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Abstract. We prove a decomposition formula of logarithmic Gromov-Witten

invariants in a degeneration setting. A one-parameter log smooth family X →
B with singular fibre over b0 ∈ B yields a family M (X/B, β) → B of moduli

stacks of stable logarithmic maps. We give a virtual decomposition of the fibre

of this family over b0 in terms of rigid tropical maps to the tropicalization of

X/B. This generalizes one aspect of known results in the case that the fibre

Xb0 is a normal crossings union of two divisors. We exhibit our formulas in

explicit examples.

Contents

1. Introduction 2

1.1. Statement of results 2

1.2. Acknowledgements 6

1.3. Conventions 6

2. Preliminaries 6

2.1. Cone complexes associated to logarithmic stacks 6

2.2. Artin fans 8

2.3. Stable logarithmic maps and their moduli 12

2.4. Stacks of pre-stable logarithmic curves 16

2.5. The tropical interpretation 18

2.6. Stacks of stable logarithmic maps marked by tropical types 24

3. From toric decomposition to virtual decomposition 26

3.1. Decomposition in the log smooth case 26

3.2. Logarithmic maps to the relative Artin fan X0 28

3.3. Proof of the Decomposition Theorem 31

Date: June 1, 2020.

1991 Mathematics Subject Classification. 14N35 (14D23).
Key words and phrases. Logarithmic Gromov-Witten invariant, moduli stack, logarithmic

stable map, degeneration, decomposition, tropical curve, tropical map, rigid tropical curve,

Artin fan.
Research by D.A. was supported in part by NSF grants DMS-1162367, DMS-1500525 and

DMS-1759514.

Research by Q.C. was supported in part by NSF grant DMS-1403271 and DMS- 1560830.

M.G. was supported by NSF grant DMS-1262531, EPSRC grant EP/N03189X/1 and a Royal

Society Wolfson Research Merit Award.

Research by B.S. was partially supported by NSF grant DMS-1903437.
1



2 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

4. Logarithmic modifications and transversal maps 33

4.1. Logarithmic modifications 33

4.2. Transverse maps, logarithmic enhancements, and strata 33

4.3. Existence and count of enhancements of transverse pre-logarithmic

maps 40

5. Examples 47

5.1. The classical case 47

5.2. Rational curves in a pencil of cubics 48

5.3. Degeneration of point conditions 53

5.4. An example in F2 56

References 61

1. Introduction

1.1. Statement of results. One of the main goals of logarithmic Gromov–

Witten theory is to relate the Gromov–Witten invariants of a smooth projective

variety to invariants of a degenerate variety X0.

Consider a logarithmically smooth and projective morphism X → B, with

B a logarithmically smooth curve having a single closed point b0 ∈ B where

the logarithmic structure is nontrivial. In the language of [KKMS, AK], this is

the same as saying that the underlying schemes X and B are provided with a

toroidal structure such that X → B is a toroidal morphism, and {b0} ⊂ B is the

toroidal divisor. One defines as in [GS1], see also [Ch, AC], an algebraic stack

M (X/B, β) parameterizing stable logarithmic maps f : C → X with discrete

data β = (g, A, up1 , . . . , upk) from logarithmically smooth curves to X. Here

• g is the genus of C,

• A is the homology class f ∗[C], which we assume is supported on fibres of

X → B, and

• up1 , . . . , upk are the contact orders of the marked points with the logarith-

mic strata of X.

Writing β = (g, k, A) for the non-logarithmic discrete data, there is a natural

morphism M (X/B, β) → M (X/B, β) “forgetting the logarithmic structures”,

which is proper and representable [ACMW, Thm. 1.1.1]. The map M (X/B, β)→
M (X/B, β) is in fact finite, see [Wi16a, Cor. 1.2]. There is also a natural mor-

phism M (X/B, β)→ B, and we denote its fibre over b ∈ B by M (Xb/b, β).

Since X → B is logarithmically smooth there is a perfect relative obstruc-

tion theory E• → LM (X/B,β) /LogB in the sense of [BF], hence defining a virtual

fundamental class [M (X/B, β)]virt and logarithmic Gromov–Witten invariants.

An immediate consequence of the formalism is the following (this is indicated

after [GS1, Thm. 0.3]):
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Theorem 1.1 (Logarithmic deformation invariance). For any point {b}
jb
↪→ B

one has

j!
b[M (X/B, β)]virt = [M (Xb/b, β)]virt.

This implies, in particular, that Gromov–Witten invariants of Xb agree with

those of X0 = Xb0 . Now holomorphic curves in X0 come in various families

depending on the intersection pattern with the irreducible components of X0.

Thus one may hope that logarithmic Gromov-Witten invariants similarly group

according to some discrete data reflecting such intersection patterns. The main

result of this paper shows that this is indeed the case, with the intersection

patterns recorded in an interesting and very transparent fashion in terms of the

underlying tropical geometry.

Theorem 1.2 (The logarithmic decomposition formula; Theorem 3.11 below).

Suppose the morphism X0 → b0 is logarithmically smooth and X0 is simple. Then

we have the following equality in the Chow group of M (X0/b0, β) with coefficients

in Q:

[M (X0/b0, β)]virt =
∑

τ̃=(τ,A)

mτ

|Aut(τ)|
jτ̃ ∗[M (X0, τ̃)]virt.

See Definition 2.1 for the notion of simple logarithmic structures. The notations

M (X0, τ̃), mτ and jτ̃ are briefly explained as follows. First, the tropicalization of

X0 → b0 defines a polyhedral complex ∆(X0) (§2.1.4 and §2.5.4), and τ stands

for a rigid tropical map to ∆(X) (Definition 3.6). Each such rigid τ comes with

a multiplicity mτ ∈ N, the smallest integer such that scaling ∆(X) by mτ leads

to a tropical curve with integral vertices and edge lengths.

The symbol A stands for a partition of the curve class A ∈ H2(X) into classes

A(v), one for each vertex v in the graph underlying τ .

The moduli stack M (X0, τ̃) is the stack parameterizing basic stable logarithmic

maps to X0 over b0 decorated by τ̃ = (τ,A) (Definition 2.31). The marking

exhibits τ̃ as a degeneration of the tropicalization of any stable logarithmic map

in this moduli stack. The map jτ̃ : M (X0, τ̃)→M (X0/b0, β) forgets the marking

by τ̃ .

Remark 1.3. In general, the sum over τ̃ will be infinite, but because the moduli

space M (X0/b0, β) is of finite type, all but a finite number of the moduli spaces

M (X0, τ̃) will be empty. In practice one uses the balancing condition [GS1,

Prop. 1.15] to control how curves can break up into strata of X0. This is carried

out in some of the examples in §5.

Theorems 1.1 and 1.2 form the first two steps toward a general logarithmic

degeneration formula. In many cases this is sufficient for meaningful computa-

tions, as we show in §5. These results have precise analogies with results in [Li],

as explained in §5.1. Theorem 1.1 is a generalization of [Li, Lem. 3.10], while
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Theorem 1.2 is a generalization of part of [Li, Cor. 3.13], where the notation

M(Yrel
1 ∪Yrel

2 , η) describes an object playing the role of our M (X0, τ̃).

The current paper does not, however, include a description of the moduli stack

M (X0, τ̃) analogous to that given in the proof of [Li, Lem. 3.14]. There, the

moduli space is described by gluing together relative stable maps to the individual

components of X0. However, in general this will not be the case: while a curve in

M (X0, τ̃) may be glued schematically from stable maps to individual components

of X0, it is not possible to do this at the logarithmic level, in the sense that

the maps to individual components of X0 may not be interpretable as relative

maps. We give an example in §5.2 in which X0 has three components meeting

normally, with one triple point. Our example features a log curve contributing

to the Gromov-Witten invariant which has a component contracting to the triple

point, and this curve cannot be interpreted as a relative curve on any of the three

irreducible components of X0.

In fact, a new theory is needed to give a more detailed description of the

moduli spaces M (X0, τ̃) in terms of pieces of simpler curves. In the follow-

up paper [ACGS] we define stable punctured maps admitting negative contact

orders to replace the relative curves in Jun Li’s gluing formula. Crucially, we

will explain how punctured curves can be glued together to describe the moduli

spaces M (X0, τ̃).

The results described here are analogous to results of Brett Parker proved in

his category of exploded manifolds. He defines Gromov-Witten invariants in this

category in the series of papers [Pa1, Pa2, Pa3, Pa4]. The analogue of logarithmic

deformation invariance, Theorem 1.1 above, is proved in [Pa4, Thms. 5.20 and

5.22], while Theorem 1.2 is analogous to parts of [Pa4, Thm. 5.22 and Lem. 7.3].

A gluing formula in terms of Gromov-Witten invariants of individual irreducible

components of X0 is given in [Pa5, Thms. 4.7 and 5.2]. The aim in proving a

general gluing formula is a full logarithmic analogue of these theorems.

This paper has a somewhat long genesis, with the main ideas contained in draft

versions first presented in a talk by B.S. at the conference “Algebraic, Analytic,

and Tropical Geometry” in Ein Gedi/Israel in Spring 2013. A first full version

was posted on Q.C.’s website in October 2016. The follow-up paper [ACGS] has

furthermore been distributed via M.G.’s website since March 2017.

Several related works have appeared during this long period of preparation.

The 2016 version has been used in [MR]. Concerning the decomposition formula,

the one closest to our point of view is [KLR], giving a formula of logarithmic

Gromov-Witten invariants of the central fiber X0 of a degeneration with smooth

singular locus in terms of Gromov-Witten invariants of the reducible components.

This paper is a full logarithmic analogue of Jun Li’s formula in [Li], without

using expanded degenerations. This case is considerably simpler than the case

with points of multiplicity greater than 2 and in particular does not require the

introduction of punctured Gromov-Witten invariants, see 5.1 and [ACGS].
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A gluing formula for a special case has also been proved by Tony Yue Yu in his

developing theory of Gromov-Witten invariants in rigid analytic geometry [Yu,

Thm. 1.2].

Very recently, Ranganathan has suggested an alternative approach to fully

general gluing formulas for logarithmic Gromov-Witten invariants using expanded

degenerations [Ra].

The structure of the paper is as follows. In §2, we review various aspects of

logarithmic Gromov-Witten theory, with a special emphasis on the relationship

with tropical geometry. We develop tropical geometry in the setup of generalized

cone complexes, introduced in §2.1. While this point of view was present in

[GS1], we make it more explicit here, and in particular discuss tropicalization

in a sufficient degree of generality as needed here. As an application, in 2.6

we introduce the refined moduli spaces M(X0, τ̃) appearing in the decomposition

formula. §2.2 reviews the notion of Artin fans, an algebraic stack associated to any

generalized cone complex. Our decomposition result is based on a decomposition

of the fundamental class in a moduli space of stable log maps to the Artin fan of

X0 over b0.

§3 proves the main theorem, the decomposition formula. In §3.1 we first prove

a general decomposition of the fundamental class for a space log smooth over the

standard log point. The main insight in §3.2 is that replacing X0 with its relative

Artin fan, the moduli space of stable log maps becomes unobstructed, hence has

a fundamental class that can be decomposed. The main theorem then follows in

§3.3 by lifting this decomposition to the virtual level.

The remainder of the paper is devoted to applications. As a preparation, §4
closes a gap in the literature, building on work of Nishinou and Siebert in [NS].

This concerns the logarithmic enhancement problem, the problem of constructing

stable logarithmic maps with a given usual stable map, previously considered only

in special cases. We address the problem through a two-step process. In the first

step, we use the tropical geometry of the situation to identify a proper, birational,

logarithmically étale map — a logarithmic modification — which reduces the

problem to a situation where no irreducible component of the domain curve maps

into the singular locus of X0 and maps no node into strata of X0 of codimension

larger than 1. The second step is the main result of §4, Theorem 4.13, giving

the number of logarithmic enhancements in fully general situations, including

non-reduced X0.

§5 employs these formulas in the discussion of a number of hopefully instructive

examples. §5.1 contains the already announced discussion of our decomposition

formula in the traditional situation of [Li]. In §5.2 we retrieve the classical number

12 of nodal plane sections of a cubic surface passing through two points via a

degeneration into three P2’s, blown up in 0, 3 and 6 points, respectively. The topic

of §5.3 is an interpretation of the imposing of point conditions in tropical geometry

via degenerating scheme-theoretic point conditions in the trivial product Y ×A1.
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The decomposition formula in this case (Theorem 5.4) provides an alternative

view on tropical map counting with point conditions as in [Mi, NS]. The final

section §5.4 features an example with two rigid tropical maps such that only one

of them arises as the tropicalization of a stable log map, but the contribution to

the virtual count comes from the other, non-realizable rigid tropical map.

1.2. Acknowledgements. That there are analogies with Parker’s work is not

an accident: We received a great deal of inspiration from his work and had many

fruitful discussions with him. We also benefited from discussions with Steffen

Marcus, Dhruv Ranganathan, Ilya Tyomkin, Martin Ulirsch and Jonathan Wise.

1.3. Conventions. All logarithmic schemes and stacks we consider here are fine

and saturated and defined over an algebraically closed field k of characteristic 0.

We will usually only consider toric monoids, i.e., monoids of the form P = PR∩M
for M ' Zn, PR ⊂ MR = M ⊗Z R a rational polyhedral cone. For P a toric

monoid, we write

P∨ = Hom(P,N), P∨R = Hom(P,R≥0), P ∗ = Hom(P,Z).

For Q a toric monoid and ϕ : Q → R a homomorphism to the multiplicative

monoid of the k-algebra R, the notation Spec(Q → R) denotes SpecR with the

log structure induced by ϕ. For our conventions concerning graphs see §2.3.6.

2. Preliminaries

2.1. Cone complexes associated to logarithmic stacks.

2.1.1. The category of cones. We consider the category of rational polyhedral

cones, which we denote by Cones. The objects of Cones are pairs σ = (σR, N)

where N ' Zn is a lattice and σR ⊂ NR = N ⊗Z R is a top-dimensional strictly

convex rational polyhedral cone. A morphism of cones ϕ : σ1 → σ2 is a homo-

morphism ϕ : N1 → N2 which takes σ1R into σ2R. Such a morphism is a face

morphism if it identifies σ1R with a face of σ2R and N1 with a saturated sublattice

of N2. If we need to specify that N is associated to σ we write Nσ instead.

2.1.2. Generalized cone complexes. Recall from [KKMS, II.1] and [ACP] that a

generalized cone complex is a topological space with a presentation as the colimit

of an arbitrary finite diagram in the category Cones with all morphisms being

face morphisms. If Σ denotes a generalized cone complex, we write σ ∈ Σ if σ

is a cone in the diagram yielding Σ, and write |Σ| for the underlying topological

space. A morphism of generalized cone complexes f : Σ → Σ′ is a continuous

map f : |Σ| → |Σ′| such that for each σR ∈ Σ, the induced map σ → |Σ′| factors

through a morphism σ → σ′ ∈ Σ′. For a cone σ ∈ Cones, we use the same

symbol σ to also denote the cone complex of all its faces.

Note that two generalized cone complexes can be isomorphic yet not have the

same presentation. This phenomenon does not occur for so-called reduced pre-

sentations, which have the defining property that every face of a cone in the
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diagram is in the diagram, and every isomorphism in the diagram is a self-map.

By [ACP, Prop. 2.6.2] any generalized cone complex has such a reduced presenta-

tion. In this paper we only work with reduced presentations of generalized cone

complexes.

2.1.3. Generalized polyhedral complexes. We can similarly define a generalized

polyhedral complex, where in the above set of definitions pairs (σR, N) live in the

category Poly of rationally defined polyhedra. This is more general than cones,

as any cone σ is in particular a polyhedron (usually unbounded). For example,

an affine slice of a fan is a polyhedral complex.

2.1.4. The tropicalization of a logarithmic scheme. Now let X be a Zariski fs log

scheme of finite type. For the generic point η of a stratum of X, its characteristic

monoid MX,η defines a dual monoid (MX,η)
∨ := Hom(MX,η,N) lying in the

group (MX,η)
∗ := Hom(MX,η,Z), see §1.3, hence a dual cone

(2.1) ση :=
(
(MX,η)

∨
R, (MX,η)

∗).
If η is a specialization of η′, then there is a well-defined generization map

MX,η →MX,η′ since we assumed X is a Zariski logarithmic scheme. Dualizing,

we obtain a face morphism ση′ → ση. This gives a diagram of cones indexed by

strata of X with face morphisms, and hence gives a generalized cone complex

Σ(X). We call this the tropicalization of X, following [GS1, Appendix B].1 For

σ ∈ Σ(X) we denote by

Xσ ⊂ X

the closure of the corresponding stratum of X, endowed with the reduced induced

scheme structure. We refer to these subschemes with reduced induced structure

as closed strata of X.

This construction is functorial: given a morphism of log schemes f : X → Y ,

the map f [ : f−1MY → MX induces a map of generalized cone complexes

Σ(f) : Σ(X)→ Σ(Y ).

Definition 2.1. [GS1, Def. B.2] We say X is monodromy free if X is a Zariski

log scheme and for every σ ∈ Σ(X), the natural map σ → |Σ(X)| is injective on

the interior of any face of σ. We say X is simple if the map is injective on every

σ.

Here is an example of a Zariski log structure that is monodromy free, but not

simple. Take X to be the Neron 2-gon, the fibred sum of two P1’s joined at two

pairs of points, Thus X has two irreducible components X1, X2 and two nodes

q1, q2. Take a log structureMX on X withMX constant with fibres N2 along X1,

with fibers N on X2 r {q1, q2} and with generization maps MX,qi = N2 → N to

1This terminology differs slightly from that of [Ul1], where the tropicalization is a canonically

defined map from the Thuillier analytification Xi of X to the compactified cone complex.

Hopefully this will not cause confusion.
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the generic point of X2 the two projections. See also [GS1, Expl. B.1] for another

example.

Simplicity is, however, true in the Zariski log smooth case over a trivial log

point. Such log schemes can in fact be viewed as toroidal pairs without self-

intersections and the statement follows readily from the classical treatment in

[KKMS, p.70–72]:

Proposition 2.2. Let X be a Zariski log scheme, log smooth over Spec k with

the trivial log structure. Then X is simple.

As remarked in [GS1], more generally we can define the generalized cone com-

plex associated with a finite type logarithmic stack X, in particular allowing for

logarithmic schemes X in the étale topology. In fact, one can always find a cover

X ′ → X in the smooth topology with X ′ a union of simple log schemes, and with

X ′′ = X ′ ×X X ′; then define Σ(X) to be the colimit of Σ(X ′′) ⇒ Σ(X ′). The

resulting generalized cone complex is independent of the choice of cover. This

process is explicitly carried out in [ACP] and [Ul2].

Examples 2.3. (1) If X is a toric variety with the canonical toric logarithmic

structure, then Σ(X) is abstractly the fan defining X. It is missing the embedding

of |Σ(X)| as a fan in a vector space NR, and should be viewed as a piecewise linear

object.

(2) Let k be a field and X = Spec(N → k) the standard log point with

MX = k× × N. Then Σ(X) consists of the ray R≥0.

(3) Let C be a curve with an étale logarithmic structure with the property

that MC has stalk N2 at any geometric point, but has monodromy of the form

(a, b) 7→ (b, a), so that the pull-back ofMC to an unramified double cover C ′ → C

is constant butMC is only locally constant. Then Σ(C) can be described as the

quotient of R2
≥0 by the automorphism (a, b) 7→ (b, a). If we use the reduced

presentation, Σ(C) has three cones, one each of dimension 0, 1 and 2.

