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Abstract We prove Zimmer’s conjecture for C2 actions by finite-index sub-
groups of SL(m, Z) provided m > 3. The method utilizes many ingredients
from our earlier proof of the conjecture for actions by cocompact lattices in
SL(m, R) (Brown et al. in Zimmer’s conjecture: subexponential growth, mea-
sure rigidity, and strong property (T), 2016. arXiv:1608.04995) but new ideas
are needed to overcome the lack of compactness of the space (G × M)/�

(admitting the induced G-action). Non-compactness allows both measures
and Lyapunov exponents to escape to infinity under averaging and a number
of algebraic, geometric, and dynamical tools are used control this escape. New
ideas are provided by the work of Lubotzky, Mozes, and Raghunathan on the
structure of nonuniform lattices and, in particular, of SL(m, Z) providing a
geometric decomposition of the cusp into rank one directions, whose geome-
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try is more easily controlled. The proof alsomakes use of a precise quantitative
form of non-divergence of unipotent orbits by Kleinbock andMargulis, and an
extension by de la Salle of strong property (T) to representations of nonuniform
lattices.

1 Introduction

1.1 Statement of results

The main result of this paper is the following:

Theorem A Let � be a finite-index subgroup of SL(m, Z) and let M be a
closed manifold of dimension dim(M) ≤ m − 2. If α : � → Diff2(M) is a
group homomorphism then α(�) is finite.1 In addition, if ω is a volume form
on M, m > 2, and if dim(M) ≤ m − 1, then if and α : � → Diff2(M, ω) is a
group homomorphism then α(�) is finite.

For m ≥ 3, we remark that the conclusion of Theorem A is known for
actions on the circle by results ofWitte Morris [26] (see also [7,13] for actions
by more general lattices on the circle) and for volume-preserving actions on
surfaces by results of Franks andHandel and of Polterovich [12,21]. The proof
in this paper requires that m ≥ 4 though we expect it can be modified to cover
actions by SL(3, Z); since these results are not new, we only present the case
for m ≥ 4. While this is a very special case of Zimmer’s conjecture, it is
a key example. For instance, the version of Zimmer’s conjecture restated by
Margulis in his problem list [20] is a special case of Theorem A.

Note that if� is a finite-index subgroup of SL(m, Z) acting on compactman-
ifold M , we may induce an action of SL(m, Z) on a (possibly non-connected)
compact manifold M̃ = (SL(m, R) × M)/ ∼ where (γ, x) ∼ (γ ′, x ′) if there
is γ̂ ∈ � with γ ′ = γ γ̂ and x ′ = α(γ̂ −1)(x). Connectedness of M is neither
assumed nor is it used in either the proof of Theorem A or in [4]. Thus, for the
remainder we will simply assume � = SL(m, Z).

This paper is a first step in extending the results in [4] to the case where � is
a nonuniform lattice in a split simple Lie group G and the strategy of the proof
of Theorem A relies strongly on the strategy used in [4]. In the remainder of
the introduction, we recall the proof in the cocompact case, indicate where the
difficulties arise in the nonuniform case, and outline the proof of Theorem A.
At the end of the introduction wemake some remarks on other approaches and
difficulties we encountered.

We recall a key definition from [4]. Let � be a finitely generated group.
Let � : � → N denote the word-length function with respect to some choice

1 After this work was completed, Brown-Damjanovic-Zhang showed that some modifications
of our arguments also give a proof for C1 diffeomorphisms [3].
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of finite generating set for �. Given a C1 diffeomorphism f : M → M let
‖Df ‖ = supx∈M ‖Dx f ‖ (for some choice of norm on T M).

Definition 1.1 An action α : � → Diff1(M) has uniform subexponential
growth of derivatives if

for every ε > 0, there is Cε such that ‖Dα(γ )‖ ≤ Cεe
ε�(γ ) for all γ ∈ �.

(1)

The main result of the paper is the following:

Theorem B For m ≥ 4, let � = SL(m, Z) and let M be a closed manifold.

(1) If dim(M) ≤ m − 2 then any action α : � → Diff2(M) has uniform
subexponential growth of derivatives;

(2) if ω is a volume form on M and dim(M) ≤ m − 1 then any action
α : � → Diff2(M, ω) has uniform subexponential growth of derivatives.

To deduce Theorem A from Theorem B, we apply [4, Theorem 2.9] and
de la Salle’s recent result establishing strong property (T ) for nonuniform
lattices [8, Theorem 1.2] and conclude that any action α as in Theorem A
preserves a continuous Riemannian metric. For clarity, we point out that we
need de la Salle’s Theorem 1.2 and not his Theorem 1.1 because we need the
measures converging to the projection to be positive measures. That Theorem
[8, Theorem 1.2] provides positive measures where [8, Theorem 1.1] does not
is further clarified in [8, Section 2.3]. Once a continuous invariant metric is
preserved, the image of any homomorphism α in Theorem A is contained in a
compact Lie group K . All such homomorphisms necessarily have finite image
due to the presence of unipotent elements in SL(m, Z). We remark that while
the finiteness of the image of α was deduced using Margulis’s superrigidity
theorem in [4], it is unnecessary in the setting of Theorem A since, as any
unipotent element of SL(m, Z) lies in the center of some integral Heisenberg
subgroup of SL(m, Z), all unipotent elements have finite image in K and
therefore so does SL(m, Z).

1.2 Review of the cocompact case

To explain the proof of TheoremB,we briefly explain the difficulties in extend-
ing the arguments from [4] to the setting of actions by nonuniform lattices. We
begin by recalling the proof in the cocompact setting.

In both [4] and the proof of Theorem B, we consider a fiber bundle

M → Mα := (G × M)/�
π−→ G/�
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which allows us to replace the �-action on M with a G-action on Mα . In the
case that � is cocompact, showing subexponential growth of derivatives of
the �-action is equivalent to showing subexponential growth of the fiberwise
derivative cocycle for the G-action.

To prove such subexponential growth for the G-action on Mα we argued by
contradiction to obtain a sequence of points xn ∈ Mα and semisimple elements
an in a Cartan subgroup A ⊂ G which satisfy ‖Dxnan|F‖ ≥ eλd(an,Id) for some
λ > 0. Here Dxg denotes the derivative of translation by g at x ∈ Mα , F is
the fiberwise tangent bundle of Mα , and Dxnan|F is the restriction of Dxnan
to F(xn).

The pairs (xn, an) determine empirical measures μn on Mα supported on
the orbit {asn(xn) : 0 ≤ s ≤ tn} which accumulate on a measure μ that
is a-invariant for some a ∈ A and has a positive Lyapunov exponent for
the fiberwise derivative cocycle of size at least λ. Using classical results in
homogeneous dynamics in conjunction with the key proposition from [6], we
averaged the measure μ to obtain a G-invariant measure μ′ on Mα with a
non-zero fiberwise Lyapunov exponent; the existence of such a measure μ′
contradicts Zimmer’s cocycle superrigidity theorem.

1.3 Difficulties in the nonuniform setting

When � is nonuniform the space Mα is not compact and the sequence of
empirical measures μn might diverge to infinity in Mα; that is, in the limit
we might have a “loss of mass”. Additionally, even if the measures {μn} sat-
isfy some tightness criteria so as to prevent escape of mass, one might have
“escape of Lyapunov exponents:” for a limiting measure μ, the Lyapunov
exponents may be infinite or the value could drop below the value expected
by the growth of fiberwise cocycles along the orbits {as(xn) : 0 ≤ s ≤ tn}.
For instance, the contribution to the exponential growth of derivatives along
the sequence of empirical measures could arise primarily from excursions of
orbits deep into the cusp. If one makes naïve computations with the return
cocycle β : G × G/� → � (measuring for x in a fundamental domain D the
element of � needed to bring gx back to a D) one in fact expects that the
fiberwise derivative are very large for translations of points far out in the cusp
since the orbits of such points cross a large number of fundamental domains.
The weakest consequence of this observation is that subexponential growth of
the fiberwise derivative of the induced G-action is much stronger than subex-
ponential growth of derivatives of the �-action. While we still work with the
induced G-action and the fiberwise derivative in many places, the arguments
become more complicated than in the cocompact case.

In the homogeneous dynamics literature, there are many tools to study
escape of mass. Controlling the escape of Lyapunov exponents seems to be
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more novel. To rule out escape of mass, it suffices to prove tightness of family
of measures {μn}. To control Lyapunov exponents, we introduce a quantitative
tightness condition: we construct measures {μn} with uniformly exponentially
small mass in the cusps. See Sect. 3.2. It is a standard computation to show the
Haar measure on SL(m, R)/SL(m, Z) (or any G/� where G is semisimple
and � is a lattice) has exponentially small mass in the cusps.

1.4 Outline of proof

With the above difficulties in mind, we outline the strategy of the proof of
TheoremB. Lubotzky,Mozes andRaghunathan proved that SL(m, Z) is quasi-
isometrically embedded in SL(m, R). And in this special case, they give a proof
that every element γ ∈ SL(m, Z) can be written as a product of at most m2

elements δi contained in canonical copies of SL(2, Z) determined by pairs of
standard basis vectors for R

m ; moreover the word-length of each δi is at most
proportional to the word-length of γ [17, Corollary 3]. (We note however that
such effective generation of � only holds for SL(m, Z); for the general case,
in [18] a weaker generation of � in terms of Q-rank 1 subgroups is shown.)
Thus, to show uniform subexponential growth of derivatives for the action of
SL(m, Z), it suffices to show uniform subexponential growth of derivatives
for the restriction of our action to each canonical copy of SL(2, Z).

We first obtain uniform subexponential growth of derivatives for the unipo-
tent elements in SL(2, Z) in Sect. 4. See Proposition 4.1. The strategy is to
consider a subgroup of the form SL(2, Z) � Z

2 ⊂ SL(m, Z). We first prove
that a large proportion of elements in SL(2, Z) satisfy (1). To prove this, we
use that if at := diag(et , e−t ) then a typical at -orbit in SL(2, R)/SL(2, Z)

equidistributes to the Haar measure. In particular, for the empirical measures
along such a-orbits we apply the techniques from [4] to show subexponential
growth of fiberwise derivatives along such orbits and conclude that a large
proportion of SL(2, Z) satisfies (1). See Proposition 4.2. The proof of this
fact repeats most of the ideas and techniques from [4] as well a quantitative
non-divergence of unipotent averages following Kleinbock and Margulis. The
precise averaging procedure is different here than in [4].

Having shown Proposition 4.2, we consider the SL(2, Z)-action on the nor-
mal subgroup Z

2 of SL(2, Z)�Z
2 to show that for every n ≥ 0, the ball Bn of

radius n in Z
2 contains a positive-density subset of unipotent elements satis-

fying (1). Taking iterated sumsets of such good unipotent elements of Bn(Z
2)

with a finite set one obtains uniform subexponential growth of derivatives for
every element in Bn . This relies heavily on the fact that Z

2 is abelian. See
Sect. 4.2.

It is worth noting that the subgroups of the form SL(2, Z) � Z
2 ⊂ � are

also considered in the work of Lubotzky, Mozes, and Raghunathan in [17] as
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well as in Margulis’s early constructions of expander graphs and subsequent
work on property (T) and expanders [19].

Having established Proposition 4.1, we assume for the sake of contradic-
tion that the restriction of α to SL(2, Z) fails to exhibit uniform subexponential
growth of derivatives.We obtain in Sect. 5.2 a sequence ζn of at -orbit segments
in SL(2, R)/SL(2, Z)which drift only a sub-linear distance into the cusp with
respect to their length and accumulate exponential growth of the fiberwise
derivative. Here we use that orbits deep in the cusp of SL(2, R)/SL(2, Z) cor-
respond to unipotent deck transformations and that Proposition 4.1 implies that
these do not contribute to the exponential growth of the fiberwise derivative.
Here, we heavily use the structure of SL(2, Z) subgroups.

We promote the family of orbit segments ζn in Mα to a family of measures
{μn} all of whose subsequential limits are A-invariant measures μ on Mα

with non-zero fiberwise exponents. To construct μn , we construct a Følner
sequence Fn ⊂ G inside a solvable subgroup AN ′ where A is the full Cartan
subgroup of SL(m, R) and N ′ is a well-chosen abelian subgroup of unipotent
elements. We average our orbit segments ζn over Fn to obtain the sequence
of measures μn in Mα . In general, Følner sets for AN ′ are subsets which are
linearly large in the A-direction and exponentially large in the N ′ direction. In
our case the N ′-part will not affect the Lyapunov exponent because we work
inside a subset where the return cocycle β restricted to N ′ takes unipotent
values and we have already proven subexponential growth of the fiberwise
derivatives for unipotent elements.

The fact that μn behaves well in the cusp is due to two facts: First,
the segments obtained in Sect. 5.2 do not drift too deep into the cusp of
SL(2, R)/SL(2, Z). Second, we choose our subgroup N ′ such that the N ′-
orbits of each point along each ζn is a closed torus that is well-behaved when
translated by A. The argument here is related to the fact closed horocycles
in the cusp of SL(2, R)/SL(2, Z) equidistribute to the Haar measure when
flowed backwards by the geodesic flow.

To finish the argument, we show that any AN ′-invariant measure on Mα

projects to Haar measure on SL(m, R)/SL(m, Z) using Ratner’s measure
classification and equidistribution theorems. Then, as in [4], we can use [6,
Proposition 5.1] and argue as in the cocompact case in [4] show that μ is in
fact G-invariant and thereby obtain a contradiction with Zimmer’s cocycle
superrigidity theorem.

1.5 A few remarks on other approaches

We close the introduction by making some remarks on other approaches, par-
ticularly other approaches for controlling the escape of mass. We emphasize
here that one key difficulty for all approaches is that we are not able to con-
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trol the “images” of the cocycle β : G × G/� → � in either our special
case or in general. To understand this remark better, consider first the case
where G = SL(2, R) and � = SL(2, Z). If we take a one-parameter subgroup
c(t) < SL(2, R) and take the trajectory c(t)x for t in some interval [0, T ] and
assume and assume the entire trajectory on G/� lies deep enough in the cusp,
then β(a(t), x) is necessarily unipotent for all t in [0, T ]. No similar statement
is true for G = SL(m, R) and � = SL(m, Z). In fact analogous statements
are true if and only if � has Q-rank one, this is closely related to the fact
that higher Q-rank locally symmetric spaces are 1-connected at infinity. This
forces us to “factor” the action into actions of rank-one subgroups in order to
control the growth of derivatives.

Onemight hope to obtain subexponential growthof derivativesmore directly
for all elements of SL(2, Z), or even directly in SL(m, Z), by proving better
estimates on the size of the “generic” subsets of SL(2, R) (or SL(m, R)) whose
A-orbits define empirical measures satisfying some tightness condition.While
one can get good estimates on the size of the sets in Proposition 4.2 using
Margulis functions and large deviation estimates as in [1,10], the resulting
estimates are not sharp enough to allow us to prove subexponential growth of
derivatives. One can compare with the conjectures in [14] about loss of mass.

An elementary related question is the following: Let Bn be a ball of radius
n in a Lie group G (or a lattice �) and suppose there exists subset Sn of Bn
such that Sn and Bn have more or less equal mass, meaning that:

vol(Bn \ Sn)

vol(Bn)
< εn

for a certain sequence εn of numbers converging to zero. Does there exists an
integer k (independent of n) such that for n large:

Bn ⊂ Sn ∗ Sn∗ k· · · ∗Sn (2)

Observe that the question depends on how fast εn is decreasing and on the
group G. For example if G abelian, εn can be a sufficiently small constant as a
consequence of Proposition 4.9. Also, it is not hard to see that for any group G
the existence of k is guaranteed if εn decreases exponentially quickly. So the
real question is how fast εn has to decrease to zero in order for this statement
to hold. Does (2) holds for G = SL3(Z) and εn = 2−nc for some c < 1? If
the answer to this question is yes, then it would be possible to approach our
results via Margulis functions and large deviation estimates.
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2 Standing notation

We review the notation introduced in [4] and establish some standing notation
and conventions as well as state some facts used in the remainder of the paper.

