pull-back f*My,
of the log structure on Ay. From this point of view, the universal G,,-torsor P on
Ay agrees with the G,,-torsor subsheaf of M 4, defined by the generating section
of M 4,. Thus the pull-back log structure f*M,, is given by a line bundle £
on 7', the line bundle with associated torsor £X = f*P, and a homomorphism
L — Or of Op-modules defining the structure morphism, or its restriction to £
Conversely, the morphism f from T to the quotient stack Ay = [A!/G,,] can be
recovered from £ — Op b;r the associated (G,,-equivariant morphism from the
Gyn-torsor Specy (@ ey L7) to AL

Thus for an arbitrary log structure My on T, a log morphism f : (T, M) —
Ay is the same data as the restriction of My — Or to a G,,-torsor subsheaf
L* C Mr. Indeed, such an isomorphism yields the identification of f*P with a
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G,,-torsor subsheaf £* C My, and the property of being a log morphism forces
J to be associated to the restriction of the structure morphism Mz — Or to L£*.
Now Proposition 2.10 assumes a log structure M, on T is already given and
then says that the set of log morphisms 7' = (I', M) — Ax equals the set of
morphisms ¥(7T") — R>¢ = 3(X) of cone complexes. Indeed, such a morphism of
cone complexes is equivalent to specifying m € I'(T, M7), and then the G,,-torsor
subsheaf £* C My is simply defined by the preimage of 7 under Mp — Mop.

2.3. Stable logarithmic maps and their moduli. This section reviews the

theory of stable logarithmic maps developed in | , Ch, |, emphasizing the
tropical language from [G51]. Most references in the following are therefore to
[GS1], but of course all results have analogues in [Ch, | under the slightly

stronger assumption of global generatedness of M. Note that the restriction
on global generatedness has been removed in | | by base changing to a
refinement of the Artin fan Ax of X.

2.3.1. Definition. We fix a log morphism X — B with the logarithmic structure
on X being defined in the Zariski topology. Recall from [G:S1, Def. 1.6]:

Definition 2.12. A stable logarithmic map (C/S, p, f) is a commutative diagram

(2.4) o1 x

S

S——B

where

(i) 7 : C — S is a proper, logarithmically smooth and integral morphism of
log schemes together with a tuple of sections p = (p1,...,pr) of @ such that
every geometric fibre of 7 is a reduced and connected curve, and if U C C' is the
non-critical locus of © then M¢|y ~ 1 Mg @ @le PixNg.

(ii) For every geometric point s — S, the restriction of f to C. together with
p is an ordinary stable map. B

2.3.2. Basic maps. The crucial concept for defining moduli of stable logarithmic
maps is the notion of basic stable logarithmic maps. To explain this in tropical

terms, we begin by summarizing the discussion of [GS1, §1] where more details
are available. The terminology used in [C'h; AC] is minimal stable logarithmic
maps.

2.3.3. Induced maps of monoids. Suppose given (C/S,p, f) a stable logarithmic
map with S = Spec(Q’ — k), with @' an arbitrary sharp fs monoid and k
an algebraically closed field. We will use the convention that a point denoted
p € C is always a marked point, and a point denoted ¢ € C is always a nodal
point. Denoting Q’ = 771Q’, the morphism 7” of logarithmic structures induces
a homomorphism of sheaves of monoids ¢ = 7 : Q’ — M. Similarly f” induces

szfbif_lmx—)mc-
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2.3.4. Structure of 1. The homomorphism 1) is an isomorphism when restricted
to the complement of the special (nodal or marked) points of C'. The sheaf M
has stalks Q' ® N and Q' ®y N? at marked points and nodal points, respectively.
The latter fibred sum is determined by a map

(2.5) N—@Q, 1+—p,

and the diagonal map N — N2 see | , Def. 1.5]. The map 1 at these special
points is given by the inclusion Q' — @' ® N and Q' — Q' ®n N? into the first
component for marked and nodal points, respectively.

2.3.5. Structure of ¢. For z € C a geometric point with underlying scheme-
theoretic point =, the map ¢ induces maps ¢z : P, — MC@ for

Px = MX,i(ix).

Note that ./\_/lX7 #(z) 1s independent of the choice of # — x since the logarithmic
structure on X is Zariski. Following Discussion 1.8 of [(:51], we have the following
behaviour at three types of points on C:

(i) = n is a generic point, giving a local homomorphism? of monoids
(ii) = = p is a marked point, giving the composition
(2.7) uy: P, 2% Q N 22 N.

The element u, € P, is called the contact order at p.
(ili) « = ¢ is a node contained in the closures of 7y, .. If x; : P, — P, are the
generization maps there exists a homomorphism

u, 1 Py — 7,
called contact order at q, such that

(2.8) Pria (Xz(m)) — P (Xl(m)) = uq(m) * Py

with p, # 0 given in Equation (2.5), see [:51, (1.8)]. The maps ¢z o x; and
u, are equivalent to providing the local homomorphism ¢; : P, — Q' @&y N2

The choice of ordering 7;, 7y for the branches of C' containing a node is called
an orientation of the node. We note that reversing the orientation of a node ¢
(by interchanging n; and 7)) results in reversing the sign of u,,.

2A homomorphism of monoids ¢ : P — Q is local if o~ 1(Q*) = P*.
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2.3.6. Dual graphs and combinatorial type. In this paper, a graph G consists of
a set of vertices V(G), a set of edges F(G) and a separate set of legs or half-
edges L(G), with appropriate incidence relations between vertices and edges, and
between vertices and half-edges. We admit multiple edges, loops and legs. In
order to obtain the correct notion of automorphisms, we also implicitly use the
convention that every edge £ € FE(G) of G is a pair of orientations of E or a
pair of half-edges of E (disjoint from L(G)), so that the automorphism group of
a graph with a single loop is Z/27Z.

Given a stable logarithmic map (C/S,p, f) over a logarithmic point, let G¢
be the dual intersection graph of C. This is the graph which has a vertex v, for
each generic point 1 of C, an edge Ej, joining v,,,v,, for each node ¢ contained
in the closures of both n; and 7., and where E, is a loop if ¢ is a double point
in an irreducible component of C. Note that an ordering of the two branches of
C at a node gives rise to an orientation on the corresponding edge. Finally, G¢
has a leg L, with endpoint v, for each marked point p contained in the closure
of n. Occasionally we view V(G), E(G) and L(G) as subsets of C' and then write
x € C for a vertex, edge or leg of G coresponding to a generic point, node or
marked point of C respectively.

Definition 2.13. Let (C'/S, p, f) be a stable logarithmic map over a logarithmic
point S = Spec(Q) — k). The combinatorial type of (C/S,p, f) consists of the
following data:

(1) The dual intersection graph G = G¢ of C.

(2) The genus function® g : V(G) — N associating to v € V(G) the genus of
the irreducible component C'(v) C C.

(3) Themap o : V(G)UE(G)UL(G) — S(X) mapping = € C to (M, s(z)) s €
Y(X).

(4) The contact data u = {u,, u,} at marked points p and nodes ¢ of C'

2.3.7. The basic monoid. Given a combinatorial type of a stable logarithmic map
(C/S,p, f), we define a monoid @ by first defining its dual

(2.9) Q' = {((‘/;7)777 (etZ)Q) € @PX D @N'Vq Vi = Vi = equtZ} :

Here the sum is over generic points 1 of C' and nodes ¢ of C'. Readers with
background in tropical gemetry should recognize this monoid as the moduli cone
of tropical curves of fixed combinatorial type, as will be discussed in §2.5. We
then set

Q := Hom(Q",N).

3This was not part of the combinatorial type as defined in [GS1], but is included here to
agree with the type of a tropical map below, where it is indispensible.
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It is shown in | , §1.5], that @ is a sharp monoid, fine and saturated by
construction as the dual of a finitely generated submonoid of a free abelian group.
Note also that @) indeed only depends on the combinatorial type of (C/S,p, f).

Given a stable logarithmic map (C'/S’,p’, f') over S = Spec(Q’ — k) of the
same combinatorial type, we obtain a canonically defined map

(2.10) Q— Q'

which is most easily defined as the transpose of the map

(@) — Q' cP B/ o@N, m— ((¢h(m)y, (m(py))a),

with ¢, and p, defined in (2.6) and (2.5), respectively.

Definition 2.14 (Basic maps). Let (C/S, p, f) be a stable logarithmic map. We
say f is basic if at every geometric point 5 of S, the map Q — Q' = Mg from
(2.10) defined by the restriction (Cs/s, ps, f|c.) is an isomorphism.

2.3.8. Degree data and class. In what follows, H (X) denotes a semigroup car-
rying degree data for curves in X, which are locally constant in flat families, such
as effective 1-cycles on X modulo algebraic or numerical equivalence or, work-
ing over C, classes in singular homology Hs(X,Z) pairing non-negatively with a
Kéhler form. We require that the moduli spaces of ordinary stable maps of fixed
curve class, genus and number of marked points are of finite type.

Definition 2.15. A class B of stable logarithmic maps to X consists of the
following;:

(i) The data (8 of an underlying ordinary stable map, i.e., the genus g, a curve
class A € H;7(X), and the number of marked points .

(ii) Integral elements w,,, ..., u, € |2(X)[. *
We say a stable logarithmic map (C/S,p, f) is of class 8 if two conditions are
satisfied. First, the underlying ordinary stable map must be of type 8 = (g, 4, k).
Second, define the closed subset Z, C X to be the union of strata with generic
points 1 such that w,, lies in the image of ¢,, — |X(X)|. Then for any ¢ we have
im(f o p;) C Z; and for any geometric point 5 — S such that p;(5) lies in the
stratum of X with generic point 7, there exists u € o, = Hom(ﬂxﬁ, N) mapping
to u,, € |X(X)| making the following diagram commute:

A A u
M X7 >
4We remark that this definition of contact orders is different than that given in | , Def. 3.1].
Indeed, the definition given there does not work when X is not monodromy free, and | ,
Rem. 3.2] is not correct in that case. However, | , Def. 3.1] may be used in the monodromy

free case.
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Here x is the generization map. In particular, s; specifies the contact order u,,
at the marked point p;(5) as defined in (2.7).

We emphasize that the class 8 does not specify the contact orders u, at nodes.

Definition 2.16. Let .#(X/B, 3) denote the stack of basic stable logarithmic
maps of class 5. This is the category whose objects are basic stable logarithmic
maps (C/S,p, f) of class 8, and whose morphisms (C/S,p, f) — (C'/S",p’, f')
are commutative diagrams

g f

C 184 X
SN B

with the left-hand square cartesian, S — S’ strict, and f = fog, gop =p’oh.

Theorem 2.17. If X — B is proper, then #(X/B, ) is a proper Deligne-
Mumford stack. If furthermore X — B is logarithmically smooth, then # (X /B, [3)

carries a perfect obstruction theory, defining a virtual fundamental class [.# (X /B, B)]¥'"
in the rational Chow group of #(X/B, ).

Proof. Under the given assumption that X is a Zariski log scheme, | , Thm. 2.4]
proves that .#(X/B, ) is a Deligne-Mumford stack. Properness was shown in
loge.cit. under a technical assumption, and in general in | ].

The existence of a perfect obstruction theory when X — B is logarithmically
smooth was proved in [G51, §5]. [

2.4. Stacks of pre-stable logarithmic curves. For the obstruction theory in
Theorem 2.17 one works over the Artin stack g of pre-stable logarithmically
smooth curves defined over B. Since this stack will be important later on, let
us briefly recall its construction. First, working over a field k, there is a stack
M of pre-stable basic logarithmic curves over Speck, essentially constructed by
F. Kato in [IX{1]. Endowing M with its basic log structure, the fibre product
M Xgpeck B in the category of log stacks is a fine log stack. We can then define
Mp using Olsson’s stack over M x B:

Mp = Lognxp-

Indeed, an object in this stack is a log scheme T" with two morphisms 7' — M and
T — B. The corresponding pre-stable log smooth curve over 7' is the logarithmic
pull-back to T of the universal pre-stable curve over M.

We also consider the following refinements of M introduced in [BM, Def. 2.6]
and further discussed in [Be, p.603]. Let G be a graph decorated by a map

g:V(G) — N,
associating to each vertex its genus. Then there is an algebraic stack

(2.11) M(G,g) of (G, g)-marked pre-stable curves
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with objects over a B-scheme S given by

(1) for each v € V(G), a family of pre-stable curves C, — S of genus g(v),
together with marked sections zy, : S — C, defined by the legs L € L(G)
with v € L,
(2) for each edge E' € E(G) with vertices v, w, a pair of marked sections v, ¥,
of C, — S, C, — S, respectively.
All marked sections are required to be mutually disjoint and to have image in the
non-critical locus of [, C, — S. Taking the fibred sum of [, C, along the pairs
of marked sections associated to the edges, we may as well view the objects of
M(G, g) as families of marked nodal curves

(2.12) (C — S, z);

from this point of view, each edge F defines a family of nodal points yg : S — C
and each vertex a closed embedding C,, — C of a family of pre-stable curves of
genus g(v) and with image a union of irreducible components. Thus we have a
morphism of algebraic stacks

(2.13) M(G,g) — M,

turning M(G, g) into a logarithmic algebraic stack by pulling back the log struc-
ture from M. Note that on the level of the underlying stacks, (2.13) induces the
identification of the stack quotient [M(G,g)/ Aut(G, g)] with the normalization
of a closed substack of M, defining the well-known stratified structure of M. See
[ , XIL,§10] for a detailed discussion. Now define

(214) mB(Gv g) = LOgM(G,g)XB7 QtB(va g) = DJ’tB<c;(7 g) ><M(G,g) C(Gv g)

An important feature of the collection of stacks M(G, g) and in turn of Mp(G, g)
is their functorial behaviour under contraction morphisms of decorated graphs

(2.15) ¢:(G,g) — (G g),

that is, an isomorphism of G’ with the graph G/FEj contracting a subset of edges
E, C E(G) such that’

gW)=b(e' W)+ Y 8l
vEV ()~ (V')
holds for all v € V(G') [BM, Def. 1.3]. Here V(¢) : V(G) — V(G') is the
surjection on the set of vertices defined by ¢, and we have in addition a compatible
inclusion E(¢) : E(G")——=E(G)~E,; C E(G) of the sets of edges and a bijection
L(¢) : L(G') — L(G) on the sets of legs. This notion of morphism captures the
behavior of the combinatorial type of pre-stable curves under generization and is
indeed compatible with the finite maps (2.13) to M:

The right-hand side is identified in Equation (2.17) below as the genus of ¢~ (v').
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Proposition 2.18. For any contraction morphism (G,g) — (G',g') of genus-
decorated graphs, there are finite unramified morphisms of ordinary stacks M (G, g) —
M(G',g') and

s3th(sz g) — 93’IB(c;(lv g/)

Proof. By base change and the definition of the log structures it is enough to prove
the statement for the morphism of stacks underlying M(G,g) — M(G',g’). In
this case the statement follows by iterated application of the clutching morphisms

of [Kn, Cor. 3.9]. [ )

We emphasize that Proposition 2.18 is purely on the level of stacks with no
log structures involved. Incorporating log structures in the picture is more subtle
and is part of the gluing formalism developed in [ ].