2.2. Artin fans. Let X be a fine and saturated algebraic log stack. We are quite

permissive with algebraic stacks, as delineated in [Ol, (1.2.4)–(1.2.5)], since we

need to work with stacks with non-separated diagonal. An Artin stack logarith-

mically étale over Speck is called an Artin fan.

The logarithmic structure of X is encoded by a morphism X → Log to Olsson’s

stack Log of fine log structures, see [Ol]. One crucial idea developed in the context

of the present paper is a refinement of the stack Log by an Artin fan that takes

into account the stratification of X defined byMX . Following preliminary notes

written by two of us (Chen and Gross), the paper [AW] introduces a canonical

Artin fan AX associated to a logarithmically smooth fs log scheme X. This was

generalized in [ACMW, Prop. 3.1.1]:

Theorem 2.4. Let X be a logarithmic algebraic stack over Spec k which is locally

connected in the smooth topology. Then there is an initial strict étale morphism
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AX → Log over which X → Log factors. Moreover, the morphism AX → Log is

representable by algebraic spaces.

Note that AX in the theorem is indeed an Artin fan because Log is logarith-

mically étale over Speck.

If X is a Deligne-Mumford stack, AX can be constructed from the cone complex

Σ(X) as follows. For any cone σ ⊂ NR, let P = σ∨ ∩M be the corresponding

monoid. We write

(2.2) Aσ = AP :=
[

Spec k[P ]/ Spec k[P gp]
]
.

This stack carries the standard toric logarithmic structure induced by descent

from the global chart P → k[P ]. Then AX is the colimit

(2.3) AX = lim−→
σ∈Σ(X)

Aσ,

in the category of sheaves over Log.

Remark 2.5. Unlike Σ(X), the formation of AX is not functorial for all logarith-

mic morphisms Y → X. This is a result of the fact that the morphism Y → Log

is not the composition Y → X → Log, unless Y → X is strict. Note also that not

all Artin fans A are of the form AX , since A → Log may fail to be representable.

Our next aim is to prove functoriality of the formation of Artin fans for maps

with Zariski log smooth domains, stated as Proposition 2.8 below. We need two

lemmas.

Lemma 2.6. Suppose X is a log smooth scheme over the trivial log point Spec k
and with Zariski log structure. Then AX admits a Zariski open covering {Aσ ⊂
AX |σ ∈ Σ(X)}.

Proof. Since X has Zariski log structure, we may select a covering {U → X} by

Zariski open sets such that U → AσU is the Artin fan of U . By the log smoothness

of X, the morphism X → AX is smooth, and hence the image Ũ ⊂ AX of U is

an open substack.

It remains to show that Ũ is the Artin fan of U . By [AW, §2.3 and Defini-

tion 2.3.2(2)], this amounts to show that Ũ parameterizes the connected compo-

nents of the fibres of U → Log. Since both X → Log and U → Log are smooth

morphisms between reduced stacks, it suffices to consider each geometric point

T → Log. Since U ⊂ X is Zariski open, UT = T ×Log U ⊂ XT = T ×Log X is also

Zariski open. Thus, for each connected component V ⊂ UT , there is a unique

connected component V ′ ⊂ XT containing V as a Zariski open dense set. As the

set of connected components of XT is parameterized by T ×Log AX , we observe

that the set of connected components of UT is parameterized by the subscheme

T ×Log Ũ ⊂ T ×Log AX . ♠
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Lemma 2.7. Suppose X is a log smooth scheme with Zariski log structure and

τ ∈ Cones. Then any morphism X → Aτ has a canonical factorization through

AX → Aτ .

Proof. By Lemma 2.6, we may select a Zariski covering C := {Aσ ⊂ AX} of AX ,

hence a Zariski covering {Uσ := Aσ ×AX X ⊂ X} of X. We may assume that if

σ′ ⊂ σ is a face, then Aσ′ ⊂ Aσ ⊂ AX is also in C.
Locally, the morphism Uσ → Aτ induces a morphism τ∨ → Γ(Uσ,MUσ) = σ∨,

hence a canonical φσ : Aσ → Aτ through which Uσ → Aτ factors.

To see the local construction glues, observe that the intersection Aσ1 ∩ Aσ2 of

two Zariski charts in C is again covered by elements in C. It suffices to verify that

φσ1 , φσ2 agree on Aσ′ ∈ C if Aσ′ ⊂ Aσ1 ∩Aσ2 . Taking global sections, we observe

that the composition τ∨ → Γ(Uσi ,MUσi
)→ Γ(Uσ′ ,MUσ′

) = (σ′)∨ is independent

of i = 1, 2 as they are determined by the restriction of Uσi → Aτ to the common

Zariski open Uσ′ . Hence φσ1|Uσ′ = φσ2|Uσ′ . ♠

Proposition 2.8. Let X → Y be a morphism of log schemes. Suppose X is log

smooth with Zariski log structure. Then there is a canonical morphism AX → AY
such that the following diagram commutes

X //

��

Y

��

AX // AY
Proof. By the claimed uniqueness and étale descent, the statement can be checked

étale locally on AY . We may then assume AY = Aτ for some τ ∈ Cones, for

which the statement is exactly Lemma 2.7. ♠

Using Proposition 2.8 we can also define a relative notion of Artin fan for maps

with log smooth domains.

Definition 2.9. The relative Artin fan for a morphism X → B of log schemes

with X log smooth with Zariski log structure is defined as the fibre product

X = B ×AB AX .

Assuming B smooth over a trivial log point, X has the following explicit de-

scription Zariski-locally. Let P∨ → Q∨ be a map of cones in Σ(X)→ Σ(B). Then

the open embedding AP → AX from Lemma 2.6 induces the open embedding[
Spec k[P ]/ Spec k[P gp/Qgp]

]
−→ X ,

and these cover X . Here Speck[P gp/Qgp] acts as the subtorus of Spec k[P gp]

defined by the kernel of the map Speck[P gp]→ Spec k[Qgp].

While not, strictly speaking, needed for this paper, we end this subsection with

the instructive result that giving a log morphism to the Artin fan AX of a log

scheme X is combinatorial in nature, captured entirely by the induced map of

cone complexes.
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Proposition 2.10. Let X be a Zariski fs log scheme log smooth over Spec k.

Then for any fs log scheme T there is a canonical bijection

Homfs(T,AX) −→ HomCones(Σ(T ),Σ(X)),

which is functorial in T .

Proof. Step I. Description of AX. By Lemma 2.6, we may select a Zariski

covering C := {Aσ ⊂ AX}, hence a Zariski covering {Uσ := Aσ×AXX ⊂ X}. We

may assume that if σ′ ⊂ σ is a face, then Aσ′ ⊂ Aσ ⊂ AX is also in C. Thus Σ(X)

can be presented by the collection of cones {σ} glued along face maps σ′ → σ. In

particular, this shows that Σ(X) = Σ(AX). Since Σ is functorial, there is then a

map Hom(T,AX)→ Hom(Σ(T ),Σ(X)). We need to construct the inverse.

Step II. T is atomic. Suppose T has unique closed stratum T0 and a global

chart P →MT inducing an isomorphism P ' MT,t̄ at some point t̄ ∈ T0 — in

the language of [AW, Def. 2.2.4] the logarithmic scheme T is atomic. Then with

τ := Hom(P,R≥0), Σ(T ) = τ .

Using the presentation of Σ(X) described in Step I, a map α : Σ(T ) →
Σ(X) has image α(τ) ⊂ σi ∈ Σ(X) for some i. Observe that Hom(T,Aσi) =

Hom(Qi,Γ(T,MT )) by [Ol, Prop. 5.17]. Now Γ(T,MT ) = P , and giving a ho-

momorphism Qi → P is equivalent to giving a morphism of cones τ → σi. Thus

Hom(T,Aσi) = Hom(τ, σi). In particular, α induces a composed map T → Aσi ⊂
AX , yielding the desired inverse map Hom(Σ(T ),Σ(X))→ Hom(T,AX).

Step III. T general. In general T has an étale cover {Ti} by atomic log-

arithmic schemes, and each Tij := Ti ×T Tj also has such a covering {T kij} by

atomic logarithmic schemes. This gives a presentation
∐

Σ(T kij) ⇒
∐

Σ(Ti) of

Σ(T ). In particular, a morphism of cone complexes Σ(T )→ Σ(X) induces mor-

phisms Σ(Ti)→ Σ(X) compatible with the maps Σ(T kij)→ Σ(Ti),Σ(Tj). Thus we

obtain unique morphisms Ti → AX compatible with the morphisms T kij → Ti, Tj,

inducing a morphism T → AX . ♠

Example 2.11. Let X = A1 with the toric log structure. Then AX = AN =

[A1/Gm]. Given an ordinary scheme T , a morphism f : T → AX is equivalent to

giving a strict log morphism T → AX , by endowing T with the pull-back f ∗MAN

of the log structure on AN. From this point of view, the universal Gm-torsor P on

AN agrees with the Gm-torsor subsheaf ofMAN defined by the generating section

of MAN . Thus the pull-back log structure f ∗MAN is given by a line bundle L
on T , the line bundle with associated torsor L× = f ∗P , and a homomorphism

L → OT of OT -modules defining the structure morphism, or its restriction to L×.

Conversely, the morphism f from T to the quotient stack AN = [A1/Gm] can be

recovered from L → OT by the associated Gm-equivariant morphism from the

Gm-torsor SpecT
(⊕

d∈Z L⊗−d
)

to A1
T .

Thus for an arbitrary log structure MT on T , a log morphism f : (T ,MT )→
AN is the same data as the restriction of MT → OT to a Gm-torsor subsheaf

L× ⊂ MT . Indeed, such an isomorphism yields the identification of f ∗P with a
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Gm-torsor subsheaf L× ⊂MT , and the property of being a log morphism forces

f to be associated to the restriction of the structure morphismMT → OT to L×.

Now Proposition 2.10 assumes a log structure MT on T is already given and

then says that the set of log morphisms T = (T ,MT ) → AX equals the set of

morphisms Σ(T )→ R≥0 = Σ(X) of cone complexes. Indeed, such a morphism of

cone complexes is equivalent to specifying m ∈ Γ(T,MT ), and then the Gm-torsor

subsheaf L× ⊂MT is simply defined by the preimage of m under MT →MT .

2.3. Stable logarithmic maps and their moduli. This section reviews the

theory of stable logarithmic maps developed in [GS1, Ch, AC], emphasizing the

tropical language from [GS1]. Most references in the following are therefore to

[GS1], but of course all results have analogues in [Ch, AC] under the slightly

stronger assumption of global generatedness of MX . Note that the restriction

on global generatedness has been removed in [ACMW] by base changing to a

refinement of the Artin fan AX of X.

2.3.1. Definition. We fix a log morphism X → B with the logarithmic structure

on X being defined in the Zariski topology. Recall from [GS1, Def. 1.6]:

Definition 2.12. A stable logarithmic map (C/S,p, f) is a commutative diagram

(2.4) C
f
//

π
��

X

��

S // B

where

(i) π : C → S is a proper, logarithmically smooth and integral morphism of

log schemes together with a tuple of sections p = (p1, . . . , pk) of π such that

every geometric fibre of π is a reduced and connected curve, and if U ⊂ C is the

non-critical locus of π then MC |U ' π∗MS ⊕
⊕k

i=1 pi∗NS.

(ii) For every geometric point s̄→ S, the restriction of f to C s̄ together with

p is an ordinary stable map.

2.3.2. Basic maps. The crucial concept for defining moduli of stable logarithmic

maps is the notion of basic stable logarithmic maps. To explain this in tropical

terms, we begin by summarizing the discussion of [GS1, §1] where more details

are available. The terminology used in [Ch, AC] is minimal stable logarithmic

maps.

2.3.3. Induced maps of monoids. Suppose given (C/S,p, f) a stable logarithmic

map with S = Spec(Q′ → k), with Q′ an arbitrary sharp fs monoid and k
an algebraically closed field. We will use the convention that a point denoted

p ∈ C is always a marked point, and a point denoted q ∈ C is always a nodal

point. Denoting Q′ = π−1Q′, the morphism π[ of logarithmic structures induces

a homomorphism of sheaves of monoids ψ = π[ : Q′ →MC . Similarly f [ induces

ϕ = f
[

: f−1MX →MC .
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2.3.4. Structure of ψ. The homomorphism ψ is an isomorphism when restricted

to the complement of the special (nodal or marked) points of C. The sheaf MC

has stalks Q′ ⊕N and Q′ ⊕N N2 at marked points and nodal points, respectively.

The latter fibred sum is determined by a map

(2.5) N −→ Q′, 1 7−→ ρq

and the diagonal map N → N2, see [GS1, Def. 1.5]. The map ψ at these special

points is given by the inclusion Q′ → Q′ ⊕ N and Q′ → Q′ ⊕N N2 into the first

component for marked and nodal points, respectively.

2.3.5. Structure of ϕ. For x̄ ∈ C a geometric point with underlying scheme-

theoretic point x, the map ϕ induces maps ϕx̄ : Px →MC,x̄ for

Px :=MX,f(x̄).

Note that MX,f(x̄) is independent of the choice of x̄ → x since the logarithmic

structure on X is Zariski. Following Discussion 1.8 of [GS1], we have the following

behaviour at three types of points on C:

(i) x = η is a generic point, giving a local homomorphism2 of monoids

(2.6) ϕη̄ : Pη −→ Q′.

(ii) x = p is a marked point, giving the composition

(2.7) up : Pp
ϕp̄−→ Q′ ⊕ N pr2−→ N.

The element up ∈ P∨p is called the contact order at p.

(iii) x = q is a node contained in the closures of η1, η2. If χi : Pq → Pηi are the

generization maps there exists a homomorphism

uq : Pq −→ Z,

called contact order at q, such that

(2.8) ϕη̄2

(
χ2(m)

)
− ϕη̄1

(
χ1(m)

)
= uq(m) · ρq,

with ρq 6= 0 given in Equation (2.5), see [GS1, (1.8)]. The maps ϕη̄ ◦ χi and

uq are equivalent to providing the local homomorphism ϕq̄ : Pq → Q′⊕NN2.

The choice of ordering η1, η2 for the branches of C containing a node is called

an orientation of the node. We note that reversing the orientation of a node q

(by interchanging η1 and η2) results in reversing the sign of uq.

2A homomorphism of monoids ϕ : P → Q is local if ϕ−1(Q×) = P×.
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2.3.6. Dual graphs and combinatorial type. In this paper, a graph G consists of

a set of vertices V (G), a set of edges E(G) and a separate set of legs or half-

edges L(G), with appropriate incidence relations between vertices and edges, and

between vertices and half-edges. We admit multiple edges, loops and legs. In

order to obtain the correct notion of automorphisms, we also implicitly use the

convention that every edge E ∈ E(G) of G is a pair of orientations of E or a

pair of half-edges of E (disjoint from L(G)), so that the automorphism group of

a graph with a single loop is Z/2Z.

Given a stable logarithmic map (C/S,p, f) over a logarithmic point, let GC

be the dual intersection graph of C. This is the graph which has a vertex vη for

each generic point η of C, an edge Eq joining vη1 , vη2 for each node q contained

in the closures of both η1 and η2, and where Eq is a loop if q is a double point

in an irreducible component of C. Note that an ordering of the two branches of

C at a node gives rise to an orientation on the corresponding edge. Finally, GC

has a leg Lp with endpoint vη for each marked point p contained in the closure

of η. Occasionally we view V (G), E(G) and L(G) as subsets of C and then write

x ∈ C for a vertex, edge or leg of G coresponding to a generic point, node or

marked point of C respectively.

Definition 2.13. Let (C/S,p, f) be a stable logarithmic map over a logarithmic

point S = Spec(Q → k). The combinatorial type of (C/S,p, f) consists of the

following data:

(1) The dual intersection graph G = GC of C.

(2) The genus function3 g : V (G) → N associating to v ∈ V (G) the genus of

the irreducible component C(v) ⊂ C.

(3) The map σ : V (G)∪E(G)∪L(G)→ Σ(X) mapping x ∈ C to
(
MX,f(x)

)∨
R ∈

Σ(X).

(4) The contact data u = {up, uq} at marked points p and nodes q of C.

2.3.7. The basic monoid. Given a combinatorial type of a stable logarithmic map

(C/S,p, f), we define a monoid Q by first defining its dual

(2.9) Q∨ =

{(
(Vη)η, (eq)q

)
∈
⊕
η

P∨η ⊕
⊕
q

N
∣∣∣∣ ∀q : Vη2 − Vη1 = equq

}
.

Here the sum is over generic points η of C and nodes q of C. Readers with

background in tropical gemetry should recognize this monoid as the moduli cone

of tropical curves of fixed combinatorial type, as will be discussed in §2.5. We

then set

Q := Hom(Q∨,N).

3This was not part of the combinatorial type as defined in [GS1], but is included here to

agree with the type of a tropical map below, where it is indispensible.
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It is shown in [GS1, §1.5], that Q is a sharp monoid, fine and saturated by

construction as the dual of a finitely generated submonoid of a free abelian group.

Note also that Q indeed only depends on the combinatorial type of (C/S,p, f).

Given a stable logarithmic map (C ′/S ′,p′, f ′) over S ′ = Spec(Q′ → k) of the

same combinatorial type, we obtain a canonically defined map

(2.10) Q −→ Q′

which is most easily defined as the transpose of the map

(Q′)∨ −→ Q∨ ⊂
⊕
η

P∨η ⊕
⊕
q

N, m 7−→
(
(ϕtη̄(m))η, (m(ρq))q

)
,

with ϕη̄ and ρq defined in (2.6) and (2.5), respectively.

Definition 2.14 (Basic maps). Let (C/S,p, f) be a stable logarithmic map. We

say f is basic if at every geometric point s̄ of S, the map Q → Q′ =MS,s̄ from

(2.10) defined by the restriction (Cs̄/s̄,ps̄, f |Cs̄) is an isomorphism.

2.3.8. Degree data and class. In what follows, H+
2 (X) denotes a semigroup car-

rying degree data for curves in X, which are locally constant in flat families, such

as effective 1-cycles on X modulo algebraic or numerical equivalence or, work-

ing over C, classes in singular homology H2(X,Z) pairing non-negatively with a

Kähler form. We require that the moduli spaces of ordinary stable maps of fixed

curve class, genus and number of marked points are of finite type.

Definition 2.15. A class β of stable logarithmic maps to X consists of the

following:

(i) The data β of an underlying ordinary stable map, i.e., the genus g, a curve

class A ∈ H+
2 (X), and the number of marked points k.

(ii) Integral elements up1 , . . . , upk ∈ |Σ(X)|. 4

We say a stable logarithmic map (C/S,p, f) is of class β if two conditions are

satisfied. First, the underlying ordinary stable map must be of type β = (g, A, k).

Second, define the closed subset Zi ⊂ X to be the union of strata with generic

points η such that upi lies in the image of ση → |Σ(X)|. Then for any i we have

im(f ◦ pi) ⊂ Zi and for any geometric point s̄ → S such that pi(s̄) lies in the

stratum of X with generic point η, there exists u ∈ ση = Hom(MX,η̄,N) mapping

to upi ∈ |Σ(X)| making the following diagram commute:

MX,f(pi(s̄))

f
[

//

χ

��

MC,pi(s̄) =MS,s̄ ⊕ N

pr2

��

MX,η̄
u // N.

