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Abstract We prove Zimmer’s conjecture for C2 actions by finite-index sub-
groups of SL(m, Z) provided m > 3. The method utilizes many ingredients
from our earlier proof of the conjecture for actions by cocompact lattices in
SL(m, R) (Brown et al. in Zimmer’s conjecture: subexponential growth, mea-
sure rigidity, and strong property (T), 2016. arXiv:1608.04995) but new ideas
are needed to overcome the lack of compactness of the space (G x M)/ I’
(admitting the induced G-action). Non-compactness allows both measures
and Lyapunov exponents to escape to infinity under averaging and a number
of algebraic, geometric, and dynamical tools are used control this escape. New
ideas are provided by the work of Lubotzky, Mozes, and Raghunathan on the
structure of nonuniform lattices and, in particular, of SL(m, Z) providing a
geometric decomposition of the cusp into rank one directions, whose geome-
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try is more easily controlled. The proof also makes use of a precise quantitative
form of non-divergence of unipotent orbits by Kleinbock and Margulis, and an
extension by de la Salle of strong property (T) to representations of nonuniform
lattices.

1 Introduction
1.1 Statement of results

The main result of this paper is the following:

Theorem A Let I' be a finite-index subgroup of SL(m, Z) and let M be a
closed manifold of dimension dim(M) < m — 2. If a: ' — Diff>(M) is a
group homomorphism then a(T") is finite." In addition, if w is a volume form
on M, m > 2, and if dim(M) <m — 1, then ifand o.: I' — Diffz(M, w)isa
group homomorphism then a (") is finite.

For m > 3, we remark that the conclusion of Theorem A is known for
actions on the circle by results of Witte Morris [26] (see also [7,13] for actions
by more general lattices on the circle) and for volume-preserving actions on
surfaces by results of Franks and Handel and of Polterovich [12,21]. The proof
in this paper requires that m > 4 though we expect it can be modified to cover
actions by SL(3, Z); since these results are not new, we only present the case
for m > 4. While this is a very special case of Zimmer’s conjecture, it is
a key example. For instance, the version of Zimmer’s conjecture restated by
Margulis in his problem list [20] is a special case of Theorem A.

Note thatif I" is a finite-index subgroup of SL.(m, Z) acting on compact man-
ifold M, we may induce an action of SL(m, Z) on a (possibly non-connected)
compact manifold M = (SL(m, R) x M)/ ~ where (y, x) ~ (y', x') if there
is 7 € I' with y’ = y9 and x’ = a(p 1) (x). Connectedness of M is neither
assumed nor is it used in either the proof of Theorem A or in [4]. Thus, for the
remainder we will simply assume I' = SL(m, Z).

This paper is a first step in extending the results in [4] to the case where I is
a nonuniform lattice in a split simple Lie group G and the strategy of the proof
of Theorem A relies strongly on the strategy used in [4]. In the remainder of
the introduction, we recall the proof in the cocompact case, indicate where the
difficulties arise in the nonuniform case, and outline the proof of Theorem A.
At the end of the introduction we make some remarks on other approaches and
difficulties we encountered.

We recall a key definition from [4]. Let I" be a finitely generated group.
Let £: I' — N denote the word-length function with respect to some choice

L After this work was completed, Brown-Damjanovic-Zhang showed that some modifications
of our arguments also give a proof for C 1 diffeomorphisms [3].
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of finite generating set for I'. Given a C! diffeomorphism f: M — M let
IDf || = sup,cp | Dx f | (for some choice of norm on T'M).

Definition 1.1 An action o: I' — Diff' (M) has uniform subexponential
growth of derivatives if

for every & > 0, there is C; such that | Da(y)|| < Coe®*™) forall y € T.
(1)

The main result of the paper is the following:
Theorem B Form > 4, let I' = SL(m, Z) and let M be a closed manifold.

() If dim(M) < m — 2 then any action o: I' — Diff2(M) has uniform
subexponential growth of derivatives;

2) if w is a volume form on M and dim(M) < m — 1 then any action
a: I' — Diff>(M, w) has uniform subexponential growth of derivatives.