2.5. The tropical interpretation. The basic monoid () was originally derived
from its tropical interpretation, which will play an important role here. We review
this in our general setting. Given a stable logarithmic map (C/S, p, f), we obtain
an associated diagram of cone complexes,

(2.16) (C) —

¥(S) —— X(B).

This diagram can be viewed as giving a family of tropical curves mapping to
¥ (X), parameterized by the cone complex X(S). Indeed, a fibre of ¥(7) is a
graph and the restriction of ¥(f) to such a fibre can be viewed as a tropical curve
mapping to X(X). We make this precise.

To avoid difficulties in notation, we shall assume that X is simple (Defini-
tion 2.1). This is not a restrictive assumption in this paper since we assume X to
be log smooth over the trivial log point Speck, and as X is assumed to be Zariski
in any event, it follows that X is simple (Proposition 2.2). We use the reduced
presentation of ¥(X) from §2.1.2. Then simplicity implies that if 7,0 € ¥(X)
and the image of 7 in |X(X)| is a face of the image of o, then there is a unique
face map 7 — o in the diagram.

The left-hand vertical arrow of (2.16) is a family of abstract tropical curves
according to the following definition, cf. also | , Def. 3.2].

Definition 2.19. A (family of ) tropical curves (G, g, ¢) over a cone w € Cones is
a connected graph G together with a bijection L(G) — {1,...,k} (leg ordering)
and two maps

g:V(G)— N, (:FE(G)— Hom(wn N,,N)~ {0}.

For v € V(G) and F € E(G) we call g(v) the genus of v and ¢(E) the length
function of E.
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The genus of a family of tropical curves (G, g, ¢) is defined by

(2.17) gl =0(G)+ ) glv).
veV(G)

Note that given a tropical curve (G, g, ¢) over a cone w and s € w not contained
in any proper face, then so £ assigns a strictly positive real number to each edge.
Together with the convention that legs are infinite length, (G, s o ¢) therefore
specifies a metric graph, reproducing the traditional definition of an abstract
tropical curve. Hence our definition makes precise the notion of a family of
abstract tropical curves parameterized by w € Cones.

Construction 2.20. We suppress the genus decoration in the notation (G, g, /)
and conflate (G, g, ¢) with its associated morphism of cone complexes

(2.18) I=1(G,0) = w,

constructed as follows. For each v € V(G) take one copy w, of w, while for each
E € E(G) take the cone

(2.19) wp = {(s,A) €w x Rxq | A < U(E)(s)}.

The cone wg has two facets, each isomorphic to w via projection to the first factor.
The corresponding inclusions

s+— (s,0), s> (s,0(s)).

define face morphisms w,,w, — wg for the two vertices v,v’ adjacent to K.
Note this definition is independent of the chosen labellings v, v’ and works also
for graphs with loops. Finally, for each L € L(G) with adjacent vertex v take
wr, = w x Ry with face morphism w, — wy, defined by the facet w x {0} C wy.
Then I is the generalized cone complex defined by this directed sytem in Cones.
The morphism to w is defined on each wg by the projection to the first factor.

By construction, each vertex v € V(G) defines a section of np : I' — w denoted
as follows:

(2.20) w— I, s+ v(s) € w,.

Then for s € w not contained in a proper face, the fibre 7r~'(s) is the metric
graph (G, s o {) previously defined.

It is also not hard to replace individual cones as base spaces for families of
tropical curves by cone complexes. See | , 83] for an elaboration of such
ideas.

Definition 2.21. A (family of ) tropical maps (from a tropical curve) to ¥(X)
over a cone w € Cones is a tropical curve (G, g, /) over w (Definition 2.19)
with associated cone complex I' = I'(G, ¢) (Construction 2.20), together with a
morphism of cone complexes

h:T — S(X).
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Remark 2.22. There are a number of discrete data that we can extract from
a tropical map h : I' — X(X) over w € Cones which are of importance in the
sequel.

(1) Image cones: For a vertex, edge, or leg z of G, let w, € I' be the cone
associated to x. Define

(2.21) o V(G)UE(G)ULG) — 2(X)

by mapping = to the minimal cone 7 € ¥(X) containing h(w,). Note that if
E is a leg or edge incident to a vertex v, then there is an inclusion of faces
o(v) C o(F) in the (reduced) presentation of ¥(X).

(2) Contact orders at edges: Let E, € E(G) be an edge with a chosen order
of vertices v, v’ (orientation). Then by the definition of the cone wg, of T
associated to Ej, in (2.19), the image of (0,1) € Ny, = N, x R under h
defines u,; € Ny(g,) such that in Ny (g,),

(2.22) h(v(s)) = h(v'(s)) = L(Eg)(s) - uq
holds for any s € wg,. Here v(s) € I is the section of I' = w defined in (2.20).
Reversing the orientation of F, results in replacing u, by —u,.

(3) Contact orders at marked points: Similarly, for a leg L, € L(G), the image
of (0,1) € No,, = Ny x R defines u, € Ny(z,) N o(L,) with h(Int(wz,)) C
Int(o(Ly)).

Definition 2.23. (1) The type of a family of tropical maps h : I' — X(X) over
Qy € Cones is the quadruple 7 = (G, g, 0, u) consisting of the associated
genus decorated graph (G, g), the map o from (2.21) recording the strata
and the contact orders u = {u,,u,} as defined in Remark 2.22. Note that
we are suppressing the leg numbering, viewing the set L(G) as identical with
{1,...,k}.

(2) For a type 7 of a family of tropical maps, Aut(7) denotes the subset of
automorphisms of G commuting with the maps g, o, u.

(3) Given a type 7T of a family of tropical maps, the associated basic monoid Q(T)
is the dual of the monoid Q¥ defined in (2.9), depending only on G, o and u.

(4) If in addition we have given a map

A V(G) — HE(X),

we call 7 = (7, A) the decorated type of a family of tropical maps, the pair
(h, A) a decorated family of tropical maps and

Al= )" A(v)
veV(G)
the total curve class of A.

Generalizing (2.15) we have a notion of contraction morphism for (decorated)
types of families of tropical maps needed below.
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Definition 2.24. Let 7 = (G, g,0,u) and 7" = (G', g, ', u’) be types of families
of tropical maps. A contraction morphism T — 7' is a contraction morphism
¢ (G,g) = (G',g') of decorated graphs (2.15) with the following additional
properties:
(i) Forall z € V(G)UE(G)UL(G) the cone o'(¢(z)) € £(X) is a face of o(x).
(ii) For all z € E(G") U L(G') it holds u'(z) = u(E(¢)(z)).
Similarly, a contraction morphism 7 = (7, A) — 7 = (7', A’) of decorated types

of families of tropical maps is a contraction morphism 7 — 7’ such that A’(v') =
> _vev(é)-1(w) A(v) holds for all v € V(G).

2.5.1. Families of tropical curves from logarithmically smooth curves. Now sup-
pose

S = Spec(Q — k)
for some monoid @ and (C'/S,p) is a family of marked log smooth curves, as in
Definition 2.12,(i).

Proposition 2.25. The tropicalization

(2.23) N(m) : B(C) — X(S) = Qy

of (C/S,p) naturally has the structure of a family of tropical curves (G, g, ) over
Qx-

Proof. Take for G the dual intersection graph of C'. If ) is a generic point of C,
then w, = Qy and ¥(7)|,, is the identity. Thus each fibre of X ()|, is a point .

We take the weight g(v) = g(C(v)), the geometric genus of the component C'(v)
with generic point 7. The cone of ¥(C') defined by a node ¢ of C' is

Wy = HOID(Q EBN N2, Rzo) = Qﬂ\é XRZO R2207

where the maps Qf — R and R%; — R are given by evaluation at p, €
@ ~ {0} and by (a,b) — a + b, respectively. The projection ]Rzzo — R> to, say,
the first factor, defines an isomorphism

QI\é XRZO RQZO — {(mv )‘) S Q]l\é X RZO ‘ A< m(pq)}

Thus defining ¢(E,) = p,, we have a canonical isomorphism w, ~ wg, with wg,
defined in (2.19). For a marked point p; € C, we have w,, = Q} x Rso, and
3()l|w,, is the projection onto the first component, again compatible with the
definition of I' = I'(G, £) in Construction 2.20.

[ )

2.5.2. Families of tropical maps to X(X) from stable logarithmic maps. We con-
tinue working over a logarithmic point S = Spec(Q) — k) and assume in addition
given an fs log scheme X, which is simple in the sense of Definition 2.1.

Proposition 2.26. The tropicalization of a stable logarithmic map (C/S,p, f)
over the logarithmic point S = Spec(Q — k) defines a family of tropical maps to
Y(X) over Qy.
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Proof. In view of Proposition 2.25 the statement follows readily from the defini-
tions. Py

Remark 2.27. An element z € V(G) U E(G) U L(G) corresponds to a point
x € C — either a generic point, a double point, or a marked point. The cone
o(x) introduced in Remark 2.22 is

o(r) = (P)g = Hom(Myx s(z), Rx0) € B(X),

for any geometric point & mapping to x. With this identification of cones under-
stood, it is a matter of unravelling the definitions that the other discrete data
introduced in Remark 2.22, the contact orders ur,,, ug,, agree with w,, u, defined
in §2.3.5. Note in particular how (2.22) appears as the tropical manifestation
of (2.8). Thus the type of the tropicalization of a stable logarithmic map, as a
family of tropical maps (Definition 2.23), agrees with its combinatorial type from
Definition 2.13.

2.5.3. Traditional tropical maps — the relative situation. A situation of particular
interest arises when working over the standard log point by = Spec (N — k[N])).
Then all generalized cone complexes come with a morphism 7 to 3(by) = Rxo.
Taking the fiber of m over 1 € R then produces a generalized polyhedral complex
as introduced in §2.1.3. Conversely, let 7 : ¥ — R>; be a map of generalized
cone complexes such that no maximal cone of ¥ maps to 0 € R>(. Then ¥ and
7 can be recovered from the generalized polyhedral complex 7—!(1) by replacing
each polyhedron o = (og, N) by the closure of Rso(o x {1}) in Ng x R.

If X is a finite type logarithmic stack over the standard log point by, with
associated tropicalization 7 : X(X) — X(By) = R>g, we now write

AX)=7"1(1) c 2(X)

for the associated polyhedral complex.

In particular, this discussion applies to the logarithmic scheme X, and log-
arithmically smooth morphism Xy — by from the main theorem in this paper,
Theorem 1.2. Let (C'/S,p, f) be a stable log map to Xy with S = Spec(Q — k)
a log point as in 2.5.2, but now coming with a map to by. Let mg : Q¥ — N be
the tropicalization of S — by. Then the family of tropical maps X(X) — (X))
over Q¥ carries the same information as its restriction to the fiber over 1 € Rx,
a family of maps from metric graphs to A(X) parameterized by the polyhedron
5 (1) C QY.

The transition from cone complexes to polyhedral complexes provides the link
to more traditional tropical language. In the remainder of this paper we use cone
complexes for most of the general results and polyhedral complexes for explicit
computations. With regards to using both cones and polyhedra as parameter
spaces for families of tropical maps, note that there is no conflict of language:
A family of tropical maps to X(X) over a cone o can be viewed as a family
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of maps of metric graphs to ¥(X,) interpreted as a polyhedral complex, now
parameterized by o as a polyhedron.®

As a matter of notation, we indicate the transition from cone complexes to
polyhedral complexes by overlining. Thus a family of tropical maps h : ' —
¥(Xo) over a cone o with a map mg : 0 — R induces the family of tropical
maps

(2.24) h:T — X(X)=A(X)
over the polyhedron & = 7g'(1).

2.5.4. Basic maps and tropical universal families. Basicness of a stable logarith-
mic map (C/S,p, f) over a logarithmic point can then be recast as follows.

Proposition 2.28. Let (C/S, p, f) be a stable logarithmic map over a logarithmic
point S = Spec(Q) — k) and 7 its combinatorial type (Definition 2.13). Then
(C/S,p, f) is basic if and only if the family of tropical maps in Proposition 2.26
is universal among families of tropical maps to (X)) of type T.

Proof. The definition of the dual of the basic monoid @V precisely encodes the
data of a family of tropical maps to 3(X) over o = Rx¢ of type 7 (Definition 2.23).
Indeed, let G¢ be the dual intersection graph of C' from §2.3.6, with vertices v,,
edges E, and legs L,. Then a tuple ((V;),, (€q)q) € Int(Qy) specifies a family of
tropical maps
h:T(G,l) — X(X)

over Rs( of the given type, by defining ¢(E,) = e, and h|,, by mapping 1 €
R>o = wy, to V,, € 3(X). The type also determines h on each leg L,. It is shown
in [GS1, Prop. 1.9] that if one such tropical map to 3(X) of a certain type exists
then there exists one over @y ; moreover, any other tropical map of the same type,
say over o € Cones, is obtained from this one by pull-back via a homomorphism

o— QY. '

Remark 2.29. Note that if S is not a log point, the diagram (2.16) still exists,
but the fibres of ¥(7) may not be the expected ones. In particular, if s is a
geometric point of S, there is a functorial diagram

%(C5) —— X(C)

|

2(5) — 2(8)

but this diagram need not be Cartesian due to monodromy in the family S. For
example, it is easy to imagine a situation where C has two irreducible components
and two nodes for every geometric point s, but the nodal locus of C' — S is

61t is worthwhile pointing out that the transition from polyhedral complexes to cone com-
plexes can be subtle [BS]. This is not an issue here since we always have an underlying descrip-
tion in terms of cone complexes.
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irreducible, as there is monodromy interchanging the two nodes. Then a fibre of
X (C) — X(5) may consist of two vertices joined by a single edge, while a fibre of
¥ (C5) — X(8) will have two vertices joined by two edges. Similarly, there may be
monodromy interchanging irreducible components, hence a fibre of X(C') — %(5)
may have fewer vertices than C; has irreducible components. This issue can be
resolved by redefining moduli of tropical curves as stacks, following | ].