4We remark that this definition of contact orders is different than that given in [GS1, Def. 3.1].

Indeed, the definition given there does not work when X is not monodromy free, and [GS1,

Rem. 3.2] is not correct in that case. However, [GS1, Def. 3.1] may be used in the monodromy

free case.
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Here χ is the generization map. In particular, si specifies the contact order upi
at the marked point pi(s̄) as defined in (2.7).

We emphasize that the class β does not specify the contact orders uq at nodes.

Definition 2.16. Let M (X/B, β) denote the stack of basic stable logarithmic

maps of class β. This is the category whose objects are basic stable logarithmic

maps (C/S,p, f) of class β, and whose morphisms (C/S,p, f) → (C ′/S ′,p′, f ′)

are commutative diagrams

C
g
//

��

C ′
f ′
//

��

X

��

S
h // S ′ // B

with the left-hand square cartesian, S → S ′ strict, and f = f ′ ◦ g, g ◦ p = p′ ◦ h.

Theorem 2.17. If X → B is proper, then M (X/B, β) is a proper Deligne-

Mumford stack. If furthermore X → B is logarithmically smooth, then M (X/B, β)

carries a perfect obstruction theory, defining a virtual fundamental class [M (X/B, β)]virt

in the rational Chow group of M (X/B, β).

Proof. Under the given assumption thatX is a Zariski log scheme, [GS1, Thm. 2.4]

proves that M (X/B, β) is a Deligne-Mumford stack. Properness was shown in

logc.cit. under a technical assumption, and in general in [ACMW].

The existence of a perfect obstruction theory when X → B is logarithmically

smooth was proved in [GS1, §5]. ♠

2.4. Stacks of pre-stable logarithmic curves. For the obstruction theory in

Theorem 2.17 one works over the Artin stack MB of pre-stable logarithmically

smooth curves defined over B. Since this stack will be important later on, let

us briefly recall its construction. First, working over a field k, there is a stack

M of pre-stable basic logarithmic curves over Spec k, essentially constructed by

F. Kato in [Kf1]. Endowing M with its basic log structure, the fibre product

M ×Spec k B in the category of log stacks is a fine log stack. We can then define

MB using Olsson’s stack over M×B:

MB := LogM×B.

Indeed, an object in this stack is a log scheme T with two morphisms T →M and

T → B. The corresponding pre-stable log smooth curve over T is the logarithmic

pull-back to T of the universal pre-stable curve over M.

We also consider the following refinements of M introduced in [BM, Def. 2.6]

and further discussed in [Be, p.603]. Let G be a graph decorated by a map

g : V (G) −→ N,

associating to each vertex its genus. Then there is an algebraic stack

(2.11) M(G,g) of (G,g)-marked pre-stable curves



DECOMPOSITION OF DEGENERATE GROMOV-WITTEN INVARIANTS 17

with objects over a B-scheme S given by

(1) for each v ∈ V (G), a family of pre-stable curves Cv → S of genus g(v),

together with marked sections xL : S → Cv defined by the legs L ∈ L(G)

with v ∈ L,

(2) for each edge E ∈ E(G) with vertices v, w, a pair of marked sections yv, yw
of Cv → S, Cw → S, respectively.

All marked sections are required to be mutually disjoint and to have image in the

non-critical locus of
∐

v Cv → S. Taking the fibred sum of
∐

v Cv along the pairs

of marked sections associated to the edges, we may as well view the objects of

M(G,g) as families of marked nodal curves

(2.12) (C −→ S, x);

from this point of view, each edge E defines a family of nodal points yE : S → C

and each vertex a closed embedding Cv → C of a family of pre-stable curves of

genus g(v) and with image a union of irreducible components. Thus we have a

morphism of algebraic stacks

(2.13) M(G,g) −→M,

turning M(G,g) into a logarithmic algebraic stack by pulling back the log struc-

ture from M. Note that on the level of the underlying stacks, (2.13) induces the

identification of the stack quotient [M(G,g)/Aut(G,g)] with the normalization

of a closed substack of M, defining the well-known stratified structure of M. See

[ACG, XII,§10] for a detailed discussion. Now define

(2.14) MB(G,g) := LogM(G,g)×B, CB(G,g) := MB(G,g)×M(G,g) C(G,g).

An important feature of the collection of stacks M(G,g) and in turn of MB(G,g)

is their functorial behaviour under contraction morphisms of decorated graphs

(2.15) φ : (G,g) −→ (G′,g′),

that is, an isomorphism of G′ with the graph G/Eφ contracting a subset of edges

Eφ ⊂ E(G) such that5

g′(v′) = b1

(
φ−1(v′)

)
+

∑
v∈V (φ)−1(v′)

g(v)

holds for all v′ ∈ V (G′) [BM, Def. 1.3]. Here V (φ) : V (G) → V (G′) is the

surjection on the set of vertices defined by φ, and we have in addition a compatible

inclusion E(φ) : E(G′)
'−→E(G)rEφ ⊂ E(G) of the sets of edges and a bijection

L(φ) : L(G′) → L(G) on the sets of legs. This notion of morphism captures the

behavior of the combinatorial type of pre-stable curves under generization and is

indeed compatible with the finite maps (2.13) to M:

5The right-hand side is identified in Equation (2.17) below as the genus of φ−1(v′).
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Proposition 2.18. For any contraction morphism (G,g) → (G′,g′) of genus-

decorated graphs, there are finite unramified morphisms of ordinary stacks M(G,g)→
M(G′,g′) and

MB(G,g) −→MB(G′,g′).

Proof. By base change and the definition of the log structures it is enough to prove

the statement for the morphism of stacks underlying M(G,g) → M(G′,g′). In

this case the statement follows by iterated application of the clutching morphisms

of [Kn, Cor. 3.9]. ♠

We emphasize that Proposition 2.18 is purely on the level of stacks with no

log structures involved. Incorporating log structures in the picture is more subtle

and is part of the gluing formalism developed in [ACGS].

2.5. The tropical interpretation. The basic monoid Q was originally derived

from its tropical interpretation, which will play an important role here. We review

this in our general setting. Given a stable logarithmic map (C/S,p, f), we obtain

an associated diagram of cone complexes,

(2.16) Σ(C)
Σ(f)

//

Σ(π)

��

Σ(X)

��

Σ(S) // Σ(B).

This diagram can be viewed as giving a family of tropical curves mapping to

Σ(X), parameterized by the cone complex Σ(S). Indeed, a fibre of Σ(π) is a

graph and the restriction of Σ(f) to such a fibre can be viewed as a tropical curve

mapping to Σ(X). We make this precise.

To avoid difficulties in notation, we shall assume that X is simple (Defini-

tion 2.1). This is not a restrictive assumption in this paper since we assume X to

be log smooth over the trivial log point Speck, and as X is assumed to be Zariski

in any event, it follows that X is simple (Proposition 2.2). We use the reduced

presentation of Σ(X) from §2.1.2. Then simplicity implies that if τ, σ ∈ Σ(X)

and the image of τ in |Σ(X)| is a face of the image of σ, then there is a unique

face map τ → σ in the diagram.

The left-hand vertical arrow of (2.16) is a family of abstract tropical curves

according to the following definition, cf. also [CCUW, Def. 3.2].

Definition 2.19. A (family of) tropical curves (G,g, `) over a cone ω ∈ Cones is

a connected graph G together with a bijection L(G)→ {1, . . . , k} (leg ordering)

and two maps

g : V (G) −→ N, ` : E(G) −→ Hom(ω ∩Nω,N) r {0}.

For v ∈ V (G) and E ∈ E(G) we call g(v) the genus of v and `(E) the length

function of E.
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The genus of a family of tropical curves (G,g, `) is defined by

(2.17) |g| = b1(G) +
∑

v∈V (G)

g(v).

Note that given a tropical curve (G,g, `) over a cone ω and s ∈ ω not contained

in any proper face, then s ◦ ` assigns a strictly positive real number to each edge.

Together with the convention that legs are infinite length, (G, s ◦ `) therefore

specifies a metric graph, reproducing the traditional definition of an abstract

tropical curve. Hence our definition makes precise the notion of a family of

abstract tropical curves parameterized by ω ∈ Cones.

Construction 2.20. We suppress the genus decoration in the notation (G,g, `)

and conflate (G,g, `) with its associated morphism of cone complexes

(2.18) Γ = Γ(G, `)
πΓ−→ ω,

constructed as follows. For each v ∈ V (G) take one copy ωv of ω, while for each

E ∈ E(G) take the cone

(2.19) ωE =
{

(s, λ) ∈ ω × R≥0

∣∣λ ≤ `(E)(s)
}
.

The cone ωE has two facets, each isomorphic to ω via projection to the first factor.

The corresponding inclusions

s 7−→ (s, 0), s 7−→ (s, `(s)).

define face morphisms ωv, ωv′ → ωE for the two vertices v, v′ adjacent to E.

Note this definition is independent of the chosen labellings v, v′ and works also

for graphs with loops. Finally, for each L ∈ L(G) with adjacent vertex v take

ωL = ω × R≥0 with face morphism ωv → ωL defined by the facet ω × {0} ⊂ ωL.

Then Γ is the generalized cone complex defined by this directed sytem in Cones.

The morphism to ω is defined on each ωE by the projection to the first factor.

By construction, each vertex v ∈ V (G) defines a section of πΓ : Γ→ ω denoted

as follows:

(2.20) ω −→ Γ, s 7−→ v(s) ∈ ωv.

Then for s ∈ ω not contained in a proper face, the fibre πΓ
−1(s) is the metric

graph (G, s ◦ `) previously defined.

It is also not hard to replace individual cones as base spaces for families of

tropical curves by cone complexes. See [CCUW, §3] for an elaboration of such

ideas.

Definition 2.21. A (family of) tropical maps (from a tropical curve) to Σ(X)

over a cone ω ∈ Cones is a tropical curve (G,g, `) over ω (Definition 2.19)

with associated cone complex Γ = Γ(G, `) (Construction 2.20), together with a

morphism of cone complexes

h : Γ −→ Σ(X).
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Remark 2.22. There are a number of discrete data that we can extract from

a tropical map h : Γ → Σ(X) over ω ∈ Cones which are of importance in the

sequel.

(1) Image cones: For a vertex, edge, or leg x of G, let ωx ∈ Γ be the cone

associated to x. Define

(2.21) σ : V (G) ∪ E(G) ∪ L(G) −→ Σ(X)

by mapping x to the minimal cone τ ∈ Σ(X) containing h(ωx). Note that if

E is a leg or edge incident to a vertex v, then there is an inclusion of faces

σ(v) ⊂ σ(E) in the (reduced) presentation of Σ(X).

(2) Contact orders at edges: Let Eq ∈ E(G) be an edge with a chosen order

of vertices v, v′ (orientation). Then by the definition of the cone ωEq of Γ

associated to Eq in (2.19), the image of (0, 1) ∈ NωEq
= Nω × R under h

defines uq ∈ Nσ(Eq) such that in Nσ(Eq),

(2.22) h(v(s))− h(v′(s)) = `(Eq)(s) · uq

holds for any s ∈ ωEq . Here v(s) ∈ Γ is the section of Γ→ ω defined in (2.20).

Reversing the orientation of Eq results in replacing uq by −uq.
(3) Contact orders at marked points: Similarly, for a leg Lp ∈ L(G), the image

of (0, 1) ∈ NωLp
= Nω × R defines up ∈ Nσ(Lp) ∩ σ(Lp) with h(Int(ωLp)) ⊂

Int(σ(Lp)).

Definition 2.23. (1) The type of a family of tropical maps h : Γ → Σ(X) over

Q∨R ∈ Cones is the quadruple τ = (G,g,σ,u) consisting of the associated

genus decorated graph (G,g), the map σ from (2.21) recording the strata

and the contact orders u = {up, uq} as defined in Remark 2.22. Note that

we are suppressing the leg numbering, viewing the set L(G) as identical with

{1, . . . , k}.
(2) For a type τ of a family of tropical maps, Aut(τ) denotes the subset of

automorphisms of G commuting with the maps g,σ,u.

(3) Given a type τ of a family of tropical maps, the associated basic monoid Q(τ)

is the dual of the monoid Q∨ defined in (2.9), depending only on G,σ and u.

(4) If in addition we have given a map

A : V (G) −→ H+
2 (X),

we call τ̃ = (τ,A) the decorated type of a family of tropical maps, the pair

(h,A) a decorated family of tropical maps and

|A| =
∑

v∈V (G)

A(v)

the total curve class of A.

Generalizing (2.15) we have a notion of contraction morphism for (decorated)

types of families of tropical maps needed below.
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Definition 2.24. Let τ = (G,g,σ,u) and τ ′ = (G′,g′,σ′,u′) be types of families

of tropical maps. A contraction morphism τ → τ ′ is a contraction morphism

φ : (G,g) → (G′,g′) of decorated graphs (2.15) with the following additional

properties:

(i) For all x ∈ V (G)∪E(G)∪L(G) the cone σ′(φ(x)) ∈ Σ(X) is a face of σ(x).

(ii) For all x ∈ E(G′) ∪ L(G′) it holds u′(x) = u
(
E(φ)(x)

)
.

Similarly, a contraction morphism τ̃ = (τ,A) → τ̃ ′ = (τ ′,A′) of decorated types

of families of tropical maps is a contraction morphism τ → τ ′ such that A′(v′) =∑
v∈V (φ)−1(v′) A(v) holds for all v′ ∈ V (G′).

2.5.1. Families of tropical curves from logarithmically smooth curves. Now sup-

pose

S = Spec(Q −→ k)

for some monoid Q and (C/S,p) is a family of marked log smooth curves, as in

Definition 2.12,(i).

Proposition 2.25. The tropicalization

(2.23) Σ(π) : Σ(C) −→ Σ(S) = Q∨R

of (C/S,p) naturally has the structure of a family of tropical curves (G,g, `) over

Q∨R.

Proof. Take for G the dual intersection graph of C. If η is a generic point of C,

then ωη = Q∨R and Σ(π)|ωη is the identity. Thus each fibre of Σ(π)|ωη is a point v.

We take the weight g(v) = g(C(v)), the geometric genus of the component C(v)

with generic point η. The cone of Σ(C) defined by a node q of C is

ωq = Hom(Q⊕N N2,R≥0) = Q∨R ×R≥0
R2
≥0,

where the maps Q∨R → R≥0 and R2
≥0 → R≥0 are given by evaluation at ρq ∈

Qr {0} and by (a, b) 7→ a + b, respectively. The projection R2
≥0 → R≥0 to, say,

the first factor, defines an isomorphism

Q∨R ×R≥0
R2
≥0 −→

{
(m,λ) ∈ Q∨R × R≥0

∣∣λ ≤ m(ρq)
}
.

Thus defining `(Eq) = ρq, we have a canonical isomorphism ωq ' ωEq with ωEq
defined in (2.19). For a marked point pi ∈ C, we have ωpi = Q∨R × R≥0, and

Σ(π)|ωpi is the projection onto the first component, again compatible with the

definition of Γ = Γ(G, `) in Construction 2.20.

♠

2.5.2. Families of tropical maps to Σ(X) from stable logarithmic maps. We con-

tinue working over a logarithmic point S = Spec(Q→ k) and assume in addition

given an fs log scheme X, which is simple in the sense of Definition 2.1.

Proposition 2.26. The tropicalization of a stable logarithmic map (C/S,p, f)

over the logarithmic point S = Spec(Q→ k) defines a family of tropical maps to

Σ(X) over Q∨R.
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Proof. In view of Proposition 2.25 the statement follows readily from the defini-

tions. ♠

Remark 2.27. An element x ∈ V (G) ∪ E(G) ∪ L(G) corresponds to a point

x ∈ C — either a generic point, a double point, or a marked point. The cone

σ(x) introduced in Remark 2.22 is

σ(x) = (Px)
∨
R = Hom(MX,f(x̄),R≥0) ∈ Σ(X),

for any geometric point x̄ mapping to x. With this identification of cones under-

stood, it is a matter of unravelling the definitions that the other discrete data

introduced in Remark 2.22, the contact orders uLp , uEq , agree with up, uq defined

in §2.3.5. Note in particular how (2.22) appears as the tropical manifestation

of (2.8). Thus the type of the tropicalization of a stable logarithmic map, as a

family of tropical maps (Definition 2.23), agrees with its combinatorial type from

Definition 2.13.

2.5.3. Traditional tropical maps — the relative situation. A situation of particular

interest arises when working over the standard log point b0 = Spec
(
N→ k[N]

)
).

Then all generalized cone complexes come with a morphism π to Σ(b0) = R≥0.

Taking the fiber of π over 1 ∈ R≥0 then produces a generalized polyhedral complex

as introduced in §2.1.3. Conversely, let π : Σ → R≥0 be a map of generalized

cone complexes such that no maximal cone of Σ maps to 0 ∈ R≥0. Then Σ and

π can be recovered from the generalized polyhedral complex π−1(1) by replacing

each polyhedron σ = (σR, N) by the closure of R≥0(σ × {1}) in NR × R.

If X is a finite type logarithmic stack over the standard log point b0 with

associated tropicalization π : Σ(X)→ Σ(B0) = R≥0, we now write

∆(X) = π−1(1) ⊂ Σ(X)

for the associated polyhedral complex.

In particular, this discussion applies to the logarithmic scheme X0 and log-

arithmically smooth morphism X0 → b0 from the main theorem in this paper,

Theorem 1.2. Let (C/S,p, f) be a stable log map to X0 with S = Spec(Q→ k)

a log point as in 2.5.2, but now coming with a map to b0. Let πS : Q∨ → N be

the tropicalization of S → b0. Then the family of tropical maps Σ(X) → Σ(X0)

over Q∨ carries the same information as its restriction to the fiber over 1 ∈ R≥0,

a family of maps from metric graphs to ∆(X) parameterized by the polyhedron

π−1
S (1) ⊂ Q∨.

The transition from cone complexes to polyhedral complexes provides the link

to more traditional tropical language. In the remainder of this paper we use cone

complexes for most of the general results and polyhedral complexes for explicit

computations. With regards to using both cones and polyhedra as parameter

spaces for families of tropical maps, note that there is no conflict of language:

A family of tropical maps to Σ(X0) over a cone σ can be viewed as a family
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of maps of metric graphs to Σ(X0) interpreted as a polyhedral complex, now

parameterized by σ as a polyhedron.6

As a matter of notation, we indicate the transition from cone complexes to

polyhedral complexes by overlining. Thus a family of tropical maps h : Γ →
Σ(X0) over a cone σ with a map πS : σ → R≥0 induces the family of tropical

maps

(2.24) h : Γ −→ Σ(X) = ∆(X)

over the polyhedron σ = π−1
S (1).

2.5.4. Basic maps and tropical universal families. Basicness of a stable logarith-

mic map (C/S,p, f) over a logarithmic point can then be recast as follows.

Proposition 2.28. Let (C/S,p, f) be a stable logarithmic map over a logarithmic

point S = Spec(Q → k) and τ its combinatorial type (Definition 2.13). Then

(C/S,p, f) is basic if and only if the family of tropical maps in Proposition 2.26

is universal among families of tropical maps to Σ(X) of type τ .