To deduce Theorem A from Theorem B, we apply [4, Theorem 2.9] and
de la Salle’s recent result establishing strong property (7') for nonuniform
lattices [8, Theorem 1.2] and conclude that any action « as in Theorem A
preserves a continuous Riemannian metric. For clarity, we point out that we
need de la Salle’s Theorem 1.2 and not his Theorem 1.1 because we need the
measures converging to the projection to be positive measures. That Theorem
[8, Theorem 1.2] provides positive measures where [8, Theorem 1.1] does not
is further clarified in [8, Section 2.3]. Once a continuous invariant metric is
preserved, the image of any homomorphism « in Theorem A is contained in a
compact Lie group K. All such homomorphisms necessarily have finite image
due to the presence of unipotent elements in SL(m, Z). We remark that while
the finiteness of the image of « was deduced using Margulis’s superrigidity
theorem in [4], it is unnecessary in the setting of Theorem A since, as any
unipotent element of SL(m, Z) lies in the center of some integral Heisenberg
subgroup of SL(m, Z), all unipotent elements have finite image in K and
therefore so does SL(m, Z).

1.2 Review of the cocompact case
To explain the proof of Theorem B, we briefly explain the difficulties in extend-
ing the arguments from [4] to the setting of actions by nonuniform lattices. We

begin by recalling the proof in the cocompact setting.
In both [4] and the proof of Theorem B, we consider a fiber bundle

M—> M*:=(GxM)/T 5> G/T
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which allows us to replace the I"-action on M with a G-action on M*. In the
case that I' is cocompact, showing subexponential growth of derivatives of
the I"-action is equivalent to showing subexponential growth of the fiberwise
derivative cocycle for the G-action.

To prove such subexponential growth for the G-action on M* we argued by
contradiction to obtain a sequence of points x, € M* and semisimple elements
ap ina Cartan subgroup A C G which satisty || Dy, a,|rll > e @n1d) for some
A > 0. Here D, g denotes the derivative of translation by g at x € MY, F is
the fiberwise tangent bundle of M“, and D, a,|F is the restriction of Dy a,
to F(x,).

The pairs (x,, a,) determine empirical measures i, on M* supported on
the orbit {a,(x,) : 0 < s < t,} which accumulate on a measure p that
is a-invariant for some a € A and has a positive Lyapunov exponent for
the fiberwise derivative cocycle of size at least A. Using classical results in
homogeneous dynamics in conjunction with the key proposition from [6], we
averaged the measure u to obtain a G-invariant measure i’ on M with a
non-zero fiberwise Lyapunov exponent; the existence of such a measure u’
contradicts Zimmer’s cocycle superrigidity theorem.

1.3 Difficulties in the nonuniform setting

When I' is nonuniform the space M“ is not compact and the sequence of
empirical measures p, might diverge to infinity in M%; that is, in the limit
we might have a “loss of mass”. Additionally, even if the measures {xt,,} sat-
isfy some tightness criteria so as to prevent escape of mass, one might have
“escape of Lyapunov exponents:” for a limiting measure u, the Lyapunov
exponents may be infinite or the value could drop below the value expected
by the growth of fiberwise cocycles along the orbits {a®(x,) : 0 < s < t,,}.
For instance, the contribution to the exponential growth of derivatives along
the sequence of empirical measures could arise primarily from excursions of
orbits deep into the cusp. If one makes naive computations with the return
cocycle B: G x G/TI" — T (measuring for x in a fundamental domain D the
element of I needed to bring gx back to a D) one in fact expects that the
fiberwise derivative are very large for translations of points far out in the cusp
since the orbits of such points cross a large number of fundamental domains.
The weakest consequence of this observation is that subexponential growth of
the fiberwise derivative of the induced G-action is much stronger than subex-
ponential growth of derivatives of the I'-action. While we still work with the
induced G-action and the fiberwise derivative in many places, the arguments
become more complicated than in the cocompact case.

In the homogeneous dynamics literature, there are many tools to study
escape of mass. Controlling the escape of Lyapunov exponents seems to be
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more novel. To rule out escape of mass, it suffices to prove tightness of family
of measures {11, }. To control Lyapunov exponents, we introduce a quantitative
tightness condition: we construct measures {it,, } with uniformly exponentially
small mass in the cusps. See Sect. 3.2. It is a standard computation to show the
Haar measure on SL(m, R)/SL(m, Z) (or any G/ I" where G is semisimple
and I' is a lattice) has exponentially small mass in the cusps.

1.4 Outline of proof

With the above difficulties in mind, we outline the strategy of the proof of
Theorem B. Lubotzky, Mozes and Raghunathan proved that SL(m, Z) is quasi-
isometrically embedded in SL(m, R). And in this special case, they give a proof
that every element y € SL(m, Z) can be written as a product of at most m>
elements §; contained in canonical copies of SL(2, Z) determined by pairs of
standard basis vectors for R”; moreover the word-length of each §; is at most
proportional to the word-length of y [17, Corollary 3]. (We note however that
such effective generation of I" only holds for SL(m, Z); for the general case,
in [18] a weaker generation of I" in terms of Q-rank 1 subgroups is shown.)
Thus, to show uniform subexponential growth of derivatives for the action of
SL(m, Z), it suffices to show uniform subexponential growth of derivatives
for the restriction of our action to each canonical copy of SL(2, Z).