2.1 Lie theoretic and geometric notation

WewriteG = SL(m, R) and� = SL(m, Z). Let g denote theLie algebra ofG.
Let Id denote the identity element of G. We fix the standard Cartan involution
θ : g → g given by θ(X) = −Xt and write k and p, respectively, for the +1
and −1 eigenspaces of θ . Define a to be a maximal abelian subalgebra of p.
Then a is the vector space of diagonal matrices.

The roots of g are the linear functionals βi, j ∈ a∗ defined as

βi, j (diag(t1, . . . , tm)) = ti − t j .

The simple positive roots areα j = β j, j+1 and the positive roots are the positive
integral combinations of {α j } that are still roots.

For a root β, write gβ for the associated root space. Each root space gβ

exponentiates to a 1-parameter unipotent subgroup Uβ ⊂ G. The Lie subal-
gebra n generated by all root spaces gβ for positive roots β, coincides with the
Lie algebra of all strictly upper-triangular matrices.

Let A, N , and K be the analytic subgroups of G corresponding to a, n and
k. Then

(1) A = exp(a) is the group of all diagonal matrices with positive entries.
A is an abelian group and we identity linear functionals on a with linear
functionals on A via the exponential map exp : a → A;

(2) N = exp(n) is the group of upper-triangular matrices with 1s on the
diagonal;

(3) K = SO(m).

The Weyl group of G is the group of permutation matrices. This acts tran-
sitively on the set of all roots �.

For 1 ≤ i, j ≤ m, the subgroup of G generated by Uβi, j and Uβ j,i is
isomorphic to SL(2, R). We denote this subgroup by Hi, j = SLi, j (2, R).

Then�i, j := Hi, j ∩� is a lattice in SLi, j (2, R) isomorphic to SL(2, Z). Note
then that Xi, j := Hi, j/�i, j is the unit tangent bundle to the modular surface.
We will use the standard notation Ei, j for an elementary matrix with 1s on
the diagonal and in the (i, j)-place and 0s everywhere else. Note that Ei, j and
E j,i generate �i, j .
We equip G with a left-K -invariant and right-G-invariant metric. Such a

metric is unique up to scaling. Let d denote be the induced distance onG. With
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Zimmer’s conjecture for actions of SL(m, Z) 1009

respect to this metric and distance d, each Hi, j is geodesically embedded. By
rescaling the metric, we may assume the restriction of d to each Hi, j coincides
with the standard metric of constant curvature −1 on the upper half plane
SO(2)\SL(2, R). This metric has the following properties that we exploit
throughout.

(1) For any matrix norm ‖ · ‖ on Hi, j � SL(2, R) there is a C1 such that

2 log ‖A‖ − C1 ≤ d(A, Id) ≤ 2 log ‖A‖ + C1 (3)

for all A ∈ Hi, j .
(2) Let B(Id, r) denote the metric ball of radius r in Hi, j centered at Id. Then

with respect to the induced Riemannian volume on Hi, j we have

vol(B(Id, r)) = 4π(cosh(r) − 1) ≤ 4πer

and for all sufficiently large r > 0

vol(B(x, r)) ≥ er . (4)

(3) For any matrix norm ‖ · ‖ on SL(m, R), there are constants C0 > 1 and
κ > 1 such that for any matrix A ∈ SL(m, R) we have

κ−1 log ‖A‖ − C0 ≤ d(A, Id) ≤ κ log ‖A‖ + C0. (5)

(4) In particular, there are C2 and C3 so that if Ei, j ∈ SL(m, Z) is an elemen-
tary unipotent matrix then

d(Ek
i, j , Id) ≤ C2 log k + C3. (6)

2.2 Suspension space and induced G-action

Let Mα = (G×M)/� be the fiber-bundle over SL(m, R)/SL(m, Z) obtained
as follows: on G × M let � act as

(g, x) · γ = (gγ, α(γ −1)(x))

and let G act as

g′ · (g, x) = (g′g, x).

The G-action on G × M descends to a G-action on the quotient Mα = (G ×
M)/�. Let π : Mα → SL(m, R)/SL(m, Z) be the canonical projection. As in
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[4],wewrite F = ker Dπ for the fiberwise tangent bundle toMα.WritePF for
the projectivization of the fiberwise tangent bundle.Wewrite Dxg|F : F(x) →
F(gx) for thefiberwise derivative as in [4]. For (x, [v]) ∈ PF and g ∈ G, write

g · (x, [v]) := (g · x, [Dxg|F(x)v])
for the action of g on PF induced by Dxg|F .

We follow [6, Section 2.1] and equip G × M with a C1 Riemannian metric
〈·, ·〉 with the following properties:
(1) 〈·, ·〉 is �-invariant.
(2) for x ∈ M and g ∈ G, under the canonical identification of the G-orbit

of (g, x) with G, the restriction of 〈·, ·〉 to the G-orbit of (g, x) coincides
with the fixed right-invariant metric on G.

(3) There is a Siegel fundamental set D ⊂ G and C > 1 such that for any
g1, g2 ∈ D, the map (g1, x) �→ (g2, x) distorts the restrictions of 〈·, ·〉 to
{g1} × M and {g2} × M by at most C .

The metric then descends to a C1 Riemannian metric on Mα . Note that by
averaging the metric over the left action of K , we may also assume that the
metric onMα is left-K -invariant. This, in particular, implies the right-invariant
metric on G in (2) above is chosen to be left-K -invariant.

To analyze the coarse dynamics of the suspension action, it is often useful to
consider the return cocycle β : G×G/� → �. This cocycle is defined relative
to a fundamental domainF for the right�-action onG. For any x ∈ G/�, take
x̃ to be the unique lift of x in F and define β(g, x) to be the unique element
of γ ∈ � such that gx̃γ −1 ∈ F . Any two choices of fundamental domain for
� define cohomologous cocycles but we require a choice of well-controlled
fundamental domains F . Namely, we choose F to either be contained in a
Siegel fundamental set or to be a Dirichlet domain for the identity. With these
choices, we have the following.

Let ˜D ⊂ SL(m, R) denote the Dirichlet domain of the identity for the
SL(m, Z) action on SL(m, R); that is

˜D := {g ∈ SL(n, R) : d(g, Id) ≤ d(gγ, Id) for all γ ∈ SL(m, Z)}.
Since each Hi, j is geodesically embedded in SL(m, R) and since �i, j =
Hi, j ∩ SL(m, Z), it follows

D := H1,2 ∩ ˜D (7)

is a Dirichlet domain of the identity for the �1,2-action on H1,2. Viewing
H1,2 � SL(2, R) acting on the upper half-plane model of hyperbolic space
H

2 = SO(2)\SL(2, R) by Möbius transformations SO(2)\D is the standard
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Zimmer’s conjecture for actions of SL(m, Z) 1011

Dirichlet domain for the modular surface, the hyperbolic triangle with end-
points at 1/2 + i

√
3/2, −1/2 + i

√
3/2, and ∞.

Lemma 2.1 If F is either contained in either a Siegel fundamental set or a
Dirichlet domain for the identity then there is a constant C such that for all
g ∈ G and x ∈ G/�

�(β(g, x)) ≤ Cd(g, e) + Cd(x, �) + C.

In the above lemma, � is the word-length of β(g, x), d(g, e) is the distance
from g to e in G, and d(x, �) is the distance from x ∈ G/� to the identity
coset � in G/�. For a Dirichlet domain for the identity, the Lemma is shown
in [25, §2]; for fundamental domains contained in Siegel fundamental sets,
the estimate follows from [11, Corollary 3.19] and the fact that the distance to
the identity in a Siegel domain is quasi-Lipschitz equivalent to the distance to
the identity in the quotient G/�. Both estimates heavily use the main theorem
of Lubotzky, Mozes, and Raghunathan [17,18] to compare the word-length of
β(g, x) ∈ SL(m, Z) with log(‖β(g, x)‖).

Fix once and for all a fundamental domain F ⊂ ˜D ⊂ SL(m, R).
The estimates in Lemma 2.1 is often used to obtain integrability properties

of β and related cocycles with respect to the Haar measure on G/�. As the
function x �→ d(x, �) is in L p(G/�,Haar) for any compact set K ⊂ G we
have that

x �→ sup
g∈K

�(β(g, x))

is in L p(G/�,Haar) for all p ≥ 1. In the sequel, we typically do not directly
use the integrability properties (since we work with measures other than Haar)
but rather the estimate in Lemma 2.1.

3 Preliminaries on measures, averaging, and Lyapunov exponents

We present a number of technical facts regarding invariant measures, equidis-
tribution, averaging, andLyapunov exponents thatwill be used in the remainder
of the paper.

3.1 Ratner’s measure classification and equidistribution theorems

We recall Ratner’s theorems on equidistribution of unipotent flows. Let U =
{u(t) = expg(t X)} be a 1-parameter unipotent subgroup inG. Given anyBorel
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probability measure μ on G/� let

UT ∗ μ := 1

T

∫ T

0
u(t)∗μ dt.

Theorem 3.1 (Ratner) Let U = {u(t) = expg(t X)} be a 1-parameter unipo-
tent subgroup and consider the action on G/�. The following hold:

(a) Every ergodic, U-invariant probability measure on G/� is homogeneous
[22, Theorem 1].

(b) The orbit closure Ox := {u · x : u ∈ U } is homogeneous for every x ∈
G/� [22, Theorem 3].

(c) The orbit U · x equidistributes in Ox ; that is UT ∗ δx converges to the
Haar measure on Ox as T → ∞.

(d) Let β be a root of g and let slβ(2) ⊂ g be the Lie subalgebra generated
by gβ and g−β . Let e, f, h ⊂ slβ(2) be an sl(2, R) triple with e ∈ gβ

and f ∈ g−β and let hβ = span(h). Let Hβ = exp hβ . Let μ be a Uβ-
invariant Borel probability measure on G/�. If μ is Hβ-invariant, then
μ is U−β-invariant.

Conclusion (d) follows from [23, Proposition 2.1] and the structure of
sl(2, R)-triples. See also the discussion in the paragraph preceding [22, The-
orem 9]. In our earlier work on cocompact lattices [4], we averaged over
higher-dimensional unipotent subgroups and required a variant of (c) due to
Nimish Shah [24]. Here we only average over one-dimensional root subgroups
and can use the earlier version due to Ratner.

From Theorem 3.1, for any probability measure μ on G/� it follows that
the weak-∗ limit

U ∗ μ := lim
T→∞UT ∗ μ

exists and that the U -ergodic components of U ∗ μ are homogeneous.

3.2 Measures with exponentially small mass in the cusps

We now define precisely the notion of measures with exponentially small
mass in the cusps from the introduction. Let (X, d) be a complete, second
countable, metric space. Then X is Polish. Let μ be a finite Borel (and hence
Radon) measure on X . We say thatμ has exponentially small mass in the cusps
with exponent ημ if for all 0 < η < ημ

∫

X
eηd(x0,x) dμ(x) < ∞ (8)
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for some (and hence any) choice of base point x0 ∈ X . We say that a collection
M = {μζ } of probability measures on X has uniformly exponentially small
mass in the cusps with exponent η0 if for all 0 < η < η0

sup
μζ ∈M

{∫

eηd(x0,x) dμζ (x)

}

< ∞.

Below, we often work in in the setting X = G/� whereG = SL(m, R) and
� = SL(m, Z) and where d the distance induced from a right-invariant metric
on G. When X = SL(m, R)/SL(m, Z) we interpret a point x = g� ∈ G/�

as a unimodular lattice �g = g · Z
m . Fix any norm on R

m and define the
systole of a lattice � ⊂ R

m to be

δ(�) := inf {‖v‖ : v ∈ ��{0}} .

We have that

c1 ≤ 1 − log(δ(�g))

1 + (d(g�, e�))
≤ c2 (9)

for some constants whence

C1e
c1d(g�,e�) ≤ 1

δ(�g)
≤ C2e

c2d(g�,e�).

Thus, if we only care about finding a positive exponent ημ > 0 such that (8)
holds for all η < ημ, it suffices to find η such that

∫

δ(�g)
−η dμ(g�) < ∞. (10)

We define the systolic exponent ηS
μ to be the supremum of all η satisfying (10).

In the sequel, we will frequently use the following proposition to avoid
escape of mass into the cusps of G/� when averaging a measure along a
unipotent flow.

Proposition 3.2 Let U be a 1-parameter unipotent subgroup of G. Let μ be
a probability measure on X = SL(m, R)/SL(m, Z) with exponentially small
mass in the cusps. Then the family of measures

{UT ∗ μ : T ∈ R} ∪ {U ∗ μ}

has uniformly exponentially small mass in the cusps.
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3.3 Proof of Proposition 3.2

We first show that the family of averaged measures

{UT ∗ μ : T ∈ R}
has uniformly exponentially small mass in the cusps. The key idea is to use
the quantitative non-divergence of unipotent orbits following Kleinbock and
Margulis.

Lemma 3.3 Let μ be a probability measure on X = SL(m, R)/SL(m, Z)

with exponentially small mass in the cusps and systolic exponent ηS
μ.

Then the family of measures {UT ∗μ : T ∈ R} has uniformly exponentially
small mass in the cusps with systolic exponent min{ηS

μ, 1
m2 }.

Proof Let � ⊂ R
m be a discrete subgroup. Let ‖�‖ denote the volume of

�R/� where �R denotes the R-span of �. It follows from Minkowski’s
lemma that there is a constant cm (depending only on m) such that if

‖�‖ ≤ (ρ′)rk(�)

then there is a non-zero vector v ∈ � with ‖v‖ ≤ cmρ′. In particular, if
δ(�) ≥ ρ then for some constant c′

m we have

‖�‖ ≥ (c′
mρ)rk(�)

for all discrete subgroups � ⊂ �.
From [15, Theorem 5.3] as extended in [16, Theorem 0.1], there is a C > 1

such that for every �g ∈ G/� and ε > 0, if δ(�g) ≥ ρ then, since ‖�‖ ≥
(c′

nρ)rk(�) for every discrete subgroup � ⊂ �g, we have

m{t ∈ [0, T ] : δ(�ut g) ≤ ε} ≤ C

(

ε

(c′
n)

−1ρ

) 1
m2

T = Ĉ

(

ε

ρ

) 1
m2

T (11)

where m(A) is the Lebesgue measure of the set A ⊂ R. Note that (11) still
holds even in the case ε ≥ ρ. Note that if β < 1

m2 then for ε < ρ we have

(

ε

ρ

) 1
m2

T <

(

ε

ρ

)β

T .

In particular, when β < 1
m2 we have (for all ε > 0 including ε > δ(�g)) that

m{t ∈ [0, T ] : δ(�ut g) ≤ ε} ≤ Ĉ

(

ε

δ(�g)

)β

T .
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Then for η > 0 and β < 1
m2 we have

∫

[δ(�g)]−η dUT ∗ μ(g)

=
∫

M

1

T

∫ T

0
[δ(�ut g)]−η dt dμ(g)

=
∫

M

1

T

∫ ∞

0
m{t ∈ [0, T ] : [δ(�ut g)]−η ≥ �} d� dμ(g)

≤
∫

M

1

T

[

T +
∫ ∞

1
m{t ∈ [0, T ] : [δ(�ut g)]−η ≥ �} d�

]

dμ(g)

= 1 +
∫

M

1

T

∫ ∞

1
m{t ∈ [0, T ] : [δ(�ut g)] ≤ �

− 1
η }| d� dμ(g)

≤ 1 +
∫

M

1

T

∫ ∞

1

⎡

⎢

⎣
Ĉ

⎛

⎝

1

�
1
η δ(�g)

⎞

⎠

β

T

⎤

⎥

⎦
d� dμ(g)

= 1 + Ĉ

(

∫

M

(

1

δ(�g)

)β

dμ(g)

)

⎛

⎝

∫ ∞

1

(

1

�
1
η

)β

d�

⎞

⎠

which is uniformly bounded in T as long as η < β < min{ηS
μ, 1

m2 }.