Proof. The definition of the dual of the basic monoid Q∨ precisely encodes the

data of a family of tropical maps to Σ(X) over σ = R≥0 of type τ (Definition 2.23).

Indeed, let GC be the dual intersection graph of C from §2.3.6, with vertices vη,

edges Eq and legs Lp. Then a tuple ((Vη)η, (eq)q) ∈ Int(Q∨R) specifies a family of

tropical maps

h : Γ(G, `) −→ Σ(X)

over R≥0 of the given type, by defining `(Eq) = eq and h|ωv by mapping 1 ∈
R≥0 = ωvη to Vη ∈ Σ(X). The type also determines h on each leg Lp. It is shown

in [GS1, Prop. 1.9] that if one such tropical map to Σ(X) of a certain type exists

then there exists one over Q∨R; moreover, any other tropical map of the same type,

say over σ ∈ Cones, is obtained from this one by pull-back via a homomorphism

σ → Q∨. ♠

Remark 2.29. Note that if S is not a log point, the diagram (2.16) still exists,

but the fibres of Σ(π) may not be the expected ones. In particular, if s̄ is a

geometric point of S, there is a functorial diagram

Σ(Cs̄) //

��

Σ(C)

��

Σ(s̄) // Σ(S)

but this diagram need not be Cartesian due to monodromy in the family S. For

example, it is easy to imagine a situation where Cs̄ has two irreducible components

and two nodes for every geometric point s̄, but the nodal locus of C → S is

6It is worthwhile pointing out that the transition from polyhedral complexes to cone com-

plexes can be subtle [BS]. This is not an issue here since we always have an underlying descrip-

tion in terms of cone complexes.
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irreducible, as there is monodromy interchanging the two nodes. Then a fibre of

Σ(C)→ Σ(S) may consist of two vertices joined by a single edge, while a fibre of

Σ(Cs̄)→ Σ(s̄) will have two vertices joined by two edges. Similarly, there may be

monodromy interchanging irreducible components, hence a fibre of Σ(C)→ Σ(S)

may have fewer vertices than Cw̄ has irreducible components. This issue can be

resolved by redefining moduli of tropical curves as stacks, following [CCUW].

2.5.5. Decorated tropical maps from stable logarithmic maps. In the situation of

Proposition 2.26, the tropical map h : Σ(C) → Σ(X) comes with the natural

decoration

(2.25) A : V (G) −→ H+
2 (X), v 7−→

[
f(C(v))

]
.

Here C(v) ⊂ C is the irreducible component corresponding to the vertex v and

[f(C(v))] is the class of f(C(v)) in H+
2 (X). The decoration by curve classes is

compatible with the contraction morphisms of decorated graphs (Definition 2.24)

defined by generization:

Lemma 2.30. Let (C/S,p, f) be a stable logarithmic map to X over some loga-

rithmic scheme S and (τs̄,As̄) with τs̄ = (Gs̄,gs̄,σs̄,us̄) its decorated type at the

geometric point s̄→ S according to Definition 2.23 and (2.25). Then if s̄, s̄′ → S

are two geometric points with s̄ a generization of s̄′, the induced map

(τs̄′ ,As̄′) −→ (τs̄,As̄)

is a contraction morphism (Definition 2.24).

Proof. [GS1, Lem. 1.11] says that τs̄′ → τs̄ is a contraction morphism. To check

the statement on the curve classes, recall that the preimage of v ∈ Gs̄ in G′s̄
consists of those vertices v′ ∈ Gs̄′ with Cs̄′(v

′) contained in the closure of Cs̄(v).

Since this closure defines a flat family of curves, invariance of classes in H+
2 (X)

in flat families then implies[
f(Cs̄(v))

]
=
∑
v′ 7→v

[
f(Cs̄′(v

′))
]
,

as claimed. ♠

2.6. Stacks of stable logarithmic maps marked by tropical types. We

now put ourselves in the situation of the main result in this paper, Theorem 1.2,

and assume X0 → b0 is logarithmically smooth and X0 is simple. In particular,

curve classes are understood to take values in H+
2 (X0).

Similar to M(G,g), we can now define stacks of stable logarithmic maps to X0

over b0 with restricted decorated types of tropicalizations.

Definition 2.31. Let τ̃ = (G,g,σ,u,A) = (τ,A) be the decorated type of a

tropical map as defined in Definition 2.23. A marking by τ̃ of a stable logarithmic

map (C/S,p, f) to X0 over a logarithmic base scheme S over b0 is the following

data:
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(1) An isomorphism of C/S with a (G,g)-marked pre-stable curve (2.12).

(2) The restriction of f to the closed subscheme Z ⊂ C (a subcurve or nodal

or punctured section of C) defined by x ∈ V (G) ∪ E(G) ∪ L(G) factors

through Xσ(x) ⊂ X0.

(3) For each geometric point s̄→ S with decorated type τ̃s̄ = (Gs̄,gs̄,σs̄,us̄,As̄)

of (C/S,p, f), the morphism (Gs̄,gs̄)→ (G,g) of decorated graphs from

(1) defines a morphism

τ̃s̄ = (τs̄,As̄) −→ τ̃ = (τ,A)

of decorated types of tropical maps. In particular, there is an associated

localization map

χττs̄ : Qτs̄ −→ Qτ

of the corresponding basic monoids.

(4) In the situation of (3), the preimage Kτ̃ ,s̄ ⊂ MS,s̄ of Qτ r {0} under the

composition

MS,s̄ −→MS,s̄ = Qτs̄

χττs̄→ Qτ

maps to 0 under the structure morphism MS,s̄ → OS,s̄.

Remark 2.32. Definition 2.31 calls for some explanations. The isomorphism in

(1) just identifies a contraction of the dual intersection graph of each geometric

fiber of C → S with a fixed genus-decorated graph (G,g), in a way compatible

with generization. Then (2) and (3) ask that the decorated graphs associated to

geometric fibers of the stable log map (C/S,p, f) are refinements of the decorated

type (τ,A). Condition (4) is maybe the least obvious. It effectively takes the

reduction of the moduli space in unobstructed situations, or on a virtual level later

on. We could, in fact, omit Condition (4) at the expense of taking reductions in

some formulas below, e.g. in M(X0, τ) in Corollary 3.8.

Given a decorated type τ̃ = (τ,A) of tropical maps, we define

(2.26) M (X0, τ̃)

as the stack with objects over a scheme S basic stable logarithmic maps (C/S,p, f)

over b0 marked by the decorated type τ̃ . We emphasize M (X0, τ̃) is a moduli

space of stable maps over b0, but we suppress /b0 in the notation for simplicity.

Similarly, we henceforth write M (X0, β) instead of M (X0/b0, β).

For later use let us also show here that the monoid ideals in Definition 2.31,(4)

define a coherent sheaf of ideals [Og, Prop. II.2.6.1] in MM (X0,τ̃).

Lemma 2.33. For each decorated type τ̃ of tropical maps, there exists a unique

coherent sheaf of ideals Kτ̃ ⊂ MM (X0,τ̃) with stalks Kτ̃ ,s as defined in Defini-

tion 2.31,(4).

Proof. The statement follows by [Og, Prop. II.2.6.1,(2)] since Ks̄ is defined by a

monoid ideal in a chart. ♠
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Let β = (g, A, up1 , . . . , upk) with g = |g|, A = |A|, k = |L(G)|.

Proposition 2.34. (1) The stack M (X0, τ̃) is a proper Deligne-Mumford

stack.

(2) The morphism M (X0, τ̃)→M (X0, β) is finite and unramified.

Proof. By (1) in Definition 2.31, we have a morphism of stacks

M (X0, τ̃) −→M (X0, β)×M M(G,g) = M (X0, β)×M M(G,g).

Condition (2) in Definition 2.31 defines a closed substack of the fibre product on

the right-hand side. Prescribing the contact orders up, uq at p ∈ L(G), q ∈ E(G)

and the curve classes for the subcurves of C defined by each v ∈ V (G) imposes

locally constant conditions, hence select a union of connected components of

this closed substack. Thus M (X0, τ̃) is isomorphic to a closed substack of the

algebraic stack M (X0, β)×MM(G,g), proving (1). The second statement follows

since M(G,g)→M is finite and unramified (Proposition 2.18). ♠

3. From toric decomposition to virtual decomposition

Throughout this section, denote by b0 = (Speck,k×⊕N) the standard log point

over k. We also fix a logarithmically smooth and projective morphism X0 → b0

of log schemes.

3.1. Decomposition in the log smooth case. The decomposition formula is

based on the following simple fact in toric geometry. Let π : W → A1 be a

morphism of toric varieties with Σπ : ΣW → ΣA1 the corresponding morphism of

fans, defined by a homomorphism N → NA1 of co-character lattices. We identify

ΣW with the cone complex Σ(W ) associated to W with its toric log structure,

by forgetting the embedding of |ΣW | into NR, and similarly for ΣA1 . For a ray

γ ∈ ΣW denote by Dγ ⊂ W the corresponding toric divisor and by mγ ∈ N the

generator of the image of

Z ' Nγ
Σ(π)−→ NA1 ' Z.

Proposition 3.1. We have the following equality of Weil divisors on W :

π∗({0}) =
∑
γ

mγDγ.

Proof. The map Σ(π) : N → Z defines a monomial function zm, m ∈ Hom(N,Z)

on W . It is standard that the order of vanishing of zm on the divisor Dγ is the

value of m on the generator of γ ∩Nγ. But this value is precisely mγ, giving the

result. ♠

Proposition 3.1 can equivalently be stated as a decomposition of the funda-

mental class of W0 = π−1(0). Our decomposition theorem is based on the gen-

eralization of this statement to a log smooth morphism W0 → b0 of logarithmic
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algebraic stacks locally of finite type. Note first that in this situation, W0 is lo-

cally pure-dimensional by log smoothness over b0. Thus it makes sense to define

the fundamental cycle [W0] as locally finite formal linear combination of locally

top-dimensional integral substacks.

Next, to define the multiplicities mγ, consider the morphism of generalized cone

complexes Σ(W0)→ Σ(b0) associated to W0 → b0 as defined after Proposition 2.2.

We have Σ(b0) ' R≥0 with the lattice Nb0 ' Z. Working in charts, there is still

a correspondence between rays γ ∈ Σ(W0) and integral substacks Wγ ⊂ W0, now

locally of top dimension. Note that if σ ∈ Σ(W0) and γ → σ is a morphism in

Σ(X), then the pull-back of Wγ to a chart for W0 at a geometric point of the

stratum W0(σ) is contained in the union of all toric divisors for rays γ′ ⊂ σ with

γ ' γ′ in Σ(W0). Hence Wγ may not be locally irreducible if Σ(W0) has cones

with self-identifications. But since we work with cone complexes with reduced

presentations, such rays γ, γ′ ⊂ σ define the same one-dimensional cone in Σ(W0).

These rays may be identified by self-maps of σ or simply correspond to several

maps σ∨ → γ∨ defined by generization in MW0 .

For a ray γ with integral latticeNγ, we have γ∩Nγ ' N, and the homomorphism

Z ' Nγ → Nb0 ' Z is multiplication by an integer mγ.

For the following statement recall also the notion of idealized log structures

and idealized log smoothness from [Og, III.1.3 and IV.3]. In a nutshell, this

notion is designed to treat strata of logarithmic spaces, by adding sheaves of

ideals K ⊂MX defining these strata as part of the data.

Corollary 3.2. Let π : W0 → b0 be a log smooth morphism locally of finite type

from a logarithmic algebraic stack to the standard log point b0. Denote by [W0]

the fundamental cycle of W0, well-defined since W0 is locally pure-dimensional.

Then the following formula holds

[W0] =
∑
γ

mγ[Wγ]

in the group of locally top-dimensional algebraic cycles on W0 [Kr]. The sum runs

over the one-dimensional cones in the generalized cone complex Σ(W0) of W0.

Moreover, Wγ is idealized log smooth over b0 for some sheaf of ideals Kγ ⊂
MWγ .

Proof. The claimed equality of cycles can be checked on a cover by smooth charts.

We may thus assume that W0 is covered by a neat chart, that is, that we have a

commutative diagram

V

πV
��

U

��

h //oo W0

π

��

A1 Spec koo b0
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where (1) h is an étale surjection, (2) Speck → A1 is the inclusion of the origin

and g : U → Spec k ×A1 V = π−1
V (0) is smooth, (3) V is the affine toric variety

Spec k[σ∨∩N∗] defined by (σR, N) ∈ Σ(W0) and πV : V → A1 is a toric morphism.

Thus we have

h∗[W0] = [U ] = g∗([V0])

via flat pull-back, where V0 = π−1(0). Now Proposition 3.1 describes [V0] in terms

of the toric divisors Dγ′ ⊂ V defined by the rays γ′ ⊂ σ. Thus

(3.1) h∗[W0] =
∑
γ′⊂σ

mγ′g
∗(Dγ′),

with mγ′ the generator of the image of Z ' Nγ′ → NA1 = Z. Each such γ′

defines a one-dimensional cone γ ∈ Σ(W0) with mγ = mγ′ . Moreover, for two

different rays γ′, γ′′ ⊂ σ, the geometric generic points of Dγ′ , Dγ′′ map to the

same geometric generic point of W0 if and only if there exists a one-dimensional

cone γ ∈ Σ(W0) and morphisms γ → γ′ and γ → γ′′. Since Σ(x) is the colimit of

such σ appearing in neat charts of W0, the equality (3.1) in a chart verifies the

claimed equation of cycles.

The claim on idealized log smoothness of Wγ follows from the local description

as a union of toric strata and the criteria in [Og, IV.3.1.21 and IV.3.1.22]. ♠

3.2. Logarithmic maps to the relative Artin fan X0. To lift the decom-

position result Corollary 3.2 to the moduli space M (X0, β) = M (X0/b0, β) of

stable logarithmic maps in Theorem 1.2, we factor the map M (X0, β) → Mb0

forgetting the logarithmic map to X0 via an intermediate log stack that is log

étale over Mb0 = MB ×B b0. This intermediate log stack is the stack M(X0, β
′)

of basic logarithmic maps to the relative Artin fan X0 = b0 ×B X of X0 over b0

(Definition 2.9). Since curve classes do not make sense on X0, we have no stability

in M(X0, β
′) and

β′ = (g, up1 , . . . , upk)

only keeps the genus and the contact orders at the marked points from β =

(g, A, up1 , . . . , upk). The point is that M(X0, β
′) is pure-dimensional, has unob-

structed deformations and captures the tropical geometry of the situation, while

the decomposition according to Corollary 3.2 has a simple tropical interpretation

on this stack.

Proposition 3.3. (1) The stack of basic logarithmic maps M(X0, β
′) to X0

over b0 is algebraic.

(2) The morphism M(X0, β) → Mb0 forgetting the logarithmic map to X0 is

strict and étale.

Proof. Let Cb0 denote the universal curve over Mb0 . By openness of basicness,

M(X0, β
′) is an open substack of HomMb0

(Cb0 ,Mb0 ×b0 X0). This Hom-stack is

algebraic by [Wi16b, Cor. 1.1.1], proving (1).
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For (2), the morphism M(X0, β
′)→Mb0 is strict by definition. SinceAX → AB

is logarithmically étale, it follows that X0 is logarithmically étale over b0. Now

[AW, Prop. 3.2] implies that M(X0, β
′)→Mb0 is logarithmically étale. ♠

Note that Proposition 3.3,(2) also shows that M(X0, β
′) is log smooth over b0,

because Mb0 is, and that the obstruction theory of M (X0, β) over Mb0 induces

an obstruction theory for M (X0, β) over M(X0, β
′).

Remark 3.4. Implicit in the discussion in Proposition 2.28 applied with X =

Spec k and in Remark 2.29 is the fact that log-smoothness of M can be used to

relate the moduli space of abstract tropical curves to the tropicalization of M,

properly interpreted as a stacky cone complex [CCUW] – see precise statement

in [Ul3, Theorem 3.14]. In view of Proposition 3.3,(2) we can now similarly relate

the moduli space of tropical maps to Σ(X0) = Σ(X0) of class β′ to the stacky

cone complex associated to M(X0, β
′). While we do not develop the details of

this picture here, it should be clear that this interpretation is at the basis of many

arguments in this paper.

We also need the τ -marked refinements M(X0, τ) of M(X0, β
′), similar to

M (X0, τ̃) for M (X0, β). Omitting the curve class, τ is now a type of tropical

map to Σ(X0) of total genus g and with k legs (Definition 2.23,(1)). Then

M(X0, τ)

is defined as in Definition 2.31 with X0 replacing X0 and disregarding the curve

classes in Condition (3). Analogous toKτ̃ for M (X0, τ̃) constructed in Lemma 2.33,

we have a sheaf of ideals

(3.2) Kτ ⊂MM(X0,τ).

We first observe the following analogue of Proposition 2.34.

Proposition 3.5. (1) The stack M(X0, τ) is algebraic.

(2) The morphism ιτ : M(X0, τ) → M(X0, β
′) forgetting the marking by τ is

finite and unramified.

Proof. The proof is identical to the proof of Proposition 2.34. ♠

We are now in position to apply Corollary 3.2 to M(X0, β
′) → b0. The key is

the description of the components Wγ in this corollary in terms of rigid tropical

maps.

Definition 3.6. A family of tropical maps h : Γ → Σ(X0) of type τ is rigid if

the corresponding basic monoid Q(τ) from Definition 2.23,(3) is isomorphic to N.

In the language of polyhedral complexes, being rigid is equivalent to saying

that the restriction h : Γ→ ∆(X) of h to the fiber over 1 ∈ R≥0 = Σ(b0) cannot

be deformed as a map of generalized polyhedral complexes. In other words, as
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a traditional tropical map, any deformation of h keeping the combinatorial data

(i.e. of constant type) is trivial.

The following decomposition of the Artin stack M(X0, β
′) according to rigid

tropical curves is the main result of this section.

Theorem 3.7. (Virtual Decomposition.) For each irreducible component Wγ

of M(X0, β
′) according to Corollary 3.2 there exists a unique type τ of a rigid

tropical map such that Wγ is an irreducible component of the image of the finite

map ιτ : M(X0, τ)→M(X0, β
′) from Proposition 3.5.

In particular, M(X0, τ) with the sheaf of ideals Kτ ⊂ MM(X0,τ) from (3.2) is

idealized

Proof. The logarithmic stack M(X0, β
′) is logarithmically smooth over b0 by

Proposition 3.3 and since Mb0/b0 is logarithmically smooth. Up to a smooth

factor, the map

M(X0, β
′) −→ b0

is locally given by base change to the central fibre of the map of toric varieties

Spec k[Q] → Spec k[N] with Q the basic monoid of a tropical map to Σ(X) of

some type τ ′ and N→ Q induced by the structure map

Σ(π) : Σ(X) −→ Σ(B) = R≥0.

Locally the subschemes Wγ are defined by the toric divisors in Speck[Q], which

are in bijection to extremal rays in Q∨R. Each extremal ray defines a rigid tropical

map, say of type τ . Any localization map of the associated basic monoids Qτ ′ →
Qτ = N is the contraction of the codimension one face dual to the one-dimensional

cone in Q∨τ ′ defined by τ By the definition of Kτ , the monoid ideal defining the

corresponding toric prime divisor agrees with the ideal in Qτ ′ given by Kτ . Since

this description is compatible with the restriction of charts, the first statement

follows.