We first obtain uniform subexponential growth of derivatives for the unipo-
tent elements in SL(2, Z) in Sect. 4. See Proposition 4.1. The strategy is to
consider a subgroup of the form SL(2, Z) x Z? c SL(m, Z). We first prove
that a large proportion of elements in SL(2, Z) satisfy (1). To prove this, we
use that if @’ := diag(e’, e™") then a typical a’-orbit in SL(2, R)/SL(2, Z)
equidistributes to the Haar measure. In particular, for the empirical measures
along such a-orbits we apply the techniques from [4] to show subexponential
growth of fiberwise derivatives along such orbits and conclude that a large
proportion of SL(2, Z) satisfies (1). See Proposition 4.2. The proof of this
fact repeats most of the ideas and techniques from [4] as well a quantitative
non-divergence of unipotent averages following Kleinbock and Margulis. The
precise averaging procedure is different here than in [4].

Having shown Proposition 4.2, we consider the SL.(2, Z)-action on the nor-
mal subgroup Z? of SL(2, Z) x Z? to show that for every n > 0, the ball B, of
radius z in Z? contains a positive-density subset of unipotent elements satis-
fying (1). Taking iterated sumsets of such good unipotent elements of B, (Z?)
with a finite set one obtains uniform subexponential growth of derivatives for
every element in B,,. This relies heavily on the fact that Z is abelian. See
Sect. 4.2.

It is worth noting that the subgroups of the form SL(2, Z) x Z> C I are
also considered in the work of Lubotzky, Mozes, and Raghunathan in [17] as
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well as in Margulis’s early constructions of expander graphs and subsequent
work on property (T) and expanders [19].

Having established Proposition 4.1, we assume for the sake of contradic-
tion that the restriction of o to SL(2, Z) fails to exhibit uniform subexponential
growth of derivatives. We obtain in Sect. 5.2 a sequence ¢, of a’-orbit segments
in SL(2, R)/SL(2, Z) which drift only a sub-linear distance into the cusp with
respect to their length and accumulate exponential growth of the fiberwise
derivative. Here we use that orbits deep in the cusp of SL(2, R)/SL(2, Z) cor-
respond to unipotent deck transformations and that Proposition 4.1 implies that
these do not contribute to the exponential growth of the fiberwise derivative.
Here, we heavily use the structure of SL(2, Z) subgroups.

We promote the family of orbit segments ¢, in M* to a family of measures
{i,} all of whose subsequential limits are A-invariant measures pu on M“
with non-zero fiberwise exponents. To construct w,, we construct a Fglner
sequence F, C G inside a solvable subgroup AN’ where A is the full Cartan
subgroup of SL(m, R) and N’ is a well-chosen abelian subgroup of unipotent
elements. We average our orbit segments ¢, over Fj to obtain the sequence
of measures i, in M*. In general, Fglner sets for AN’ are subsets which are
linearly large in the A-direction and exponentially large in the N’ direction. In
our case the N’-part will not affect the Lyapunov exponent because we work
inside a subset where the return cocycle B restricted to N’ takes unipotent
values and we have already proven subexponential growth of the fiberwise
derivatives for unipotent elements.

The fact that u, behaves well in the cusp is due to two facts: First,
the segments obtained in Sect. 5.2 do not drift too deep into the cusp of
SL(2,R)/SL(2, Z). Second, we choose our subgroup N’ such that the N’-
orbits of each point along each ¢, is a closed torus that is well-behaved when
translated by A. The argument here is related to the fact closed horocycles
in the cusp of SL(2, R)/SL(2, Z) equidistribute to the Haar measure when
flowed backwards by the geodesic flow.

To finish the argument, we show that any AN’-invariant measure on M¢
projects to Haar measure on SL(m, R)/SL(m, Z) using Ratner’s measure
classification and equidistribution theorems. Then, as in [4], we can use [6,
Proposition 5.1] and argue as in the cocompact case in [4] show that p is in
fact G-invariant and thereby obtain a contradiction with Zimmer’s cocycle
superrigidity theorem.