For the limit measure U ∗ μ = limT→∞ UT ∗ μ we have the following
which holds in full generality.

Lemma 3.4 Let (X, d) be a complete, second countable, metric space. Let ν j
be a sequence of Borel probability measures on X converging in the weak-∗
topology to a measure ν. If the family {ν j } has uniformly exponentially small
mass in the cusps with exponent η0 then the limit ν has exponentially small
mass in the cusps with exponent η0.

Proof We have that ν j → ν in the weak-∗ topology. In particular, for any
closed set C ⊂ X and open set U ⊂ X we have

lim sup
j→∞

ν j (C) ≤ ν(C) and lim inf
j→∞ ν j (U ) ≥ ν(U ).

Fix 0 < η′ < η < η0 and take δ := η
η′ − 1. Fix N with

∫

eηd(x,x0) dν j (x) < N
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for all j . Using Markov’s inequality, for all M > 0 and every j we have

ν j {x : eηd(x,x0) > M} ≤ N/M

so

ν{x : eηd(x0,x) > M} ≤ N/M.

Then, for the limit measure ν, we have
∫

G/�

eη′d(x0,x) dν(x) =
∫ ∞

0
ν{x : eη′d(x0,x) ≥ M} dM

=
∫ ∞

0
ν{x :

(

eηd(x0,x)
)1/(1+δ) ≥ M} dM

=
∫ ∞

0
ν{x : eηd(x0,x) ≥ M1+δ} dM

≤ 1 +
∫ ∞

1

N

M1+δ
dM.

3.4 Averaging certain measures on SL(m,RRR)/SL(m,ZZZ)

Take {α1, . . . , αm} to be the standard set of simple positive roots of SL(m, R):

α j (diag(e
t1, . . . , etm )) = t j − t j+1.

Let H1 be the analytic subgroup of SL(m, R) whose Lie algebra is gener-
ated by roots spaces associated to {±α1} and let H2 be the analytic subgroup
of SL(m, R) whose Lie algebra is generated by roots spaces associated to
{±α3, . . . , ±αn}. We have H1 ∼= SL(2, R) and H2 ∼= SL(m − 2, R). Then
H = H1 × H2 ⊂ SL(m, R) is the subgroup of all matrices of the form

(

B 0
0 C

)

where det(B) = det(C) = 1.
We let A′ be the the co-rank-1 subgroup A′ ⊂ A of the Cartan subgroup A

given by A′ = A ∩ H . Let δ = α1 + · · · + αn be the highest positive root.

Proposition 3.5 Letμbeany H-invariant probability onSL(m, R)/SL(m, Z).
Let β ′ = α2 or β ′ = δ and let β̂ = −α2 or β̂ = −δ.

Then Uβ ′ ∗ μ is H-invariant and

U β̂ ∗Uβ ′ ∗ μ
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is the Haar measure on G/�.

Proof We have that μ is A′-invariant. Let μ′ = Uβ ′ ∗ μ and note that μ′
remains H - and A′-invariant.
Case 1(a) β ′ = α2. Consider first the case that β ′ = α2. Then μ′ remains
invariant under U−α1 and U−α j for all 3 ≤ j ≤ n since these roots commute
with β ′. By Theorem 3.1(d) we have that μ′ is also invariant under Uα1 and
Uα j for all 3 ≤ j ≤ n. Taking brackets, μ′ is invariant under Uβ for every
positive root β ∈ �+.
Case 1(b) β ′ = δ. Consider now the case that β ′ = δ. Then μ′ remains
invariant under Uα1 and Uα j for all 3 ≤ j ≤ n since these roots commute
with δ. By Theorem 3.1(d) we have that μ′ is also invariant under U−α1 and
U−α j for all 3 ≤ j ≤ n. Taking brackets, μ′ is invariant under Uβ for every
positive root β of the form δ − αn − αn−1 − · · · − α j = α1 + · · · + α j−1
for each j ≥ 3. In particular, μ′ is invariant under Uα1+α2 and hence also
invariant under Uα2 . In particular μ′ is invariant under Uβ for every positive
root β ∈ �+.

Note that in either case, we have that μ′ is invariant under Uβ for every
positive root β ∈ �+.

Let μ̂ = U β̂ ∗ μ′.
Case 2(a) β̂ = −α2. If β̂ = −α2, then μ̂ remains invariant underUα1 andUα j

for all 3 ≤ j ≤ n. Note additionally μ̂ remains invariant under the highest-root
group U δ . Again, by Theorem 3.1(d) we have that μ̂ is also invariant under
U−α1 and U−α j for all 3 ≤ j ≤ n. In particular μ̂ is also invariant under Uβ

for every negative root β ∈ �−. It follows as in Case 1(b) that μ̂ is invariant
underUα2 and hence invariant underUβ for every positive root β ∈ �+. Thus
μ is G-invariant.

Case 2(b) β̂ = −δ. If β̂ = −δ, then μ̂ remains invariant under U−α1 and
U−α j for all 3 ≤ j ≤ n. Note additionally μ̂ remains invariant under Uα2 .
Again, we have that μ̂ is also invariant under Uα1 and Uα j for all 3 ≤ j ≤ n.
In particular μ̂ is also invariant under Uβ for every positive root β ∈ �+. As
in Case 1(b) that μ̂ is invariant under U−α2 and hence invariant under Uβ for
every negative root β ∈ �−. Thus μ is G-invariant.

3.5 Lyapunov exponents for unbounded cocycles

Let (X, d) be a second countable, completemetric space.Wemoreover assume
the metric d is proper. Let G act continuously on X .

Let E → X be a continuous, finite-dimensional vector bundle equippedwith
a norm ‖·‖. A linear cocycle over theG-action on X is an actionA : G×E → E
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1018 A. Brown et al.

by vector-bundle automorphisms that projects to the G-action on X . We write
A(g, x) for the linear map between Banach spaces Ex and Eg·x . By the norm
of A(g, x) we mean the operator norm and the conorm is m(A(g, x)) =
‖A(g, x)−1‖−1. We say that A is tempered with respect to the metric d if
there is a k ≥ 0 such that for any compact set K ⊂ G and base point x0 ∈ X
there is C > 1 so that

sup
g∈K

‖A(g, x)‖ ≤ Cekd(x,x0)

and

inf
g∈K m(A(g, x)) ≥ 1

C
e−kd(x,x0)

where ‖ · ‖ denotes the operator norm and m(·) denotes the operator conorm
applied to linear maps between Banach spaces Ex and Eg·x .

If μ is a probability measure on (X, d) with exponentially small mass in
the cusps, it follows that the function x �→ d(x, x0) is L1(μ) whence we
immediately obtain the following.

Claim 3.6 Let μ a probability measure on X with exponentially small mass
in the cusps. Suppose that A is tempered. Then for any compact K ⊂ G, the
functions

x �→ sup
s∈K

log ‖A(s, x)‖ , x �→ inf
s∈K logm (A(s, x))

are L1(μ).

Given s ∈ G and an s-invariant Borel probability measureμ on X we define
the average leading (or top) Lyapunov exponent of A to be

λtop,s,μ,A := inf
n→∞

1

n

∫

log ‖A(sn, x)‖ dμ(x). (12)

From the integrability of the function x �→ log ‖A(s, x)‖ we obtain the finite-
ness of Lyapunov exponents.

Corollary 3.7 For s ∈ G and μ an s-invariant probability measure on X
with exponentially small mass in the cusps, if A is tempered then the average
leading Lyapunov exponent λtop,s,μ,A of A is finite.

Note that for an s-invariantmeasureμ, the sequence
∫

log ‖A(sn, x)‖dμ(x)
is subadditive whence the infimum in (12) maybe replaced by a limit.

As in the case of bounded continuous linear cocycles, we obtain upper-
semicontinuity of leading Lyapunov exponents for continuous tempered

123



Zimmer’s conjecture for actions of SL(m, Z) 1019

cocycles when restricted to families of measures with uniformly exponentially
small measure in the cusp.

Lemma 3.8 LetA be a tempered cocycle. Given s ∈ G suppose the restriction
of the cocycle A : G × E → E to the action of s is continuous.

Then—when restricted to a set of s-invariant Borel probability measures
with uniformly exponentially small mass in the cusps—the function

μ �→ λtop,s,μ,A

is upper-semicontinuous with respect to the weak-∗ topology.

Proof Let M = {μζ }ζ∈I be a family of s-invariant Borel probability mea-
sures with uniformly exponentially small mass in the cusps. As the pointwise
infimum of continuous functions is upper-semicontinuous, is enough to show
that the function

M → R, μ �→
∫

log ‖A(sn, x)‖ dμ(x)

is continuous with respect to the weak-∗ topology for each n. As the weak-∗
topology is first countable, it is enough to show μ �→ ∫

log ‖A(sn, x)‖ dμ(x)
is sequentially continuous.

Let μ j → μ∞ in M. Given M > 0, fix a continuous ψM : X → [0, 1]
with

ψM(x) = 1 if d(x, x0) ≤ M and ψM(x) = 0 if d(x, x0) ≥ M + 1.

Asweassumeourmetric is proper, x �→ ψM(x) log ‖A(sn, x)‖ is a bounded
continuous function whence
∫

logψM(x) log ‖A(sn, x)‖ dμ j (x) →
∫

ψM(x) log ‖A(sn, x)‖ dμ∞(x).

Moreover, there are C > 1, k ≥ 1, and η > 0 such that for all x ∈ X and
μζ ∈ M

− logC − kd(x, x0) ≤ log ‖A(sn, x)‖ ≤ logC + kd(x, x0),

and
∫

eηd(x,x0) dμζ (x) ≤ C.
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In particular,

μζ ({x : d(x, x0) ≥ M}) ≤ Ce−ηM .

Thus for any μζ ∈ M, we have

∫

∣

∣ log ‖A(sn, x)‖ − ψM(x) log ‖A(sn, x)‖∣∣ dμζ (x)

≤
∫

{x :d(x,x0)≥M}
∣

∣ log ‖A(sn, x)‖ − ψM(x) log ‖A(sn, x)‖∣∣ dμζ (x)

≤
∫

{x :d(x,x0)≥M}
∣

∣ log ‖A(sn, x)‖∣∣ dμζ (x)

≤
∫

{x :d(x,x0)≥M}
logC + kd(x, x0) dμζ (x)

≤ (logC)Ce−ηM + k
∫

{x :d(x,x0)≥M}
d(x, x0) dμζ (x)

≤ (logC + kM)Ce−ηM + k
∫ ∞

�=M
μζ {x : d(x, x0) ≥ �} d�

≤ (logC + kM)Ce−ηM + k
∫ ∞

�=M
Ce−η� d�

≤ (logC + kM)Ce−ηM + k
Ceη(−M)

η
.

It follows that given ε > 0 there is M so that

∫

∣

∣ log ‖A(sn, x)‖ − ψM(x) log ‖A(sn, x)‖∣∣ dμζ (x) ≤ ε

for all μζ ∈ M.
In particular, taking M and j sufficiently large we have

∣

∣

∣

∫

log ‖A(sn, ·)‖ dμ∞ −
∫

log ‖A(sn, ·)‖ dμ j

∣

∣

∣

≤
∫

∣

∣ log ‖A(sn, ·)‖ − ψM log ‖A(sn, ·)‖∣∣ dμ∞

+
∣

∣

∣

∫

ψM log ‖A(sn, ·)‖ dμ j −
∫

ψM log ‖A(sn, ·)‖ dμ∞
∣

∣

∣

+
∫

∣

∣ log ‖A(sn, ·)‖ − ψM log ‖A(sn, ·)‖∣∣ dμ j

≤ 3ε.
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Sequential continuity then follows.

3.6 Lyapunov exponents under averaging and limits

We now consider the behavior of the top Lyapunov exponent λtop,s,μ,A as we
average an s-invariant probability measure μ over an amenable subgroup of
G contained in the centralizer of s.

Lemma 3.9 Let s ∈ G and let μ be an s-invariant probability measure on X
with exponentially small mass in the cusps. LetA : G ×E → E be a tempered
continuous cocycle.

For any amenable subgroup H ⊂ CG(s) and any Følner sequence of pre-
compact sets Fn in H, if the family {Fn ∗μ} has uniformly exponentially small
mass in the cusps then for any subsequential limit μ′ of {Fn ∗ μ} we have

λtop,s,μ,A ≤ λtop,s,μ′,A.

Proof First note that Lemma 3.4 implies the family {Fn ∗ μ} ∪ {μ′} has uni-
formly exponentially small mass in the cusps. Note also that for every m, the
measure Fm ∗ μ is s-invariant.

We first claim that λtop,s,Fm∗μ,A = λtop,s,μ,A for every m.
For t ∈ H define ct (x) = sup{‖A(t, x)‖,m(A(t, x))−1} and let cm(x) =

supt∈Fm ct (x). As Fm is precompact, from Claim 3.6 we have that log cm ∈
L1(μ).
For x ∈ M and t ∈ Fm , the cocycle property and subadditivity of norms

yields

log ‖A(sn, t x)‖ ≤ log ‖A(t−1, t x)‖ + log ‖A(sn, x)‖ + log ‖A(t, snx)‖
= log ‖A(t, x)−1‖ + log ‖A(sn, x)‖ + log ‖A(t, snx)‖
≤ log cm(x) + log cm(sn(x)) + log ‖A(sn, x)‖.

Using that μ is s-invariant, we have for every n that

∫

log ‖A(sn, x)‖ d(Fm ∗ μ)(x) = 1

|Fm |
∫

Fm

∫

log ‖A(sn, x)‖ dt ∗ μ(x) dt

= 1

|Fm |
∫

Fm

∫

log ‖A(sn, t x)‖ dμ(x) dt

≤ 1

|Fm |
∫

Fm

(∫

log cm(x) + log cm(sn(x)) + log ‖A(sn, x)‖ dμ(x)

)

dt

≤ 2
∫

log cm(x) dμ(x) +
∫

log ‖A(sn, x)‖ dμ(x)
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Dividing by n yields λtop,s,Fm∗μ,A ≤ λtop,s,μ,A. The reverse inequality is
similar.

The inequality then follows from the upper-semicontinuity in Lemma 3.8.

Consider now any Y ∈ g with ‖Y‖ = 1, a point x ∈ X , and t > 0.
The empirical measure η(Y, t, x) along the orbit exp(sY )x until time t is the
measure defined as follows: given a bounded continuous φ : X → R, the
integral of φ with respect to the empirical measure η(Y, t, x) is

∫

φ dη(Y, t, x) := 1

t

∫ t

0
φ
(

exp(sY ) · x) ds.

Similarly, given a probability measure μ on X , the empirical distribution
η(Y, t, μ) of μ along the orbit of exp(sY ) until time t is defined as

∫

φ dη(Y, t, μ) := 1

t

∫

X

∫ t

0
φ
(

exp(sY ) · x) ds dμ(x).

Consider now sequences Yn ∈ g with ‖Yn‖ = 1 and tn > 0. For part (c) of
the following lemma, we add an additional assumption that the action of G on
(X, d) has uniform displacement: for any compact K ⊂ G there is C ′ such
that for all x ∈ X and g ∈ K ,

d(g · x, x) ≤ C ′.

Lemma 3.10 Suppose the action of G on (X, d) has uniform displacement
and let A : G × E → E be a tempered continuous cocycle.