Corollary 3.2 also shows that Wγ → b0 is idealized log-smooth. The corre-

sponding sheaf of ideals has just been checked to agree with Kτ locally along Wγ.

Since M(X0, β
′)→ b0 is log étale, Wγ → b0 is even idealized log étale. ♠

Corollary 3.8. We have the following equality of top-dimensional algebraic cycles

in the pure-dimensional algebraic stack M(X0, β
′):[

M(X0, β
′)
]

=
∑
τ

mτ ·
[
ιτ (M(X0, τ))

]
.

The sum is over all types τ of rigid tropical maps to Σ(X) and mτ ∈ Nr {0} is

the projection of the generator of the dual basic monoid Q∨τ ' N to Σ(b0) = R≥0.

Proof. The statement merely spells out the definition of the multiplicities mτ in

Corollary 3.2. ♠
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3.3. Proof of the Decomposition Theorem. To prove the Main Theorem,

Theorem 1.2, it remains to apply the virtual bivariant machinery developed by

Costello [Co] and Manolache [Ma]. We need two lemmas.

Lemma 3.9. The degree of the finite map

ιτ : M(X0, τ) −→ ιτ
(
M(X0, τ)

)
⊂M(X0, β

′)

from Proposition 3.5,(2) over any irreducible component of the image is |Aut(τ)|.

Proof. The description of the smooth cover of M(X0, β
′) given in the proof of

Theorem 3.7 shows that each geometric generic point SpecK → M(X0, β
′) of

ιτ
(
M(X0, τ)

)
is a basic logarithmic map to X0 over b0, defined over K and with

basic monoid Q(τ) = N and tropical type isomorphic to τ . Thus a geometric

generic point of M(X0, τ) is a basic logarithmic map (C/S,p, f) to X0 over a

standard logarithmic point S = Spec(N→ K). Writing τ = (G,g,σ,u), the fibre

of ιτ over (C/S,p, f) is an isomorphism of the dual intersection graph of C with

G identifying g,σ,u with the genera, strata and contact orders of (C/S,p, f).

The statement now follows by observing that the automorphism group Aut(τ)

of the decorated graph τ acts simply transitively on this set of isomorphisms of

graphs. ♠

As an intermediate object we define the stack of basic stable logarithmic maps

marked by a tropical type τ by

(3.3) Mτ (X0, β) := M(X0, τ)×M(X0,β′) M (X0, β).

Compared to M (X0, τ̃), this stack keeps the total curve class A from β =

(g, A, up1 , . . . , upk), but drops the restriction on the distribution of A to the sub-

curves given by the vertices.

For the following statement recall that M (X0, τ̃) is the stack defined in (2.26)

of basic stable log maps over b0 marked by the decorated type τ̃ and

jτ̃ : M (X0, τ̃) −→M (X0, β)

is the morphism forgetting the marking.

Lemma 3.10. Let τ = (G,g,σ,u) be the type of a tropical map to Σ(X0) and

β = (g, A, up1 , . . . , upk). Then we have the decomposition

Mτ (X0, β) =
∐
A

M
(
X0, τ̃

)
,

where the sum is over all A : V (G)→ H+
2 (X0) with |A| = A and τ̃ = (τ,A).

Proof. The result follows since the map A : V (G) → H+
2 (X0) of curve classes is

locally constant on Mτ (X0, β). ♠

Before stating the Main Theorem, we note that Mτ (X0, β) inherits a perfect

obstruction theory7 Eτ over M(X0, τ) from the perfect obstruction theory E of

7E is the gothic letter “E”.
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M (X0, β) over M(X0, β
′) by base change by ιτ : M(X0, τ)→M(X0, β

′). Restrict-

ing to the open substacks M (X0, τ̃) ⊂ Mτ (X0, β) in Lemma 3.10, we also have

an obstruction theory Eτ̃ on M (X0, τ̃). If τ is rigid, M(X0, τ) is pure-dimensional

of the same dimension as M(X0, β
′). Thus we have virtual fundamental classes

[M (X0, β)]virt, [Mτ (X0, β)]virt, [M (X0, τ̃)]virt

on the moduli spaces M (X0, β), Mτ (X0, β) and M (X0, τ̃).

Here is our main theorem, stated as Theorem 1.2 in the introduction.

Theorem 3.11. For any β = (g, A, up1 , . . . , upk) we have the equality

[M (X0, β)]virt =
∑

τ̃=(τ,A)

mτ

|Aut(τ)|
jτ̃ ∗[M (X0, τ̃)]virt

in the Chow group of the underlying stack M (X0, β) with coefficients in Q. The

sum is over all isomorphism classes of decorated types of rigid tropical maps

τ̃ = (G,g,σ,u,A) = (τ,A) of total genus |g| = g, total curve class |A| = A and

|L(G)| = k.

Proof. By Corollary 3.8 and Lemma 3.9 we can write the fundamental class of

M(X0, β
′) as

(3.4) [M(X0, β
′)] =

∑
τ

mτ

|Aut(τ)|
ιτ ∗[M(X0, τ)].

For each τ , compatibility of virtual pull-back with push-forward [Ma, Thm. 4.1,(3)]

applied to the cartesian square

Mτ (X0, β)

q

��

=
∐
A

M (X0, (τ,A))
jτ
//M (X0, β)

p

��

M(X0, τ)
ιτ // M(X0, β

′)

yields

p!
Eιτ ∗[M(X0, τ)] = jτ ∗q

!
Eτ [M(X0, τ)] = jτ ∗[Mτ (X0, β)]virt.

Moreover, from Lemma 3.10 and the definition of Eτ̃ by restriction of Eτ , it holds

[Mτ (X0, β)]virt =
∑
A

[M (X0, (τ,A))]virt.

Plugging the last two equalities into (3.4) now gives the desired result:

[M (X0, β)]virt = p!
E[M(X0, β

′)] =
∑
τ

mτ

|Aut(τ)|
p!
Eιτ ∗[M(X0, τ)]

=
∑
τ

mτ

|Aut(τ)|
jτ ∗[Mτ (X0, β)]virt

=
∑

τ̃=(τ,A)

mτ

|Aut(τ)|
jτ̃ ∗[M (X0, τ̃)]virt.

♠
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4. Logarithmic modifications and transversal maps

There is a general strategy which is often useful for constructing stable log-

arithmic maps. This is the most powerful tool we have at our disposal at the

moment; eventually, the hope is that gluing technology will replace this construc-

tion. However, we expect it to be generally useful, as illustrated by the examples

in the next section.

Suppose we wish to construct a stable logarithmic map to X/B, and as usual X

logarithmically smooth with a Zariski logarithmic structure over one-dimensional

B with logarithmic structure induced by b0 ∈ B. Suppose further we wish the

stable logarithmic map to map into the fibre X0 over b0. Generalizing a method

introduced in [NS], this construction is accomplished by the following two-step

process: (1) Apply a logarithmic modification8 of X to reduce to a transverse

situation. (2) Study logarithmic enhancements in the transverse case.

4.1. Logarithmic modifications. First, we will choose a logarithmic modifica-

tion h : X̃ → X. The modification h is chosen to accommodate a situation at

hand — in our applications the datum of a rigid tropical map.

Given a modification h, [AW] constructed a morphism M (h) : M (X̃/B) →
M (X/B) of moduli stacks of basic stable logarithmic maps, satisfying

M (h)∗([M (X̃/B)]virt) = [M (X/B)]virt.

The construction of M (h) is as follows. Given a stable logarithmic map f̃ :

C̃/S → X̃/B, one obtains on the level of schemes the stabilization of h ◦ f̃ , i.e.,

a factorization of h ◦ f̃ given by

C̃/S
g−→ C/S −→ X

such that C/S → X is a stable map. One gives C the logarithmic structure

MC := g∗MC̃ , and with this logarithmic structure one obtains a factorization

of h ◦ f̃ through C at the level of log schemes, giving f : C/S → X/B. Note

that this is one of the rare occasions where push-forward of logarithmic structures

behaves well. If f̃ was basic, there is no expectation that f is basic, but by [GS1,

Prop. 1.22] there is a unique basic map with the same underlying stable map

of schemes such that the above constructed f is obtained by pull-back from the

basic map. This yields the map M (h).

4.2. Transverse maps, logarithmic enhancements, and strata. Second, if

we have a stable map to X0 which interacts sufficiently well with the strata, we

will compute in Theorem 4.13 the number of log enhancements of this curve.

This generalizes a key argument of Nishinou and Siebert in [NS]. There are two

differences: our degeneration X → B is only logarithmically smooth and not

necessarily toric; and the fibre X0 is not required to be reduced. Not requiring

X0 to be reduced makes the situation more complex and perhaps explains why it

8A logarithmic modification is a proper, birational and log étale morphism [Kf2].
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was avoided in the past; we hope our treatment here will find further uses. The

precise meaning of “interacting well with logarithmic strata” is as follows:

Definition 4.1 (Transverse maps and constrained points). Let X → B be a

logarithmically smooth morphism over B one-dimensional carrying the divisorial

logarithmic structure b0 ∈ B as usual. Let X
[d]
0 denote the union of the codimen-

sion d logarithmic strata of X0. Suppose f : C/ Spec k → X0 is a stable map.

We say that f is a transverse map if the image of f is contained in X
[0]
0 ∪ X

[1]
0 ,

and f−1(X
[1]
0 ) is a finite set.

We call a node q ∈ C a constrained node if f(q) ∈ X [1]
0 and otherwise it is a free

node. Similarly a marked point x ∈ C with f(x) ∈ X [1]
0 is a constrained marking,

otherwise it is a free marking.

The term “transverse map” is shorthand for “a map meeting strata in a loga-

rithmically transverse way”.

Cones and strata in the transverse setting. For the rest of this section strata

of higher codimension are irrelevant and we henceforth assume X0 = X
[0]
0 ∪X

[1]
0 .

Then Σ(X0) is a purely two-dimensional cone complex, with rays in bijection

with the irreducible components of X0. There are two types of two-dimensional

cones: first, there is one cone for each component of the double locus X
[1]
0 ; second,

there is one cone for each other component of X
[1]
0 , forming a smoth divisor in

the regular locus of X0.

Logarithmic enhancement of a map. We codify what it means to take a

stable map and endow it with a logarithmic structure:

Definition 4.2. Let X → B be as above and f : C → X0 a stable map. A

logarithmic enhancement f : C → X is a stable logarithmic map whose underlying

map is f . Two logarithmic enhancements f1, f2 are isomorphic enhancements if

there is an isomorphism between f1 and f2 which is the identity on the underlying

f . Otherwise we say they are non-isomorphic or distinct enhancements.

Discrete invariants in the transverse case.

Notation 4.3. Let f : C/ Spec k→ X0 be a transverse map and x ∈ C a closed

point with f(x) contained in a stratum S ⊂ X
[1]
0 and let η ∈ C be a generic

point with x ∈ cl(η). We now assoicate a number of invariants to the pair (η, x),

all related to the rank two toric monoid Px = MX,f(x). Denote by mη,x ∈ Px

the generator of the kernel of the localization map Px → MX,f(η) ' N and by

m′η,x ∈ Px the generator of the other extremal ray. Denote by nη,x, n
′
η,x ∈ P∨x

the dual generators of the extremal rays of P∨x , satisfying 〈nη,x,mη,x〉 = 0. A

third distinguished element ρx ∈ Px is defined by pulling back the generator of

Γ(B,MB) = N under the log morphism X → B.
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For the following discussion denote by `(m) the integral length of an element

m ∈ M ⊗Z Q, that is, for m 6= 0 the maximum of α ∈ Q>0 with α−1 ·m ∈ M ,

while `(0) = 0.

Definition 4.4. (1) The index of x ∈ C or of the stratum S ⊂ X
[1]
0 con-

taining f(x) is the index of the sublattices in P gp
x or in P ∗x generated by

mη,x,m
′
η,x and nη,x, n

′
η,x, respectively, that is,

Ind(S) = Indx = 〈nη,x,m′η,x〉 = 〈n′η,x,mη,x〉.

For a constrained node x = q, the length λ(q) = λ(S) ∈ Q is the integral

length of the interval ρ−1
q (1) when viewing ρq as a map P ∗q ⊗Z Q→ Q.

(2) If η ∈ C is a generic point with x ∈ cl(η), denote by wη,x ∈ N r {0}
the local intersection number of f |cl(η) at x with S inside the irreducible

component of X0 containing f(η).

When the choice of x and η is understood we write m1 = mη,x, m2 = m′η,x,

n1 = nη,x, n2 = n′η,x, ρx ∈ Px and w1 = wη,x.

Relations between discrete invariants.

Lemma 4.5. In the situation of Definition 4.4 denote by µ1 the multiplicity of

the irreducible component of X0 containing f(η). If the stratum S ⊂ X
[1]
0 is

contained in two irreducible components of X0, denote by µ2 the multiplicity of

the other component and otherwise define µ2 = 0.

(1) µi = 〈ni, ρx〉. (2) Indx ·ρx = µ2m1 + µ1m2. (3) λ(q) =
`(ρq) · Indq

µ1µ2

.

In particular, if X0 is reduced then µi ∈ {0, 1} for all i and Indx ·ρx = m1 +m2,

λ(q) = `(ρq) · Indq.

Proof. For (1) note that since ni ∈ P∨x is a primitive vector with 〈ni,mi〉 = 0, the

pairing with ni computes the integral distance from the face N ·mi of Px. Now

étale locally, the log smooth morphism X → B is the composition of a smooth

map with Speck[Px] → Spec k[t] defined by sending t to zρx ∈ k[Px]. Hence the

multiplicity µi equals the integral distance of ρx to N ·mi, that is, the image of

ρx under the quotient map Px → Px/Nmi ' N.

For (2), since the sublattice of P gp generated by m1,m2 is of index Indx, there

are a1, a2 ∈ Z with Indx ·ρx = a1m1 + a2m2. Pairing with n1 and using (1) and

the definition of Indx yields

Indx ·µ1 = Indx ·〈n1, ρx〉 = a2〈n1,m2〉 = a2 · Indx .

This shows a2 = µ1, and similarly a1 = µ2, yielding the claim.

To prove (3) note that (1) implies

〈µ2n1, ρq〉 = µ1µ2 = 〈µ1n2, ρq〉.

Hence ρq : P ∗q → N maps both µ2n1 and µ1n2 to µ1µ2. Since λ(q) is defined as

the integral length of ρ−1
q (1), we see that µ1µ2 · λ(q) equals the integral length of
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µ2n1 − µ1n2. Choosing an isomorphism of Pq with

Z2 ∩
(
R≥0 · (1, 0) + R≥0 · (r, s)

)
with r, s > 0 pairwise prime and ρq mapping to (a, c), then

m1 = (1, 0), m2 = (r, s), µ1 = c, µ2 = as− cr, Indq = s.

In the dual lattice P ∗q ' Z2 we have n1 = (0, 1), n2 = (s,−r) and µ2n1 −
µ1n2 = s · (−c, a) has integral length Indq `(ρq). Thus λ(q) = Indq `(ρq)/µ1µ2 as

claimed. ♠

Necessary conditions for enhancement. As we now show, the data listed

in Definition 4.4 determine the discrete invariant ux ∈ P∨x at each special point

x ∈ C. Recall that Equation (2.8) characterizing uq implies 〈uq, ρx〉 = 0. To

fix the sign of uq we use the convention that χ1 in the defining equation is the

generization map to η. Similarly, for each marked point p, it holds 〈up, ρp〉 = 0

by definition of up. We now deduce a number of necessary conditions for a

logarithmic enhancement of a transverse stable map to exist.

Proposition 4.6. Let f : C → X be a logarithmic enhancement of a transverse

stable map f : C → X0. Let η ∈ C be a generic point and x ∈ cl(η). If

f(x) ∈ X [1]
0 then following Definition 4.4 write m1 = mη,x, m2 = m′η,x, n1 = nη,x,

n2 = n′η,x, ρx ∈ Px and w1 = wη,x.

I) (Node) If x = q is a constrained nodal point of C, then the second generic

point η′ of C with x ∈ cl(η′) maps to a different irreducible component of X0 than

η. Moreover, with w2 = wη′,x the following holds:

(1) uq =
1

Indq
· (w1n2 − w2n1).

(2) uq(m1) = w1, uq(m2) = −w2.

(3) µ1w2 = µ2w1.

(4) The integral length of uq equals `(uq) =
µ2w1λ(q)

Indq
=
w1

µ1

`(ρq).

If x = q is a free node then uq = 0.

II) (Marked point) If x is a smooth point of C, then f(x) is contained in only

one irreducible component of X0. Moreover, if x = p is a marked point then

up = 0 in the free case, while in the constrained case the following holds.

(1) w1 is a multiple of Indp.

(2) up =
w1

Indp
n2.
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Proof. Setup for (I). Let C be defined over the log point S = Spec(Q→ k). For

any generic point η ∈ C, there is a commutative square

N ' Pη =MX0,f(η)

f
[
η−−−→ MC,ηx x

N 'MB,b0 −−−→ Q.

Free node. In the case of a free node, both generic points η, η′ ∈ C containing

q in their closure map to the same irreducible component of X0. Thus uq = 0 by

the defining equation (2.8).

Image components of constrained node. Let now x = q be a constrained node.

Since the generization map χη : Pq → Pη is a localization of fine monoids there

exists m ∈ Pq r {0} with χη(m) = 0. Then also f
[

q(m) is a non-zero element

in MC,q with vanishing generization at η. But MC has no local section with

isolated support at q. Hence χη′(m) 6= 0, which implies that the two branches of

C at q map to different irreducible components of X0.

Computations for a constrained node. (1) follows from (2) by pairing both

sides with m1, m2 since these elements generate Pq ⊗Z Q. We now prove (2).

Since uq is preserved under base-change, we may assume C is defined over the

standard log point Spec(N → k). Then MC,q ' Se for some e ∈ N r {0} with

Se the submonoid of Z2 generated by (e, 0), (0, e), (1, 1), see e.g. [GS1, §1.3]. The

generator 1 ∈ N of the standard log point maps to (1, 1), while a chart at q maps

(e, 0) to a function restricting to a coordinate on one of the two branches of C, say

on cl(η), while vanishing on the other. Similarly, (0, e) restricts to a coordinate

on cl(η′). By transversality we conclude

f
[

q(m1) = w1 · (e, 0), f
[

q(m2) = w2 · (0, e).

Equation (2.8) defining uq says

(4.1) χ2 ◦ f
[

q − χ1 ◦ f
[

q = uq · e,

with χi : Se → N the generization maps. With our presentation, χ1 and χ2

are induced by the projections Se ⊂ Z2 → Z to the second and first factors,

respectively. Hence (
χ2 ◦ f

[

q − χ1 ◦ f
[

q

)
(m1) = w1 · e(

χ2 ◦ f
[

q − χ1 ◦ f
[

q

)
(m2) = −w2 · e,

showing (2).

(3) is obtained by evaluating (1) on ρq:

0 = Indq ·〈uq, ρq〉 = w1〈n2, ρq〉 − w2〈n1, ρq〉 = w1µ2 − w2µ1.

For (4) observe from (1) that Indq ·uq is the vector connecting the extremal

elements w2n1 and w1n2 of P∨q . Thus Indq ·`(uq) equals the integral length of



38 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

ρ−1
q (h) for h = 〈w1n2, ρq〉 = µ2w1 = µ1w2 = 〈w2n1, ρq〉. This length equals

h · λ(q), yielding the stated formula. This finishes the proof of (I).