1.5 A few remarks on other approaches
We close the introduction by making some remarks on other approaches, par-

ticularly other approaches for controlling the escape of mass. We emphasize
here that one key difficulty for all approaches is that we are not able to con-
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trol the “images” of the cocycle B: G x G/I" — T in either our special
case or in general. To understand this remark better, consider first the case
where G = SL(2, R) and I' = SL(2, Z). If we take a one-parameter subgroup
c(t) < SL(2, R) and take the trajectory c(¢)x for ¢ in some interval [0, T'] and
assume and assume the entire trajectory on G/ I" lies deep enough in the cusp,
then B(a(t), x) is necessarily unipotent for all ¢ in [0, T']. No similar statement
is true for G = SL(m,R) and I' = SL(m, Z). In fact analogous statements
are true if and only if I has Q-rank one, this is closely related to the fact
that higher Q-rank locally symmetric spaces are 1-connected at infinity. This
forces us to “factor” the action into actions of rank-one subgroups in order to
control the growth of derivatives.

One might hope to obtain subexponential growth of derivatives more directly
for all elements of SL(2, Z), or even directly in SL(m, Z), by proving better
estimates on the size of the “generic” subsets of SL(2, R) (or SL(m, R)) whose
A-orbits define empirical measures satisfying some tightness condition. While
one can get good estimates on the size of the sets in Proposition 4.2 using
Margulis functions and large deviation estimates as in [1,10], the resulting
estimates are not sharp enough to allow us to prove subexponential growth of
derivatives. One can compare with the conjectures in [14] about loss of mass.

An elementary related question is the following: Let B, be a ball of radius
n in a Lie group G (or a lattice I') and suppose there exists subset S, of B,
such that S, and B,, have more or less equal mass, meaning that:

vol(By \ Sp)
vol(By,)

n

for a certain sequence ¢, of numbers converging to zero. Does there exists an
integer k (independent of n) such that for n large:

By C Sy # Sy - %S, )

Observe that the question depends on how fast ¢, is decreasing and on the
group G. For example if G abelian, ¢, can be a sufficiently small constant as a
consequence of Proposition 4.9. Also, it is not hard to see that for any group G
the existence of k is guaranteed if ¢, decreases exponentially quickly. So the
real question is how fast €, has to decrease to zero in order for this statement
to hold. Does (2) holds for G = SL3(Z) and ¢, = 27" for some ¢ < 1? If
the answer to this question is yes, then it would be possible to approach our
results via Margulis functions and large deviation estimates.
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1008 A. Brown et al.

2 Standing notation

We review the notation introduced in [4] and establish some standing notation
and conventions as well as state some facts used in the remainder of the paper.

2.1 Lie theoretic and geometric notation

We write G = SL(m, R)andI" = SL(m, Z). Let g denote the Lie algebra of G.
Let Id denote the identity element of G. We fix the standard Cartan involution
0: g — g given by 6(X) = —X' and write £ and p, respectively, for the +1
and —1 eigenspaces of 6. Define a to be a maximal abelian subalgebra of p.
Then a is the vector space of diagonal matrices.

The roots of g are the linear functionals f; ; € a* defined as

ﬁl,](dlag(tlv 7tm)) = tl _tj

The simple positive roots are; = B ;41 and the positive roots are the positive
integral combinations of {«} that are still roots.

For a root f, write g# for the associated root space. Each root space g’
exponentiates to a l-parameter unipotent subgroup U? C G. The Lie subal-
gebra n generated by all root spaces g? for positive roots 8, coincides with the
Lie algebra of all strictly upper-triangular matrices.

Let A, N, and K be the analytic subgroups of G corresponding to a, n and
€. Then

(1) A = exp(a) is the group of all diagonal matrices with positive entries.
A is an abelian group and we identity linear functionals on a with linear
functionals on A via the exponential map exp: a — A;

(2) N = exp(n) is the group of upper-triangular matrices with 1s on the
diagonal;

(3) K =SO(m).

The Weyl group of G is the group of permutation matrices. This acts tran-
sitively on the set of all roots X.

For 1 < i,j < m, the subgroup of G generated by UP.i and UPii is
isomorphic to SL(2, R). We denote this subgroup by H; ; = SL; ;(2, R).
Then A; j := H; j NI isalattice in SL; ;(2, R) isomorphic to SL(2, Z). Note
then that X; ; := H; j/A; ; is the unit tangent bundle to the modular surface.
We will use the standard notation E; ; for an elementary matrix with 1s on
the diagonal and in the (i, j)-place and Os everywhere else. Note that E; ; and
E;; generate A; ;.

We equip G with a left-K -invariant and right-G-invariant metric. Such a
metric is unique up to scaling. Let d denote be the induced distance on G. With
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respect to this metric and distance d, each H; ; is geodesically embedded. By
rescaling the metric, we may assume the restriction of d to each H; ; coincides
with the standard metric of constant curvature —1 on the upper half plane
SO(2)\SL(2, R). This metric has the following properties that we exploit
throughout.