Let Yn ∈ g and tn ≥ 0 be sequences with ‖Yn‖ = 1 for all n and tn → ∞.
Let μn be a sequence of Borel probability measures on X and define ηn :=
η(Yn, tn, μn) to be the empirical distribution ofμn along the orbit of exp(sYn)
for 0 ≤ s ≤ tn. Assume that

(1) the family of empirical distributions {ηn} defined above has uniformly
exponentially small mass in the cusps; and

(2)
∫

log ‖A(exp(tnYn), x)‖ dμn(x) ≥ εtn.

Then

(a) the family {ηn} is pre-compact;
(b) for any subsequential limit Y∞ = lim j→∞ Yn j , any subsequential limit

η∞ of {ηn j } is invariant under the 1-parameter subgroup {exp(tY∞) : t ∈
R};

(c) λtop,exp(Y∞),η∞,A ≥ ε > 0.
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Proof of Lemma 3.10(a) and (b) As in the proof of Lemma 3.8, from the
assumption that {ηn} has uniformly exponentially small mass in the cusps
we obtain uniform bounds

ηn({x : d(x, x0) ≥ �}) ≤ Ce−η�

for all n. Combinedwith the properness of d, this establishes uniform tightness
of the family of measures {ηn} and (a) follows.

For (b), let φ : X → R be a compactly supported continuous function. Then
for any s > 0

∫

X
φ ◦ exp(sY∞) − φ dηn =

∫

X
φ ◦ exp(sY∞) − φ ◦ exp(sYn) dηn

+
∫

X
φ ◦ exp(sYn) − φ dηn

The first integral converges to zero as the functions φ ◦ exp(wY∞) − φ ◦
exp(wYn) converges uniformly to zero in n for fixed w. The second integral
clearly converges to zero since for tn ≥ s we have

∫

X
φ ◦ exp(sYn) − φ dηn

= 1

tn

∫ tn

0

∫

X
φ (exp ((s + t)Yn) x) − φ (exp(tYn)x) dμn(x) dt

= 1

tn

[

−
∫ s

0

∫

X
φ (exp (tYn) x) μn(x) dt

+
∫ tn+s

tn

∫

X
φ (exp (tYn) x) dμn(x) dt

]

which converges to 0 as tn → ∞ as φ is bounded.

The proof of Lemma 3.10(c) is quite involved. It is the analogue in the non-
compact setting of [4, Lemma 3.6]; we recommend the reader read the proof
of of [4, Lemma 3.6] first. Two technical complications arise in the proof of
Lemma 3.10(c). First, we must control for “escape of Lyapunov exponent”
as our cocycle is unbounded. Second, in [4] it was sufficient to consider the
average of Dirac masses δxn along a single orbit exp(sYn)xn; here we average
measures μn along an orbit of exp(sYn).

To prove Lemma 3.10(c) we first introduce a number of standard auxiliary
objects. LetPE → X denote the projectivization of the tangent bundleE → X .
We represent a point in PE as (x, [v])where [v] is an equivalence class of non-
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zero vectors in the fiber E(x). For each n, let σn : X → E�{0} be a nowhere
vanishing Borel section such that

‖A(exp(tnYn), x)(σn(x))‖‖(σn(x))‖−1 = ‖A(exp(tnYn), x)‖

for every x ∈ X . The G-action on E by vector-bundle automorphisms induces
a naturalG-action onPE which restricts to projective transformations between
each fiber and its image. For each n, let η̃n be the probability measure on PE
given as follows: given a bounded continuous φ : PE → R define

∫

PE
φ dη̃n := 1

tn

∫ tn

0

∫

X
φ
(

exp(tYn) · (x, [σn(x)])
)

dμn(x) dt.

Wehave that η̃n projects to ηn under the natural projectionPE → X ; moreover,
if η jk is a subsequence converging to η∞, then any weak-∗ subsequential limit
η̃∞ of {η̃n jk

} projects to η∞.
Define � : g × PE → R by

�
(

Y, (x, [v])) := log
(∥

∥A( exp(Y ), x
)

v
∥

∥ ‖v‖−1) .

Note for each fixed Y ∈ g that � satisfies a cocycle property:

�
(

(s + t)Y, (x, [v])) = �
(

tY, (x, [v]))+ �
(

sY, exp(tY ) · (x, [v])) (13)

By hypothesis, there are C > 1, k ≥ 1, and η > 0 such that

∫

eηd(x,x0) dηn ≤ C

for all n and

1

C
e−kd(x,x0) ≤ ‖A(exp(Y ), x)v‖ ‖v‖−1 ≤ Cekd(x,x0)

for all (x, [v]) ∈ PE and Y ∈ g with ‖Y‖ ≤ 1.
For each n, let

Mn(x) = sup
0≤t≤tn

{

d
((

exp(tYn)x
)

, x0
)}

.

As we assume the G-action on (X, d) has uniform displacement, take

C1 = sup
‖Y‖≤1,x∈X

{d(exp(Y ) · x, x)}.
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We have

1

tn

∫ tn

0

∫

X
eηd((exp(tYn)x,x0) dμn(x) dt =

∫

eηd(x,x0) dηn ≤ C.

If tn ≥ 1 then for every x there is an interval Ix ⊂ [0, tn] of length 1 on which

d ((exp(tYn)x, x0) ≥ (Mn(x) − C1)

for all t ∈ Ix . It follows that

∫

X
eη(Mn(x)−C1) dμn(x) ≤

∫

X

∫

Ix
eηd((exp(tYn)x,x0) dt dμn(x) ≤ Ctn.

By Jensen’s inequality we have

∫

X
η(Mn(x) − C1) dμn(x) ≤ log

∫

X
eη(Mn(x)−C1)dμn(x)

whence
∫

Mn(x) dμn(x) ≤ η−1(logC + log tn) + C1 =: η−1 log tn + C2.

Since ‖Yn‖ = 1, we have

sup
0≤t≤tn,0≤s≤1

∫

X
|�(sYn, exp(tYn) · (x, [σn(x)]))| dμn(x)

≤
∫

X
sup

0≤t≤tn,0≤s≤1
|�(sYn, exp(tYn) · (x, [σn(x)]))| dμn(x)

≤
∫

| logC | + kMn(x) dμn(x)

≤ | logC | + k(η−1 log tn + C2)

=: kη−1 log tn + C3.

(14)

In particular, we have

1

tn

∫

X
log ‖A(exp(tnYn), x)‖ dμn(x)

= 1

tn

∫

X
�(tnYn, (x, [σn(x)])) dμn(x)
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= 1

tn

∫

X
�(�tn�Yn, (x, [σn(x)])) dμn(x)

+ 1

tn

∫

X
�((t − �tn�)Yn, exp(�tn�Yn) · (x, [σn(x)])) dμn(x).

Since
∣

∣

∣

∣

1

tn

∫

X
�((t − �tn�)Yn, exp(�tn�Yn) · (x, [σn(x)])) dμn(x)

∣

∣

∣

∣

≤ 1

tn
(kη−1 log tn + C3)

goes to 0 as tn → ∞ it follows that

lim inf
n→∞

∫

X

1

tn
�(�tn�Yn, (x, [σn(x)])) dμn(x)

= lim inf
n→∞

1

tn

∫

X
log ‖A(exp(tnYn), x)‖ dμn(x)

≥ ε > 0.

(15)

With the above objects and estimates we complete the proof of Lemma 3.10.

Proof of Lemma 3.10(c) Consider first the expression
∫

�(Yn, ·) dη̃n. We
have

∫

�(Yn, ·) dη̃n

= 1

tn

∫ tn

0

∫

X
�
(

Yn, exp(tYn) · (x, [σn(x)])
)

dμn(x) dt

= 1

tn

∫ �tn�

0

∫

X
�
(

Yn, exp(tYn) · (x, [σn(x)])
)

dμn(x) dt

+ 1

tn

∫ tn

�tn�

∫

X
�
(

Yn, exp(tYn) · (x, [σn(x)])
)

dμn(x) dt

Note that the contribution of the second integral is bounded by

∣

∣

∣

∣

1

tn

∫ tn

�tn�

∫

X
�
(

Yn, exp(tYn) · (x, [σn(x)])
)

dμn(x) dt

∣

∣

∣

∣

≤ 1

tn
(kη−1 log tn + C3)

which goes to zero as tn → ∞.
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Repeatedly applying the cocycle property (13) of �(Yn, ·) we have for
tn ≥ 1 that

1

tn

∫

X

∫ �tn�

0
�
(

Yn, exp(tYn) · (x, [σn(x)])
)

dt dμn(x)

= 1

tn

∫

X

∫ 1

0
�
(�tn�Yn, exp(tYn) · (x, [σn(x)])

)

dt dμn(x)

= 1

tn

∫

X

∫ 1

0

(

�
(�tn�Yn, (x, [σn(x)])

)− �
(

tYn, (x, [σn(x)])
)

+ �
(

tYn, exp(�tn�Yn) · (x, [σn(x)])
)

)

dt dμn(x)

= 1

tn

∫

X
�
(�tn�Yn, (x, [σn(x)]) dμn(x)

+ 1

tn

∫

X

∫ 1

0

(

− �
(

tYn, (x, [σn(x)])
)

+ �
(

tYn, exp(�tn�Yn) · (x, [σn(x)])
)

)

dt dμn(x)

From (14), the contribution of the second and third integrals is bounded by

∣

∣

∣

∣

1

tn

∫

X

∫ 1

0

(

− �
(

tYn, (x, [σn(x)])
)+ �

(

tYn, exp(�tn�Yn) · (x, [σn(x)])
)

)

dt dμn(x)

∣

∣

∣

∣

≤ 1

tn

∫ 1

0
2(kη−1 log tn + C3) dt

= 1

tn
2(kη−1 log tn + C3)

which tend to zero as tn → ∞. We then conclude from (15) that

lim inf
n→∞

∫

�(Yn, ·) dη̃n = lim inf
n→∞

1

tn

∫

X
�
(�tn�Yn, (x, [σn(x)]) dμn(x)

≥ ε > 0. (16)

To complete the proof of (c), for M > 0 take ψM : X → [0, 1] continuous
with

ψM(x) = 1 if d(x, x0) ≤ M and ψM(x) = 0 if d(x, x0) ≥ M + 1.

Let �M : PE → [0, 1] be

�M(x, [v]) = ψM(x).
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and define �M : g × PE → R to be

�M
(

Y, (x, [v])) := �M(x, [v])�(Y, (x, [v])).

As the family

N = {ηn} ∪ {η∞}

has uniformly exponentially small mass in the cusps we have

∫

eηd(x,x0)dη̂ < C

and hence η̂{x : d(x, x0) ≥ �} ≤ Ce−η� for all η̂ ∈ N . It follows for all
η̃ ∈ {η̃n} ∪ {η̃∞} that—letting η̂ ∈ N denote the image of η̃ in X—we have
for any Y ∈ g with ‖Y‖ ≤ 1 that

∫

PE
|�(Y, ·) − �M(Y, ·)| dη̃

=
∫

{(x,[v]∈PE :d(x,x0)≥M}
|�(Y, ·) − �M(Y, ·)| dη̃

≤
∫

{(x,[v]∈PE :d(x,x0)≥M}
|�(Y, ·)| dη̃

≤
∫

{x∈X :d(x,x0)≥M}
log(C) + kd(x, x0) dη̂

≤ (logC + kM)Ce−ηM + k
∫ ∞

M
η̂{x : d(x, x0) ≥ �} d�

≤ (logC + kM)Ce−ηM + k
Ceη(−M)

η
.

In particular, given any δ > 0, by taking M > 0 sufficiently large we may
ensure that

∫

PE
|�(Y, ·) − �M(Y, ·)| dη̃ ≤ δ

for any

η̃ ∈ {η̃n} ∪ {η̃∞}.
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Since the restriction of �M to {Y ∈ g : ‖Y‖ ≤ 1} × PE is compactly
supported, it is uniformly continuous whence

∫

�M(Yn, ·) dη̃n − �M(Y∞, ·) dη̃∞ → 0

as n → ∞. In particular given δ > 0 we may take M and n sufficiently large
so that

∣

∣

∣

∫

PE
�(Yn, ·) dη̃n −

∫

PE
�(Y∞, ·) dη̃∞

∣

∣

∣

≤
∫

PE
|�(Yn, ·) − �M(Yn, ·)| dη̃n

+
∫

PE
|�M(Yn, ·) − �M(Y∞, ·)| dη̃n

+
∫

PE
|�(Y∞, ·) − �M(Y∞, ·)| dη̃∞

≤ 3δ.

Let g∞ = exp(Y∞). Note for each n that

∫

X
log ‖A(gn∞, x)‖ dη∞(x) ≥

∫

PE
log(

∥

∥A(gn∞, x)v
∥

∥ ‖v‖−1) dη̃∞(x, [v]).

It then follows for any δ > 0

λtop,g∞,η,A = lim
n→∞

1

n

∫

X
log ‖A(gn∞, x)‖ dη∞(x)

≥ lim inf
n→∞

1

n

∫

PE
log
(∥

∥A(gn∞, x)v
∥

∥ ‖v‖−1) dη̃∞(x, [v])

= lim inf
n→∞

1

n

∫

PE
�(nY∞, (x, [v])) dη̃∞(x, [v])

=
∫

PE
�(Y∞, (x, [v])) dη̃∞(x, [v])

≥ lim inf
n→∞

∫

PE
�(Yn, ·) dη̃n − 3δ.

where the third equality follows from the invariance of η̃∞ and the cocycle
property of �. Since

lim inf
n→∞

∫

PE
�(Yn, ·) dη̃n ≥ ε
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we conclude that

λtop,g∞,η,A ≥ ε − 3δ

for any δ > 0 whence the result follows.

3.7 Oseledec’s theorem for cocycles over actions by higher-rank abelian
groups

Let A ⊂ G be a split Cartan subgroup. Then A � R
d where d is the rank of

G. We have the following consequence of the higher-rank Oseledec’s multi-
plicative ergodic theorem (c.f. [5, Theorem 2.4]).

Fix any norm | · | on A � R
d and let η : X → R be

η(x) := sup
|a|≤1

log ‖A(a, x)‖.

Proposition 3.11 Letμ be an ergodic, A-invariant Borel probability measure
on X and suppose η ∈ Ld,1(μ). Then there are

(1) an α-invariant subset �0 ⊂ X with μ(�0) = 1;
(2) linear functionals λi : A → R for 1 ≤ i ≤ p;
(3) and splittings E(x) = ⊕p

i=1 Eλi (x) into families of mutually transverse,
μ-measurable subbundles Eλi (x) ⊂ E(x) defined for x ∈ �0

such that

(a) A(s, x)Eλi (x) = Eλi (s · x) and
(b) lim|s|→∞

log ‖A(s, x)(v)‖ − λi (s)

|s| = 0

for all x ∈ �0 and all v ∈ Eλi (p)�{0}.
Note that (b) implies for v ∈ Eλi (x) the weaker result that for s ∈ A,

lim
k→±∞

1
k log ‖A(sk, x)(v)‖ = λi (s).

Also note that for s ∈ A, and μ an A-invariant, A-ergodic measure that

λtop,s,μ,A = max
i

λi (s). (17)

If μ is not A-ergodic, we have the following.

Claim 3.12 Let μ be an A-invariant measure with η ∈ Ld,1(μ) and
λtop,s,μ,A > 0 for some s ∈ A. Then there is an A-ergodic component μ′
of μ with
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(1) η ∈ Ld,1(μ′);
(2) there is non-zero Lyapunov exponent λ j �= 0 for the A-action on (X, μ′).

We have the following which follows from the above definitions.

Lemma 3.13 Let μ be an A-invariant probability measure on X with expo-
nentially small mass in the cusps. Suppose thatA is a tempered cocycle. Then
η ∈ Lq(μ) for all q ≥ 1. In particular, η ∈ Ld,1(μ).