Marked point. Turning to (II), let x ∈ C be a smooth point with f(x) ∈ X [1]
0

and again assume without restriction C is defined over the standard log point. If

su ∈ MX,f(x) is a lift of m1, then by transversality, f [x(su) ∈ MC,x maps under

the structure homomorphism MC,x → OC,x to zw1 , with z a local coordinate of

C at x. Thus x = p is a marked point, MC,x = N2 and

f
[

p : Pp −→ N2

maps m1 to (0, w1). Here we are taking the morphism C → Spec(N → k) to

be defined by N → N2, 1 7→ (1, 0). Moreover, by compatibility of f [p with the

morphism of standard log points that C and X0 are defined over, fp
[
(ρp) = (b, 0)

for some b ∈ N r {0}. Thus by Lemma 4.5,(2), ρp = µ1

Indp
m2 spans an extremal

ray of Pp. In particular, f(p) is contained in only one irreducible component of

X0 and up(m2) = 0. Thus

up(m1) = w1 =
w1

Indp
〈n2,m1〉, up(m2) = 0 =

w1

Indp
〈n2,m2〉.

This shows (2), which implies (1) since n2 is a primitive vector.

Finally, at a free marked point p ∈ C, commutativity over the standard log

point again readily implies up = 0. ♠

Remark 4.7. If X0 is reduced, then in Proposition 4.6,(I) there is a well-defined

contact order w = w1 = w2 of f with the double locus, and the formulas simplify

to

uq =
w

Indq

(
n2 − n1

)
, `(uq) = w`(ρq).

Transverse pre-logarithmic maps. Summarizing the necessary conditions of

Proposition 4.6, we are led to the following definition.

Definition 4.8. Let X → B be as above, and let f : C/ Spec k → X0 be a

transverse map. We say f is a transverse pre-logarithmic map if any x ∈ C

with f(x) ∈ X [1]
0 is a special point and if in the notation of Proposition 4.6 the

following holds.

(I) (Constrained node) If x = q is a constrained node then the two branches of

C at q map to different irreducible components of X0. In addition, µ1w2 = µ2w1

and the reduced branching order

(4.2) wq :=
wi
µi
`(ρq), i = 1, 2

is an integer.

(II) (Constrained marking) If x = p is a constrained marking then f(x) is a

smooth point of X0 and w1/ Indp ∈ N.
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Note that if a logarithmic enhancement of f exists, then by Proposition 4.6

the reduced branching order wq agrees with `(uq). Note also that in the case of

reduced X0, we have `(ρq) = 1 and all µi = 1, and hence wq = w1 = w2.

Definition 4.9 (Base order). For a transverse pre-logarithmic map f : C/ Spec k→
X0 define its base order b ∈ N to be the least common multiple of the following nat-

ural numbers: (1) all multiplicities of irreducible components of X0 intersecting

f(C) and (2) for each constrained node q ∈ C the quotient µ1w2/ gcd(Indq, µ1w2),

notation as in Proposition 4.6.

Theorem 4.10. Let X → B be as above, and let f : C/ Spec k → X0 be a

transverse map. Suppose that there is an enhancement of f to a basic stable

logarithmic map f : C/S → X/B. Then

(1) f is a transverse pre-logarithmic map.

(2) The combinatorial type of f is uniquely determined up to possibly a number

of marked points p with up = 0, and the basic monoid Q is

Q = N⊕
⊕

q a free node

N.

(3) The map S = Spec(Q → k) → B induces the map Mb0 = N → Q given

by 1 7→ (b, 0, . . . , 0), where the integer b ∈ N is the base order of f .

Proof. (1) and (2) follow readily from Proposition 4.6. For (3), recall that the

basic monoid Q is dual to the monoid Q∨ ⊂ Q∨R, the latter being the moduli space

of tropical maps h : Γ→ Σ(X) of the given combinatorial type, and Q∨ consists

of those tropical maps whose edge lengths are integral and whose vertices map

to integral points of Σ(X).

If η is a generic point of C, denote by µη the multiplicity of the irreducible

component of (X0)red in X0 containing f(η). Thus the induced map N→ Pη ' N
coming from the structure map X → B is multiplication by µη. Write ρ :

Σ(X) → Σ(B) for the tropicalization of X → B. The restriction of ρ to the

ray Hom(Pη,R≥0) of Σ(X) corresponding to the irreducible component of X0

containing f(η) is multiplication by µη. Thus given a tropical map h : Γ→ Σ(X)

with vertex vη for η ∈ C and b the image of ρ ◦ h in Σ(B), we see that h(vη) is

integral if and only if µη|b.
The edges of Γ corresponding to free nodes have arbitrary length independent

of µ. But an edge corresponding to a constrained node q must have length

(4.3) eq = b
λ(q)

`(uq)
= b

Indq
µ1w2

.

This must also be integral for h to represent a point in Q∨. Thus the map

Σ(S) → Σ(B) must be given by (α, (αq)q) 7→ bα where b is as given in the

statement of the theorem. Dually, we obtain the stated description of the map

S → B. ♠
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4.3. Existence and count of enhancements of transverse pre-logarithmic

maps. We now turn to count the number of logarithmic enhancements of a trans-

verse stable map f : C → X0. Denote by M := f ∗MX0 the pull-back log

structure on C and by MZar the corresponding sheaf of monoids in the Zariski

topology, noting that the log structure on X0 is assumed to be defined in the

Zariski topology.

The torsor of roots. The count of logarithmic enhancements involves a torsor

F under a sheaf of finite cyclic groups G on a finite topological space encoding

compatible choices of roots of elements occurring in the construction of logarith-

mic enhancements. The following discussion is trivial if X0 is reduced and can

be skipped by the reader only interested in this case. Given a transverse map

f : C/ Spec k→ X0, the finite topological space consists of the set of constrained

nodes q ∈ C and generic points η ∈ C. As basis for the topology we take the

sets Uη = {η}∪
{
q ∈ cl(η)} and Uq = {q} (which is opposite to the topology as a

subset of C). Let ρ ∈ Γ(C,M) be the preimage of a generator ρ0 of MB,b0 , that

we assume fixed in this subsection. The stalks at a constrained node q ∈ C and

at a generic point η ∈ C are various roots of the germs ρx of ρ:

Fq =
{
σq ∈MZar

q

∣∣σ`(ρq)q = ρq
}
,

Fη =
{
ση ∈MZar

η

∣∣σµηη = ρη
}
.

We note that any of these sets may be empty, as Example 4.12 below shows. In

such case we do not define a sheaf F and declare |Γ(F)| = ∅ in what follows.

Otherwise we define the sheaf F as follows. For q ∈ cl(η), a choice ση with

σ
µη
η = ρη determines a unique ση,q ∈ Fq with restriction to η equal to σ

µη/`(ρq)
η .

Note that by Lemma 4.5,(1) we have µη/`(ρq) ∈ N. We define the generization

map Fη → Fq by mapping ση to ση,q. Observe that a different choice of ρ leads

to an isomorphic sheaf F .

Replacing the elements ρq and ρη in the definition of F by the element 1, we

obtain a sheaf G of abelian groups, for which F is evidently a torsor.

Global sections of G and F . General theory [SP, Tag 03AH], or direct compu-

tation, implies that the set of global sections Γ(F) is a pseudo-torsor for the group

G := Γ(G). Here G is computed as the kernel of the sheaf-axiom homomorphism

(4.4) ∂ :
∏
η∈C

Z/µη −→
∏
q∈C

Z/`(ρq), ∂(
(
ζη
)
η
) :=

(
ζ
µη(q)/`(ρq)

η(q) · ζ−µη′(q)/`(ρq)η′(q)

)
q
.

Here η(q), η′(q) are the generic points of the two adjacent branches of a con-

strained node q ∈ C, viewed in the étale topology. The notation implies a chosen

order of branches. Multiplication of σq by ζq and of ση by ζη describes the natural

action of G = Γ(G) on Γ(F). Note that if X0 is reduced then all µi = 1 and G is

the trivial group.
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Lemma 4.11. If Γ(F) 6= ∅ the action of G on Γ(F) is simply transitive. In

particular, it then holds
∣∣Γ(F)

∣∣ =
∣∣G∣∣. If the dual intersection graph of C is a

tree or if X0 is reduced then Γ(F) 6= ∅.

Proof. Simple transitivity is the fact that Γ(F) is a pseudo-torsor for G.

If X0 is reduced then µη = 1 for all η and Γ(F) =
∏

q Fq is non-empty. If C

is rational we can construct a section by inductive extension over the irreducible

components. Indeed, if σq ∈ Fq and η is the generic point of the next irreducible

component, we can define ση as any µη/`(ρq)-th root of the restriction of σq to η.

By the definition of F this choice then also defines σq′ for all other q′ ∈ cl(η). ♠

Example 4.12. Here is a simple example with Γ(F) = ∅, in fact Fη = ∅ for the

unique point η in our space. Let X → B = A1 be an elliptically fibred surface

with X0 ⊂ X a b-fold multiple fibre with smooth reduction. Endow X and B

with the divisorial log structures for the divisors X0 ⊂ X and {0} ⊂ B. Then the

generator ρ0 ∈ MB,0 maps to b times the generator σ ∈ Γ(X0,MX0) = N. The

preimage of σ under MXred
0
→ MXred

0
is the torsor with associated line bundle

the conormal bundle N∨
Xred

0 |X . This conormal bundle is not trivial, but has order

b in Pic(Xred
0 ). Thus there exists no section ση with σbη extending to a global

section ρ of MX0 lifting ρ = b · σ.

The following statement generalizes and gives a more structural proof of [NS,

Prop. 7.1], which treated a special case with reduced central fibre.

Theorem 4.13. Suppose given X → B as above, and let

f : (C, p1, . . . , pn)/ Spec k −→ X0

be a transverse pre-logarithmic map. Suppose further that the marked points {pi}
include all points of f−1(X

[1]
0 ) mapping to non-singular points of (X0)red.

Then there exists an enhancement of f to a basic stable logarithmic map if

and only if Γ(F) 6= ∅, in which case the number of pairwise non-isomorphic

enhancements is

|G|
b

∏
q

wq.

Here G is as in (4.4), the integer b is the base order (Definition 4.9), and the

product is taken over the reduced branching orders (4.2) at constrained nodes.

If X0 is reduced there is no obstruction to the existence of an enhancement and

the count is b−1
∏

q wq and wq = w1 = w2 either of the two contact orders in

Definition 4.4 and Proposition 4.6.
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Proof. Counting rigidified objects. We are going to count diagrams of the

form

(4.5)

C = (C,MC)
f−−−→ X0 = (X0,MX0)

π

y yp
Spec(Q→ k) −−−→

g
B = (B,MB),

with p and f given by assumption and g determined by b as in Theorem 4.10,(3)

uniquely up to isomorphism. For the final count we will divide out the Z/b-action

coming from the automorphisms of Spec(Q→ k)→ B.

Simplifying the base. By Theorem 4.10 we have Q = N⊕
⊕

free nodes N and

the map N = MB,b0 → Q is the inclusion of the first factor multiplied by the

base order b. Pulling back by any fixed sharp map Q → N replaces the lower

left corner by the standard log point O† = Spec(N→ k). To be explicit, we take

Q → N to restrict to the identity on each summand. Since this map Q → N
is surjective we do not introduce automorphisms or ramification. The universal

property of basic objects guarantees that the number of liftings is not changed.

The composition MB,b0 → Q → N is then multiplication by b. We have

now arrived at a counting problem over a standard log point. Note also that

the given data already determines (4.5) at the level of ghost monoids, that is,

the data determines the sheaf MC , and maps f
[

: M = f ∗MX0 → MC and

π[ :MO† →MC , uniquely.

Pulling back the target monoid. Pull-back yields the two log structures

M = f ∗MX0 and π∗MO† on C. Recall our choice of generator ρ0 of MB,b0 and

its pull-back ρ ∈ Γ(C,M), introduced earlier in §4.3. For later use let also

τ0 ∈ MO†,0 be a generator with g[(ρ0) = τ b0 . Then for any log smooth structure

MC on C over O† we have a distinguished section τ = π[(τ0).

Simplifying the target monoid. Now defineM′
C as the fine monoid sheaf

given by pushout of these two monoid sheaves over π∗g∗MB:

M′
C = f ∗MX0 ⊕fine

π∗g∗MB
π∗MO† .

Since MB,b0 = N, by [Kk, (4.4)(ii)] X0 → B is an integral morphism. Hence

the pushoutM′
C in the category of fine monoid sheaves agrees with the ordinary

pushout. In particular, the structure morphisms of X0 and O† define a structure

morphism α′C :M′
C → OC .

Restating the counting problem. Classifying diagrams (4.5) amounts to

finding an fs log structureMC on C together with a morphism of monoid sheaves

φ :M′
C −→MC

compatible with f ] and such that the composition π∗MO† → MC of φ with

π∗MO† →M′
C is log smooth.

We will soon see that φ̄ : (M′
C)gp −→ Mgp

C necessarily decomposes into the

quotient by some finite torsion part and the inclusion of a finite index subgroup.
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Lifting the quotient morphism to M′
C leads to the factor |G|, while the finite

extension of the resulting log structure to MC receives a contribution by the

reduced branching order wq from each constrained node. Note that wq = `(uq)

by Proposition 4.6,(I)(4); it is in this form that it appears in the proof.

The ghost kernel. To understand the torsion part to be divided out, note

that (M′
C,x)

gp at x ∈ C equals P gp
x ⊕Z Z with 1 ∈ Z mapping to ρx ∈ P gp

x and to

the base order b ∈ Z, respectively. Since `(ρx) divides the multiplicities of some

irreducible components of X0, Theorem 4.10,(3) implies b/`(ρx) ∈ N. If ρx has

integral length `(ρx) > 1, then
(
ρx/`(ρx),−b/`(ρx)

)
is a generator of the torsion

subgroup ((M′
C,x)

gp)tor, which has order `(ρx). This element has to be in the

kernel of the map to the torsion-free monoid MC .

The |G| embodiments of the ghost image. The interesting fact is that

the lift of
(
ρx/`(ρx),−b/`(ρx)

)
to (M′

C,x)
gp is only unique up to an `(ρx)-torsion

element in O×C,x, that is, up to an `(ρx)-th root of unity ζx ∈ k×. Explicitly,

the lift is equivalent to a choice σx ∈ Mx with σ
`(ρx)
x = ρx by taking the torsion

subsheaf in (M′
C)gp generated by (σx, τ

−b/`(ρx)
x

)
. The quotient by this subsheaf

means that we upgrade the relation f [(ρx) = τ bx coming from the commutativity

of (4.5) to f [(σx) = τ
b/`(ρx)
x .

To define this quotient of the monoid M′
C globally amounts to choosing the

roots σx of ρx compatibly with the generization maps, leading to a global section

of the sheaf F introduced directly before the statement of the theorem. For this

statement note that for x = η a generic point, `(ρη) equals the multiplicity µη of

the irreducible component of X0 containing f(η).

The quotient is a logarithmic structure. Assume now σ ∈ Γ(F)

has been chosen and denote by M′′
C the quotient of M′

C by the corresponding

torsion subgroup of (M′
C)gp. Since α′C(σx) = α′C(τx) = 0, the homomorphism α′C

descends to the quotient, thus defining a structure homomorphism α′′C : M′′
C →

OC .

The log structure MC is determined at smooth points. Note that

the map (π∗MO†)η →M′′
C,η is an isomorphism and hence we must haveMC,η =

M′′
C,η. The log structure MC is then also defined at each marked point p ∈ C

by adding a generator of the maximal ideal in OC,p as an additional generator

to MC,p. It is also clear that M′′
C,p → MC,p exists and is determined by the

corresponding map at η and by f ].

The log structure MC is determined at free nodes. At a free node

q we have f(q) ∈ (X0)reg and hence there is a unique specialization σq ∈ Mq

of ση for the two generic points η ∈ C with q ∈ cl(η). The log structure MC

on C is then determined by f [η and by the universal log structure M◦
C of C as

follows. Let x, y ∈ OC,q be coordinates of the two branches of C at q in the

étale topology. Then there exist unique lifts sx, sy ∈M◦
C,q such that sx · sy is the

pull-back of a generator εq of the q-th factor in the universal base log structure

Spec
(⊕

nodes of C N → k
)
. Our choice of pull-back O† → Spec

(
Q → k) turns εq
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into λτ
eq
0 for some λ ∈ k× and eq ∈ N determined by basicness as in (4.3). Thus

MC,q is generated by sx, sy and τq with single relation sx ·sy = λτ
eq
q and mapping

to x, y and 0 under the structure homomorphism, respectively. The morphism

f [ :Mq →MC,q factors over π∗MO† and is therefore completely determined by

f [η(σq) = τ
b/µη
q .

Constrained nodes: Study of the image log structure M′′
C. It

remains to extend M′′
C to the correct log structure at each constrained node

q ∈ C. On the level of ghost sheaves we have the following situation, where we

include the above description of the kernel for completeness.

Proposition 4.14. The homomorphism of abelian groups

P gp
q ⊕ Z −→Mgp

C,q, (m, k) 7−→ f
[

q(m) + k · τ q,

has kernel generated by
(
ρq/`(ρq),−b/`(ρq)

)
and cokernel a cyclic group of order

`(uq).

Proof. The kernel is described in the discussion above. Indeed, if (m, k) ∈ P gp
q ⊕Z

lies in the kernel then f
[

q(m) ∈ Z · τ q. Because f
[

q is injective and f
[

q(ρq) = τ bq we

conclude that (m, k) is proportional to (ρq,−b). The stated element is a primitive

element of this one-dimensional subspace.

For the determination of the cokernel observe that the composition

P gp
q

f
[
q−→Mgp

C,q −→M
gp

C,q/Zτ q ' Z

equals uq up to sign. Indeed, the quotient by Zτ q maps the two generators of

extremal rays of MC,q to ±1 ∈ Z. Hence mi ∈ P gp
q maps to ±wi, which by

Proposition 4.6, I,(2) agrees with ±uq(mi). The order of the cokernel now agrees

with the greatest common divisor of the components of uq, that is, with `(uq). ♠

Once again we follow [GS1, §1.3] and denote by Se ⊂ Z2 the submonoid gener-

ated by (e, 0), (1, 1), (0, e), for e ∈ Nr{0}. Up to a choice of ordering of extremal

rays there is a canonical isomorphism

(4.6) MC,q
'−→ Seq .

Using Proposition 4.14 we can now determine the saturation of M′′
C,q. For read-

ability we write ` = `(uq).

Corollary 4.15. Using the description (4.6), the saturation of M′′
C,q equals

S`(uq)eq ⊂ Seq .

Proof. By construction of M′′
C , the image of the homomorphism in Proposi-

tion 4.14 equals (M′′
C,q)

gp. In the notation of (4.6), the statement now follows

from the fact that by the proposition, the image has index `(uq) in Mgp

C,q and

(eq, 0) ∈ Seq . Hence (`eq, 0) ∈ (M′′
C,q)

gp, which together with (1, 1) ∈ (M′′
C,q)

gp

generates S`eq ⊂ Seq .
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The saturation is then computed by taking all integral points in the real cone

in Mgp

C,q ⊗Z R spanned by M′′
C,q. ♠

Constrained nodes: Extending the log structure.