(1) For any matrix norm || - || on H; ; >~ SL(2, R) there is a C; such that
2log [|All = C1 = d(A,1d) < 2log ||A] + Ci 3)
forall A € H; ;.
(2) Let B(I1d, r) denote the metric ball of radius r in H; ; centered at Id. Then
with respect to the induced Riemannian volume on H; ; we have
vol(B(Id, r)) = 4w (cosh(r) — 1) < 4dme”
and for all sufficiently large r > 0

vol(B(x,r)) > €. 4)

(3) For any matrix norm || - || on SL(m, R), there are constants Cy > 1 and
k > 1 such that for any matrix A € SL(m, R) we have

Kk 'log | All — Co < d(A,1d) < klog ||Al| + Co. (5)

(4) In particular, there are C; and C3 so thatif E; ; € SL(m, Z) is an elemen-
tary unipotent matrix then

d(EF ., 1d) < Cylogk + Cj. (6)

i,j’

2.2 Suspension space and induced G-action

Let M* = (G x M)/ T be the fiber-bundle over SL(m, R)/SL(m, Z) obtained
as follows: on G x M let I act as

(g.x) -y = (gy.aly H(x)
and let G act as
g - (g.x)=(g'g x).

The G-action on G x M descends to a G-action on the quotient M* = (G X
M)/T.Letmw: M* — SL(m, R)/SL(m, Z) be the canonical projection. As in
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1010 A. Brown et al.

[4], we write F = ker D for the fiberwise tangent bundle to M*. Write PF for
the projectivization of the fiberwise tangent bundle. We write Dy g|r: F(x) —
F (gx) for the fiberwise derivative asin [4]. For (x, [v]) € PF and g € G, write

g (x,[v]) := (g x,[DxglFxv])

for the action of g on PF induced by D, g|F.
We follow [6, Section 2.1] and equip G x M with a C!' Riemannian metric
(-, -) with the following properties:

(1) (-, ) is I'-invariant.

(2) for x € M and g € G, under the canonical identification of the G-orbit
of (g, x) with G, the restriction of (-, -) to the G-orbit of (g, x) coincides
with the fixed right-invariant metric on G.

(3) There is a Siegel fundamental set D C G and C > 1 such that for any
g1, & € D, the map (g1, x) — (g2, x) distorts the restrictions of (-, -) to
{g1} x M and {g2} x M by at most C.

The metric then descends to a C! Riemannian metric on M%. Note that by
averaging the metric over the left action of K, we may also assume that the
metric on M is left- K -invariant. This, in particular, implies the right-invariant
metric on G in (2) above is chosen to be left- K -invariant.

To analyze the coarse dynamics of the suspension action, it is often useful to
consider the return cocycle B: G x G/I" — I'.This cocycle is defined relative
to a fundamental domain F for the right I'-action on G. Forany x € G/ I, take
X to be the unique lift of x in F and define B(g, x) to be the unique element
of y e I such that g¥y ! € F. Any two choices of fundamental domain for
I' define cohomologous cocycles but we require a choice of well-controlled
fundamental domains F. Namely, we choose F to either be contained in a
Siegel fundamental set or to be a Dirichlet domain for the identity. With these
choices, we have the following.

Let D C SL(m,R) denote the Dirichlet domain of the identity for the
SL(m, Z) action on SL(m, R); that is

D:={g e SL(n,R) : d(g,1d) < d(gy,1d) forall y € SL(m, Z)}.

Since each H; ; is geodesically embedded in SL(m, R) and since A;; =
H; j NSL(m, Z), it follows

D:=H,ND (7)
is a Dirichlet domain of the identity for the A »-action on Hj,. Viewing

Hj ~ SL(2, R) acting on the upper half-plane model of hyperbolic space
H? = SO(2)\SL(2, R) by Mobius transformations SO(2)\D is the standard
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Dirichlet domain for the modular surface, the hyperbolic triangle with end-
points at 1/2 +iv/3/2, —1/2 +i/3/2, and co.

Lemma 2.1 If F is either contained in either a Siegel fundamental set or a
Dirichlet domain for the identity then there is a constant C such that for all
g€Gandx e G/T

€(B(g.x)) =Cd(g,e) +Cd(x,T) + C.

In the above lemma, ¢ is the word-length of (g, x), d(g, e) is the distance
from g to e in G, and d(x, I') is the distance from x € G/ T to the identity
coset I' in G/ I'. For a Dirichlet domain for the identity, the Lemma is shown
in [25, §2]; for fundamental domains contained in Siegel fundamental sets,
the estimate follows from [11, Corollary 3.19] and the fact that the distance to
the identity in a Siegel domain is quasi-Lipschitz equivalent to the distance to
the identity in the quotient G/ I'. Both estimates heavily use the main theorem
of Lubotzky, Mozes, and Raghunathan [17,18] to compare the word-length of
B (g, x) € SL(m, Z) with log([|B(g, X)) -

Fix once and for all a fundamental domain 7 C D C SL(m, R).