2.5.5. Decorated tropical maps from stable logarithmic maps. In the situation of
Proposition 2.26, the tropical map h : 3(C) — 3(X) comes with the natural
decoration

(2.25) A:V(G) — Hy (X), v+ [f(C(v))].

Here C'(v) C C is the irreducible component corresponding to the vertex v and
[f(C(v))] is the class of f(C(v)) in Hy (X). The decoration by curve classes is
compatible with the contraction morphisms of decorated graphs (Definition 2.24)
defined by generization:

Lemma 2.30. Let (C'/S,p, f) be a stable logarithmic map to X over some loga-
rithmic scheme S and (75, As) with 7s = (G35, gs, 05, u;z) its decorated type at the
geometric point § — S according to Definition 2.23 and (2.25). Then if 5,8 — S
are two geometric points with 5 a generization of §, the induced map

(Tg/’ Ag/) _> <7-§7 A.g)
is a contraction morphism (Definition 2.24).

Proof. |51, Lem. 1.11] says that 79 — 75 is a contraction morphism. To check
the statement on the curve classes, recall that the preimage of v € G; in G~
consists of those vertices v € Gy with Cy(v') contained in the closure of Cj(v).
Since this closure defines a flat family of curves, invariance of classes in Hy (X)
in flat families then implies

[F(Cs()] =D [f(Co ()],

v/

as claimed. 'y

2.6. Stacks of stable logarithmic maps marked by tropical types. We
now put ourselves in the situation of the main result in this paper, Theorem 1.2,
and assume Xy — by is logarithmically smooth and X is simple. In particular,
curve classes are understood to take values in Hy (Xj).

Similar to M(G, g), we can now define stacks of stable logarithmic maps to X,
over by with restricted decorated types of tropicalizations.

Definition 2.31. Let 7 = (G,g,0,u,A) = (7, A) be the decorated type of a
tropical map as defined in Definition 2.23. A marking by T of a stable logarithmic
map (C/S,p, f) to Xy over a logarithmic base scheme S over b is the following
data:
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(1) An isomorphism of C'/S with a (G, g)-marked pre-stable curve (2.12).

(2) The restriction of f to the closed subscheme Z C C' (a subcurve or nodal
or punctured section of C') defined by =z € V(G) U E(G) U L(G) factors
through X5,y C Xo.

(3) For each geometric point § — S with decorated type 75 = (G5, s, 05, Us, As)
of (C/S,p, f), the morphism (Gs,g5) — (G,g) of decorated graphs from
(1) defines a morphism

/7\:§ = (Tg, Ag) —d ? = (T, A)

of decorated types of tropical maps. In particular, there is an associated
localization map
Xrrs @ Qrg — Qr
of the corresponding basic monoids.
(4) In the situation of (3), the preimage Kz ; C Mg of @, \ {0} under the
composition

i X775
MS,§ — MS,§ = QTg — QT

maps to 0 under the structure morphism Mg; — Ogs.

Remark 2.32. Definition 2.31 calls for some explanations. The isomorphism in
(1) just identifies a contraction of the dual intersection graph of each geometric
fiber of C — S with a fixed genus-decorated graph (G, g), in a way compatible
with generization. Then (2) and (3) ask that the decorated graphs associated to
geometric fibers of the stable log map (C/S, p, f) are refinements of the decorated
type (7, A). Condition (4) is maybe the least obvious. It effectively takes the
reduction of the moduli space in unobstructed situations, or on a virtual level later
on. We could, in fact, omit Condition (4) at the expense of taking reductions in
some formulas below, e.g. in M(Ap, 7) in Corollary 3.8.

Given a decorated type T = (1, A) of tropical maps, we define
(2.26) M (Xo,T)

as the stack with objects over a scheme S basic stable logarithmic maps (C/S, p, f)
over by marked by the decorated type 7. We emphasize .#(X,,7) is a moduli
space of stable maps over by, but we suppress /by in the notation for simplicity.
Similarly, we henceforth write .# (X, ) instead of .# (X /bo, ).

For later use let us also show here that the monoid ideals in Definition 2.31,(4)
define a coherent sheaf of ideals [Og, Prop. I1.2.6.1] in M _4(x, 7).

Lemma 2.33. For each decorated type T of tropical maps, there exists a unique
coherent sheaf of ideals Kz C M _y(x,7 with stalks Kz5 as defined in Defini-
tion 2.31,(4).

Proof. The statement follows by [Og, Prop. 11.2.6.1,(2)] since K5 is defined by a
monoid ideal in a chart. )
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Let 5= (g, A, up,,...,up ) with g = |g|, A= |A|, k = |L(G)|.

Proposition 2.34. (1) The stack A (Xo,T) is a proper Deligne-Mumford
stack.

(2) The morphism M (Xo,T) — M (X, B) is finite and unramified.
Proof. By (1) in Definition 2.31, we have a morphism of stacks
%(X(]??) — %<X075) XM M(Gag) = %(X()aﬁ) Xon m(G7g)

Condition (2) in Definition 2.31 defines a closed substack of the fibre product on
the right-hand side. Prescribing the contact orders w,,u, at p € L(G), ¢ € E(G)
and the curve classes for the subcurves of C' defined by each v € V(G) imposes
locally constant conditions, hence select a union of connected components of
this closed substack. Thus .# (X, 7) is isomorphic to a closed substack of the
algebraic stack . (X, 5) xmM(G, g), proving (1). The second statement follows
since M(G, g) — M is finite and unramified (Proposition 2.18). [ )

3. FROM TORIC DECOMPOSITION TO VIRTUAL DECOMPOSITION

Throughout this section, denote by by = (Speck, k*®N) the standard log point
over k. We also fix a logarithmically smooth and projective morphism Xy, — b
of log schemes.

3.1. Decomposition in the log smooth case. The decomposition formula is
based on the following simple fact in toric geometry. Let @ : W — Al be a
morphism of toric varieties with ¥, : Xy, — X1 the corresponding morphism of
fans, defined by a homomorphism N — Ny: of co-character lattices. We identify
Yw with the cone complex ¥(W) associated to W with its toric log structure,
by forgetting the embedding of |y | into Ng, and similarly for ¥,:. For a ray
v € Xw denote by D, C W the corresponding toric divisor and by m, € N the
generator of the image of

Z~N, 23 Ny ~ 7.
Proposition 3.1. We have the following equality of Weil divisors on W :

({0 =Y m,D,.

Proof. The map (7)) : N — 7Z defines a monomial function 2™, m € Hom(N, Z)
on W. It is standard that the order of vanishing of 2™ on the divisor D, is the
value of m on the generator of v N N,. But this value is precisely m,, giving the
result. [

Proposition 3.1 can equivalently be stated as a decomposition of the funda-
mental class of Wy = 77(0). Our decomposition theorem is based on the gen-
eralization of this statement to a log smooth morphism W, — by of logarithmic
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algebraic stacks locally of finite type. Note first that in this situation, Wy is lo-
cally pure-dimensional by log smoothness over by. Thus it makes sense to define
the fundamental cycle [Wy] as locally finite formal linear combination of locally
top-dimensional integral substacks.

Next, to define the multiplicities m.,, consider the morphism of generalized cone
complexes (W) — X(by) associated to W — by as defined after Proposition 2.2.
We have X(by) ~ R with the lattice Ny, ~ Z. Working in charts, there is still
a correspondence between rays v € X(Wy) and integral substacks W, C Wy, now
locally of top dimension. Note that if o € ¥(WW,) and v — ¢ is a morphism in
¥(X), then the pull-back of W, to a chart for W, at a geometric point of the
stratum Wy (o) is contained in the union of all toric divisors for rays v/ C o with
v >~ " in ¥(Wy). Hence W, may not be locally irreducible if 3(Wy) has cones
with self-identifications. But since we work with cone complexes with reduced
presentations, such rays ,~" C o define the same one-dimensional cone in X(Wj).
These rays may be identified by self-maps of o or simply correspond to several
maps 0" — v" defined by generization in My, .

For aray v with integral lattice IV, we have yN N, ~ N, and the homomorphism
Z ~ N~ — Ny, >~ Z is multiplication by an integer m,,.

For the following statement recall also the notion of idealized log structures
and idealized log smoothness from [Og, II1.1.3 and IV.3]. In a nutshell, this
notion is designed to treat strata of logarithmic spaces, by adding sheaves of
ideals L C M x defining these strata as part of the data.

Corollary 3.2. Let m: Wy — by be a log smooth morphism locally of finite type
from a logarithmic algebraic stack to the standard log point by. Denote by [W]
the fundamental cycle of Wy, well-defined since Wy is locally pure-dimensional.
Then the following formula holds

[Wo] = Z m[W,]

in the group of locally top-dimensional algebraic cycles on Wy [I<r]. The sum runs
over the one-dimensional cones in the generalized cone complex X(Wy) of W.
Moreover, W, 1is idealized log smooth over by for some sheaf of ideals I, C

My

~

Proof. The claimed equality of cycles can be checked on a cover by smooth charts.
We may thus assume that W, is covered by a neat chart, that is, that we have a
commutative diagram
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where (1) h is an étale surjection, (2) Speck — Al is the inclusion of the origin
and g : U — Speck x1 V = m;1(0) is smooth, (3) V is the affine toric variety
Speck[oVNN*] defined by (o, N) € %(Wy) and my : V — Al is a toric morphism.
Thus we have

W [Wo] = [U] = g"([Va])

via flat pull-back, where Vy = 771(0). Now Proposition 3.1 describes [V;] in terms
of the toric divisors D, C V defined by the rays v C 0. Thus

(3.1) ol = 3 myg (D),
v'Co

with m., the generator of the image of Z ~ N,, — Ny = Z. Each such v
defines a one-dimensional cone v € X(Wy) with m, = m.. Moreover, for two
different rays 4/,+” C o, the geometric generic points of D/, D,» map to the
same geometric generic point of W, if and only if there exists a one-dimensional
cone v € X(Wy) and morphisms v — 7" and v — ~”. Since X(z) is the colimit of
such o appearing in neat charts of W, the equality (3.1) in a chart verifies the
claimed equation of cycles.

The claim on idealized log smoothness of W, follows from the local description
as a union of toric strata and the criteria in [Og, IV.3.1.21 and 1V.3.1.22]. [ )

3.2. Logarithmic maps to the relative Artin fan X;. To lift the decom-
position result Corollary 3.2 to the moduli space # (X, ) = #(Xo/bo, 3) of
stable logarithmic maps in Theorem 1.2, we factor the map .#(X,, 3) — My,
forgetting the logarithmic map to X, via an intermediate log stack that is log
étale over My, = Mp xp by. This intermediate log stack is the stack M(Ap, ')
of basic logarithmic maps to the relative Artin fan Xy = by xg X of X, over by
(Definition 2.9). Since curve classes do not make sense on Xp, we have no stability

in M(Xo, ') and

6/ = (gvupn s vupk)
only keeps the genus and the contact orders at the marked points from g =
(g, A, up,,...,up, ). The point is that M(AXp, 5') is pure-dimensional, has unob-
structed deformations and captures the tropical geometry of the situation, while

the decomposition according to Corollary 3.2 has a simple tropical interpretation
on this stack.

Proposition 3.3. (1) The stack of basic logarithmic maps M(Xo, 5') to Xy
over by 1s algebraic.
(2) The morphism IM(Xy, 5) — My, forgetting the logarithmic map to Xy is
strict and étale.

Proof. Let €,, denote the universal curve over 9,,. By openness of basicness,
M(Xo, 5) is an open substack of Hommbo(%o,ﬁﬁbo Xpo Xo). This Hom-stack is
algebraic by | , Cor. 1.1.1], proving (1).
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For (2), the morphism MM(AXy, 5/) — My, is strict by definition. Since Ay — Ap
is logarithmically étale, it follows that A} is logarithmically étale over by. Now
[AW, Prop. 3.2] implies that M(Xy, 8') — M, is logarithmically étale. [

Note that Proposition 3.3,(2) also shows that 9t(Xy, §') is log smooth over by,
because My, is, and that the obstruction theory of .Z (X, 3) over My, induces
an obstruction theory for .Z (X, ) over M(Xy, f').

Remark 3.4. Implicit in the discussion in Proposition 2.28 applied with X =
Speck and in Remark 2.29 is the fact that log-smoothness of M can be used to
relate the moduli space of abstract tropical curves to the tropicalization of M,
properly interpreted as a stacky cone complex | | — see precise statement
in [U]3, Theorem 3.14]. In view of Proposition 3.3,(2) we can now similarly relate
the moduli space of tropical maps to 3(X,) = X(A)) of class 5’ to the stacky
cone complex associated to M(Xy, 5). While we do not develop the details of
this picture here, it should be clear that this interpretation is at the basis of many
arguments in this paper.

We also need the 7-marked refinements (X, 7) of M(Ay, f’), similar to
M (Xo,T) for M (Xo, ). Omitting the curve class, 7 is now a type of tropical
map to 3(Xj) of total genus g and with & legs (Definition 2.23,(1)). Then

m(Xo,T)

is defined as in Definition 2.31 with &} replacing X, and disregarding the curve
classes in Condition (3). Analogous to K5 for .# (X, T) constructed in Lemma 2.33,
we have a sheaf of ideals

(3.2) K, C MSD?(XO,T)-
We first observe the following analogue of Proposition 2.34.

Proposition 3.5. (1) The stack M(Xy, T) is algebraic.
(2) The morphism t, : M(Xo, 7) = M(Xp, ') forgetting the marking by T is
finite and unramified.

Proof. The proof is identical to the proof of Proposition 2.34. [

We are now in position to apply Corollary 3.2 to MM(AXy, 8') — by. The key is
the description of the components W, in this corollary in terms of rigid tropical
maps.

Definition 3.6. A family of tropical maps h : I' — X(Xj) of type 7 is rigid if
the corresponding basic monoid Q(7) from Definition 2.23,(3) is isomorphic to N.

In the language of polyhedral complexes, being rigid is equivalent to saying
that the restriction h : T' — A(X) of h to the fiber over 1 € Rsq = X(by) cannot
be deformed as a map of generalized polyhedral complexes. In other words, as
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a traditional tropical map, any deformation of h keeping the combinatorial data
(i.e. of constant type) is trivial.

The following decomposition of the Artin stack 9(Xp, 8') according to rigid
tropical curves is the main result of this section.