3.8 Applications to the suspension action

We summarize the previous discussion in the setting in which we will apply
the above results in the sequel. Recall we work with in a fiber bundle with
compact fiber

M → Mα = (G × M)/�
π−→ G/�

over non-compact base G/�. From the discussion in [6, Section 2.1], we may
equip G × M with a C1 metric that is

(1) �-invariant;
(2) the restriction to G-orbits coincides with the fixed right-invariant metric

on G;
(3) there is a Siegel fundamental set D ⊂ G on which the restrictions to the

fibers of the metrics are uniformly comparable.

The metric then descends to a C1 Riemannian metric on Mα . We fix this
metric for the remainder. It follows that the diameter of any fiber of Mα is
uniformly bounded. It then follows that ifμ is a measure onMα then the image
ν = π∗μ in G/� has exponentially small mass in the cusps if and only if μ

does; moreover, a family {μζ } of probability measures on Mα has uniformly
exponentially small mass in the cusps if and only if the family of projected
measures {π∗μζ } on G/� does. Note that by averaging the metric over the
left-action of K , we may also assume that the metric is left-K -invariant. This,
in particular, implies the right-invariant metric on G in (2) above is left-K -
invariant.

For the remainder, the cocycle of interest will be the fiberwise derivative
cocycle on the fiberwise tangent bundle,

A(g, x) : F → F, A(g, x) = Dxg|F .

Given g ∈ G and a g-invariant probabilitymeasure onMα , the average leading
Lyapunov exponent for the fiberwise derivative cocycle for translation by g is
written either as λF

top,μ,g or as λtop,μ,g,A.
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The next observation we need is a variant of a fairly standard observation
about cocycle over the suspension action.

Lemma 3.14 The fiberwise derivative cocycle Dxg|F is tempered.

Proof Write π : Mα → G/�. By the construction of the metric in the fibers
of Mα there is a C > 0 with the following properties: given x ∈ Mα and
g ∈ G, writing x̄ = π(x) ∈ G/� we have

‖Dxg|F‖ ≤ Cβ(g,x̄)+1

and

m(Dxg|F ) ≥ C−β(g,x̄)−1.

The conclusion is then an immediate consequence of Lemma 2.1.

We now assemble the consequences of the results in this section in the form
we will use them below in a pair of lemmas. The first is just a special case of
Corollary 3.7.

Lemma 3.15 Let s ∈ A and let ν be an s-invariant measure on G/� with
exponentially small mass in the cusps. Letμ be an s-invariant measure on Mα

projecting to ν. Then the average leading Lyapunov exponent for the fiberwise
derivative cocycle, λF

top,μ,s, is finite.

The second lemma summarizes the above abstract results in the setting of
G acting on Mα .

Lemma 3.16 Let s ∈ A and let ν be an s-invariant measure on G/� with
exponentially small mass in the cusps. Letμ be an s-invariant measure on Mα

projecting to ν.

(1) For any amenable subgroup H ⊂ CG(s), if ν is H-invariant then
(a) for any Følner sequence of precompact sets Fn in H, the family {Fn∗μ}

has uniformly exponentially small mass in the cusps; and
(b) for any subsequential limit μ′ of {Fn ∗ μ} we have

λF
top,s,μ ≤ λF

top,s,μ′ .

(2) For any one-parameter unipotent subgroup U centralized by s
(a) the family {UT ∗ μ} has uniformly exponentially small mass in the

cusps; and
(b) for any accumulation point μ′ of {UT ∗ μ} as T → ∞ we have

λF
top,s,μ ≤ λF

top,s,μ′ .
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Proof Part (a) of the first conclusion is immediate since H -invariance of ν

implies ν = π∗(Fn ∗ μ) for all n; part (b) then follows from Lemma 3.9. The
second conclusion follows from Proposition 3.2 and Lemma 3.9.

We remark that we will also use Lemma 3.10 in the proof of the main theo-
rem, but we do not reformulate a special case of it here since the reformulation
adds little clarity.

4 Subexponential growth of derivatives for unipotent elements

In this section we show that the restriction of the action α to certain unipotent
elements in each copy �i, j

∼= SL(2, Z) have uniform subexponential growth
of derivatives with respect to a right-invariant distance on SL(2, R). Note
that each SL(2, R) is geodesically embedded whence the SL(2, R) distance
is the same as the SL(m, R) distance. By [17,18], the SL(m, R) distance is
quasi-isometric to the word-length in SL(m, Z). Recall that d(·, ·) denotes a
right-invariant distance on SL(m, R) and that Id is the identity in SL(m, R).

For 1 ≤ i < j �= n, let �i, j
∼= SL(2, Z) be the copy of SL(2, Z) in

SL(m, Z) corresponding to the elements in SL(m, Z) which acts only on the
latticeZ

2 < Z
m generated by {ei , e j }. Note that as all�i, j are conjugate under

the Weyl group, it suffices to work with one of them.

Define the unipotent element u :=
[

1 1
0 1

]

viewed as an element of �i, j .

Note that any upper or lower triangular unipotent element of �i, j is conjugate
to a power of u under the Weyl group.

Proposition 4.1 (Subexponential growth of derivatives for unipotent ele-
ments) For any �i, j and any ε > 0, there exists Nε > 0 such that for any
n ≥ Nε:

‖D(α(un))‖ ≤ eεd(un,Id)

To establish Proposition 4.1, we first show that generic elements in SL(2, Z)

have uniform subexponential growth of derivatives. This first part requires
reusing most of the key arguments from [4] in a slightly modified form. We
encourage the reader to read that paper first.

4.1 Slow growth for “most” elements in SL(2, Z)

For ε > 0, k > 0, and x ∈ SL(2, R), we make the following definitions:

(1) For S ⊂ SL(2, R) let |S| denote the Haar-volume of S.
(2) Let K = SO(2) ⊂ SL(2, R). For S ⊂ K let |S| denote the Haar-volume

of S.
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(3) Let Bk(x) denote the ball of radius k centered at x in SL(2, R).
(4) Let Tk := Bk(Id) ∩ SL(2, Z). Given S ⊂ SL(2, Z) write |S| for the

cardinality of S.
(5) Define the set of ε-bad elements to be

Mε,k := {γ ∈ Tk such that ‖D(α(γ ))‖ ≥ eεk}.
(6) Define the set of ε-good elements to be

Gε,k := Tk \ Mε,k .

To establish Proposition 4.1, we first show that the set Gε,k contains a
positive proportion of Tk when k is large enough.

Proposition 4.2 For any δ > 0, the set Gε,k has at least (1− δ)|Tk | elements
for every sufficiently large k.

We have the following well-known fact. See for instance [9, Section 2].

Lemma 4.3 There exist positive constants c,C such that for any k ≥ 0:

c|Bk | ≤ |Tk | ≤ C |Bk |.
For an element x ∈ SL(2, R), let x̄ denote the projection in SL(2, R)/

SL(2, Z). Define

‖Dx̄g‖Fiber = sup{‖Dyg|F‖ : y ∈ Mα, π(y) = x̄}.
Let

G ′
ε,k(x) := {g ∈ Bk(x) such that ‖Dx̄g‖Fiber ≤ eεd(g,Id)}.

Lemma 4.4 For almost every x ∈ SL(2, R) and any δ > 0 we have

|G ′
ε,k(x)| > (1 − δ)|Bk |

for all k sufficiently large.

Proof Let at ∈ SL(2, R) be the matrix

at :=
[

et 0
0 e−t

]

.

Recall that the action of the one-parameter diagonal subgroup {at } on
SL(2, R)/SL(2, Z) is ergodic with respect to Haar measure.
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LetM denote the set of Borel probability measures on SL(2, R)/SL(2, Z)

equipped with the standard topology (dual to bounded continuous functions).
The topology on M is metrizable (see [2, Theorem 6.8]); fix a metric on ρM
on M.

Consider the function ψ : SL(2, R)/SL(2, Z) → R given by ψ(x) :=
eηd(x,x0) where x0 = SL(2, Z) is the identity coset and η > 0 is chosen
sufficiently small so that ψ is L1 with respect to the Haar measure. By the
pointwise ergodic theorem, for almost every x ∈ SL(2, R) and almost every
k1 ∈ SO(2) we have

lim
T→∞

1

T

∫ T

0
ψ(atk1 x̄) dt =

∫

SL(2,R)/SL(2,Z)

ψ dHaar < ∞. (18)

Similarly, for almost every x ∈ SL(2, R) and almost every k1 ∈ SO(2) we
have

lim
T→∞

1

T

∫ T

0
δat k1 x̄ dt = Haar. (19)

Let S ⊂ SL(2, R) be the set of x ∈ SL(2, R) such that (18) and (19) hold
for almost every k1 ∈ SO(2). The set S is SL(2, Z)-invariant and co-null. We
show any x ∈ S satisfies the conclusion of the lemma.

For fixed x ∈ S and fixed δ > 0, there exist Tδ = Tδ(x), a sequence
Tj = Tj (x) for j ∈ N, and a set Kδ = Kδ(x) ⊂ SO(2) such that |Kδ| ≥
(1 − δ/2)|SO(2)| with the property that for any k1 ∈ Kδ and any T ≥ Tδ we
have

1

T

∫ T

0
ψ(atk1 x̄) dt < 2

∫

SL(2,R)/SL(2,Z)

ψ dHaar (20)

and for each 1 ≤ j

ρM
(

1

T

∫ T

0
δat k1 x̄ dt,Haar

)

<
1

j
. (21)

for all T ≥ Tj . To finish the proof of the lemma, define the set

G ′′
k (x) := {k1atk2 where k1 ∈ SO(2), k2 ∈ Kδ(x) and (δ/2)k < t < k}.

For k large enough, we have that |G ′′
k (x)| ≥ (1 − δ)|Bk |. We claim that

G ′′
k (x) ⊂ G ′

ε,k(x) (22)
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for k sufficiently large. For the sake of contradiction, suppose (22) fails. Using
that the norm on F is chosen to be K -invariant, there exists xn ∈ SL(2, R)

with each xn in the Kδ(x)-orbit of x such that ‖Dxn (a
tn )‖Fiber ≥ eεtn for some

sequence tn → ∞. Moreover, the corresponding empirical measures

ηn := 1

tn

∫ tn

0
δat x̄n dt

have uniformly exponentially small mass in the cusps by equation (20).
By Lemma 3.10 and (21), a subsequence of the measures ηn converge to an

at -invariant measure μ0 on Mα whose projection to SL(m, R)/SL(m, Z) is
Haar measure on the embedded modular surface SL(2, R)/SL(2, Z) and has
positive fiberwise Lyapunov exponent for the action of a1. Since at is ergodic
on SL(2, R)/SL(2, Z), we can assume μ0 is ergodic by taking an ergodic
component without changing any other properties.

We average as in [4] to improve μ0 to a measure whose projection is the
Haar measure on SL(m, R)/SL(m, Z). Difficulties related to escape of mass
are handled by the preliminaries in Sect. 3.

As above, we note that there is a canonical copy of H2 = SL(m − 2, R) in
SL(m, R) commuting with our chosen H1 = SL(2, R). Recall A is the Cartan
subgroup of SL(m, R) of positive diagonal matrices. The subgroup A contains
the one-parameter group {at } and a Cartan subgroup of H2. Let

• A1 = A ∩ H1 = {at },
• A2 = A ∩ H2, and
• A′ = A ∩ (H1 × H2).

Note that A′ < A has codimension one. Our chosen modular surface
SL(2, R)/SL(2, Z) ⊂ SL(m, R)/SL(m, Z) is such that

SL(2, R)/SL(2, Z) ⊂ SL(2, R)/SL(2, Z) × SL(m − 2, R)/SL(m − 2, Z)

⊂ SL(m, R)/SL(m, Z).

Define an A′-ergodic, A′-invariant measure μ1 on Mα that projects to Haar
measure on SL(2, R)/SL(2, Z)×SL(m−2, R)/SL(m−2, Z) as follows: Let
Mα

2,m−2 denote the restriction of the fiber-bundle M
α to SL(2, R)/SL(2, Z)×

SL(m − 2, R)/SL(m − 2, Z). Pick point y in SL(m − 2, R)/SL(m − 2, Z)

that equidistributes to the Haar measure on SL(m−2, R)/SL(m−2, Z) under
a Følner sequence in A2. Consider μ0 as a measure on the restriction of Mα

to SL(2, R)/SL(2, Z) × {y}. Now average μ0 over a Følner sequence in A2
and take a limit μ̂1. Note that μ̂1 has positive fiberwise Lyapunov exponent
λF
top,a1,μ1

> 0. This can be seen by mimicking the proof of Lemma 3.9. Let

μ1 be an A′ ergodic component of μ̂1, then the measure μ1 has the desired
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properties and is supported on the subset of Mα defined by restricting the
bundle to SL(2, R)/SL(2, Z) × SL(m − 2, R)/SL(m − 2, Z).

We consider the A′-action on (Mα, μ1) and the fiberwise derivative cocy-
cle A(g, y) = Dyg|F . By (17), there is a non-zero Lyapunov exponent
λF

μ1,A′ : A′ → R for this action. We apply the averaging procedure in Propo-
sition 3.5 to this measure. Take β ′ to be either α2 or δ so that β ′ : A′ → R

is not proportional to λF
μ1,A′ . Choose a0 ∈ A′ such that a0 ∈ ker(β ′) and

λF
μ1,A′(a0) > 0. Let U = Uβ ′

and let μ2 be any subsequential limit of

UT ∗ μ1 as T → ∞. Then μ2 is a0-invariant, and has positive fiberwise Lya-
punov exponent λF

top,a0,μ2
> 0. Moreover, π∗μ2 is H -invariant. By Lemma

3.16 and Proposition 3.5, μ2 has exponentially small mass in the cusps. We
may also assume μ2 is ergodic by passing to an ergodic component and by
Claim 3.12 assumeμ2 has a non-zero fiberwise Lyapunov exponent λF

μ2,A′ for
the A′-action.

We now average μ2 over A′ to obtain μ3. Then μ3 has a non-zero fiberwise
Lyapunov exponent λF

μ3,A′ and has exponentially small mass in the cusps by
Lemma 3.16(1). Since π∗μ2 was A′-invariant, we have π∗μ2 = π∗μ3. Once
again, we may pass to an A′-ergodic component of μ3 that retains the desired
properties.

Take β̂ to be either −α2 or −δ so that β̂ is not proportional to λF
μ3,A′ on

A′. Select a1 with λF
μ3,A′(a1) > 0 and β̂(a1) = 0. By Proposition 3.5 and

Lemma 3.16, we obtain a new measure μ4 with π∗μ4 the Haar measure on
SL(m, R)/SL(m, Z). We have λF

top,a1,μ4
> 0. Finally, average μ4 over all of

A to obtain μ5. Since π∗μ4 is the Haar measure and thus A-invariant, we have
that π∗μ4 = π∗μ5. By Lemma 3.16, μ5 has a non-zero fiberwise Lyapunov
exponent λF

μ5,A
for the action of A. Replace μ5 by an ergodic component with

positive fiberwise Lyapunov exponent.
Exactly as in [4, Section 5.5], we apply [6, Proposition 5.1] and conclude

that μ5 is a G-invariant measure on Mα . We then obtain a contradiction with
Zimmer’s cocycle superrigidity theorem. To conclude thatμ5 is aG-invariant,
note that [6, Proposition 5.1] holds for actions induced from actions of any
lattice in SL(m, R) and shows that μ5 is invariant under root subgroups corre-
sponding to non-resonant roots. Dimension counting exactly as in [4, Section
5.5] shows that the non-resonant roots of SL(m, R) generate all of G if the
dimension of M is at most m − 2 or if the dimension of M is m − 1 and the
action is preserves a volume.

We derive Proposition 4.2 from Lemma 4.4.