The estimates in Lemma 2.1 is often used to obtain integrability properties
of B and related cocycles with respect to the Haar measure on G/I". As the
function x +— d(x, ") is in L”(G/T", Haar) for any compact set K C G we
have that

x > sup £(B(g. x))
gek

isin L?(G/ T, Haar) for all p > 1. In the sequel, we typically do not directly

use the integrability properties (since we work with measures other than Haar)
but rather the estimate in Lemma 2.1.

3 Preliminaries on measures, averaging, and Lyapunov exponents
We present a number of technical facts regarding invariant measures, equidis-

tribution, averaging, and Lyapunov exponents that will be used in the remainder
of the paper.

3.1 Ratner’s measure classification and equidistribution theorems

We recall Ratner’s theorems on equidistribution of unipotent flows. Let U =
{u(r) = expy(tX)} be a 1-parameter unipotent subgroup in G. Given any Borel
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1012 A. Brown et al.

probability measure  on G/ I let

T Lt
U’ xu:=— u(t)p dt.
T Jo

Theorem 3.1 (Ratner) Let U = {u(t) = eXpy (tX)} be a 1-parameter unipo-
tent subgroup and consider the action on G/ . The following hold:

(a) Every ergodic, U-invariant probability measure on G/ I" is homogeneous
[22, Theorem 1].

(b) The orbit closure Oy := {u -x :u € U} is homogeneous for every x €
G/ T [22, Theorem 3].

(¢) The orbit U - x equidistributes in Oy, that is U T x5, converges to the
Haar measure on Oy as T — oo.

(d) Let B be a root of g and let 5lg(2) C g be the Lie subalgebra generated
by ¢f and g=P. Let e, f,h C slg(2) be an sl(2, R) triple with e € o
and f € g~P and let 4 = span(h). Let H? = exphP. Let u be a UP-
invariant Borel probability measure on G/ T. If v is HP-invariant, then
wisU —B_invariant.

Conclusion (d) follows from [23, Proposition 2.1] and the structure of
s1(2, R)-triples. See also the discussion in the paragraph preceding [22, The-
orem 9]. In our earlier work on cocompact lattices [4], we averaged over
higher-dimensional unipotent subgroups and required a variant of (c) due to
Nimish Shah [24]. Here we only average over one-dimensional root subgroups
and can use the earlier version due to Ratner.

From Theorem 3.1, for any probability measure u on G/ I it follows that
the weak-* limit

Usp:= lim Ul xp
T—o0
exists and that the U -ergodic components of U * p are homogeneous.

3.2 Measures with exponentially small mass in the cusps

We now define precisely the notion of measures with exponentially small
mass in the cusps from the introduction. Let (X, d) be a complete, second
countable, metric space. Then X is Polish. Let u be a finite Borel (and hence
Radon) measure on X. We say that i has exponentially small mass in the cusps
with exponent n,, if forall0 < n < n,

/ "0 g (x) < oo (8)
X
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for some (and hence any) choice of base point xg € X. We say that a collection
M = {u} of probability measures on X has uniformly exponentially small
mass in the cusps with exponent ng if for all 0 < n < ng

sup {/e”d(xo’x) d,u;(x)} < 0.

ngeM

Below, we often work in in the setting X = G/ I" where G = SL(m, R) and
I' = SL(m, Z) and where d the distance induced from a right-invariant metric
on G. When X = SL(m, R)/SL(m, Z) we interpret a point x = gI" € G/ T
as a unimodular lattice Ag = g - Z™. Fix any norm on R™ and define the
systole of a lattice A C R™ to be

S(A) :=1inf {||v]| : v € AN{0}}.

We have that

_ 1—log(3(A) _

= ¥ d(gr, el = ©)

for some constants whence

Clecld(gf‘,er) < 1 < Czeczd(gf‘,ef‘)‘
= —S(Ag) =

Thus, if we only care about finding a positive exponent n,, > 0 such that (8)
holds for all n < n,, it suffices to find n such that

/8(Ag)'7 du(gl) < oo. (10)

We define the systolic exponent ni to be the supremum of all n satisfying (10).

In the sequel, we will frequently use the following proposition to avoid
escape of mass into the cusps of G/I' when averaging a measure along a
unipotent flow.