Theorem 3.7. (Virtual Decomposition.) For each irreducible component W,
of M(Xo, ') according to Corollary 3.2 there exists a unique type T of a rigid
tropical map such that W, is an irreducible component of the image of the finite
map t 2 M(Xo, 7) = M(AXp, B') from Proposition 3.5.

In particular, M(Xy, 7) with the sheaf of ideals ICr C May(x,,r) from (3.2) is
1dealized

Proof. The logarithmic stack 9M(Ap, f') is logarithmically smooth over by by
Proposition 3.3 and since 9, /by is logarithmically smooth. Up to a smooth
factor, the map

mt(XQ, ﬁ/) — bg

is locally given by base change to the central fibre of the map of toric varieties
Speck[@] — Speck|N] with @ the basic monoid of a tropical map to (X)) of
some type 7" and N — @ induced by the structure map

S(7) : B(X) — X(B) = R,

Locally the subschemes W, are defined by the toric divisors in Speck|Q)], which
are in bijection to extremal rays in Q. Each extremal ray defines a rigid tropical
map, say of type 7. Any localization map of the associated basic monoids ), —
(), = Nis the contraction of the codimension one face dual to the one-dimensional
cone in )Y, defined by 7 By the definition of K, the monoid ideal defining the
corresponding toric prime divisor agrees with the ideal in )+ given by K. Since
this description is compatible with the restriction of charts, the first statement
follows.

Corollary 3.2 also shows that W, — by is idealized log-smooth. The corre-
sponding sheaf of ideals has just been checked to agree with KC; locally along W.,.
Since M(Xy, B) — by is log étale, W, — by is even idealized log étale. '

Corollary 3.8. We have the following equality of top-dimensional algebraic cycles
in the pure-dimensional algebraic stack M(Xy, B'):

[g‘n(‘)((b /8/>] = Z my - [LT<9‘R(XOJ T)):| .
The sum is over all types T of rigid tropical maps to ¥(X) and m, € N~ {0} is

the projection of the generator of the dual basic monoid QY ~ N to ¥(by) = Rxg.

Proof. The statement merely spells out the definition of the multiplicities m, in
Corollary 3.2. 'y
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3.3. Proof of the Decomposition Theorem. To prove the Main Theorem,
Theorem 1.2, it remains to apply the virtual bivariant machinery developed by
Costello [Co] and Manolache [\Va]. We need two lemmas.

Lemma 3.9. The degree of the finite map
L M(Xo, 7) — 1 (M(Xo, 7)) C M(X, B)
from Proposition 3.5,(2) over any irreducible component of the image is | Aut(7)|.

Proof. The description of the smooth cover of 9(Xp, ') given in the proof of
Theorem 3.7 shows that each geometric generic point Spec K — I( Xy, f’) of
Ly (DJT(XO, 7')) is a basic logarithmic map to &} over by, defined over K and with
basic monoid Q(7) = N and tropical type isomorphic to 7. Thus a geometric
generic point of M(AXp, 7) is a basic logarithmic map (C/S,p, f) to Xy over a
standard logarithmic point S = Spec(N — K). Writing 7 = (G, g, o, u), the fibre
of v, over (C'/S,p, f) is an isomorphism of the dual intersection graph of C' with
G identifying g, o, u with the genera, strata and contact orders of (C'/S,p, f).
The statement now follows by observing that the automorphism group Aut(r)
of the decorated graph 7 acts simply transitively on this set of isomorphisms of
graphs. [

As an intermediate object we define the stack of basic stable logarithmic maps
marked by a tropical type T by

(3.3) M(Xo, B) := M(Xo, T) Xameay,pr) A (Xo, ).

Compared to .#(Xy,T), this stack keeps the total curve class A from 5 =
(9, A, up,, ..., up ), but drops the restriction on the distribution of A to the sub-
curves given by the vertices.

For the following statement recall that .# (X, 7) is the stack defined in (2.26)
of basic stable log maps over by marked by the decorated type 7 and

j7~' : %<X07/7\:> — %(X(]?B)
is the morphism forgetting the marking.

Lemma 3.10. Let 7 = (G, g,0,u) be the type of a tropical map to X(Xo) and
B=1(9,A up,,...,up,). Then we have the decomposition

M(Xo,B) =[] # (X0, 7).

where the sum is over all A : V(G) — Hy (Xo) with |A| = A and T = (1, A).

Proof. The result follows since the map A : V(G) — Hy (X;) of curve classes is
locally constant on ., (X, 3). [

Before stating the Main Theorem, we note that .#,(Xy, 8) inherits a perfect
obstruction theory” &, over MM(Xy, 7) from the perfect obstruction theory & of

¢ is the gothic letter “E”.
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A (Xo, ) over M(Xp, 5) by base change by ¢, : M(Xy, 7) — M( Xy, 5'). Restrict-
ing to the open substacks .# (X, 7) C #.(Xo, ) in Lemma 3.10, we also have
an obstruction theory 5 on .# (X, 7). If 7 is rigid, 9% (Xp, 7) is pure-dimensional
of the same dimension as M(AXp, f'). Thus we have virtual fundamental classes

[«ﬂ(XO, 5)]virt’ [%T(XO’ 6>]virt’ [ﬁ(XO’a:)]virt
on the moduli spaces .Z (X, ), #-(Xo, ) and 4 (X0, T).
Here is our main theorem, stated as Theorem 1.2 in the introduction.

Theorem 3.11. For any B = (g, A, up,, ..., u,,) we have the equality

[%(XOaﬁ)]Virt = Z |Aum—tz7')|j?*[%(Xo’ )]Vlrt
Fo(mA)

in the Chow group of the underlying stack #(Xo, 8) with coefficients in Q. The
sum 1s over all isomorphism classes of decorated types of rigid tropical maps
7= (G,g,0,u,A) = (1,A) of total genus |g| = g, total curve class |A| = A and
|L(G)| = k.

Proof. By Corollary 3.8 and Lemma 3.9 we can write the fundamental class of

M(AXp, f') as
(3.4) M(X,, Z | A LT* M(Xo, 7)].

For each 7, compatibility of virtual pull—back with push-forward [Ma, Thm. 4.1,(3)]
applied to the cartesian square

Mo (X0, 8) = [ (X0, (7. A)) —" (X, 5)

{ * F

M( Xy, 7) - > M(X, B')

yields
Petrs[M(Xo, T)] = Jrode, [ Xo, 7)] = jr[M:(Xo, B)]"™.
Moreover, from Lemma 3.10 and the definition of & by restriction of &,, it holds

(X, B = ST (Xo, (r, A))]™

A
Plugging the last two equalities into (3 4) now gives the desired result:

[%(X()?ﬁ)]wrt = [m(‘)(()? Z ’A t( )‘pGLT*[m(XO’ )]

=2Mtjw<mmm

B 7'ZA)mjﬂ<[%()(07 )]Vlr
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4. LOGARITHMIC MODIFICATIONS AND TRANSVERSAL MAPS

There is a general strategy which is often useful for constructing stable log-
arithmic maps. This is the most powerful tool we have at our disposal at the
moment; eventually, the hope is that gluing technology will replace this construc-
tion. However, we expect it to be generally useful, as illustrated by the examples
in the next section.

Suppose we wish to construct a stable logarithmic map to X/B, and as usual X
logarithmically smooth with a Zariski logarithmic structure over one-dimensional
B with logarithmic structure induced by by € B. Suppose further we wish the
stable logarithmic map to map into the fibre Xy over by. Generalizing a method
introduced in [NS], this construction is accomplished by the following two-step
process: (1) Apply a logarithmic modification® of X to reduce to a transverse
situation. (2) Study logarithmic enhancements in the transverse case.

4.1. Logarithmic modifications. First, we will choose a logarithmic modifica-
tion h : X — X. The modification h is chosen to accommodate a situation at
hand — in our applications the datum of a rigid tropical map.

Given a modification h, [A\W] constructed a morphism . (h) : .#(X/B) —
A (X/B) of moduli stacks of basic stable logarithmic maps, satisfying

M (h) (A (X B)™) = [4(X/B)™.

The construction of .Z(h) is as follows. Given a stable logarithmic map i
C'/S — X/B, one obtains on the level of schemes the stabilization of ho f, i.e.,

a factorization of h o f given by
C/S*C/S— X

such that C'/S — X is a stable map. One gives C the logarithmic structure
M = g. Mg, and with this logarithmic structure one obtains a factorization
of ho f through C at the level of log schemes, giving f : C'/S — X/B. Note
that this is one of the rare occasions where push-forward of logarithmic structures
behaves well. If f was basic, there is no expectation that f is basic, but by | ,
Prop. 1.22] there is a unique basic map with the same underlying stable map
of schemes such that the above constructed f is obtained by pull-back from the
basic map. This yields the map .Z (h).

4.2. Transverse maps, logarithmic enhancements, and strata. Second, if
we have a stable map to X, which interacts sufficiently well with the strata, we
will compute in Theorem 4.13 the number of log enhancements of this curve.
This generalizes a key argument of Nishinou and Siebert in [NS]. There are two
differences: our degeneration X — B is only logarithmically smooth and not
necessarily toric; and the fibre X is not required to be reduced. Not requiring
X to be reduced makes the situation more complex and perhaps explains why it

8A logarithmic modification is a proper, birational and log étale morphism [[K2].
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was avoided in the past; we hope our treatment here will find further uses. The
precise meaning of “interacting well with logarithmic strata” is as follows:

Definition 4.1 (Transverse maps and constrained points). Let X — B be a
logarithmically smooth morphism over B one-dimensional carrying the divisorial
logarithmic structure by € B as usual. Let X([)d] denote the union of the codimen-
sion d logarithmic strata of Xo. Suppose f : C'//Speck — X, is a stable map.
We say that f is a transverse map if the image of f is contained in X(go} U X([)l],

and i_l(X(gl]) is a finite set.
We call a node g € C' a constrained node if f(q) € X([)l] and otherwise it is a free

node. Similarly a marked point x € C' with f(z) € X([)H is a constrained marking,
otherwise it is a free marking.

The term “transverse map” is shorthand for “a map meeting strata in a loga-
rithmically transverse way”.

Cones and strata in the transverse setting. For the rest of this section strata
of higher codimension are irrelevant and we henceforth assume X, = Xé‘” U X([)l].
Then (X)) is a purely two-dimensional cone complex, with rays in bijection
with the irreducible components of X,. There are two types of two-dimensional
cones: first, there is one cone for each component of the double locus X(gl}; second,
there is one cone for each other component of Xél], forming a smoth divisor in
the regular locus of Xj.

Logarithmic enhancement of a map. We codify what it means to take a

stable map and endow it with a logarithmic structure:

Definition 4.2. Let X — B be as above and f : € — X, a stable map. A
logarithmic enhancement f : C — X is a stable log_arithmic map whose underlying
map is f. Two logarithmic enhancements fi, fo are isomorphic enhancements if
there is an isomorphism between f; and f, which is the identity on the underlying
f. Otherwise we say they are non-isomorphic or distinct enhancements.

Discrete invariants in the transverse case.

Notation 4.3. Let [ : C/Speck — X, be a transverse map and x € C a closed

point with f(z) contained in a stratum S C X(g” and let n € C be a generic
point with z € cl(r). We now assoicate a number of invariants to the pair (1, z),
all related to the rank two toric monoid P, = A_AX,f(z)- Denote by m,, € P,
the generator of the kernel of the localization map P, — My, sy =~ N and by
m, , € P, the generator of the other extremal ray. Denote by Ny Ny € P
the dual generators of the extremal rays of P, satisfying (n,,,m,,) = 0. A
third distinguished element p, € P, is defined by pulling back the generator of
['(B, M) = N under the log morphism X — B.



DECOMPOSITION OF DEGENERATE GROMOV-WITTEN INVARIANTS 35

For the following discussion denote by ¢(m) the integral length of an element
m € M ®z Q, that is, for m # 0 the maximum of o € Q¢ with ™! -m € M,
while ¢(0) = 0.

Definition 4.4. (1) The index of € C or of the stratum S C X([)l] con-

taining f(7) is the index of the sublattices in P or in P; generated by
/
7,27

Ind(S) = Ind, = (nya, ™y ) = (1)) 4, My ).

n?a: ’

My 25 m;m and n,, ,,n, ., respectively, that is,

For a constrained node x = ¢, the length A\(q) = A(S) € Q is the integral

length of the interval p;l(l) when viewing p, as a map Py ®7 Q — Q.
(2) If n € C is a generic point with € cl(n), denote by w,, € N~ {0}

the local intersection number of f i) at & with S inside the irreducible

component of X, containing f(n).
/

When the choice of z and 7 is understood we write my = my ., ma = m,

!
N1 = Nyey N2 =Ny 4, pr € Py and w; = wy 4.
Relations between discrete invariants.

Lemma 4.5. In the situation of Definition j./ denote by py the multiplicity of
the irreducible component of X, containing f(n). If the stratum S C X([]l] s
contained in two irreducible components of X_O, denote by o the multiplicity of
the other component and otherwise define oy = 0.

{(pq) - Indg
M1

In particular, if Xo is reduced then p; € {0,1} for all i and Ind, -p, = my + meo,
M) = £lp,) - Ind,.

Proof. For (1) note that since n; € P is a primitive vector with (n;, m;) = 0, the
pairing with n; computes the integral distance from the face N - m; of P,. Now
étale locally, the log smooth morphism X — B is the composition of a smooth
map with Speck[P,] — Speck]t] defined by sending ¢ to 2#* € k[P,]. Hence the
multiplicity u; equals the integral distance of p, to N - m;, that is, the image of

(1) pi = (i, pe). (2) Indgpy = pomy +pma. (3) AMg) =

p. under the quotient map P, — P,/Nm; ~ N.

For (2), since the sublattice of P& generated by my, ms is of index Ind,, there
are aj,ay € Z with Ind, -p, = aymy + agms. Pairing with n; and using (1) and
the definition of Ind, yields

Ind, -p; = Ind, -(nq, pe) = az(ng, my) = ay - Ind, .
This shows as = py, and similarly a; = us, yielding the claim.
To prove (3) note that (1) implies
(a1, pg) = Ptz = (p1n2, Pq)-

Hence p, : Py — N maps both pany and ping to pyps. Since A(q) is defined as
the integral length of p,*(1), we see that f1/1 - A(¢) equals the integral length of
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fany — pme. Choosing an isomorphism of P, with
Z° N (Rso - (1,0) + Rxg - (1, 5))
with 7, s > 0 pairwise prime and p, mapping to (a,c¢), then
my = (1,0), me=(r,s), m=c¢, pe=as—cr, Ind,=s.