In this step we extend the log structure to the saturation ofM′′
C , described in

Corollary 4.15.

Lemma 4.16. The log structure α′′ :M′′
C → OC extends uniquely to the satura-

tion (M′′
C)sat.

Proof. We continue to write ` = `(uq). The saturation can at most be non-trivial

at a constrained node q. By Corollary 4.15 we have an isomorphism (M′′
C,q)

sat '
S`eq . The definition of the weights wi implies (w1eq, 0), (0, w2eq) ∈ M

′′
C,q, for the

appropriate ordering of the branches of C at q. As a sanity check, notice that wi
divides ` by Proposition 4.6,(I)(2). Let βq :M′′

C,q → OC,q be the composition of

a choice of splitting M′′
C,q → M′′

C,q and the structure morphism M′′
C,q → OC,q.

Then βq
(
(w1eq, 0)

)
vanishes at q to order w1 on one branch of C and βq

(
(0, w2eq)

)
vanishes to order w2 on the other branch. Thus, étale locally there exist generators

x, y ∈ OC,q for the maximal ideal at q with

βq
(
(w1eq, 0)

)
= xw1 , βq

(
(0, w2eq)

)
= yw2 .

Thus any extension βsat
q of βq to a chart for (M′′

C,q)
sat has to fulfill

(4.7) βsat
q

(
(`eq, 0)

)
= ζ1 · x`, βsat

q

(
(0, `eq)

)
= ζ2 · y`,

with ζi ∈ k, ζ
w1/`
i = 1. On the other hand, the ζi are uniquely determined by

compatibility of βsat
q with β at the generic points of the two branches of C at q

since (`eq, 0), (0, `eq) ∈MC,q. Conversely, with this choice of the ζi, the equations

(4.7) provide the requested extension of α′′. ♠

Finally, we extend M′′
C to a log structure of a log smooth curve over the

standard log point. The situation is largely the same as with admissible covers,

see, e.g., [Mo, §3].

Lemma 4.17. Up to isomorphism of log structures over the standard log point,

there are ` = `(uq) pairwise non-isomorphic extensions αq :MC,q → OC,q of the

image log structure α′′q :M′′
C,q → OC,q at the constrained node q to a log structure

of a log smooth curve.

Proof. Let

βsat
q : S`eq −→ OC,q

be a chart for the log structure (M′′
C)sat at q. The task is to classify extensions

to a chart β̃q : Seq → OC,q up to isomorphisms of induced log structures. Similar

to the reasoning in Lemma 4.16, in terms of coordinates x, y ∈ OC,q with

βsat
q

(
(`eq, 0)

)
= x`, βsat

q

(
(0, `eq)

)
= y`,
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we have to define

(4.8) β̃q
(
(eq, 0)

)
= ζ1 · x, β̃q

(
(0, eq)

)
= ζ2 · y,

with ζi ∈ k, ζ`i = 1. Dividing out isomorphisms amounts to working modulo

ϕ ∈ Hom(Seq ,Z/`) with ϕ
(
(1, 1)

)
= 1. In other words, we can change ζ1, ζ2

by ζζ1, ζ
−1ζ2 for any `-th root of unity ζ. This leaves us with ` pairwise non-

isomorphic extensions of the log structure at q. ♠

Counting non-rigidified lifts. For the final count we need to divide out

the action of Z/b by composition with automorphisms of Spec(Q → k) over

B. The stated count follows once we prove that this action is free. The action

changes τ0 to ζ · τ0 for ζ a b-th root of unity. For this change to lead to an

isomorphic log structure MC requires ζ1ζ2 ∈ k× in (4.8) to be unchanged at

any constrained node q ∈ C. This shows ζeq = 1 for all q. Similarly, for the

map MX0,f(η) → MC,η to stay unchanged relative MB,b0 → MO†,0 requires

f [η(ση) = τ
b/µη
η to stay unchanged. Thus also ζb/µη = 1 for all generic points

η ∈ C. But by Theorem 4.10 the base order b is the smallest natural number

with all eq = b · Indq /µ2w1 and all b/µη integers. Thus the eq and b/µη have no

common factor. This shows that ζeq = 1 and ζb/µη = 1 for all q, η implies ζ = 1.

We conclude that the action of Z/b is free as claimed. ♠

Remark 4.18. The obstruction to the existence of a logarithmic enhancement

in Theorem 4.13 can be interpreted geometrically as follows.

Let µ̄ be a positive integer and B̃ → B be the degree d cyclic cover branched

with ramification index d over b0. Let X̄ = X ×B B̃, and let X̃ → X̄ be the

normalization, giving a family X̃ → B̃. It is a standard computation that the

inverse image of a multiplicity µ irreducible component of X0 in X̃ is a union of

irreducible components of X̃0, each with multiplicity µ/ gcd(µ, d).

At the level of log schemes, in fact X̄ carries a fine but not saturated logarithmic

structure via the description X̄ = X ×B B̃ in the category of fine log schemes,

while X̃ carries an fs logarithmic structure via the description X̃ = X×B B̃ in the

category of fs logarithmic structures. Here B̃ carries the divisorial logarithmic

structure given by b̃0 ∈ B̃, the unique point mapping to b0.

Similarly, the central fibres are related as follows. The map B̃ → B induces

a morphism on standard log points b̃0 → b0 induced by N → N, 1 7→ d for

some integer d. Then X̄0 = X0 ×b0 b̃0 in the category of fine log schemes, and

X̃0 = X0 ×b0 b̃0 in the category of fs log schemes.

Given a transverse pre-logarithmic map f : C/ Spec k→ X, take the integer d

above to be the positive integer b given by Theorem 4.10,(3). Then one checks

readily that f has a logarithmic enhancement if and only if there is a lift f̃ :

C → X̃0 of f . Indeed, if f has a logarithmic enhancement f : C/S → X0 with

S carrying the basic log structure, the morphism S → b0 factors through b̃0 by

the description of Theorem 4.10. Thus the universal property of fibred product
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gives a morphism f̃ : C → X̃0. Conversely, given a lift, it follows again from

the definition of b in Theorem 4.10 that the multiplicity µ of any irreducible

component of X0 meeting f(C) divides b. So the multiplicity of any component

of X̃0 meeting f̃(C) is 1 and by shrinking X0 we can assume that X̃0 is reduced.

One also checks that the reduced branching order wq associated to a node q is the

same for f and f̃ , and thus f̃ is still transverse pre-logarithmic. By Lemma 4.11

and Theorem 4.13, f̃ has a logarithmic enhancement, and then the composed

morphism C
f̃−→X̃0−→X0 gives the desired logarithmic enhancement of f .

5. Examples

We will now study explicit examples of the decomposition formula for a log-

arithmically smooth morphism X → B. We mostly use the traditional tropical

language of polyhedral complexes and metric graphs discussed in §2.5.3.

5.1. The classical case. Suppose X → B is a simple normal crossings degen-

eration with X0 = Y1 ∪ Y2 a reduced union of two irreducible components, with

Y1∩Y2 = D a smooth divisor in both Y1 and Y2. In this case, Σ(X) = (R≥0)2 and

the map Σ(X)→ Σ(B) = R≥0 is given by (x, y) 7→ x+ y. Thus ∆(X) admits an

affine-linear isomorphism with the unit interval [0, 1], see Figure 1.

Σ(B)

Σ(X)

∆(X)

1

Figure 1. The cones Σ(X) and Σ(B) and the interval ∆(X)

Proposition 5.1. In the above situation, let f : Γ→ ∆(X) be a decorated tropical

map. Then f is rigid if and only if every vertex v of Γ maps to the endpoints of

∆(X) and every edge of Γ surjects onto ∆(X).

Note that necessarily every leg of Γ is contracted, as ∆(X) is compact.

Proof. First note that if an edge Eq is contracted, then uq = 0 and the length of

the edge is arbitrary. By changing the length, one sees f is not rigid, see Figure 2

on the left.
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Next, suppose v is a vertex with f(v) lying in the interior of ∆(X). Identifying

the latter with [0, 1], we can view uq ∈ Z for any q. Let Eq1 , . . . , Eqr be the edges

of Γ adjacent to v with lengths `1, . . . , `r, oriented to point away from v. We can

then write down a family ft of tropical maps, t a real number close to 0, with

f = f0, ft(v
′) = f(v′) for any vertex v′ 6= v, and ft(v) = f(v) + t. In doing so,

we also need to modify the lengths of the edges Eqi , as indicated in Figure 2 on

the right. Any unbounded edge attached to v is contracted to ft(v). So f is not

rigid. Thus if f is rigid, we see that all vertices of Γ map to endpoints of ∆(X),

and any compact edge is not contracted, hence surjects onto ∆(X). The converse

is clear.

Γ

Γ

∆(X) ∆(X)

`

v

Figure 2. A graph with a contracted bounded edge or an interior

vertex is not rigid.

♠

A choice of decorated rigid tropical map in this situation is then exactly what

Jun Li terms an admissible triple in [Li]. Indeed, by removing f−1(1/2) from Γ,

one obtains two graphs (possibly disconnected) Γ1,Γ2 with legs and what Jun Li

terms roots (the half-edges mapping non-trivially to ∆(X)). The weights of a

root, in Li’s terminology, coincide with the absolute value of the corresponding

uq. The set I in the definition of admissible triple indicates which labels occur for

unbounded edges mapping to, say, 0 ∈ ∆(X). An illustration is given in Figure 3.

We emphasize that our virtual decomposition of the moduli space of stable log-

arithmic maps in terms of rigid tropical maps does not depend on transversality.

Already in this simple situation, the tropicalization of a basic stable logarithmic

map parameterizes a family of tropical maps with several rigid limits, one for

each facet of the basic monoid. The main result of this paper refines the virtual

counting problem in providing a count for each such choice of rigid limit. This

count applies even in more general situations where the vertices of the tropical

curve do not necessarily map to vertices of the polyhedron associated to the tar-

get, as the next section shows. Note also that this case has been carried out in

detail and with somewhat different notation after distribution of a first version

of this paper in [KLR].

5.2. Rational curves in a pencil of cubics. It is well-known that if one fixes 8

general points in P2, the pencil of cubics passing through these 8 points contains
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u = 2

u = 2
1 2 3 4

4321

∆(X)

Figure 3. A rigid tropical map is depicted with four edges and two

legs, the latter corresponding to marked points with contact order

0. The corresponding admissible triple of Jun Li is depicted on the

right, with roots corresponding to half-edges and legs corresponding

to the legs of the original graph. The half-edges marked 1 and 3

have u = 2.

precisely 12 nodal rational curves. Blowing up 6 of these 8 points, we get a cubic

surface we denote X ′1 ⊂ P3, and the enumeration of 12 nodal rational cubics

translates to the enumeration of 12 nodal plane sections of X ′1 passing through

the remaining two points p1, p2.

We will give here a non-trivial demonstration of the decomposition formula by

degenerating the cubic surface to a normal crossings union H1 ∪H2 ∪H3 of three

blown-up planes.

5.2.1. Degenerating a cubic to three planes. Using coordinates x0, . . . , x3 on P3,

consider a smooth cubic surface X ′1 ⊂ P3 with equation

f3(x0, x1, x2, x3) + x1x2x3 = 0.

We then have a family X ′ → B = A1 given by X ′ ⊂ A1 × P3 defined by tf3 +

x1x2x3 = 0. The fibre X ′0 is the union of three planes H ′1 ∪ H ′2 ∪ H ′3. Pick two

sections p1, p2 : B → X ′ such that pi(0) ∈ H ′i. This can be achieved by choosing

two appropriate points on the base locus f3(x0, x1, x2, x3) = x1x2x3 = 0.

5.2.2. Resolving to obtain a normal crossings family. The total space of X ′ is not

a normal crossings family: it has 9 ordinary double points over t = 0, assuming

f3 is chosen generally: these are the points of intersection of the singular lines

H ′i ∩ H ′j with f3 = 0. One manifestation is the fact that H ′i are Weil divisors

which are not Cartier. By blowing up H ′1 followed by H ′2, we resolve the ordinary

double points. We obtain a family X → B, which is normal crossings, hence

logarithmically smooth, in a neighbourhood of t = 0, as depicted on the left in

Figure 4. Denote by Hi the proper transform of H ′i.

We identify Σ(X) with (R≥0)3, so that ∆(X) is identified with the standard

simplex {(x1, x2, x3) |x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0}, as depicted on the right in

Figure 4.
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H1

H2

H3

H1

H3

H2

∆(X)

p2

p1

Figure 4. The left-hand picture depicts X0 as a union of three

copies of P2, blown up at 6, 3 or 0 points. The right-hand picture

depicts ∆(X).

5.2.3. Limiting curves: triangles. Since the limit of plane curves on X ′t = Xt

should be a plane curve on X ′0, limiting curves on X0 would map to plane sec-

tions of X ′0 through p1, p2. This greatly limits the possible limiting curves — in

particular the image in each of H ′i is a line.

General triangles do not occur. It is easy to see that a plane section of X ′0
passing through p1, p2 whose proper transform inX0 is a triangle of lines cannot be

the image of a stable logarithmic curve C → X0 of genus zero. Indeed, there would

be a smooth point of C mapping to (X0)sing, contradicting Proposition 4.6,(II).

Triangles through double points. On the other hand, consider the total trans-

form of a triangle in X ′0 passing through p1, p2, and one of the 9 ordinary double

points of X ′. The resulting curve will be a cycle of 4 rational curves, one of the

curves being part of the exceptional set of the blowup of H ′1 and H ′2. We can

partially normalize this curve at the node contained in the smooth part of X0,

getting a stable logarithmic curve of genus 0. See Figure 5 for one such case.

Tropical picture. We depict to the right the associated rigid tropical curve.

Here the lengths of each edge are 1, and the contact data uq take the values

(−1, 1, 0), (0,−1, 1) and (1, 0,−1). This accounts for 9 curves.

∆(X)C3

C4
C1C2

C3

C4C1

C2

Figure 5. Proper transform of a triangle through a double point.

The curve is normalized where C1 and C4 meet.

Logarithmic enhancement and logarithmic unobstructedness. Note that the

above curves are transverse pre-logarithmic curves, and by Theorem 4.13, each

of these curves has precisely one basic logarithmic enhancement. Since the curve

is immersed it has no automorphisms. One can use a natural absolute, rather

than relative, obstruction theory to define the virtual fundamental class, which
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is governed by the logarithmic normal bundle. In this case each curve is un-

obstructed: since it is transverse with contact order 1, the logarithmic normal

bundle coincides with the usual normal bundle. The normal bundle restricts to

OP1 ,OP1(1),OP1(1), and OP1(−1) on the respective four components C1, C2, C3

and C4, hence it is non-special. We note that this does not account for the in-

cidence condition that the marked points land at pi. This can be arranged, for

instance, using (5.1) in 5.3.2.

It follows that indeed each of these nine curves contributes precisely once to

the desired Gromov-Witten invariant.

5.2.4. Limiting curves: the plane section through the origin. The far more in-

teresting case is when the plane section of X ′0 passes through the triple point.

Then one has a stable map from a union of four projective lines, with the central

component contracted to the triple point, see Figure 6 on the left.

C1

C2

C3

C4

C1 C2

C3

C4

C1

C2

C3

Figure 6. A curve mapping to a plane section through the origin,

and its tropicalization.

There is in fact a one-parameter family W of such stable maps, as the line in

H3 is unconstrained and can be chosen to be any element in a pencil of lines.

Only one member of this family lies in a plane, and we will see below that indeed

only one member of the family admits a logarithmic enhancement.

Tropical picture. To understand the nature of such a logarithmic curve, we

first analyze the corresponding tropical map. The image of such a map will

be as depicted in Figure 6 on the right, with the central vertex corresponding

to the contracted component landing somewhere in the interior of the triangle.

However, the tropical balancing condition must hold at this central vertex, by

[GS1, Prop. 1.14]. From this one determines that the only possibility for the

values of uq are (−2, 1, 1), (1, 1,−2) and (1,−2, 1), all lengths are 1/3, and the

central vertex is (1/3, 1/3, 1/3). The multiplicity of this rigid tropical map Γ

acccording to Corollary 3.8 then is mΓ = 3.

5.2.5. Logarithmic enhancement using a logarithmic modification. We now show

that only one of the stable maps in the family S has a logarithmic enhancement.

To do so, we use the techniques of §4, first refining Σ(X) to obtain a logarithmic

modification of X. The subdivision visible in Figure 6 gives a refinement of Σ(X),

the central star subdivision of Σ(X). This corresponds to the ordinary blow-up



52 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

h : X̃ → X at the triple point of X0. We may then identify logarithmic curves

in X̃ and use the induced morphism M (X̃/B)→M (X/B).

Lifting the map to X̃0. The central fibre X̃0 is now as depicted in Figure 7.

We then try to build a transverse pre-logarithmic curve in X̃ lifting one of the

stable maps of Figure 6. Writing C = C1 ∪ C2 ∪ C3 ∪ C4, with C4 the central

component, we map C1 and C2 to the lines L1 and L2 containing the preimages

of p1 and p2, respectively, as depicted in Figure 7, while C3 maps to some line L3

in H3. On the other hand, by (4.2) in the definition of transverse pre-logarithmic

maps, C4 must map to the exceptional P2 = E, which is of multiplicity 3, in such

a way that it is triply tangent to ∂E precisely at the points of intersection with

Li, i = 1, 2, 3.

Uniqueness of liftable map. We claim that there is precisely one such map,

necessarily with image containing a curve of degree 3 in the exceptional P2, with

image as depicted in Figure 7. The number of transverse pre-logarithmic maps

can be determined by considering linear series as follows. The three contact points

on C4 ' P1 can be taken to be 0, 1 and ∞, and the map C4 → P2 corresponds,

up to a choice of basis, to the unique linear system on P1 spanned by the divisors

3{0}, 3{1} and 3{∞}. Since these points map to the coordinate lines, the choice

of basis is limited to rescaling the defining sections. The choice of scaling of the

defining sections results in fixing the images of 0 and 1, and the image point of

∞ is then uniquely determined.

C3

C1

C2

C3

C4

C1 C2

C4C1

C3

C4 C2

Figure 7. The lifted map. The middle figure is only a sketch: the

nodal cubic curve C4 meets each of the visible coordinate lines at

one point with multiplicity 3. Moreover, these three points are

collinear.

This determines uniquely the point L3 ∩ E. In particular, the line L3 is de-

termined. Thus we see that there is a unique transverse prelogarithmic map

f : C → X̃0 such that h ◦ f lies in the family S of stable maps to X.

Logarithmic enhancement. Since the curve is rational, Theorem 4.13 assures

the existence of a logarithmic enhancement. Only the exceptional component is

non-reduced, of multiplicity µ = 3 and for each node q ∈ C we have Indq = 1

and wq = 1/1 = 3/3 = 1. Hence b = 3, G = Z/µ = Z/3 and the count of

Theorem 4.13 gives

|G|
b

∏
q

wq =
3

3
· 13 = 1
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basic log enhancement of this transverse prelogarithmic curve. This gives one

more basic stable logarithmic map h ◦ f .

Unobstructedness. Once again we check that h◦f is unobstructed, if one makes

use of an absolute obstruction theory: the logarithmic normal bundle has degree

0 on each line, hence degree 1 on C4, and is non-special. Again the map has no

automorphisms, which accounts for 1 curve, with multiplicity 3, because mΓ = 3.