Proof of Proposition 4.2 Fix 0 < c < 1 sufficiently small so that if d(Id, g) <

c then ‖D�g‖Fiber ≤ eε/4. Fix a point x ∈ SL(2, R) as in Lemma 4.4
with d(Id, x) < c. Observe that if k ≥ 1 and g ∈ G ′

ε/4,k(x), then
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gx ∈ G ′
ε/2,k+c(Id). In particular, for any δ > 0 we have for all k sufficiently

large that

|Bk+c�G ′
ε/2,k+c(Id)| < δĈ |Bk | (23)

where Ĉ is a constant depending on c. Take U to be the ball of radius c
centered at the identity coset in SL(2, R)/SL(2, Z) and consider lifts of U to
SL(2, R) intersecting the ball Bk . If a lift of U intersects G ′

ε/2,k+c(Id), then
the corresponding element of the deck group SL(2, Z) belongs to G ′

3ε/4,k(Id).

Let Ũ be the set of lifts ofU . From Lemma 4.3 and (23), it follows that ratio
of the measure of Ũ ∩ Bk ∩G ′

ε/2,k(Id) to the measure of Ũ ∩ Bk goes to one as
k → ∞. Finally, since the norms on the fiber of Mα above the identity coset
and the original norm on M are uniformly comparable, the result follows.

Remark 4.5 Using large deviations, one can make δ to be decreasing with k,
roughly as δk = e−k1/1000 . See [1,10]. This is not necessary for our argument.

4.2 Subexponential growth of derivatives for unipotent elements in
SL(2, Z)

We work here with a specific copy of the group SL(2, R) � R
2 embedded in

SL(m, R) and its intersection with the lattice �; the copy of SL(2, R) � R
2

corresponds to the elements of SLm(R) which differ from the identity matrix
only in the first two rows and first three columns. Any unipotent element of
any �i, j ⊂ � considered in the statement of Proposition 4.1 is conjugate by
an element of the Weyl group to a power of the elementary matrix E1,3. Thus,
after conjugation, any such element is contained in the distinguished copy of
SL(2, Z) � Z

2 generated by SL(2, Z) = �1,2 and the normal subgroup Z
2

generated by E1,3 and E2,3.
For the reminder of this subsection, we work with this fixed group. Iden-

tify H1,2 with SL(2, R). Let U1,2 := {ua,b} denote the abelian subgroup of
SL(m, R) consisting of unipotent elements of the form

ua,b :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 a
0 1 b
0 0 1

. . .

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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Clearly, U1,2 is normalized by H1,2 and H1,2 � U1,2 ∼= SL(2, R) � R
2. We

have an embedding

SL(2, R) � R
2/SL(2, Z) � Z

2 → SL(m, R)/SL(m, Z)

where Z
2 is identified with the subgroup generated by the unipotent elements

u1,0 and u0,1. Note that SL(2, R) � R
2/SL(2, Z) � Z

2 is a torus bundle over
the unit-tangent bundle of the modular surface.

Equip Z
2 with the L∞ norm with respect to the generating set {u1,0, u0,1}

and let Bn(Z
2) denote the closed ball of radius n in Z

2 centered at 0 with
respect to this norm. Given S ⊂ Z

2 let |S| denote the cardinality of the set S.
Define the set of “ε-good unipotent elements” ofZ2 ⊂ �, denoted byGUε,n ,

to be the following subset of Z
2:

GUε,n :=
{

ua,b ∈ Bn(Z
2) such that ‖D(α(u±1

a,b))‖ ≤ eε log(n)
}

. (24)

The main results of this subsection is the following.

Proposition 4.6 For any ε > 0, there exists Nε > 0 such that if n ≥ Nε, then
GUε,n = Bn(Z

2)

Proposition 4.1 follows from Proposition 4.6 using that any subgroup 〈un〉
in Proposition 4.1 is conjugate to a subgroup of the group Z

2 and the fact
that d(un, Id) = O(log(n)) from (6). The proof of Proposition 4.6 consists of
conjugating elements of U1,2 by elements of Gε,n in order to obtain a subset
of Gε,n that contains a positive density of elements of Bn(Z

2). Then, using the
fact that Z

2 is abelian, we promote such a subset to all of Bn(Z
2) by taking

sufficiently large sumsets in Proposition 4.9.

Lemma 4.7 There exists δ′ > 0 with the following properties: for any ε > 0
there is an N ′

ε > 0 such that for any n ≥ N ′
ε we have

|GUε,n| ≥ δ′|Bn(Z
2)|.

Proof Recall that Tk denotes the intersection of the ball of radius k in
SL(2, R) � H1,2 with SL(2, Z) = �1,2 and |Tk | denotes the cardinality of Tk .
As |Tk | grows exponentially in k, we may take s fixed so that |Tk−s | < 1

2 |Tk |
for all k sufficiently large. Given ε′ > 0, define the subset Sk ⊂ SL(2, Z) to
be

Sk := Gε′,k ∩ G−1
ε′,k ∩ (Tk \ Tk−s).

From Proposition 4.2, we may assume that

|Sk | ≥ 1

2
|Tk |.
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From (3), there exists C1 > 0 such that if A =
[

a c
b d

]

belongs to Sk then

either

‖(a, b)‖∞ ≥ C1e
1
2 (k−s) or ‖(c, d)‖∞ ≥ C1e

1
2 (k−s).

Without loss of generality, we assume that at least half of the elements in Sk
satisfy ‖(a, b)‖∞ ≥ C1e

1
2 (k−s).

Consider the map P : Sk → Z
2 that assigns A =

[

a c
b d

]

to (a, b). By (3),

there isC2 > 1 such that the image P(Sk) of Sk lies in the norm-ball B
C2e

k
2
(Z2)

for all k.
Let k(n) = 2 log(n) − logC2. Then P(Sk(n)) ⊂ Bn(Z

2). If n is sufficiently

large and A =
[

a c
b d

]

∈ Sk(n) then we have ua,b ∈ GU(5ε′,n); indeed

α(ua,b) = α(A) ◦ α(u1,0) ◦ α(A−1)

whence

‖Dα(ua,b)‖ ≤ ‖Dα(u1,0)‖e2ε′k(n).

We have |Bn(Z
2)| ≤ D1n2 for some D1 ≥ 1. Also, from (4) and Lemma 4.3

we have |Sk(n)| ≥ 1
2 |Tk(n)| ≥ 1

2e
k(n) = 1

D2
n2 for some D2 ≥ 1.

To to complete the proof, we show that the preimage P−1((a, b)) in Sk of

any (a, b) ∈ Z
2 satisfying ‖(a, b)‖∞ ≥ C1e

1
2 (k−s) has uniformly bounded

cardinality depending only on s. Observe that if A, A′ ∈ SL(2, Z) satisfy

P(A) = P(A′), then A′ = AU , where U =
[

1 m
0 1

]

for some m ∈ Z and we

have

A =
[

a c
b d

]

, and A′ =
[

a am + c
b bm + d

]

.

If A′ belongs to Tk then ‖(am + c, bm +d)‖∞ ≤ C2e
k
2 and if A belongs to Tk

then ‖(c, d)‖∞ ≤ C2e
k
2 . We thus have that |am| ≤ 2C2e

k
2 and |bm| ≤ 2C2e

k
2 .

As we assume that

‖(a, b)‖∞ ≥ C1e
k−s
2

we have that |m| ≤ 2C2
C1
e
s
2 . Thus, the preimage P−1((a, b)) has at most

4C2
C1
e
s
2 + 1 elements in Sk .
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With ε′ = 1
5ε, having taken n sufficiently large, we thus have

|GUε,n|
|Bn(Z2)| ≥ 1

D1n2

1
2 |Sk(n)|

4C2
C1
es/2 + 1

≥ 1

2

1
D2

n2

4C2
C1
es/2 + 1

1

D1n2
=: δ′

which completes the proof.

To complete the proof of Proposition 4.6, we show that any element in
Bn(Z

2) can be written as a product of a bounded number of elements in GUε,n
independent of ε. This follows from the structure of sumsets of abelian groups.

From the chain rule and submultiplicativity of norms,we have the following.

Claim 4.8 For any positive integers n,m and ε1, ε2 > 0, if ua,b ∈ GUε1,n
and uc,d ∈ GUε2,m then the product ua,buc,d ∈ GUmax{ε1,ε2},n+m

For subsets A, B ⊂ Z
2 we denote by A + B the sumset of A, B.

Claim 4.9 For any 0 < δ < 1, there exists a positive integer kδ and a finite
set Fδ ⊂ Z

2 such that for any n and any symmetric set Sn ⊂ Bn(Z
2) with

|Sn| > δ|Bn|, we have that
Bn ⊂ Fδ + Sn + Sn + . . . + Sn

︸ ︷︷ ︸

kδ times

.

Proof Fix M ∈ Z+ with 1
M < δ. Take Nδ := (M + 1

)!, kδ = 4Nδ , and Fδ :=
BNδ (Z

2). Consider a symmetric set Sn ⊂ Bn(Z
2) with |Sn| > δ|Bn(Z

2)|.
If n ≤ Nδ then Bn(Z

2) ⊂ Fδ and we are done. Thus, consider n ≥ Nδ . To
complete the proof the claim, we argue that the set

∑

kδ

Sn := Sn + Sn + . . . + Sn
︸ ︷︷ ︸

kδ times

contains the intersection of the sublattice NδZ
2 with Bn(Z

2). Adding Fδ to
the sumset then implies the claim. Consider any non-zero vector ṽ ∈ NδZ

2 ∩
Bn(Z

2) of the form (�̃, 0) for some �̃ ∈ [−n, n] ∩ NδZ. Then ṽ = Nδv where
v = (�, 0) is such that 0 < |�| ≤ �nN−1

δ �.
Consider the equivalence relation in Bn(Z

2) defined by declaring that two
elements x, y ∈ R(n) are equivalent if x − y is an integer multiple of v. Each
equivalence class is of the form

Cx = {. . . , x − v, x, x + v, x + 2v, . . .}.
As |Sn| ≥ 1

M |Bn(Z
2)|, there exists one equivalence class Cx such that |Cx ∩

Sn| ≥ 1
M |Cx |. Since 0 < |�| ≤ �nN−1

δ �, each equivalence class contains at
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leastM+1 elements and henceCx∩Sn contains at least two elements a, bwith
b = a+ iv for |i | ≤ M . In particular, since a−b = iv, we have iv ∈ Sn + Sn .
As i divides Nδ , we have that ṽ = Nδv ∈∑2Nδ

Sn .

Similarly, for n ≥ Nδ and any ũ ∈ NδZ
2 ∩ Bn(Z

2) of the form (0, �̃) we
have ũ ∈∑2Nδ

Sn . Then

ũ + ṽ ∈
∑

4Nδ

Sn

completing the proof.

Proof of Proposition 4.6 Given ε′ > 0, let δ′ and N ′
ε′ be given by Lemma 4.7.

Let Sn := GUε′,n be as in (24) and take k′
δ and Fδ′ as in Lemma 4.9. Note

that GUε′,n is symmetric by definition. Take N ≥ N ′
ε′ such that Fδ′ ∈ GUε′,n

whenever n ≥ N . For n ≥ N and any ua,b ∈ Bn(Z
2) we have that ua,b ∈

Fδ + Sn + Sn + . . . + Sn (kδ′ times) by Proposition 4.9. Proposition 4.8 then
implies that ua,b ∈ GUε′,(kδ′+1)n so ‖D(ua,b)

±1‖ ≤ eε′ log((kδ′+1)n). With
ε′ = ε/2, take Nε ≥ max{N , (kδ′ + 1)}. Then for all n ≥ Nε we have

ε′ log((kδ′ + 1)n) ≤ ε log(n)

whence

‖D(ua,b)
±1‖ ≤ eε log(n)

and for ua,b ∈ Bn(Z
2) with n ≥ Nε.

5 Proof of Theorem B

5.1 Reduction to the restriction of an action by �i, j

We recall the work of Lubotzky, Mozes, and Raghunathan, namely [17] and
[18], which establishes quasi-isometry between the word and Riemannian
metrics on lattices in higher-rank semisimple Lie groups. In the special case
of � = SL(m, Z) for m ≥ 3, in [17, Corollary 3] it is shown that any element
γ of SL(m, Z) is written as a product of at most m2 elements γi . Moreover
each γi is contained some �i, j � SL(2, Z) and the word-length of each γi is
proportional to the word-length of γ .

Thus, to establish that an action α : � → Diff1(M) has uniform subex-
ponential growth of derivatives in Theorem B, it is sufficient to show that
the restriction α|�i, j : � → Diff1(M) has uniform subexponential growth
of derivatives for each 1 ≤ i �= j ≤ m. We emphasize that to measure
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subexponential growth of derivatives, the word-length on �i, j is measured
as the word-length as embedded in SL(m, Z) (which is quasi-isometric to
the Riemannian metric on SL(m, R)) rather than the intrinsic word-length in
�i, j � SL(2, Z) (which is not quasi-isometric to the Riemannian metric on
SL(2, R)).

As the Weyl group acts transitively on the set of all �i, j , it is sufficient to
consider a fixed �i, j . Thus to deduce Theorem B, in the remainder of this
section we establish the following, which is the main proposition of the paper.

Proposition 5.1 For any action α : � → Diff1(M) as in Theorem B, the
restricted action α|�1,2 : � → Diff1(M) has uniform subexponential growth
of derivatives.

5.2 Orbits with large fiber growth yet low depth in the cusp

To prove Proposition 5.1, as in Sect. 4.2 we consider a canonical embedding
X = H1,2/�1,2 of SL(2, R)/SL(2, Z) in SL(m, R)/SL(m, Z). Write

at := diag(et/2, e−t/2) ⊂ SL(2, R)

for the geodesic flow on X . Let X thick be a fixed compact SO(2)-invariant
“thick part” of X ; that is, relative to the Dirichlet domain D in (7), points in
SO(2)\X thick corresponds to the points in SO(2)\D whose imaginary part is
bounded above, say, by 17.

A geodesic curve in themodular surface of length t corresponds to the image
of an orbit ζ = {as(x)}0≤s≤t where x ∈ X and t ≥ 0. Denote the length of
such a curve by l(ζ ). For an orbit ζ = {as(x)}0≤s≤t of {at } in X we define

c(ζ ) := log(‖Dx (a
t )‖Fiber).

The following claim is straightforward from the compactness X thick and the
quasi-isometry between the word and Riemannian metrics on �.

Claim 5.2 For an action α : SL(m, Z) → Diff1(M), the following statements
are equivalent:

(1) the restriction α|�1,2 : �1,2 → Diff1(M) has uniform subexponential
growth of derivatives;

(2) for any ε > 0 there is a tε > 0 such that for any orbit ζ = {as(x)}0≤s≤t
with x ∈ X thick, at (x) ∈ X thick, and l(ζ ) = t ≥ tε we have

c(ζ ) ≤ εl(ζ ).
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Define the maximal fiberwise growth rate of orbits starting and returning to
X thick to be

χmax := lim sup
t>0

{

sup

{

log ‖Dx (at )|Fiber‖
t

: x ∈ X thick, a
t (x) ∈ X thick

}}

.

(25)

UsingClaim5.2, to establish Proposition 5.1 it is sufficient to show thatχmax =
0.

For an orbit ζ = {as(x)}0≤s≤t , define the following function which mea-
sures the depth of ζ into the cusp:

d(ζ ) = max
0≤s≤t

dist(as(x), X thick).

The following lemma is the main result of this subsection.

Lemma 5.3 If χmax > 0 then there exists a sequence of orbits ζn =
{as(xn)}0≤s≤tn with xn ∈ X thick, atn (xn) ∈ X thick, and tn = l(ζn) → ∞
such that

(1) c(ζn) ≥ χmax

2
tn;

(2) lim
n→∞

d(ζn)

tn
= 0.

We first have the following claim.

Claim 5.4 For any ε > 0 there exists tε with the following properties: for any
x ∈ ∂X thick and t ≥ tε such that as(x) ∈ X�X thick for all 0 < s < t and
at (x) ∈ ∂X thick then, for the orbit ζ = {as(x)}0≤s≤t , we have

c(ζ ) ≤ εt = εl(ζ ).