In the dual lattice P; ~ Z* we have n; = (0,1), nog = (s,—7) and pon; —

pine = s - (—c, a) has integral length Ind, ¢(p,). Thus A(q) = Ind, ¢(p,)/p1p2 as
claimed. ®

Necessary conditions for enhancement. As we now show, the data listed
in Definition 4.4 determine the discrete invariant u, € P, at each special point
x € C. Recall that Equation (2.8) characterizing u, implies (ug, p,) = 0. To
fix the sign of u, we use the convention that x; in the defining equation is the
generization map to 7. Similarly, for each marked point p, it holds (u,, p,) = 0
by definition of u,. We now deduce a number of necessary conditions for a
logarithmic enhancement of a transverse stable map to exist.

Proposition 4.6. Let f : C' — X be a logarithmic enhancement of a transverse
stable map f : C — X,. Letn € C be a generic point and x € cl(n). If
flz) € X([)H then following Definition /./ write my = my, 5, Mg =m

J n1 = Nyx,
— _
Ng = Ny 4s Px € P, and wy = wy 4.

/
0,z
I) (Node) If x = q is a constrained nodal point of C, then the second generic

point ' of C with x € cl(n') maps to a different irreducible component of X than
n. Moreover, with wy = w,y , the following holds:

1
(1) Ug = _Indq - (wing — wany).

(2) ug(m) = wi, ug(me) = —w,.
(3) pws = pows.
) Ly,

(4) The integral length of u, equals {(u,) = W = "

If v = q is a free node then u, = 0.
1) (Marked point) If x is a smooth point of C, then f(x) is contained in only
one irreducible component of Xy. Moreover, if x = p is a marked point then
u, = 0 wn the free case, while in the constrained case the following holds.

(1) wy is a multiple of Ind,,.

w1y
(2) Up = Eng.
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Proof. Setup for (I). Let C' be defined over the log point S = Spec(Q — k). For
any generic point n € C, there is a commutative square
—b

_ 7 _
N ~ Pn = MXOvi(T/) — Mcm

I |

N ~ WB,;,O — Q

Free node. In the case of a free node, both generic points n,n" € C' containing
q in their closure map to the same irreducible component of X,. Thus u, = 0 by
the defining equation (2.8).

Image components of constrained node. Let now x = ¢ be a constrained node.
Since the generization map x, : P, — P, is a localization of fine monoids there

exists m € P, ~ {0} with x,(m) = 0. Then also 72(771) is a non-zero element
in Mc,, with vanishing generization at 7. But M has no local section with
isolated support at ¢. Hence x,y(m) # 0, which implies that the two branches of
C at ¢ map to different irreducible components of Xj.

Computations for a constrained node. (1) follows from (2) by pairing both
sides with m;, mo since these elements generate P, ®z Q. We now prove (2).
Since u, is preserved under base-change, we may assume C' is defined over the
standard log point Spec(N — k). Then Mg, ~ S, for some e € N\ {0} with
S, the submonoid of Z? generated by (e,0), (0,¢), (1,1), see e.g. [S1, §1.3]. The
generator 1 € N of the standard log point maps to (1, 1), while a chart at ¢ maps
(e,0) to a function restricting to a coordinate on one of the two branches of C, say
on cl(n), while vanishing on the other. Similarly, (0,e) restricts to a coordinate
on cl(n'). By transversality we conclude

Fomi) = wy - (e,0),  Fo(ma) = wy - (0,¢).

Equation (2.8) defining u, says

—b —b
(4.1) X209 fg—x10fg =14 e,

with x; : S. — N the generization maps. With our presentation, y; and x»
are induced by the projections S, C Z? — Z to the second and first factors,
respectively. Hence

(X2 072 - X1 O?Z)(”h) = Wi-€
(x2oTy=xi0f)(ma) = —ws-e,
showing (2).
(3) is obtained by evaluating (1) on p,:
0= Indq'<uq7pq> = w1<n2,Pq> - wz(”bpq> = Wiz — Wal1.

For (4) observe from (1) that Ind, -u, is the vector connecting the extremal
elements won; and wine of qu . Thus Ind, -¢(u,) equals the integral length of
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p;l(h) for h = (wing, p,) = powr = pws = (wang, py). This length equals
h - A(q), yielding the stated formula. This finishes the proof of (I).

Marked point. Turning to (II), let & € C be a smooth point with f(z) € X"
and again assume without restriction C' is defined over the standard lgg point. If
5y € Mx f() is a lift of m;, then by transversality, f2(sy) € M, maps under
the structure homomorphism M¢, = O¢, to 2**, with z a local coordinate of
C at . Thus x = p is a marked point, qu = N? and

TZ:PP—>N2

maps my to (0,w;). Here we are taking the morphism C' — Spec(N — k) to
be defined by N — N2, 1+ (1,0). Moreover, by compatibility of f) with the

morphism of standard log points that C' and X, are defined over, f_pb(pp) = (b,0)

for some b € N\ {0}. Thus by Lemma 4.5,(2), p, = Thd; M2 Spans an extremal

ray of P,. In particular, f(p) is contained in only one irreducible component of

Xo and uy(mz) = 0. Thus

- Ind,,

w1

up(ml) = W1 = m
P

(ng,mi1), up(mg) =0 (N2, ma).

This shows (2), which implies (1) since ny is a primitive vector.
Finally, at a free marked point p € C, commutativity over the standard log
point again readily implies u, = 0. [ Y

Remark 4.7. If X is reduced, then in Proposition 4.6,(I) there is a well-defined
contact order w = w; = wsy of f with the double locus, and the formulas simplify

to
w

Ya = Ind,

(ne —m1), €(ug) =wl(py).

Transverse pre-logarithmic maps. Summarizing the necessary conditions of
Proposition 4.6, we are led to the following definition.

Definition 4.8. Let X — B be as above, and let f : C'/Speck — X, be a
transverse map. We say f is a transverse pre-logarithmic map if any z € C
with f(x) € X([)l] is a special point and if in the notation of Proposition 4.6 the
follow_ing holds.

(I) (Constrained node) If x = ¢ is a constrained node then the two branches of
C at ¢ map to different irreducible components of Xg. In addition, puyws = pswy
and the reduced branching order
(4.2) W, = —l(p,), i=1,2

i

is an integer.

(IT) (Constrained marking) If z = p is a constrained marking then f(z) is a
smooth point of X, and w;/Ind, € N.
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Note that if a logarithmic enhancement of f exists, then by Proposition 4.6

the reduced branching order w, agrees with ¢(u,). Note also that in the case of
reduced Xy, we have ¢(p,) =1 and all y; = 1, and hence W, = w; = ws.

Definition 4.9 (Base order). For a transverse pre-logarithmic map f : C// Speck —
X, define its base order b € N to be the least common multiple of the?ollowmg nat-
ural numbers: (1) all multiplicities of irreducible components of X intersecting
f(C) and (2) for each constrained node q € C the quotient jiywsy/ ged(Indy, piws),
notation as in Proposition J.0.

Theorem 4.10. Let X — B be as above, and let f : C/Speck — X, be a
transverse map. Suppose that there is an enhancement of [ to a basic stable
logarithmic map f: C/S — X/B. Then

(1) f is a transverse pre-logarithmic map.
(2) The combinatorial type of f is uniquely determined up to possibly a number
of marked points p with u, = 0, and the basic monoid Q) is

Q=Ne P N
q a free node
(3) The map S = Spec(Q — k) — B induces the map My, = N — Q given
by 1+ (b,0,...,0), where the integer b € N is the base order of f.

Proof. (1) and (2) follow readily from Proposition 4.6. For (3), recall that the
basic monoid @ is dual to the monoid QY C Qy, the latter being the moduli space
of tropical maps h : I' — X(X) of the given combinatorial type, and Q¥ consists
of those tropical maps whose edge lengths are integral and whose vertices map
to integral points of ¥(X).

If n is a generic point of C, denote by p, the multiplicity of the irreducible
component of (Xg)req in Xo containing f(n). Thus the induced map N — P, ~ N
coming from the structure map X — B is multiplication by p,. Write p :
Y(X) — X(B) for the tropicalization of X — B. The restriction of p to the
ray Hom(P,,R>¢) of 3(X) corresponding to the irreducible component of X
containing f(7) is multiplication by s,. Thus given a tropical map A : I' — X(X)
with vertex v, for n € C and b the image of p o h in 3X(B), we see that h(v,) is
integral if and only if p,|b.

The edges of I' corresponding to free nodes have arbitrary length independent
of . But an edge corresponding to a constrained node ¢ must have length

A(q) Ind,
4.3 =b =b )
(4.3) ca (ug) H1W2

This must also be integral for h to represent a point in Q. Thus the map
¥(S) — X(B) must be given by (a, (ag),) +— ba where b is as given in the
statement of the theorem. Dually, we obtain the stated description of the map
S — B. 'y
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4.3. Existence and count of enhancements of transverse pre-logarithmic
maps. We now turn to count the number of logarithmic enhancements of a trans-
verse stable map f : C — X,. Denote by M := f"*Myx, the pull-back log
structure on C and by M?% the corresponding sheaf of monoids in the Zariski
topology, noting that the log structure on X, is assumed to be defined in the
Zariski topology.

The torsor of roots. The count of logarithmic enhancements involves a torsor
F under a sheaf of finite cyclic groups G on a finite topological space encoding
compatible choices of roots of elements occurring in the construction of logarith-
mic enhancements. The following discussion is trivial if X is reduced and can
be skipped by the reader only interested in this case. Given a transverse map
f:C/Speck — X,, the finite topological space consists of the set of constrained
nodes q € C and generic points n € C. As basis for the topology we take the
sets U, = {n} U {q € cl(n)} and U, = {¢} (which is opposite to the topology as a
subset of C). Let p € I'(C, M) be the preimage of a generator py of Mpy,, that
we assume fixed in this subsection. The stalks at a constrained node ¢ € C and
at a generic point n € C' are various roots of the germs p, of p:

Fy = {aq € ./\/lgar ‘ 05(’)‘1) = pq},
F, = {O’n € Mgar ‘ ot = /077}-

We note that any of these sets may be empty, as Example 4.12 below shows. In
such case we do not define a sheaf F and declare [I'(F)| = 0 in what follows.
Otherwise we define the sheaf F as follows. For ¢ € cl(n), a choice o, with
oy = p, determines a unique o, , € F, with restriction to n equal to 05"/ Hea),
Note that by Lemma 4.5,(1) we have 1, /¢(p,) € N. We define the generization
map JF,, — JF, by mapping o, to 0,4 Observe that a different choice of p leads
to an isomorphic sheaf F.

Replacing the elements p, and p, in the definition of F by the element 1, we

obtain a sheaf G of abelian groups, for which F is evidently a torsor.

Global sections of G and F. General theory [SP, Tag 03AH], or direct compu-
tation, implies that the set of global sections I'(F) is a pseudo-torsor for the group
G :=T(G). Here G is computed as the kernel of the sheaf-axiom homomorphism

aa) o TT 2 — T12M0. 01(6),) = (G ™)

neC qeC

Here 7(q),n'(q) are the generic points of the two adjacent branches of a con-
strained node ¢ € C, viewed in the étale topology. The notation implies a chosen
order of branches. Multiplication of o, by ¢, and of ¢, by ¢, describes the natural
action of G =I'(G) on I'(F). Note that if X is reduced then all y; = 1 and G is
the trivial group.
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Lemma 4.11. If T'(F) # 0 the action of G on T'(F) is simply transitive. In
particular, it then holds ’F(}")| = !G’ If the dual intersection graph of C is a
tree or if Xo is reduced then T'(F) # ().

Proof. Simple transitivity is the fact that I'(F) is a pseudo-torsor for G.

If X is reduced then y, =1 for all n and I'(F) = [], F; is non-empty. If C
is rational we can construct a section by inductive extension over the irreducible
components. Indeed, if o, € F, and 7 is the generic point of the next irreducible
component, we can define o, as any p,/{(p,)-th root of the restriction of o, to .
By the definition of F this choice then also defines o for all other ¢’ € cl(n). &

Example 4.12. Here is a simple example with I'(F) = 0, in fact F,, = ) for the
unique point 7 in our space. Let X — B = A! be an elliptically fibred surface
with X, € X a b-fold multiple fibre with smooth reduction. Endow X and B
with the divisorial log structures for the divisors X, C X and {0} C B. Then the
generator p, € Mpo maps to b times the generator & € I'(X,, Mx,) = N. The
preimage of o under M yyea — Hxéed is the torsor with associated line bundle

the conormal bundle N)V( This conormal bundle is not trivial, but has order

red|X'
0
b in Pic(XF?). Thus there exists no section o, with Jf; extending to a global

section p of My, lifting p=05-0.

The following statement generalizes and gives a more structural proof of [N,
Prop. 7.1], which treated a special case with reduced central fibre.

Theorem 4.13. Suppose given X — B as above, and let

f : (Q7p17"‘7pn)/speCk —>XO

be a transverse pre-logarithmic map. Suppose further that the marked points {p;}
include all points of f_l(X([]”) mapping to non-singular points of (Xo)red-

Then there exists an enhancement of f to a basic stable logarithmic map if
and only if T(F) # 0, in which case the number of pairwise non-isomorphic
enhancements is

G
|—b’qu.
q

Here G is as in (4.4), the integer b is the base order (Definition /.9), and the
product is taken over the reduced branching orders (4.2) at constrained nodes.
If Xy is reduced there is no obstruction to the existence of an enhancement and

the count is b~! [[,w, and W, = wy = wy either of the two contact orders in
Definition 4.4 and Proposition 4.6.
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Proof. COUNTING RIGIDIFIED OBJECTS. We are going to count diagrams of the
form

C=(C,Me) —15 Xo= (X, My,)

(4.5) ﬂl lp

Spec(Q - k) —— B = (B, Mp),

with p and f given by assumption and g determined by b as in Theorem 4.10,(3)
uniquely up_to isomorphism. For the final count we will divide out the Z/b-action
coming from the automorphisms of Spec(QQ — k) — B.

SIMPLIFYING THE BASE. By Theorem 4.10 we have Q = N® @y 1oqes N and
the map N = Mp,, — @Q is the inclusion of the first factor multiplied by the
base order b. Pulling back by any fixed sharp map ¢ — N replaces the lower
left corner by the standard log point O = Spec(N — k). To be explicit, we take
@ — N to restrict to the identity on each summand. Since this map ) — N
is surjective we do not introduce automorphisms or ramification. The universal
property of basic objects guarantees that the number of liftings is not changed.