Proposition 3.2 Let U be a 1-parameter unipotent subgroup of G. Let |1 be
a probability measure on X = SL(m, R)/SL(m, Z) with exponentially small
mass in the cusps. Then the family of measures

(UT %« :T eRYU{U * )

has uniformly exponentially small mass in the cusps.
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3.3 Proof of Proposition 3.2

We first show that the family of averaged measures
(UT % pu: T eR)

has uniformly exponentially small mass in the cusps. The key idea is to use
the quantitative non-divergence of unipotent orbits following Kleinbock and
Margulis.
Lemma 3.3 Let &« be a probability measure on X = SL(m, R)/SL(m, Z)
with exponentially small mass in the cusps and systolic exponent ni.

Then the family of measures {UT s v : T € R} has uniformly exponentially
small mass in the cusps with systolic exponent min{ni, #}.

Proof Let A C R™ be a discrete subgroup. Let ||A|| denote the volume of
Ar/A where AR denotes the R-span of A. It follows from Minkowski’s
lemma that there is a constant ¢, (depending only on m) such that if

IA] < (p))®)

then there is a non-zero vector v € A with ||v|| < ¢, 0. In particular, if
§(A) > p then for some constant c¢;, we have

Al > (c),p)™@)

for all discrete subgroups A C A.

From [15, Theorem 5.3] as extended in [16, Theorem 0.1], thereisa C > 1
such that for every Ag € G/T" and ¢ > 0, if §(Ag) > p then, since ||A] >
(c,’,l,o)rk(A) for every discrete subgroup A C A, we have

m{te[o,T]:a(Au,g)ge}§c< - )”’ZT:é(f)’”zT (11)
()™ 'p p

where m(A) is the Lebesgue measure of the set A C R. Note that (11) still
holds even in the case ¢ > p. Note that if 8 < # then for ¢ < p we have

— T<|—) T.
o J
we have (for all ¢ > 0 including ¢ > §(Ag)) that

1

In particular, when 8 < s

B
mit €10, T]: 8(Ay,g) <} < C (5(18\g)> !
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Then for n > 0 and 8 < 2 we have

/ [8(A)]"dUT % n(g)

1 T
=/M?/O [8(Au, )" dt dju(g)

1 o0
N /M 7/0 m{t € [0, T1: [8(Au)]™" = €} dedpu(g)

IA

f ! [T+ f it € 10,71+ [5(Au) ™" = €) cuz} du(g)
mT 1

:1+/ l/ mit € [0, T] : [8(Au,g)] < €771} d€ dpu(g)
uT Ji
B

<1+/ / T | dedu(g)
IZ'I(S(A)

R 1\ (1)
=1+C d — d?
" (fM<8<Ag>) “(g)) /1 (ﬁ)

which is uniformly bounded in 7" as long as n < 8 < min{ni, #}. O

For the limit measure U % u = lim7_oo UT % . we have the following
which holds in full generality.

Lemma 3.4 Let (X, d) be a complete, second countable, metric space. Let v
be a sequence of Borel probability measures on X converging in the weak-%
topology to a measure v. If the family {v;} has uniformly exponentially small
mass in the cusps with exponent ng then the limit v has exponentially small
mass in the cusps with exponent no.

Proof We have that v; — v in the weak-* topology. In particular, for any
closed set C C X and open set U C X we have

lim supv;(C) < v(C) and hmlnfvj(U) >v(U).

]—)OO

Fix0<n <n <noandtakeézzﬁ—l.FixNWith

fe”d(x’x()) dvi(x) < N
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for all j. Using Markov’s inequality, for all M > 0 and every j we have
vj{x T S My < N/M

SO
p{x : M0 S My < N/M.

Then, for the limit measure v, we have
o0
/ M0 gy (x) = / vix ;460N > py am
G/T 0
00 1/(1+46)
:/ ix : (e’id“w)) S My am
0

o
=/ p{x : eM060X) > a8y gpp
0
o0
N

3.4 Averaging certain measures on SL(m, R)/SL(m, Z)
Take {7y, ..., o} to be the standard set of simple positive roots of SL(m, R):
aj(diag(e", ceey et’")) =1 —tj41.

Let H; be the analytic subgroup of SL(m, R) whose Lie algebra is gener-
ated by roots spaces associated to {1} and let H> be the analytic subgroup
of SL(m, R) whose Lie algebra is generated by roots spaces associated to
{+a3, ..., +a,}. We have Hy = SL(2,R) and H, = SL(m — 2, R). Then
H = H; x Hy C SL(m, R) is the subgroup of all matrices of the form

B0
0cC
where det(B) = det(C) = 1.
We let A’ be the the co-rank-1 subgroup A’ C A of the Cartan subgroup A
givenby A’ = AN H.Let§ = o) + - - - + a, be the highest positive root.