Indeed, the claim follows from the fact that the value of the return cocycle
β(as, x) is defined by geodesic in the cusp of X is given by a unipotent matrix

of the form

(

1 n
0 1

)

∈ �1,2 ⊂ SL(m, Z) and Proposition 4.1.

Proof of Lemma 5.3 Let ζn := {as(xn)}0≤s≤tn be a sequence of orbits with
xn ∈ X thick, atn (xn) ∈ X thick, tn → ∞, and such that

χmax = lim
n→∞

c(ζn)

tn
.

Replacing ζn with a subsequence, we may assume the following limit exists:

β := lim
n→∞

d(ζn)

tn
.
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We aim to prove that β = 0. Arguing by contradiction, suppose 0 < β ≤ 1.
We decompose the orbit

ζn = αknωkn−1αkn−1 · · ·ω1α1

as a concatenation of smaller orbit segments αi , ωi with the following prop-
erties:

(1) each orbit αi is such that d(αi ) ≤ β
2 tn;

(2) the endpoints of each orbit αi are contained in X thick;
(3) each orbitωi is contained entirely in (X�X thick)∪∂X thick with endpoints

contained in ∂X thick;
(4) each orbitωi satisfies d(ωi ) ≥ β

2 tn whence l(ωi ) ≥ β
2 tn for tn sufficiently

large.

Note for each n, that kn ≤ � 2
β
� + 1 and thus kn is bounded by some k inde-

pendent of n. Additionally, since SL(m, Z) is finitely generated and (equipped
with the word metric) is quasi-isometrically embedded in SL(m, R), there
exists a constant K such that for any orbit segment ζ whose endpoints are
contained in X thick, we have c(ζ ) ≤ Kl(ζ ). By the definition of χmax, for any
ε > 0 there is a positive constant Mε such that for any orbit sub-segment αi

(1) c(αi ) ≤ (χmax + ε)l(αi ) whenever l(αi ) > Mε

(2) c(αi ) ≤ KMε whenever l(αi ) ≤ Mε.

From Claim 5.4, for any ε > 0 we have, assuming that n and hence tn are
sufficiently large, that

c(ωi ) < εl(ωi )

for all orbit sub-segmants ωi .
Taking n sufficiently large we have

(χmax − ε)tn < c(ζn) ≤
∑

i

c(ωi ) +
∑

i

c(αi ). (26)

As we assume β > 0, for all sufficiently large n there exists at least one orbit
sub-segment ωi and thus for such n

∑

i

c(αi ) ≤ kKMε + (χmax + ε)

×
∑

i

l(αi ) ≤ kKMε + (χmax + ε)(1 − β/2)tn. (27)
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1046 A. Brown et al.

From (26) and (27) we obtain that

(χmax − ε)tn ≤ (εtn) +
(

kKMε + (χmax + ε)(1 − β/2)tn
)

. (28)

Dividing by tn and taking n → ∞ obtain

χmax − ε ≤ ε + (χmax + ε)(1 − β/2).

As we assumed χmax > 0 and β > 0, we obtain a contradiction by taking
ε > 0 sufficiently small.

5.3 Construction of a Følner sequence and family averaged measures

Assuming that χmax in (25) is non-zero, we start from the orbit segments
constructed in Lemma 5.3 and perform an averaging procedure to obtain a
family of measures {μn} on Mα whose properties lead to a contradiction. In
particular, the projection of any weak-∗ limit μ∞ of μn to Mα will be A-
invariant, well behaved at the cusps, and have non-zero Lyapunov exponents.
These measures on Mα are obtained by averaging certain Dirac measures
against Følner sequences in a certain amenable subgroup of G.

Consider the copy of SL(m−1, R) ⊂ SL(m, R) as the subgroup ofmatrices
that differ from the identity away from the mth row and mth column. Let
N ′ � R

m−1 be the abelian subgroup of unipotent elements that differ from the
identity only in themth column; that is given a vector r = (r1, r2, . . . , rm−1) ∈
R
m−1 define ur to be the unipotent element

ur =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 . . . r1
1 0 . . . r2

. . .
...

1 rm−1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(29)

and let N ′ = {ur }. N ′ is normalized by SL(m − 1, R).
Identifying N ′ with R

m−1 we have an embedding SL(m−1, R)�R
m−1 ⊂

SL(m, R). The subgroup SL(m − 1, R) � R
m−1 has as a lattice the subgroup

SL(m − 1, Z) � Z
m−1 := � ∩ (SL(m − 1, R) � R

m−1)

and there is a natural embedding given by the inclusion

(SL(m − 1, R) � R
m−1)/(SL(m − 1, Z

−1) � Z
m−1)) ⊂ SL(m, R)/SL(m, Z).
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Recall A is the group of diagonal matrices with positive entries. Let at , bs ∈
A denote matrices

at = diag(et/2, e−t/2, 1, 1 . . . , 1)

bs = diag(es, es, es . . . , es, e−s(m−1)).

Complete the set {a, b} to a spanning set {a, b, c1, c2 . . . cm−3} of A viewed as
vector space where the ci are diagonal matrices whose (m,m)-entry is equal
to 1.

Let Fn ⊂ AN ′ be the subset of G consisting of all the elements of the form

atbs
m−3
∏

c=1

csii u
r (30)

where, for some δ > 0 to be determined later (in the proof of Proposition 5.10
below),

(1) 0 < t < tn;
(2) δtn/2 < s < δtn;
(3) 0 < si <

√
tn;

(4) r ∈ BRm−1(e200tn ).

Claim 5.5 {Fn} is Følner sequence in AN ′.

Observe that Fn is linearly-long in the a-direction and exponentially-long
in the N ′-direction. From conditions (2) and (4), the A-component of Fn is
much longer in the at -direction than in the other directions. The condition (2)
that δtn/2 < s is fundamental in our estimates in Sect. 5.4 that ensure the
measures constructed below {μn} have uniformly exponentially small mass in
the cusps. These estimates are related to the fact that orbits of N ′ correspond
to the unstable manifolds for the flow defined by bs in SL(m, R)/SL(m, Z)

and open subsets of unstable manifolds equidistribute to the Haar measure on
SL(m, R)/SL(m, Z) under the flow bs .

Recall we have a sequence of fiber bundles

F → Mα → G/�

and may consider F as a fiber bundle over G/�. Given x ∈ G/�, let F(x) �
T M denote the fiber of F over x . An element v ∈ F(x) is a pair v = (y, ξ)

where, identifying the fiber of Mα through x with M , we have y ∈ M and
ξ ∈ TyM . Given v = (y, ξ) ∈ F(x), we write ‖v‖ = ‖ξ‖ using our chosen
norm on F . Given v = (y, ξ) ∈ F(x), let p(v) = y denote the footpoint of v

in the fiber of Mα through x .
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1048 A. Brown et al.

If uniform subexponential growth of derivatives fails for the restriction of the
α to �1,2, then there exist sequences xn ∈ X thick, vn ∈ F(xn) with ‖vn‖ = 1,
and tn ∈ R as in Lemma 5.3 and Claim 5.2 with tn → ∞, such that

‖Dxna
tn
n (vn)‖ ≥ eλtn (31)

for some λ > 0.
Note that AN ′ is a solvable group. We may equip AN ′ with any left-

invariant Haar measure. Note that the ambient Riemannian metric induces
a right-invariant Haar measure on AN ′ but as AN ′ is not unimodular these
measures do not coincide.

For each n, take μn to be the measure on Mα obtained by averaging the
Dirac measure δ(xn,p(vn)) over the set Fn:

μn := 1

|Fn|�
∫

Fn
g · δ(xn, p(vn)) dg

where |Fn|� is the volume of Fn and dg indicates integration with respect to
left-invariant Haar measure on AN ′.

We expand the above integral in our coordinates introduced above. Then
for any bounded continuous function f : Mα → R, integrating against our
Euclidean parameters t, s, si , and r we have

∫

Mα

f dμn =

2

tn
∫

0

δtn
∫

δtn/2

∫

[0,√tn ]m−3

∫

B
Rm−1 (e200tn )

f

(

atbs
m−3
∏

c=1

csii u
r · (xn, p(vn))

)

dr dsi ds dt

tnδtn
√
tn
m−3|BRm−1(e200tn )|

(32)

where |BRm−1(e200tn )| denotes the volume of

BRm−1(e200tn ) = N ′
tn ⊂ N ′

with respect to the Euclidean parameters r .
For each n, let νn denote the image of the measure μn under the canonical

projection from Mα to G/�. The following proposition is shown in the next
subsection.

Proposition 5.6 There exists η > 0 such that the sequence of measures {νn}
has uniformly exponentially small mass in the cusp with exponent η.

By the uniform comparability of distances in fibers of Mα , this implies the
family of measures {μn} has uniformly exponentially small measure in the
cusp.
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By Lemma 3.10(a) the families of measures {μn} and {νn} are precompact
families. As Fn is a Følner sequence in a solvable group, we have that any
weak-∗ subsequential limit of {μn} or {νn} is AN ′-invariant. Moreover, from
Theorem 3.1(d), it follows that any weak-∗ subsequential limit ν∞ of {νn} is
invariant under the group −N ′ generated by the root groups Um, j for each
1 ≤ j ≤ m − 1. Since N ′ and −N ′ generate all of G, we have that ν∞ is a
G-invariant measure on G/�.

5.4 Proof of Proposition 5.6

5.4.1 Heuristics of the proof

The heuristic of the proof is the following. Observe that for a fixed choice of
t and si as given by the choice of Følner set Fn , the point

at
m−3
∏

i=1

ci
si (xn)

lies at sub-linear distance to the thick part of G/� with respect to tn . Observe
that the N ′-orbit of such point is an embedded (m − 1)-dimensional torus in
G/�. As the range of points in N ′ in the Følner set Fn is quite large, averaging
a Dirac measure of the point at

∏m−3
i=1 ci si (xn) in the N ′-direction in Fn yields

a measure quite close to Haar measure on the N ′-orbit.
Observe that N ′-orbits correspond to unstable manifolds for the action of

the flow bs on SL(m, R)/SL(m, Z). As the action of bs is known to be mix-
ing, we expect that if s is sufficiently large, flowing by bs the N ′-orbit of
at
∏m−3

i=1 ci si (xn) will become equidistributed and in particular it will inter-
sect non-trivially the thick part of G/�. This is the reason why the condition
s > δ/2tn is assumed.

While intuition aboutmixingmotivates the proof, we do not use it explicitly.
Instead we use that for large enough s, the action of bs expands the N ′-orbits
in a way that forces them to hit the thick part. We verify this fact by explicit
matrix multiplication.

As bs normalizes N ′, the image under bs of the N ′-orbit of at
∏m−3

i=1 ci si (xn)
is the N ′-orbit of a point yn in the thick part of G/�. Having in mind the
quantitative non-divergence of unipotent flows as in the proof Proposition 3.2,
the N ′-orbits have uniformly (over all n, si , and t) exponentially small mass
in the cusps whence so do the measures νn .

The following proof of Proposition 5.6 uses explicit matrix calculations and
estimates to verify these heuristics.
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1050 A. Brown et al.

5.4.2 Proof of Proposition 5.6

Recall that we identify each coset

gSL(m, Z) ∈ SL(m, R)/SL(m, Z)

with a unimodular lattice �g := g · Z
m in R

m . We define the systole of a
unimodular lattice � ⊂ R

m to be

δ(�) := min
v∈�\{0} ‖v‖

and for an element g ∈ SL(m, R), we denote by δ(g) the systole

δ(g) = δ(g · Z
m).

From (9), to prove Proposition 5.6 it is sufficient to find η > 0 so that the
integrals

∫

G/�

δ(g)−η dνn(g�)

are uniformly bounded in n.
As discussed in the above heuristic, from (32) to bound the integrals

∫

G/�
δ−η(g) dνn(g�) it is sufficient to show each integral

1

|B(e200tn )|
∫

B(e200tn )

δ(atbs(�ci
si )ur xn)

−η dr

is uniformly bounded in n and in all parameters t, s, si for 0 < t < tn,
δtn/2 < s < δtn, and 0 < si <

√
tn. Recall here that xn ∈ G/� are the

points xn ∈ X thick ⊂ H1,2/�1,2 satisfying (31) used in the construction of the
measures μn .

We have H1,2 is canonically embedded in SL(m, R). Given xn ∈ H1,2/�1,2,
let

x̃n ∈ H1,2 ⊂ SL(m, R)

denote the element mapping to xn under the map H1,2 → H1,2/�1,2 which
is contained in a fundamental domain contained in the Dirichlet domain D ⊂
SL(2, R) in (7) in Sect. 2.2. Let ‖ · ‖ denote the operator norm on SL(m, R)

and m(·) the associated conorm.
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Claim 5.7 For every n, t ≤ tn, and 0 ≤ si ≤ √
tn as above, there exist

An = An,t,s1,...,sm−3 ∈ SL(m − 1, R) and γn = γn,t,s1,...,sm−3 ∈ SL(m − 1, Z)

such that:

(1) at
m−3
∏

i=1

ci
si x̃n =

(

Anγn 0m−1×1
01×m−1 1

)

(2) lim
n→∞ sup

t≤tn,0≤si≤√
tn

log ‖An‖
tn

= 0 and lim
n→∞ inf

t≤tn,0≤si≤√
tn

log(m(An))

tn
= 0

Proof (1) is immediate from construction. The uniform limit in (2) follows
from Lemma 5.3(2), equation (5), and the fact that the si are chosen so that
0 ≤ si ≤ √

tn whence

d(xn, at (�ci si ) · xn)
tn

→ 0

uniformly in t, si .

In the remainder, we will suppress the dependence of choices on t, s, si . We
take Kn ∈ SL(m − 1, R) be such that

x̃n =
(

Kn 0m−1×1
01×m−1 1

)

.

Note that Kn differs from the identity only in the first two rows and columns.
Since each xn is contained in X thick, we have that the matrix norm and conorm
‖Kn‖ andm(Kn) are bounded above and below, respectively, by constants M1
and 1

M1
independent of n.

Recall r denotes a vector in R
m−1 and ur ∈ SL(m, R) is the unipotent

element given by (29). Matrix computation yields

at (�ci
si )ur x̃n =

(

Anγn AnγnK−1
n r

01×m−1 1

)

whence

bs(�ci
si )atur x̃n =

(

es Anγn es AnγnK−1
n r

01×m−1 e−(m−1)s

)

.

123
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We have

δ(bs(�ci
si )atur x̃n) = δ(bs(�ci

si )atur xn)

= inf
z∈Zm\{0}

∥

∥

∥

∥

(

es Anγn es AnγnK−1
n r

01×m−1 e−(m−1)s

)

z

∥

∥

∥

∥

(33)

To reduce notation, for fixed t, s, and si define

β(r) := − log δ(atbs(�ci
si )ur x̃n).

We aim to find an upper bound of

1

|B(e200tn )|
∫

B(e200tn )

eηβ(r)dr

that is independent of n and t, s, and si .
Observe that if r − r ′ differ by an element of the unimodular lattice

KnZ
m−1 ⊂ R

m−1, then β(r) = β(r ′). Indeed, if r ′ = r + Knz′ for some
z′ = (z′1, . . . , z′m−1) ∈ Z

m−1 and if z ∈ Z
m

�{0} is z = (z1, . . . , zm) then

(

es Anγn es AnγnK−1
n r ′

01×m−1 e−(m−1)s

)

z =
(

es Anγn es AnγnK−1
n r

01×m−1 e−(m−1)s

)

z̃

where z̃ = (z1 + zmz′1, . . . , zm−1 + zmz′m−1, zm) ∈ Z
m

�{0}. Thus we have
thatβ : R

m−1 → (0, ∞) descends to a function on the torusR
m−1/(KnZ

m−1).
Let Dn = Kn · ([−1/2, 1/2]m−1) be a fundamental domain for this torus in

R
m−1 centered at 0. Let cn denote the number of (KnZ

m−1)-translates of Dn
that intersect B(e200tn ). Then, if tn is sufficiently large we have that

1

|B(e200tn )|
∫

B(e200tn )

eηβ(r) dr ≤ 1

|B(e200tn )|cn
∫

Dn

eηβ(r) dr ≤ 2
∫

Dn

eηβ(r) dr

The first inequality follows from inclusion. The second inequality follows from
the fact that the perimeter of B(q) grows like qm−2, the volume of B(q) grows
like qm−1, and the domains Dn = Kn · ([−1/2, 1/2]m−1) have uniformly
comparable geometry over n.