The composition Mp,, — @ — N is then multiplication by b. We have
now arrived at a counting problem over a standard log point. Note also that
the given data already determines (4.5) at the level of ghost monoids, that is,
the data determines the sheaf M, and maps 7b M = f‘mxo — Mg and
T : Mot — Mg, uniquely.

PULLING BACK THE TARGET MONOID. Pull-back yields the two log structures
M = f*Mx, and 7* M+ on C. Recall our choice of generator py of Mp,, and
its pull-back p € ['(C, M), introduced earlier in §4.3. For later use let also
To € Mot be a generator with ¢°(pg) = 79. Then for any log smooth structure
M on C over Of we have a distinguished section 7 = (7).

SIMPLIFYING THE TARGET MONOID. Now define My, as the fine monoid sheaf
given by pushout of these two monoid sheaves over m*g*Mp:

! px fine *
C—i MXO @E*Q*MBW M.

Since Mpy, = N, by [Kk, (4.4)(ii)] Xo — B is an integral morphism. Hence
the pushout My, in the category of fine monoid sheaves agrees with the ordinary
pushout. In particular, the structure morphisms of X, and Of define a structure
morphism o, : My — Oc.

RESTATING THE COUNTING PROBLEM. Classifying diagrams (4.5) amounts to
finding an fs log structure M on C' together with a morphism of monoid sheaves

gb : ./\/llc — Mc
compatible with f* and such that the composition ™My — M of ¢ with
T Mot = M is log smooth.

We will soon see that ¢ : (ﬂlc)gp — M%p necessarily decomposes into the
quotient by some finite torsion part and the inclusion of a finite index subgroup.
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Lifting the quotient morphism to M/, leads to the factor |G|, while the finite
extension of the resulting log structure to M receives a contribution by the
reduced branching order w, from each constrained node. Note that w, = ¢(u,)
by Proposition 4.6,(1)(4); it is in this form that it appears in the proof.

THE GHOST KERNEL. To understand the torsion part to be divided out, note
that (/\/l—/w)gp at © € C equals P& @y Z with 1 € Z mapping to p, € P and to
the base order b € Z, respectively. Since ¢(p,) divides the multiplicities of some
irreducible components of X, Theorem 4.10,(3) implies b/¢(p,) € N. If p, has
integral length ¢(p,) > 1, then (p,/¢(p,), —b/{(p,)) is a generator of the torsion
subgroup ((Mf;,)8)ior, which has order £(p,). This element has to be in the
kernel of the map to the torsion-free monoid M.

THE |G| EMBODIMENTS OF THE GHOST IMAGE. The interesting fact is that
the lift of (p,/¢(p,), —b/(p,)) to (M. ,)® is only unique up to an £(p,)-torsion
element in OfF ,, that is, up to an £(p,)-th root of unity ¢, € k*. Explicitly,

the lift is equivalent to a choice o, € M, with ohPe) — pz by taking the torsion

subsheaf in (M,)® generated by (o, 7z o/ Z(ﬁg”)). The quotient by this subsheaf
b

- coming from the commutativity

means that we upgrade the relation f’(p,) =
of (4.5) to f*(o,) = /1P,

To define this quotient of the monoid My, globally amounts to choosing the
roots o, of p, compatibly with the generization maps, leading to a global section
of the sheaf F introduced directly before the statement of the theorem. For this
statement note that for x = 1 a generic point, £(p,) equals the multiplicity s, of
the irreducible component of X, containing f (7).

THE QUOTIENT IS A LOGARITHMIC STRUCTURE. Assume now o € I'(F)
has been chosen and denote by MY, the quotient of M/, by the corresponding
torsion subgroup of (My,)8P. Since ay(0,) = o () = 0, the homomorphism ag,
descends to the quotient, thus defining a structure homomorphism af, : M¢, —
Oc.

THE LOG STRUCTURE M IS DETERMINED AT SMOOTH POINTS. Note that
the map (7*Mot), — Mg, is an isomorphism and hence we must have Mc, =

G- The log structure Mc is then also defined at each marked point p € C
by adding a generator of the maximal ideal in O¢, as an additional generator
to Mgyp. It is also clear that M{, , — M, exists and is determined by the
corresponding map at 1 and by f*.

THE LOG STRUCTURE M IS DETERMINED AT FREE NODES. At a free node
q we have f(q) € (Xo)reg and hence there is a unique specialization o, € M,
of o, for the two generic points 7 € C with ¢ € cl(n). The log structure Mg
on C' is then determined by f,? and by the universal log structure Mg of C' as
follows. Let z,y € O¢, be coordinates of the two branches of C at ¢ in the
étale topology. Then there exist unique lifts s,, s, € Mg, such that s, - s, is the
pull-back of a generator ¢, of the g-th factor in the universal base log structure
Spec (@nodes oo N — Jk). Our choice of pull-back O — Spec (Q — k) turns ¢,
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into A7;? for some A € k* and e, € N determined by basicness as in (4.3). Thus
Mg, is generated by s, s, and 7, with single relation s, - s, = A7;? and mapping
to x,y and 0 under the structure homomorphism, respectively. The morphism
7 M, — Mg, factors over 7 Mp: and is therefore completely determined by
fZ(Uq) = g/un-

CONSTRAINED NODES: STUDY OF THE IMAGE LOG STRUCTURE M/C/’ It
remains to extend My, to the correct log structure at each constrained node
q € C. On the level of ghost sheaves we have the following situation, where we
include the above description of the kernel for completeness.

Proposition 4.14. The homomorphism of abelian groups
— b .
PP &7 — Mg, (mk)r— fo(m)+k- 7,

has kernel generated by (ﬁq/f(ﬁq), —b/ﬁ(ﬁq)) and cokernel a cyclic group of order
C(ug).

Proof. The kernel is described in the discussion above. Indeed, if (m, k) € PPOZ

.. —b —b . .. . —b
lies in the kernel then f (m) € Z-7,. Because f is injective and f (p,) = 72 we

conclude that (m, k) is proportional to (p,, —b). The stated element is a primitive
element of this one-dimensional subspace.
For the determination of the cokernel observe that the composition

—b
fa —ep 8P e
P =% Mo, — Me, /27, ~ L
equals u, up to sign. Indeed, the quotient by Z7, maps the two generators of
extremal rays of Mc, to &1 € Z. Hence m; € P$P maps to fw;, which by

Proposition 4.6, 1,(2) agrees with u,(m;). The order of the cokernel now agrees
with the greatest common divisor of the components of u,, that is, with {(u,). &

Once again we follow | , §1.3] and denote by S, C Z? the submonoid gener-
ated by (e, 0), (1,1),(0,¢), for e € Nx {0}. Up to a choice of ordering of extremal
rays there is a canonical isomorphism

(4.6) Moy — S,

Using Proposition 4.14 we can now determine the saturation of Hg’q. For read-
ability we write £ = ((u,).

Corollary 4.15. Using the description (4.6), the saturation of ﬂqu equals
Sé(uq)eq - Seq'

Proof. By construction of M¢,, the image of the homomorphism in Proposi-
tion 4.14 equals (ﬂ’(’,’q)gp. In the notation of (4.6), the statement now follows
from the fact that by the proposition, the image has index ¢(u,) in M%?q and
(eq:0) € Se,. Hence (le,4,0) € (ﬂ/&q)gp, which together with (1,1) € (M’g,q)gp
generates Sy, C S,
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The saturation is then computed by taking all integral points in the real cone
L — —
in /\/liqu ®z R spanned by M, . [

CONSTRAINED NODES: EXTENDING THE LOG STRUCTURE.
In this step we extend the log structure to the saturation of MY, described in
Corollary 4.15.

Lemma 4.16. The log structure o' : M{, — O¢ extends uniquely to the satura-
tion (MY)%*,

Proof. We continue to write £ = ¢(u,). The saturation can at most be non-trivial
at a constrained node ¢. By Corollary 4.15 we have an isomorphism (m/(;q)“th ~
Ste,- The definition of the weights w; implies (wieg,0), (0, wae,) € ﬂg,q, for the
appropriate ordering of the branches of C' at ¢q. As a sanity check, notice that w;
divides ¢ by Proposition 4.6,(I)(2). Let 3, : /ng — O¢,4 be the composition of
a choice of splitting M’é,q — M¢,, and the structure morphism Mg, — Ocq.
Then S, ((wieq,0)) vanishes at ¢ to order w; on one branch of C' and 3,((0, wae,))
vanishes to order wy on the other branch. Thus, étale locally there exist generators
z,y € O¢, for the maximal ideal at ¢ with

BQ((wleqv 0)) =", Bq((oa w2€q)) =y
Thus any extension 35** of 3, to a chart for (Mg )" has to fulfill

(4.7) B35 ((Leg,0)) = Gi-afs B3 ((0,leg)) = G- o,

with ¢; € k, ¢° /£~ 1. On the other hand, the (; are uniquely determined by
compatibility of 35 with § at the generic points of the two branches of C' at ¢
since (£eg,0), (0, le,) € Mc,. Conversely, with this choice of the ¢;, the equations
(4.7) provide the requested extension of a. [

Finally, we extend M to a log structure of a log smooth curve over the
standard log point. The situation is largely the same as with admissible covers,
see, e.g., [Mo, §3].

Lemma 4.17. Up to isomorphism of log structures over the standard log point,
there are { = ((u,) pairwise non-isomorphic extensions oy : Mc, — Ocq of the
image log structure oy : M¢ , — Ocq at the constrained node q to a log structure
of a log smooth curve.

Proof. Let
B Spey — Ocg
be a chart for the log structure (M7)" at ¢. The task is to classify extensions

to a chart Bq 0 Se, = Oc,q up to isomorphisms of induced log structures. Similar
to the reasoning in Lemma 4.16, in terms of coordinates z,y € O¢, with

35 ((leg, 0) = 2, B3 ((0, bey)) = ¥/,
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we have to define

(4.8) Bq(<6q7 0)) =Gz, Bq«oa eq)) =G Y,

with ¢; € k, ¢/ = 1. Dividing out isomorphisms amounts to working modulo
¢ € Hom(S,,,Z/l) with ¢((1,1)) = 1. In other words, we can change (i,
by (i, (71 for any ¢-th root of unity ¢. This leaves us with ¢ pairwise non-
isomorphic extensions of the log structure at q. [

COUNTING NON-RIGIDIFIED LIFTS. For the final count we need to divide out
the action of Z/b by composition with automorphisms of Spec() — k) over
B. The stated count follows once we prove that this action is free. The action
changes 7y to ¢ - 79 for ¢ a b-th root of unity. For this change to lead to an
isomorphic log structure M¢ requires (1 € k™ in (4.8) to be unchanged at
any constrained node ¢ € C. This shows (“» = 1 for all ¢q. Similarly, for the
map Mx, s, — Mec, to stay unchanged relative Mp,, — Mot requires

fg(an) = T,l,)/ M1 to stay unchanged. Thus also ¢¥#7 = 1 for all generic points
n € C. But by Theorem 4.10 the base order b is the smallest natural number
with all e, = b - Ind, /pow; and all b/p,, integers. Thus the e, and b/, have no
common factor. This shows that (¢« = 1 and ¢*/# =1 for all ¢, implies ¢ = 1.
We conclude that the action of Z/b is free as claimed. ®

Remark 4.18. The obstruction to the existence of a logarithmic enhancement
in Theorem 4.13 can be interpreted geometrically as follows.

Let i1 be a positive integer and B — B be the degree d cyclic cover branched
with ramification index d over by. Let X = X x B B and let X — X be the
normalization, giving a family X — B. It is a standard computation that the
inverse image of a multiplicity p irreducible component of X, in X is a union of
irreducible components of X, each with multiplicity s/ ged (s, d).

At the level of log schemes, in fact X carries a fine but not saturated logarithmic
structure via the description X = X xp B in the category of fine log schemes,
while X carries an fs logarithmic structure via the description X = X x 5 B in the
category of fs logarithmic structures. Here B carries the divisorial logarithmic
structure given by by € B, the unique point mapping to by.

Similarly, the central fibres are related as follows. The map B — B induces
a morphism on standard log points by — by induced by N - N,1 — d for
some integer d. Then Xy = X Xy, bo in the category of fine log schemes, and
Xo =X, X by bo in the category of fs log schemes.

Given a transverse pre-logarithmic map f : C'/ Speck — X take the integer d
above to be the positive integer b given by_ Theorem 4.10,(3). Then one checks
readily that f has a logarithmic enhancement if and only if there is a lift f :
C - X, o of f. Indeed, if f has a logarithmic enhancement f : C/S — X, with
S carrying the basic log structure, the morphism S — by factors through bo by
the description of Theorem 4.10. Thus the universal property of fibred product
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gives a morphism f : C' — X,. Conversely, given a lift, it follows again from
the definition of b in Theorem 4.10 that the multiplicity p of any irreducible
component of X, meeting f(C) divides b. So the multiplicity of any component
of X, meeting f(C) is 1 and by shrinking X, we can assume that X, is reduced.
One also checks that the reduced branching order w, associated to a node g is the
same for f and i , and thus f is still transverse pre-logarithmic. By Lemma 4.11
and Theorem 4.13, z has a logarithmic enhancement, and then the composed

morphism C iﬂ?o — X gives the desired logarithmic enhancement of f.

5. EXAMPLES

We will now study explicit examples of the decomposition formula for a log-
arithmically smooth morphism X — B. We mostly use the traditional tropical
language of polyhedral complexes and metric graphs discussed in §2.5.3.

5.1. The classical case. Suppose X — B is a simple normal crossings degen-
eration with Xy = Y; U Y; a reduced union of two irreducible components, with
Y1 NY, = D a smooth divisor in both Y7 and Y,. In this case, £(X) = (Rs()? and
the map X(X) — X(B) = Ry is given by (z,y) — = +y. Thus A(X) admits an
affine-linear isomorphism with the unit interval [0, 1], see Figure 1.

2(X)

A(X)

=(B)

FIGURE 1. The cones ¥(X) and ¥(B) and the interval A(X)

Proposition 5.1. In the above situation, let f : I' — A(X) be a decorated tropical

map. Then f is rigid if and only if every vertex v of I' maps to the endpoints of
A(X) and every edge of I surjects onto A(X).

Note that necessarily every leg of I' is contracted, as A(X) is compact.