Hence the final accounting according to Theorem 3.11 is

9 + 3× 1 = 12,

which is the desired result.

5.2.6. Impossibility of other contributions. Note our presentation has not been

thorough in ruling out other possibilities for stable logarithmic maps, possibly

obstructed, contributing to the total. For example, S includes curves where L3

falls into the double point locus of X0, but a more detailed analysis of the tropical

possibilities rules out a possible log enhancement. We leave it to the reader to

confirm that we have found all possibilities.

5.3. Degeneration of point conditions. We now consider a situation which

is common in applications of tropical geometry; this includes tropical counting

of curves on toric varieties [Mi, NS]. We fix a pair (Y,D) where Y is a variety

over a field k and D is a reduced Weil divisor such that the divisorial logarithmic

structure on Y is logarithmically smooth over the trivial point Speck. We then

consider the trivial family

X = Y × A1 −→ A1 = B,

where now X is given the divisorial logarithmic structure with respect to the

divisor (D ×B) ∪ (Y × {0}).

5.3.1. Evaluation maps and moduli. Fix a type β of stable logarithmic maps to X

over B, getting a moduli space M (X/B, β). We assume that the curves of type

β have n marked points p1, . . . , pn with upi = 0 — and possibly some additional

marked points x1, . . . , xm with non-trivial contact orders with D. Given a stable

map (C/S,x,p, f), a priori for each i ∈ {1, . . . , n} we have an evaluation map

evi : (S, p∗iMC) → X obtained by restricting f to the section pi. Noting that

upi = 0, the map ev[i : (f ◦ pi)−1MX →MS ⊕ N factors through MS, and thus

we have a factorization evi : (S, p∗iMC)→ S → X. In a slight abuse of notation

we write evi for the morphism S → X also, and thus obtain a morphism

ev : M (X/B, β) −→ Xn := X ×B X ×B × · · · ×B X.

If we choose sections σ1, . . . , σn : B → X, we obtain a map

σ :=
n∏
i=1

σi : B −→ Xn.
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This allows us to define the moduli space of curves passing through the given

sections,

M (X/B, β, σ) := M (X/B, β)×Xn B,

where the two maps are ev and σ.9

5.3.2. Virtual fundamental class on M (X/B, β, σ). We note that the moduli

space M (X/B, β, σ) of curves passing through the given sections carries a virtual

fundamental class. The perfect obstruction theory is defined by

(5.1) E• =
(
Rπ∗[f

∗ΘX/B −→
n⊕
i=1

(f ∗ΘX/B)|pi(S)]
)∨
,

for the stable map (π : C → S,x,p, f). Here the map of sheaves above is just

restriction. See [ACGS, §4] for a detailed discussion of how to impose logarithmic

point conditions on a virtual level, cf. also [BrLe, Prop. A.1] for an earlier study

in ordinary Gromov-Witten theory.

5.3.3. Choice of sections and ∆(X). We can now use the techniques of previ-

ous sections to produce a virtual decomposition of the fibre over b0 = 0 of

M (X/B, β, σ) → B. However, to be interesting, we should in general choose

the sections to interact with D in a very degenerate way over b0. In particular,

restricting to b0 (which is now the standard log point), we obtain maps

σi : b0 −→ Y †,

where Y † = Y ×O† is the product with the standard log point. Note that

Σ(Y †) = Σ(X) = Σ(Y )× R≥0,

with Σ(X) → Σ(B) the projection to the second factor. So ∆(X) = Σ(Y ) and

Σ(σi) : Σ(B) → Σ(X) is a section of Σ(X) → Σ(B) and hence is determined by

a point Pi ∈ ∆(X), necessarily rationally defined.

5.3.4. Tropical fibred product. We wish to understand the fibred product

M (X/B, β, σ) := M (X/B, β)×Xn B

at a tropical level. We observe

Proposition 5.2. Let X, Y and S be fs log schemes, with morphisms f1 : X → S,

f2 : Y → S. Let Z = X ×S Y in the category of fs log schemes, p1, p2 the

projections. Suppose z̄ ∈ Z with x̄ = p1(z̄), ȳ = p2(z̄), and s̄ = f1(p1(z̄)) =

f2(p2(z̄)). Then

Hom(MZ,z̄,N) = Hom(MX,x̄,N)×Hom(MS,s̄,N) Hom(MY,ȳ,N)

and

Hom(MZ,z̄,R≥0) = Hom(MX,x̄,R≥0)×Hom(MS,s̄,R≥0) Hom(MY,ȳ,R≥0).

9Recall that all fibred products are in the category of fs log schemes.
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Proof. The first statement follows immediately from the universal property of

fibred product applied to maps z̄† → Z, where z̄† denotes a geometric point z̄

with standard logarithmic structure. The second statement then follows from the

first. ♠

5.3.5. Tropical moduli space. We now provide a simple interpretation for the trop-

icalization of S := M (X/B, β, σ). If s̄ ∈ S is a geometric point, let Q be the

basic monoid associated with s̄ as a stable logarithmic map to X. Then by

Proposition 5.2, we have

Hom(MS,s̄,R≥0) = Hom(Q,R≥0)×∏
i Hom(Ppi ,R≥0) R≥0.

Here as usual Ppi =MX,f(pi), which here equalsMY,f(pi)⊕N. The maps defining

the fibred product are as follows. The map Hom(Q,R≥0) →
∏

i Hom(Ppi ,R≥0)

can be interpreted as taking a tropical map Γ→ Σ(X) = Σ(Y )×R≥0 to the point

of Hom(Ppi ,R≥0) which is the image of the contracted edge corresponding to the

marked point pi. The map R≥0 →
∏

i Hom(Ppi ,R≥0) is
∏

i Σ(σi) and hence takes

1 to ((P1, 1), . . . , (Pn, 1).

This yields:

Proposition 5.3. Let m ∈ ∆(S), and let ΓC = Σ(π)−1(m). Then Σ(f) : ΓC →
∆(X) is a tropical map with the unbounded edges Epi being mapped to the points

Pi. Furthermore, as m varies within its cell of ∆(S), we obtain the universal

family of tropical maps of the same combinatorial type mapping to ∆(X) and

with the edges Epi being mapped to Pi.

5.3.6. Restatement of the decomposition formula. Denote by

M (Y †/b0, β, σ) := M (X0, β)×Xn B

and for τ̃ = (τ,A) a decorated type of a rigid tropical map (Definition 2.23),

M (Y †, τ̃ , σ) := M (X0, τ̃)×Xn B.

Theorem 3.11 now translates to the following:

Theorem 5.4 (The logarithmic decomposition formula for point conditions).

Suppose Y is logarithmically smooth. Then

[M (Y †/b0, β, σ)]virt =
∑

τ̃=(τ,A)

mτ

|Aut(τ)|
jτ̃ ∗[M (Y †, τ̃ , σ)]virt.

Example 5.5. The above discussion allows a reformulation of the approach of

[NS] to tropical counts of curves in toric varieties. Take Y to be a toric variety

with the toric logarithmic structure, and fix a curve class β. By fixing an appro-

priate number n of points in Y , one can assume that the expected dimension of

the moduli space of curves of genus 0 and class β passing through these points is 0.

Next, after choosing suitable degenerating sections σ1, . . . , σn, one obtains points

P1, . . . , Pn ∈ Σ(Y ), the fan for Y . Finally, one explicitly describes M (X/B, β, σ)
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through an analysis for each rigid tropical map to Σ(Y ) with the correct topol-

ogy. In particular, the domain curve is rational and should have Dρ ·β unbounded

edges parallel to a ray ρ ∈ Σ(Y ), where Dρ ⊂ Y is the corresponding divisor. The

argument of [NS] essentially carries out an explicit analysis of possible logarith-

mic curves associated with each such rigid curve after a log blow-up Ỹ † → Y †.

Theorem 5.4 also generalizes part of [NS] to some higher genus cases, with the

determination of the contribution of individual maps left open.

5.4. An example in F2. We now consider a very specific case of §5.3 above.

This example deliberately deviates slightly from the toric case of Example 5.5

and exhibits new phenomena.

5.4.1. A non-toric logarithmic structure on a Hirzebruch surface. Let Y be the

Hirzebruch surface F2. Viewed as a toric surface, it has 4 toric divisors, which we

write as f0, f∞, C0 and C∞. Here f0, f∞ are the fibres of F2 → P1 over 0 and ∞,

C0 is the unique section with self-intersection −2, and C∞ is a section disjoint

from C0, with C∞ linearly equivalent to f0 + f∞ + C0.

We will give Y the (non-toric) divisorial logarithmic structure coming from the

divisor D = f0 + f∞ + C∞, deliberately omitting C0.

5.4.2. The curves and their marked points. We will consider rational curves rep-

resenting the class C∞ passing through 3 points y1, y2, y3. Of course there should

be precisely one such curve.

A general curve of class C∞ will intersect D in four points, so we will set

this up as a logarithmic Gromov-Witten problem by considering genus 0 stable

logarithmic maps

f : (C, p1, p2, p3, x1, x2, x3, x4) −→ Y,

imposing the condition that f(pi) = yi, and f is constrained to be transversal

to f0, f∞, C∞ and C∞ at xi for i = 1, . . . , 4, respectively. This transversality

determines the vectors uxi , while we take the contact data upi = 0.

Since the maps have the points x3 and x4 ordered, we expect the final count

to amount to 2 rather than 1.

5.4.3. Choice of degeneration. We will now see what happens when we degenerate

the point conditions as in §5.3, by taking X = Y × A1 and considering sections

σi : A1 → X, 1 ≤ i ≤ 3. We choose these sections to be general subject to the

condition that

σ1(0) ∈ f0, σ2(0) ∈ f∞, σ3(0) ∈ C0.

Since C0∩C∞ = ∅, any curve in the linear system |C∞| which passes through this

special choice of 3 points must contain C0, and hence be the curve f0 + f∞ +C0.
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v1 v3 v2

P1 P3 P2

Ex3
Ex4

Figure 8. The polyhedral complex ∆(X) = Σ(Y ) and a potential

tropical map. The small arrows indicate Epi which are contracted

to Pi. The suggested positions of Ex3 and Ex4 are shown below to

contribute 0 to the virtual count.

5.4.4. The complex ∆(X) and the tropical sections. Note that ∆(X) is as depicted

in Figure 8, an abstract gluing of two quadrants, not linearly embedded in the

plane. The choice of sections σi determines points Pi ∈ Σ(X) as explained in

§5.3. For example, if, say, the section σ1 is transversal to f0 ×A1, then P1 is the

point at distance 1 from the origin along the ray corresponding to f0. Since C0

is not part of the divisor determining the logarithmic structure, P3 is in fact the

origin.

5.4.5. The tropical maps. One then considers rigid decorated tropical maps pass-

ing through these points.

• The curves must have 7 unbounded edges, Epi , Exj .

• The map contracts Epi to Pi.

• Each Exj is mapped to an unbounded ray going to infinity in the direction

indicating which of the three irreducible components of D the point xj is

mapped to.

5.4.6. Rigid tropical maps. It is then easy to see that to be rigid, the domain of

the tropical map must have three vertices, v1, v2, v3, with the edge Epi attached

to vi and vi necessarily being mapped to Pi.

The location of the Exi is less clear. One can show using the balancing condition

[GS1, Prop. 1.15] that Ex1 must be attached to v1 and Ex2 must be attached to v2.

There remains, however, some choice about the location of Ex3 and Ex4 . Indeed,

they may be attached to the vertices v1, v2 or v3 in any manner. Figure 8 shows

one such choice.

5.4.7. Decorated rigid tropical maps. We must however consider decorated rigid

tropical maps, and in particular we need to assign curve classes A(v) to each
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vertex v. Let ni be the number of edges in {Ex3 , Ex4} attached to the vertex vi.

Since Ex3 and Ex4 indicate which “virtual” components of the domain curve have

marked points mapping to C∞, it then becomes clear that

A(v1) = n1f, A(v2) = n2f, A(v3) = C0 + n3f,

where n1 + n2 + n3 = 2.

5.4.8. The seeming contradiction. In fact, as we shall see shortly, there are loga-

rithmic curves whose tropicalization yields any one of the curves with n1 = n2 = 1,

and there is no logarithmic curve over the standard log point whose tropicaliza-

tion is the tropical map with n3 = 2. Surprisingly at first glance, the only

decorated rigid tropical map which provides a non-trivial contribution to the

Gromov-Witten invariant is the one which cannot be realised, with n3 = 2. We

will also see that the case n1 = 2 or n2 = 2 plays no role. Before we exhibit

this counterintuitive behavior, we point out that this is no contradiction. Indeed,

consider a stable log map to X0 with non-rigid tropicalization. This stable log

map will lie in the intersection of the images in M (X0, β) of more than one sub-

space Mτ (X0, β) from (3.3). Tropical geometry cannot thus tell how these stable

log maps with non-rigid tropicalizations contribute to the virtual count on any

of these components.

5.4.9. Curves with n1 = n2 = 1 contribute 0. To exhibit this seemingly contra-

dictory behavior, first recall the standard fact that there is a flat family W → A1

such that W 0 ' X0 = F2 and W t ' P1 × P1 for t 6= 0. Furthermore, the divisor

f0 ∪ f∞ ∪ C∞ extends to a normal crossings divisor on W with three irreducible

components: {0}×P1, {∞}×P1, and a curve of type (1, 1). This endows W with

a divisorial logarithmic structure, logarithmically smooth over A1 with the trivial

logarithmic structure. However, no curve of class C0 in W0 deforms to Wt for

t 6= 0. Hence no curve representing a point in the moduli space Mτ (X0, β) for τ

one of the decorated rigid tropical maps with n3 = 0 deforms. The usual deforma-

tion invariance of Gromov-Witten invariants then implies that the contribution

to the Gromov-Witten invariant from such a τ is zero.

Another transparent explanation for the vanishing of this count is given by the

gluing formalism further developed in [ACGS]: The moduli space of punctured

stable maps corresponding to the (−2)-curve has negative virtual dimension and

by [GS2, Thm. A.16] any moduli space of stable maps with such a component

has vanishing virtual count.

5.4.10. Expansion and description of moduli space for n1 = n2 = 1. To explore

the existence of the relevant logarithmic curves, we again turn to §4. First let us

construct a curve whose decorated tropical map has n1 = n2 = 1. The image of

this curve in ∆(X) yields a subdivision of ∆(X) which in turn yields a refinement

of Σ(X), and hence a log étale morphism X̃ → X. It is easy to see that this is

just a weighted blow-up of f0 × {0} and f∞ × {0} in X = Y × A1; the weights
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depend on the precise location of P1 and P2, but if they are taken to have distance

1 from the origin, the subdivision will correspond to an ordinary blow-up. The

central fibre is now as depicted in Figure 9, with the proper transforms of the

sections meeting the central fibre at the points p1, p2, p3 as depicted.

The logarithmic curve then has three irreducible components, one mapping to

C0 and the other two mapping to the two exceptional divisors, each isomorphic

to P1 × P1. These latter two components each map isomorphically to a curve of

class (1, 1) on the exceptional divisor, and is constrained to pass through pi and

the point where C0 meets the exceptional divisor. There is in fact a pencil of such

curves. We remark that all 7 marked points are visible in Figure 9, but the curves

in the exceptional divisors meet the left-most and right-most curves transversally,

and not tangent as it appears in the picture. By Theorem 4.13, any such stable

map then has a log enhancement, and composing with the map X̃ → X gives a

stable logarithmic map over the standard log point whose tropicalization is one

of the rigid curves with n1 = n2 = 1. Thus the relevant moduli space of stable

log maps to X̃0 has two components, each isomorphic to P1 × P1, depending on

which sides x3 and x4 lie. This moduli space maps injectively to the moduli space

of stable log maps to X0.

To see that the virtual count gives 0, one can again consider the absolute defor-

mation and obstruction theory of all the maps parameterized by P1×P1. Over the

open subset C∗×C∗ the maps admit a normal line bundle with degrees 2,−2, 2 on

the three components of the curve. To account for the point conditions we twist

down by the points xi, obtaining a line bundle N of degrees 1,−3, 1 respectively.

Restricting to the middle components gives an isomorphism of the obstruction

space H1(C,N) → H1(P1,O(−3)) = C2. One checks that the isomorphism ex-

tends across the boundary of P1 × P1, giving a trivial obstruction bundle with

zero Chern class representing the virtual fundamental class 0.

5.4.11. Curves with n1 = n2 = 0. Now consider the case that n1 = n2 = 0 and

n3 = 2. This rigid tropical curve cannot be realised as the tropicalization of a

stable logarithmic map over the standard log point. Indeed, to be realised, the
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curve must have an irreducible component of class C0 + 2f = C∞, and we know

there is no such curve passing through σ3(0), a general point on C0. However,

this tropical map can in fact be realised as a degeneration of a different, non-rigid

tropical map, as depicted in Figure 10.

To construct an actual logarithmic curve with n1 = n2 = 0, we use refinements

again. Assume for simplicity of the discussion that P1 and P2 have been taken

to have distance 2 from the origin. Subdivide ∆(X) by introducing vertical rays

with endpoints P1 and P2, and in addition introduce vertical rays which are the

images Ex3 and Ex4 ; again for simplicity of the discussion take the endpoints of

these rays to be at distance 1 from the origin.

This corresponds to a blow-up X̃ → X involving four exceptional components,

and Figure 11 shows the central fibre of X̃ → A1, along with the image of a

stable logarithmic map which tropicalizes appropriately (once again the curves

on the second and fourth components of X̃ meet the first and fifth components

with order 1, and no tangency). Composing this stable logarithmic map with

X̃ → X then gives a non-basic stable logarithmic map to X over the standard

log point. It is not hard to see that the corresponding basic monoid Q has rank

3, parameterizing the image of the curve in Σ(B) as well as the location of the

edges Ex3 and Ex4 . The degenerate tropical curve where the edges Ex3 and Ex4

are attached to the vertex v3 represents a one-dimensional face of Q∨, so the

rigid tropical map with n3 = 2 does appear in the family Q∨, but only as a

degeneration of a tropical map which is realisable by an actual stable logarithmic

curve over the standard log point.

One can again show that the relevant moduli space in X̃0 has two components

isomorphic to P1×P1. This time the virtual fundamental class of each component

is the top Chern class of O(1) � O(1), which has degree 1. Each of these maps

to X̃0 define the same map to X0, and indeed the corresponding moduli space

Mni=0(X0) is discrete and unobstructed.
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5.4.12. Curves with n1+n2 = 1. In this case A(v3) = C0+n3f = C0+f and either

A(v1) = f,A(v2) = 0 or A(v1) = 0,A(v2) = f . The expanded degeneration

picture then looks like a hybrid of Figures 9 and 10, with the depicted behavior

describing one end each. A computation similar to the one presented for the case

n1 = n2 = 1 shows vanishing of this count as well.

5.4.13. Curves with ni = 2. To complete the analysis, we end by noting that

the case n1 = 2 or n2 = 2 cannot occur. Consider the case n1 = 2. Any

stable logarithmic curve over the standard log point with a tropicalization which

degenerates to such a rigid tropical map must have a decomposition into unions

of irreducible components corresponding to the vertices v1, v2 and v3, with the

homology class of the image of the stable map restricted to each of these unions

of irreducible components being 2[f0], 0 and [C0] respectively. In particular, this

will prevent the possibility of having any irreducible component whose image

contains σ2(0). Thus this case does not occur.
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