It remains to estimate
∫

Dn
eηβ(r) dr . Given c > 0 and fixed n, t, si , and s

we define

Tc = {r ∈ Dn : β(r) > c}.
Proposition 5.6 follows immediately from the estimate in the following lemma.
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Lemma 5.8 There exists constants M3, M4 > 0, independent of n, t, si , and
s, such that

|Tc| ≤ M3e
−cM4 .

Indeed, if η−1 > M4 then
∫

Dn

eηβ(r) dr =
∫ ∞

0
|{r ∈ Dn : eηβ(r) ≥ τ }| dτ

≤ 1 +
∫ ∞

1
|{r ∈ Dn : eηβ(r) ≥ τ }| dτ

= 1 +
∫ ∞

1
|{r ∈ Dn : β(r) ≥ log

(

τ
1
η
)}| dτ

= 1 +
∫ ∞

1
|T

log
(

τ
1
η
)| dτ

= 1 +
∫ ∞

1
M3τ

−M4
η dτ < ∞

and Proposition 5.6 follows.

Proof of Lemma 5.8 From (33), given any r ∈ R
m−1, if β(r) > c then there

exists a non-zero z = (z1, z2, z3, . . . , zm) ∈ Z
m such that

es
∥

∥Anγn(z1, . . . , zm−1) + zm AnγnK
−1
n r
∥

∥ < e−c and |zm | < e−ce(m−1)s

which (as γn ∈ SL(m − 1, Z)) holds if and only if there is a non-zero z =
(z1, z2, z3, . . . , zm) ∈ Z

m

es
∥

∥

∥An

(

(z1, . . . , zm−1) + zmK
−1
n (KnγnK

−1
n )r

)∥

∥

∥ < e−c and

|zm | < e−ce(m−1)s (34)

As KnγnK−1
n induces a volume-preserving automorphismofRm−1/(KnZ

m−1),
the set of r ∈ Dn satisfying (34) for some z ∈ Z

m has the same measure as
the set of r ∈ Dn satisfying

es
∥

∥

∥An

(

(z1, . . . , zm−1) + zmK
−1
n r
)∥

∥

∥ < e−c and |zm | < e−ce(m−1)s

for some z ∈ Z
m .

For every integer k satisfying |k| < e−ce(m−1)s , let Tc,k be the subset of
r ∈ Dn such that there exists (z1, z2, . . . , zm−1) ∈ Z

m−1 satisfying

es
∥

∥

∥An

(

(z1, . . . , zm−1) + kK−1
n r
)∥

∥

∥ < e−c.
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Then |Tc| ≤∑|k|<e−ce(m−1)s |Tc,k |. Thus the estimate reduces to the following.

Claim 5.9 There exists M5 ≥ 0 such that |Tc,k | < M5e−(m−1)(s+c) for all n
sufficiently large.

Proof Recall that δtn/2 < s. If k = 0 then, for any non-zero (z1, . . . , zm−1) ∈
Z
m−1, we have

es ‖An(z1, . . . , zm−1)‖ > eδtn/2m(An).

From Claim 5.7(2), if n is large enough then m(An) ≥ e−δtn/4 and so the
term in the left hand side above is greater than one, therefore Tc,0 = ∅ for n
sufficiently large.

If k �= 0, observe that the map Mk : R
m−1/KnZ

m−1 → R
m−1/KnZ

m−1

given by

r + KnZ
m−1 �→ kr + KnZ

m−1

preserves the Lebesgue measure onR
m−1/KnZ

m−1. In particular, this implies
that Tc,k and Tc,1 have the same volume.

We thus take k = 1. Note that K−1
n Dn = [−1/2, 1/2]. There is a L ≥ 1,

depending only on m − 1, such that the set

Q = {z′ ∈ Z
m−1 : |z′ + r | ≤ 1 for some r ∈ K−1

n Dn}
has cardinality atmost L . FromClaim5.7(2), ifn is large enough thenm(An) ≥
e−δtn/4 whence for all (z1, . . . , zm−1) ∈ Z

m−1
�Q and all r ∈ Dn ,

es
∥

∥

∥An

(

(z1, . . . , zm−1) + K−1
n r
)∥

∥

∥ ≥ 1.

We thus need only consider (z1, . . . , zm−1) ∈ Q.
Given a fixed z = (z1, . . . , zm−1) ∈ Q ⊂ Z

m−1, using that Kn ∈ SL(m −
1, R) we have

∣

∣{r ∈ R
m−1 : ‖z + K−1

n r‖ ≤ �}∣∣ ≤ (2�)m−1

whence

∣

∣{r ∈ R
m−1 : ‖(z1, . . . , zm−1) + K−1

n r‖ ≤ e−c}∣∣ ≤ 2m−1e−c(m−1).

If r ∈ Tc,1 so that

es
∥

∥

∥An

(

(z1, . . . , zm−1) + K−1
n r
)∥

∥

∥ ≤ e−c
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then
∥

∥

∥An

(

(z1, . . . , zm−1) + K−1
n r
)∥

∥

∥ ≤ e−c−s . (35)

Since An ∈ SL(m − 1, R) the set of r ∈ R
m−1 satisfying (35) has the same

volume as the set of r ∈ R
m−1 satisfying

∥

∥(z1, . . . , zm−1) + K−1
n r
∥

∥ ≤ e−c−s .

It follows that |Tc,1| ≤ 2m−1Le−(s+c)(m−1).

To finish the proof of Lemma 5.8, from Claim 5.9 we have

|Tc| ≤
∑

|k|<e−ce(m−1)s

|Tc,k | ≤ (2e−ce(m−1)s + 1)M5e
−(m−1)(s+c) ≤ M3e

−cM4

for some constants M3, M4 independent of n.

5.5 Positive Lyapunov exponents for limit measures

To deduce Proposition 5.1, having assumed that χmax in (25) is non-zero, we
show that any weak-∗ subsequential limit of the sequence of measures {μn}
has a positive Lyapunov exponent from which we derive a contradiction.

Recall from Sect. 5.3 that we fixed sequences xn, vn, tn such that
‖Dxna

tn (vn)‖ ≥ eλtn for some fixed λ > 0. Let A : G × F → F be the
fiberwise derivative cocycle over the action of G on Mα .

Our main result is the following.

Proposition 5.10 For any weak-∗ subsequential limit μ∞ of {μn} we have

λtop,a,μ∞,A ≥ λ/2 > 0.

We first show that averaging over N ′ does not change the Lyapunov expo-
nents of the cocycle.

Claim 5.11 Given any ε > 0 there is tε > 0 such that for any t ≥ tε and any
r ∈ BRm−1(et ) we have

‖Dxu
r‖Fiber ≤ eεt

for any x ∈ X thick.
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Proof Recall that the N ′-orbit of any x ∈ X := H1,2/�1,2 ⊂ SL(m, R)/

SL(m, Z) is a closed torus. Then the N ′-orbit of X thick is compact. Recall
our fixed fundamental domain F ⊂ ˜D contained in the Dirichlet domain
˜D of the identity for SL(m, R)/SL(m, Z) as discussed in Sect. 2.2. Given
x ∈ SL(m, R)/SL(m, Z), let x̃ be the lift of x in F . Let ˜X thick ⊂ H1,2 ∩ F
denote the lift of X thick to F and let X̂ thick be the lift of the orbit N ′X thick to
F . As discussed in Sect. 2.2, we have that ˜X thick is contained in the Dirichlet
domain D of the identity for the �1,2-action on H1,2. Moreover, X̂ thick is
precompact in SL(m, R).

Fix r ∈ R
m−1 and x ∈ X thick. Write

x̃ =
(

K 0
0 1

)

for some K ∈ SL(m − 1, R); we have ‖K‖ ≤ M1 and m(K ) ≥ 1
M1

for all
x ∈ X thick. The deck group of the orbit N ′ x̃ is

x̃{uz : z ∈ Z
m−1}x̃−1 = {uK ·z : z ∈ Z

m−1}.

Thus, there is z ∈ Z
m−1 and r ′ ∈ R

m−1 such that

ur x̃ =
(

K r
0 1

)

=
(

K r ′ + Kz
0 1

)

=
(

1 r ′
0 1

)(

K 0
0 1

)(

1 z
0 1

)

= ur
′
x̃uz

and ur
′
x̃ ∈ X̂ thick. Then

‖Dxu
r‖ ≤ ‖Dx x̃

−1‖Fiber · ‖DId�u
z‖Fiber · ‖DId�u

r ′
x̃‖Fiber.

Since x̃ and ur
′
x̃ are in precompact sets, the first and last terms of the right

hand side are uniformly bounded in r and x ∈ X thick.
There exists some C such that

‖DId�u
z‖Fiber ≤ C‖Dα(uz)‖.

Since r ∈ BRm−1(et )we have z ∈ BRm−1(M1et )whence d(uz, Id) ≤ C2t+C3
for some constants C2 and C3. Proposition 4.1 implies for any ε′ that

‖Dα(uz)‖ ≤ eε′(C2t+C3)

and taking ε′ > 0 sufficiently small, the claim follows.
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By Lemma 2.1, the fact that SL(m, Z) is finitely generated, and the uniform
comparability of the fibers of Mα , we also have the following.

Claim 5.12 There are uniform constants C5 and C6 with the following prop-
erty: Let x ∈ G/�. Then for any X ∈ g with ‖X‖ ≤ 1 we have

∥

∥

∥

(

Dx exp(t X)
)±1
∥

∥

∥

Fiber
≤ eC5t+C5d(x,Id)+C6 .

We now prove Proposition 5.10.

Proof of Proposition 5.10 Recall we take xn ∈ X thick, tn → ∞, and vn ∈
F(xn) with ‖vn‖ = 1 such that ‖Dxna

tn (vn)‖ ≥ eλtn for some fixed λ > 0 in
(31) in Sect. 5.3. We also write A : G × F → F for the fiberwise derivative
cocycle.

Themeasuresμn constructed in Sect. 5.3 are defined by averaging last along
the orbit at , 0 ≤ t ≤ tn . Let ξn be the measure on Mα given by

∫

Mα

f dξn = 2

δtn

(

1√
tn

)m−3 1

|BRm−1(e200tn )|
∫ δtn

δtn/2

∫

[0,√tn]m−3

∫

B
Rm−1 (e200tn )

f

×
(

atbs
m−3
∏

c=1

csii u
r · (xn, p(vn))

)

dr dsi ds.

In the context of Lemma 3.10, the measures μn = ∫ tn
0 (at∗ξn) dt con-

structed in Sect. 5.3 correspond to the empiricalmeasures ηn = η(log a, tn, ξn)
appearing in the proof of Lemma 3.10. From Lemma 3.10, to establish Propo-
sition 5.10 it is sufficient to show that

∫

log ‖A(atn , ·)‖ dξn ≥ λ

2
tn.

We have
∫

Mα

log ‖A(atn , ·)‖ dξn

= 2

δtn

(

1√
tn

)m−3 1

|BRm−1(e200tn )|
∫ δtn

δtn/2

∫

[0,√tn]m−3

∫

B
Rm−1 (e200tn )

× log
∥

∥A(atn , bs�csii u
r · (xn, p(vn))

)∥

∥ dr dsi ds

≥ 2

δtn

(

1√
tn

)m−3 1

|BRm−1(e200tn )|
∫ δtn

δtn/2

∫

[0,√tn]m−3

∫

B
Rm−1 (e200tn )

× log

∥

∥Dxn

(

atnbs�csii u
r
)

(vn)
∥

∥

∥

∥Dxn

(

bs�csii u
r
)

(vn)
∥

∥

dr dsi ds.

123



1058 A. Brown et al.

Consider fixed r, s, and si . Take r ′ ∈ R
m−1 such that atnur = ur

′
atn . Then

log

∥

∥Dxn

(

atnbs�csii u
r
)

(vn)
∥

∥

∥

∥Dxn

(

bs�csii u
r
)

(vn)
)∥

∥

= log

∥

∥

∥Datn ·xn
(

bs�csii u
r ′) ◦ Dxna

tn
(

vn
)

∥

∥

∥

∥

∥Dxn

(

bs�csii u
r
)

(vn)
∥

∥

≥ log ‖Dxna
tn
(

vn
)‖ − log ‖(Dxnb

s�csii u
r )‖Fiber

− log ‖(Datn ·xn
(

bs�csii u
r ′))−1‖Fiber

≥ log ‖Dxna
tn
(

vn
)‖ − log ‖Dxn

(

ur
)‖Fiber − log ‖Dur xn

(

bs�csii
)‖Fiber

− log ‖(Dur ′atn ·xn
(

bs�csii
))−1‖Fiber − log ‖Datn ·xn

(

u−r ′)‖Fiber.

Observe that bothur ·xn andur ′
atn ·xn are contained in afixed compact subset

ofG/� and hence, by Claim 5.12, having taken δ > 0 sufficiently small in the
construction of the Følner sequence, from the constraints on si and s we have
‖Dur xn�csii b

s‖Fiber ≤ eλtn/100 and ‖(Dur ′atn ·xn�csii b
s
)−1‖Fiber ≤ eλtn/100 for

all n sufficiently large.
Moreover, from Claim 5.11, we have ‖Dxnu

r‖Fiber ≤ eλtn/100 for all n
sufficiently large.

Finally, there exists κ > 0 such that ‖r ′‖ ≤ eκtn‖r‖ whence r ′ ∈
BRm−1(e(200+κ)tn ). Again from Claim 5.11, we have ‖Datn ·xnu−r ′‖Fiber ≤
eλtn/100 for n sufficiently large. Combined with (31) we then have

1

tn

∫

Mα

log ‖A(atn , ·)‖ dξn ≥ λ − 4

100
λ.

Proposition 5.10 then follows from Lemma 3.10.

5.6 Proof of Proposition 5.1

Having assumed that χmax in (25) is non-zero, we arrive at a contradiction.
Take any weak-∗ subsequential limit μ∞ of the sequence of measure {μn} on
Mα . We have that μ∞ is A-invariant and has a non-zero fiberwise Lyapunov
exponent for the fiberwise derivative over the action of at . Moreover, we have
that μ∞ projects to ν∞ on G/� which, as discussed above after Proposi-
tion 5.6, is the Haar measure on G/�. We may replace μ∞ with an A-ergodic
componentμ′ with the same properties as above. Thenμ is A-ergodic, projects
to Haar, and the fiberwise derivative cocycle over the A-action on (Mα, μ) has
a non-zero Lyapunov exponent functional λi : A → R.

As in the conclusion of Lemma 4.4, the arguments of [4, Section 5.5] using
[6, Proposition 5.1] imply that themeasureμ is, in fact, SL(m, R)-invariant. As
before,we note that [6, Proposition 5.1] does not assume� is cocompact, so the
algebraic argument applying that proposition in [4, Section 5.5] goes through
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verbatim. For a more self-contained proof that applies since we only consider
the case of SL(m, R) see [3, Proposition 4]. We then obtain a contradiction
with Zimmer’s cocycle superrigidity by constraints on the dimension of the
fibers of Mα . Thus we must have χmax = 0 and Proposition 5.1 follows.
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