Proof. First note that if an edge £, is contracted, then u, = 0 and the length of
the edge is arbitrary. By changing the length, one sees f is not rigid, see Figure 2
on the left.
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Next, suppose v is a vertex with f(v) lying in the interior of A(X'). Identifying
the latter with [0, 1], we can view u, € Z for any ¢. Let E,,, ..., E, be the edges
of I adjacent to v with lengths ¢4, ..., /¢,, oriented to point away from v. We can
then write down a family f; of tropical maps, ¢ a real number close to 0, with
f = fo, fr(v) = f(v') for any vertex v" # v, and fi(v) = f(v) +t. In doing so,
we also need to modify the lengths of the edges E,,, as indicated in Figure 2 on
the right. Any unbounded edge attached to v is contracted to f;(v). So f is not
rigid. Thus if f is rigid, we see that all vertices of I' map to endpoints of A(X),
and any compact edge is not contracted, hence surjects onto A(X). The converse
is clear.

-y —

AX) T A(X)

e r ®

F1GURE 2. A graph with a contracted bounded edge or an interior
vertex is not rigid.

[
A choice of decorated rigid tropical map in this situation is then exactly what
Jun Li terms an admissible triple in [Li]. Indeed, by removing f~!(1/2) from T,

one obtains two graphs (possibly disconnected) I'y, 'y with legs and what Jun Li
terms roots (the half-edges mapping non-trivially to A(X)). The weights of a
root, in Li’s terminology, coincide with the absolute value of the corresponding
ug. The set I in the definition of admissible triple indicates which labels occur for
unbounded edges mapping to, say, 0 € A(X). An illustration is given in Figure 3.

We emphasize that our virtual decomposition of the moduli space of stable log-
arithmic maps in terms of rigid tropical maps does not depend on transversality.
Already in this simple situation, the tropicalization of a basic stable logarithmic
map parameterizes a family of tropical maps with several rigid limits, one for
each facet of the basic monoid. The main result of this paper refines the virtual
counting problem in providing a count for each such choice of rigid limit. This
count applies even in more general situations where the vertices of the tropical
curve do not necessarily map to vertices of the polyhedron associated to the tar-
get, as the next section shows. Note also that this case has been carried out in
detail and with somewhat different notation after distribution of a first version
of this paper in | ].

5.2. Rational curves in a pencil of cubics. It is well-known that if one fixes 8
general points in P2, the pencil of cubics passing through these 8 points contains
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—= —=

) T A
o 1

-. 12 34

o L

FIGURE 3. A rigid tropical map is depicted with four edges and two
legs, the latter corresponding to marked points with contact order
0. The corresponding admissible triple of Jun Li is depicted on the
right, with roots corresponding to half-edges and legs corresponding
to the legs of the original graph. The half-edges marked 1 and 3
have u = 2.

precisely 12 nodal rational curves. Blowing up 6 of these 8 points, we get a cubic
surface we denote X C P2, and the enumeration of 12 nodal rational cubics
translates to the enumeration of 12 nodal plane sections of X| passing through
the remaining two points py, ps.

We will give here a non-trivial demonstration of the decomposition formula by
degenerating the cubic surface to a normal crossings union H; U Hy U H3 of three
blown-up planes.

5.2.1. Degenerating a cubic to three planes. Using coordinates x, ..., z3 on P3,
consider a smooth cubic surface X| C P3 with equation

fs(xo, 21, T2, 23) + 12223 = 0.

We then have a family X’ — B = A! given by X’ C A! x P? defined by tf; +
212223 = 0. The fibre X is the union of three planes H{ U Hj U Hj. Pick two
sections p1, ps : B — X’ such that p;(0) € H]. This can be achieved by choosing
two appropriate points on the base locus f3(xg, 21, g, x3) = 12223 = 0.

5.2.2. Resolving to obtain a normal crossings family. The total space of X' is not
a normal crossings family: it has 9 ordinary double points over ¢ = 0, assuming
f3 is chosen generally: these are the points of intersection of the singular lines
H; N H} with f3 = 0. One manifestation is the fact that H; are Weil divisors
which are not Cartier. By blowing up Hj followed by Hj, we resolve the ordinary
double points. We obtain a family X — B, which is normal crossings, hence
logarithmically smooth, in a neighbourhood of ¢ = 0, as depicted on the left in
Figure 4. Denote by H; the proper transform of H].

We identify $(X) with (Rsg)?, so that A(X) is identified with the standard
simplex {(z1, %, x3) | x1 + 22+ x3 = 1,21, 29, 23 > 0}, as depicted on the right in
Figure 4.
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Hj
Hs H,

Pt

2
Hy

Hq Hy

FiGURE 4. The left-hand picture depicts X, as a union of three

copies of P2, blown up at 6, 3 or 0 points. The right-hand picture
depicts A(X).

5.2.3. Limiting curves: triangles. Since the limit of plane curves on X| = X,
should be a plane curve on X, limiting curves on X, would map to plane sec-
tions of X, through py, ps. This greatly limits the possible limiting curves — in
particular the image in each of H/ is a line.

General triangles do not occur. It is easy to see that a plane section of X
passing through py, ps whose proper transform in X is a triangle of lines cannot be
the image of a stable logarithmic curve C' — X of genus zero. Indeed, there would
be a smooth point of C' mapping to (Xp)sing, contradicting Proposition 4.6,(II).

Triangles through double points. On the other hand, consider the total trans-
form of a triangle in X passing through p;, ps, and one of the 9 ordinary double
points of X’. The resulting curve will be a cycle of 4 rational curves, one of the
curves being part of the exceptional set of the blowup of H| and Hj. We can
partially normalize this curve at the node contained in the smooth part of X,
getting a stable logarithmic curve of genus 0. See Figure 5 for one such case.

Tropical picture. We depict to the right the associated rigid tropical curve.
Here the lengths of each edge are 1, and the contact data wu, take the values
(—=1,1,0), (0,—1,1) and (1,0, —1). This accounts for 9 curves.

C3

ol Ca
L ]

c c
/04 2 1

FI1GURE 5. Proper transform of a triangle through a double point.
The curve is normalized where C; and C4 meet.

Logarithmic enhancement and logarithmic unobstructedness. Note that the
above curves are transverse pre-logarithmic curves, and by Theorem 4.13, each
of these curves has precisely one basic logarithmic enhancement. Since the curve
is immersed it has no automorphisms. One can use a natural absolute, rather
than relative, obstruction theory to define the virtual fundamental class, which
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is governed by the logarithmic normal bundle. In this case each curve is un-
obstructed: since it is transverse with contact order 1, the logarithmic normal
bundle coincides with the usual normal bundle. The normal bundle restricts to
Op1, Op1 (1), Op1 (1), and Opi1(—1) on the respective four components Cy, Cy, Cs
and Cy, hence it is non-special. We note that this does not account for the in-
cidence condition that the marked points land at p;. This can be arranged, for
instance, using (5.1) in 5.3.2.

It follows that indeed each of these nine curves contributes precisely once to
the desired Gromov-Witten invariant.

5.2.4. Limiting curves: the plane section through the origin. The far more in-
teresting case is when the plane section of X, passes through the triple point.
Then one has a stable map from a union of four projective lines, with the central
component contracted to the triple point, see Figure 6 on the left.

* C1
* 02
Cyq

C1 C2

FIGURE 6. A curve mapping to a plane section through the origin,
and its tropicalization.

There is in fact a one-parameter family W of such stable maps, as the line in
Hj; is unconstrained and can be chosen to be any element in a pencil of lines.
Only one member of this family lies in a plane, and we will see below that indeed
only one member of the family admits a logarithmic enhancement.

Tropical picture. To understand the nature of such a logarithmic curve, we
first analyze the corresponding tropical map. The image of such a map will
be as depicted in Figure 6 on the right, with the central vertex corresponding
to the contracted component landing somewhere in the interior of the triangle.
However, the tropical balancing condition must hold at this central vertex, by
[ , Prop. 1.14]. From this one determines that the only possibility for the
values of u, are (—2,1,1), (1,1, —-2) and (1,—2,1), all lengths are 1/3, and the
central vertex is (1/3,1/3,1/3). The multiplicity of this rigid tropical map I'
acccording to Corollary 3.8 then is mp = 3.

5.2.5. Logarithmic enhancement using a logarithmic modification. We now show
that only one of the stable maps in the family S has a logarithmic enhancement.
To do so, we use the techniques of §4, first refining (X)) to obtain a logarithmic
modification of X. The subdivision visible in Figure 6 gives a refinement of 3(X),
the central star subdivision of ¥(X). This corresponds to the ordinary blow-up
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h: X — X at the triple point of X,. We may then identify logarithmic curves
in X and use the induced morphism .# (X /B) — .#(X/B).

Lifting the map to X,. The central fibre X, is now as depicted in Figure 7.
We then try to build a transverse pre-logarithmic curve in X lifting one of the
stable maps of Figure 6. Writing C' = C; U Cy, U C3 U Cy, with Cy the central
component, we map C; and C5 to the lines L; and L, containing the preimages
of p; and ps, respectively, as depicted in Figure 7, while C'3 maps to some line L3
in Hs. On the other hand, by (4.2) in the definition of transverse pre-logarithmic
maps, Cy must map to the exceptional P2 = E, which is of multiplicity 3, in such
a way that it is triply tangent to OF precisely at the points of intersection with
L;,i=1,23.

Uniqueness of liftable map. We claim that there is precisely one such map,
necessarily with image containing a curve of degree 3 in the exceptional P?, with
image as depicted in Figure 7. The number of transverse pre-logarithmic maps
can be determined by considering linear series as follows. The three contact points
on C; ~ P! can be taken to be 0,1 and oo, and the map C; — P? corresponds,
up to a choice of basis, to the unique linear system on P! spanned by the divisors
3{0}, 3{1} and 3{oco}. Since these points map to the coordinate lines, the choice
of basis is limited to rescaling the defining sections. The choice of scaling of the
defining sections results in fixing the images of 0 and 1, and the image point of
oo is then uniquely determined.

C3

FiGURE 7. The lifted map. The middle figure is only a sketch: the
nodal cubic curve C; meets each of the visible coordinate lines at
one point with multiplicity 3. Moreover, these three points are
collinear.

This determines uniquely the point L3 N E. In particular, the line Lj is de-
termined. Thus we see that there is a unique transverse prelogarithmic map
f:C— Xo such that h o f lies in the family S of stable maps to X.

Logarithmic enhancement. Since the curve is rational, Theorem 4.13 assures
the existence of a logarithmic enhancement. Only the exceptional component is
non-reduced, of multiplicity ¢ = 3 and for each node ¢ € C' we have Ind, = 1
and w, = 1/1 = 3/3 = 1. Hence b = 3, G = Z/p = Z/3 and the count of

Theorem 4.13 gives
G 3
Slm =51 =
q
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basic log enhancement of this transverse prelogarithmic curve. This gives one
more basic stable logarithmic map h o f.

Unobstructedness. Once again we check that ho f is unobstructed, if one makes
use of an absolute obstruction theory: the logarithmic normal bundle has degree
0 on each line, hence degree 1 on C}, and is non-special. Again the map has no
automorphisms, which accounts for 1 curve, with multiplicity 3, because mp = 3.
Hence the final accounting according to Theorem 3.11 is

943x1 = 12

Y

which is the desired result.

5.2.6. Impossibility of other contributions. Note our presentation has not been
thorough in ruling out other possibilities for stable logarithmic maps, possibly
obstructed, contributing to the total. For example, S includes curves where Lg
falls into the double point locus of X, but a more detailed analysis of the tropical
possibilities rules out a possible log enhancement. We leave it to the reader to
confirm that we have found all possibilities.

5.3. Degeneration of point conditions. We now consider a situation which
is common in applications of tropical geometry; this includes tropical counting
of curves on toric varieties [\i, NS|. We fix a pair (Y, D) where Y is a variety
over a field k and D is a reduced Weil divisor such that the divisorial logarithmic
structure on Y is logarithmically smooth over the trivial point Speck. We then
consider the trivial family

X=Y xA!' — A' =B,

where now X is given the divisorial logarithmic structure with respect to the
divisor (D x B) U (Y x {0}).

5.3.1. Ewvaluation maps and moduli. Fix a type [ of stable logarithmic maps to X
over B, getting a moduli space .#(X/B, ). We assume that the curves of type

B have n marked points py, ..., p, with u,, = 0 — and possibly some additional
marked points x4, ..., x, with non-trivial contact orders with D. Given a stable
map (C/S,x,p, f), a priori for each i € {1,...,n} we have an evaluation map

ev; : (S,piMc) — X obtained by restricting f to the section p;. Noting that
up,, = 0, the map ev? : (f op;) '"Mx — Mg @ N factors through Mg, and thus
we have a factorization ev; : (S,pfM¢) — S — X. In a slight abuse of notation
we write ev; for the morphism S — X also, and thus obtain a morphism

ev: M (X/B,f) — X" :=X xp X xpx--xgX.

If we choose sections o1,...,0, : B — X, we obtain a map

0::ﬁai:B—>X".
i=1
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This allows us to define the moduli space of curves passing through the given
sections,

M(X)B,B,0) = M(X/B,B) xxu B,

where the two maps are ev and ¢.”

5.3.2. Virtual fundamental class on .#(X/B,[,0). We note that the moduli
space 4 (X /B, 3, 0) of curves passing through the given sections carries a virtual
fundamental class. The perfect obstruction theory is defined by

(5.1) ¢ = (R?T*[f*@X/B — @(f*@X/B) pi(S)])vv

i=1

for the stable map (7 : C' — S,x,p, f). Here the map of sheaves above is just
restriction. See | , §4] for a detailed discussion of how to impose logarithmic
point conditions on a virtual level, cf. also | , Prop. A.1] for an earlier study
in ordinary Gromov-Witten theory.

5.3.3. Choice of sections and A(X). We can now use the techniques of previ-
ous sections to produce a virtual decomposition of the fibre over by = 0 of
M (X/B,p,0) — B. However, to be interesting, we should in general choose
the sections to interact with D in a very degenerate way over by. In particular,
restricting to by (which is now the standard log point), we obtain maps

g;: b() — YT,
where YT =Y x OF is the product with the standard log point. Note that
S(YT) = 8(X) = 2(Y) x Rs,

with X(X) — 3(B) the projection to the second factor. So A(X) = X(Y) and
Y(o;) : X(B) — X(X) is a section of X(X) — X(B) and hence is determined by
a point P; € A(X), necessarily rationally defined.

5.3.4. Tropical fibred product. We wish to understand the fibred product
%(X/Baﬁvo-) = %(X/Baﬁ) Xxn B
at a tropical level. We observe

Proposition 5.2. Let X, Y and S be fs log schemes, with morphisms f1 : X — S,
fo:Y = S, Let Z = X XgY in the category of fs log schemes, pi,ps the
projections. Suppose Z € Z with T = p1(2), y = p2(2), and § = fi(p1(2)) =
fa(p2(2)). Then

Hom(ﬂz,z, N) = Hom(ﬂx,z—;, N) X Hom(Ms,N) Hom(ﬂy@, N)
and

Hom (M z, Rx) = Hom(My 5, R>0) X gom (s s o) HOM(My g, Rxo).

9Recall that all fibred products are in the category of fs log schemes.
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Proof. The first statement follows immediately from the universal property of
fibred product applied to maps z' — Z, where z' denotes a geometric point z

with standard logarithmic structure. The second statement then follows from the
first. [

5.3.5. Tropical moduli space. We now provide a simple interpretation for the trop-
icalization of S := #(X/B,,0). If 5 € S is a geometric point, let Q) be the
basic monoid associated with § as a stable logarithmic map to X. Then by
Proposition 5.2, we have

Hom(ﬂg,g, Rzo) = HOIH(Q, Rzo) XTI, Hom(Pp, ,R>0) Rzo-

Here as usual P,, = My, f(p:)» Which here equals My, #(ps) ®N. The maps defining
the fibred product are as follows. The map Hom(Q,Rso) — [[, Hom(P,,, Rxo)
can be interpreted as taking a tropical map I' — 3(X) = X(Y) x R>( to the point
of Hom(P,,, R>o) which is the image of the contracted edge corresponding to the
marked point p;. The map R>o — [[, Hom(P,,,R>¢) is [[, £(0;) and hence takes
1to (P, 1),...,(Py,1).

This yields:

Proposition 5.3. Let m € A(S), and let T¢ = X(w) "' (m). Then X(f) : To —
A(X) is a tropical map with the unbounded edges E,, being mapped to the points
P,. Furthermore, as m wvaries within its cell of A(S), we obtain the universal
family of tropical maps of the same combinatorial type mapping to A(X) and
with the edges E,, being mapped to P;.

5.3.6. Restatement of the decomposition formula. Denote by
MY )by, B,0) = M (X, B) xxn B
and for 7 = (7, A) a decorated type of a rigid tropical map (Definition 2.23),
MY T 0) = M (Xo,T) xxn B.
Theorem 3.11 now translates to the following:

Theorem 5.4 (The logarithmic decomposition formula for point conditions).
Suppose Y s logarithmically smooth. Then

(YT )by, B,0)] " = Jﬁ (YT o)
7=(1,A)

Example 5.5. The above discussion allows a reformulation of the approach of
[NS] to tropical counts of curves in toric varieties. Take Y to be a toric variety
with the toric logarithmic structure, and fix a curve class 5. By fixing an appro-
priate number n of points in Y, one can assume that the expected dimension of
the moduli space of curves of genus 0 and class [ passing through these points is 0.
Next, after choosing suitable degenerating sections o4, ..., g,, one obtains points
Py, ..., P, € X(Y), the fan for Y. Finally, one explicitly describes .# (X /B, (3, 0)
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through an analysis for each rigid tropical map to X(Y') with the correct topol-
ogy. In particular, the domain curve is rational and should have D, -3 unbounded
edges parallel to a ray p € X(Y'), where D, C Y is the corresponding divisor. The
argument of [N5] essentially carries out an explicit analysis of possible logarith-
mic curves associated with each such rigid curve after a log blow-up YT — Y.
Theorem 5.4 also generalizes part of [NS]| to some higher genus cases, with the
determination of the contribution of individual maps left open.

5.4. An example in F;. We now consider a very specific case of §5.3 above.
This example deliberately deviates slightly from the toric case of Example 5.5
and exhibits new phenomena.

5.4.1. A non-toric logarithmic structure on a Hirzebruch surface. Let Y be the
Hirzebruch surface Fy. Viewed as a toric surface, it has 4 toric divisors, which we
write as fy, fs, Co and C. Here foy, fo are the fibres of Fy — P! over 0 and oo,
Cp is the unique section with self-intersection —2, and C, is a section disjoint
from Cy, with Cy linearly equivalent to fy + fo + Co.

We will give Y the (non-toric) divisorial logarithmic structure coming from the
divisor D = fy + fo + Cs, deliberately omitting Cj.

5.4.2. The curves and their marked points. We will consider rational curves rep-
resenting the class Cy, passing through 3 points y1, y2, y3. Of course there should
be precisely one such curve.

A general curve of class C,, will intersect D in four points, so we will set
this up as a logarithmic Gromov-Witten problem by considering genus 0 stable
logarithmic maps

[ (C;p1,p2,p3,3€1,$2,1’3,5€4) — Y,

imposing the condition that f(p;) = v;, and f is constrained to be transversal
to fo, foo, Cx and Cy at z; for ¢ = 1,...,4, respectively. This transversality
determines the vectors u,,, while we take the contact data u,, = 0.

Since the maps have the points z3 and z4 ordered, we expect the final count
to amount to 2 rather than 1.

5.4.3. Choice of degeneration. We will now see what happens when we degenerate
the point conditions as in §5.3, by taking X = Y x A! and considering sections
o Al — X, 1 <i < 3. We choose these sections to be general subject to the
condition that

0'1(0) c fo, 0'2(0) c foo, 0'3(0) S C(].

Since CyNCy = 0, any curve in the linear system |Cy | which passes through this
special choice of 3 points must contain Cj, and hence be the curve fo+ foo + Co.
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U1 V3 V2

FIGURE 8. The polyhedral complex A(X) = X(Y) and a potential
tropical map. The small arrows indicate F,, which are contracted
to P;. The suggested positions of E,, and E,, are shown below to
contribute 0 to the virtual count.

5.4.4. The complex A(X) and the tropical sections. Note that A(X) is as depicted
in Figure 8, an abstract gluing of two quadrants, not linearly embedded in the
plane. The choice of sections o; determines points P; € ¥(X) as explained in
§5.3. For example, if, say, the section o} is transversal to fy x A!, then P, is the
point at distance 1 from the origin along the ray corresponding to fy. Since C)
is not part of the divisor determining the logarithmic structure, P; is in fact the
origin.

5.4.5. The tropical maps. One then considers rigid decorated tropical maps pass-
ing through these points.

e The curves must have 7 unbounded edges, E,, E,;.

e The map contracts E,, to P;.

e Each FE is mapped to an unbounded ray going to infinity in the direction
indicating which of the three irreducible components of D the point z; is

mapped to.

5.4.6. Rigid tropical maps. 1t is then easy to see that to be rigid, the domain of
the tropical map must have three vertices, vy, v9, v3, with the edge £, attached
to v; and v; necessarily being mapped to F;.

The location of the E,, is less clear. One can show using the balancing condition
[ , Prop. 1.15] that E,, must be attached to v; and E,, must be attached to vs.
There remains, however, some choice about the location of E,, and E,,. Indeed,
they may be attached to the vertices vy, vy or v3 in any manner. Figure 8 shows
one such choice.

5.4.7. Decorated rigid tropical maps. We must however consider decorated rigid
tropical maps, and in particular we need to assign curve classes A(v) to each
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vertex v. Let n; be the number of edges in {F,,, F,,} attached to the vertex v;.
Since E,, and E,, indicate which “virtual” components of the domain curve have
marked points mapping to C,, it then becomes clear that

A(vy) =nif, A(vy) =nof, A(vs) = Co+naf,

where ny +ng +ng = 2.

5.4.8. The seeming contradiction. In fact, as we shall see shortly, there are loga-
rithmic curves whose tropicalization yields any one of the curves with ny = ny = 1,
and there is no logarithmic curve over the standard log point whose tropicaliza-
tion is the tropical map with ng3 = 2. Surprisingly at first glance, the only
decorated rigid tropical map which provides a non-trivial contribution to the
Gromov-Witten invariant is the one which cannot be realised, with ng = 2. We
will also see that the case n;y = 2 or ny = 2 plays no role. Before we exhibit
this counterintuitive behavior, we point out that this is no contradiction. Indeed,
consider a stable log map to Xy with non-rigid tropicalization. This stable log
map will lie in the intersection of the images in .#(Xy, ) of more than one sub-
space A, (Xo, ) from (3.3). Tropical geometry cannot thus tell how these stable
log maps with non-rigid tropicalizations contribute to the virtual count on any
of these components.

5.4.9. Curves with ny = ny = 1 contribute 0. To exhibit this seemingly contra-
dictory behavior, first recall the standard fact that there is a flat family W — A'
such that W, ~ X, =Fy and W, ~ P! x P! for ¢ # 0. Furthermore, the divisor
foU foo U Cy extends to a normal crossings divisor on W with three irreducible
components: {0} x P!, {oo} x P!, and a curve of type (1,1). This endows W with
a divisorial logarithmic structure, logarithmically smooth over A! with the trivial
logarithmic structure. However, no curve of class Cy in Wy deforms to W, for
t # 0. Hence no curve representing a point in the moduli space .Z, (X, 5) for 7
one of the decorated rigid tropical maps with n3 = 0 deforms. The usual deforma-
tion invariance of Gromov-Witten invariants then implies that the contribution
to the Gromov-Witten invariant from such a 7 is zero.

Another transparent explanation for the vanishing of this count is given by the
gluing formalism further developed in | ]: The moduli space of punctured
stable maps corresponding to the (—2)-curve has negative virtual dimension and
by | , Thm. A.16] any moduli space of stable maps with such a component
has vanishing virtual count.

5.4.10. Ezpansion and description of moduli space for ny = ny = 1. To explore
the existence of the relevant logarithmic curves, we again turn to §4. First let us
construct a curve whose decorated tropical map has n;y = ny = 1. The image of
this curve in A(X) yields a subdivision of A(X) which in turn yields a refinement
of £(X), and hence a log étale morphism X — X. Tt is easy to see that this is
just a weighted blow-up of fy x {0} and f,, x {0} in X =Y x A!; the weights
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depend on the precise location of P; and P,, but if they are taken to have distance
1 from the origin, the subdivision will correspond to an ordinary blow-up. The
central fibre is now as depicted in Figure 9, with the proper transforms of the
sections meeting the central fibre at the points py, ps, p3 as depicted.

The logarithmic curve then has three irreducible components, one mapping to
Cy and the other two mapping to the two exceptional divisors, each isomorphic
to P! x P!, These latter two components each map isomorphically to a curve of
class (1,1) on the exceptional divisor, and is constrained to pass through p; and
the point where Cy meets the exceptional divisor. There is in fact a pencil of such
curves. We remark that all 7 marked points are visible in Figure 9, but the curves
in the exceptional divisors meet the left-most and right-most curves transversally,
and not tangent as it appears in the picture. By Theorem 4.13, any such stable
map then has a log enhancement, and composing with the map X — X gives a
stable logarithmic map over the standard log point whose tropicalization is one
of the rigid curves with ny = ny = 1. Thus the relevant moduli space of stable
log maps to X, has two components, each isomorphic to P! x P!, depending on
which sides x3 and x4 lie. This moduli space maps injectively to the moduli space
of stable log maps to Xj.

To see that the virtual count gives 0, one can again consider the absolute defor-
mation and obstruction theory of all the maps parameterized by P! x P*. Over the
open subset C* x C* the maps admit a normal line bundle with degrees 2, —2, 2 on
the three components of the curve. To account for the point conditions we twist
down by the points x;, obtaining a line bundle N of degrees 1, —3, 1 respectively.
Restricting to the middle components gives an isomorphism of the obstruction
space H'(C,N) — H'(P', O(-3)) = C?. One checks that the isomorphism ex-
tends across the boundary of P! x P!, giving a trivial obstruction bundle with
zero Chern class representing the virtual fundamental class 0.

5.4.11. Curves with ni, = ny = 0. Now consider the case that n; = n, = 0 and
ng = 2. This rigid tropical curve cannot be realised as the tropicalization of a
stable logarithmic map over the standard log point. Indeed, to be realised, the
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curve must have an irreducible component of class Cy + 2f = C,, and we know
there is no such curve passing through o3(0), a general point on Cy. However,
this tropical map can in fact be realised as a degeneration of a different, non-rigid
tropical map, as depicted in Figure 10.

To construct an actual logarithmic curve with n; = ny = 0, we use refinements
again. Assume for simplicity of the discussion that P; and P, have been taken
to have distance 2 from the origin. Subdivide A(X) by introducing vertical rays
with endpoints P, and P, and in addition introduce vertical rays which are the
images F,, and E,,; again for simplicity of the discussion take the endpoints of
these rays to be at distance 1 from the origin.

This corresponds to a blow-up X — X involving four exceptional components,
and Figure 11 shows the central fibre of X — A!, along with the image of a
stable logarithmic map which tropicalizes appropriately (once again the curves
on the second and fourth components of X meet the first and fifth components
with order 1, and no tangency). Composing this stable logarithmic map with
X — X then gives a non-basic stable logarithmic map to X over the standard
log point. It is not hard to see that the corresponding basic monoid () has rank
3, parameterizing the image of the curve in 3(B) as well as the location of the
edges I, and E,,. The degenerate tropical curve where the edges E,, and E,,
are attached to the vertex vs represents a one-dimensional face of @V, so the
rigid tropical map with n3 = 2 does appear in the family @V, but only as a
degeneration of a tropical map which is realisable by an actual stable logarithmic
curve over the standard log point.

One can again show that the relevant moduli space in X, has two components
isomorphic to P! x P!, This time the virtual fundamental class of each component
is the top Chern class of O(1) B O(1), which has degree 1. Each of these maps
to X, define the same map to X,, and indeed the corresponding moduli space
Mop,—0(Xp) is discrete and unobstructed.
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5.4.12. Curves withni+ns = 1. In this case A(vs) = Co+nsf = Co+ f and either
A(vy) = f,A(vy) = 0 or A(vy) = 0, A(vy) = f. The expanded degeneration
picture then looks like a hybrid of Figures 9 and 10, with the depicted behavior
describing one end each. A computation similar to the one presented for the case
ny = ng = 1 shows vanishing of this count as well.

5.4.13. Curves with n; = 2. To complete the analysis, we end by noting that
the case n;y = 2 or ny = 2 cannot occur. Consider the case n;y = 2. Any
stable logarithmic curve over the standard log point with a tropicalization which
degenerates to such a rigid tropical map must have a decomposition into unions
of irreducible components corresponding to the vertices v, v, and vs, with the
homology class of the image of the stable map restricted to each of these unions
of irreducible components being 2[fy], 0 and [Cy] respectively. In particular, this
will prevent the possibility of having any irreducible component whose image
contains 09(0). Thus this case does not occur.
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