Proposition 3.5 Let ju be any H -invariant probability on SL(m, R) /SL(m, Z).
Let B =0y or B/ =8 andlet B = —ap or B = —6.
Then UP % p is H-invariant and
U p « UP « 7
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is the Haar measure on G/ I.

Proof We have that p is A’-invariant. Let £/ = UP % u and note that u/
remains H- and A’-invariant.

Case 1(a) B’ = ap. Consider first the case that B’ = a». Then ' remains
invariant under U ~%! and U ™% for all 3 < j < n since these roots commute
with 8’. By Theorem 3.1(d) we have that u’ is also invariant under U%! and
U% for all 3 < j < n. Taking brackets, ¢’ is invariant under U# for every
positive root § € X .

Case 1(b) 8/ = 6. Consider now the case that 8’ = §. Then u’ remains
invariant under U%' and U%/ for all 3 < j < n since these roots commute
with §. By Theorem 3.1(d) we have that 1 is also invariant under U ~%! and
U~% forall 3 < j < n. Taking brackets, u’ is invariant under U B for every
positive root B of the form 6 —ay, —ay—1 — - —0o; = a; + -+
for each j > 3. In particular, 1’ is invariant under U%' %2 and hence also
invariant under U%?. In particular  is invariant under U? for every positive
root B € .

Note that in either case, we have that ' is invariant under U# for every
positive root f € X .

Letii=UP .

Case 2(a) ,3 = —ap. If ,3 = —ay, then [ remains invariant under U%! and U%/
forall 3 < j < n.Note additionally /& remains invariant under the highest-root
group U%. Again, by Theorem 3.1(d) we have that /i is also invariant under
U~ and U~% for all 3 < j < n. In particular £ is also invariant under U
for every negative root 8 € X _. It follows as in Case 1(b) that i is invariant
under U2 and hence invariant under U# for every positive root 8 € ¥ . Thus
W is G-invariant.

Case 2(b) ,3 = —6. If ,é = —4§, then i remains invariant under U ! and
U~% for all 3 < j < n. Note additionally /& remains invariant under U“2.
Again, we have that [ is also invariant under U! and U%/ forall 3 < j < n.
In particular /i is also invariant under U# for every positive root 8 € X . As
in Case 1(b) that /1 is invariant under U ~*2 and hence invariant under U# for
every negative root 8 € ¥_. Thus u is G-invariant. O

3.5 Lyapunov exponents for unbounded cocycles

Let (X, d) be a second countable, complete metric space. We moreover assume
the metric d is proper. Let G act continuously on X.

Let£ — X be acontinuous, finite-dimensional vector bundle equipped with
anorm ||-||. A linear cocycle over the G-actionon X isanaction A: Gx& — &
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by vector-bundle automorphisms that projects to the G-action on X. We write
A(g, x) for the linear map between Banach spaces &, and &,.. By the norm
of A(g,x) we mean the operator norm and the conorm is m(A(g, x)) =
I A(g, x)~ 1| ~'. We say that A is tempered with respect to the metric d if
there is a k > 0 such that for any compact set K C G and base point xg € X
there is C > 1 so that

sup [ A(g. x)|| < Cet
gek
and
1
inf m(A(g, x)) > _e—kd(x,xo)
Inf m(Alg, ) =
where || - || denotes the operator norm and m(-) denotes the operator conorm

applied to linear maps between Banach spaces &£, and &..

If o is a probability measure on (X, d) with exponentially small mass in
the cusps, it follows that the function x — d(x, xg) is Ll([L) whence we
immediately obtain the following.

Claim 3.6 Let p a probability measure on X with exponentially small mass
in the cusps. Suppose that A is tempered. Then for any compact K C G, the
functions

x +— suplog || A(s, x)||, x> inf logm (A(s, x))
seK seK

are L' ().

Givens € G and an s-invariant Borel probability measure ;« on X we define
the average leading (or top) Lyapunov exponent of A to be

, 1
hop.s.u.A = inf f log [LAG", )| dpe(x). (12)

From the integrability of the function x — log ||.A(s, x)|| we obtain the finite-
ness of Lyapunov exponents.

Corollary 3.7 For s € G and p an s-invariant probability measure on X
with exponentially small mass in the cusps, if A is tempered then the average
leading Lyapunov exponent hop. .10, A of A is finite.

Note that for an s-invariant measure i, the sequence f log || A(s™, x) || d(x)
is subadditive whence the infimum in (12) maybe replaced by a limit.

As in the case of bounded continuous linear cocycles, we obtain upper-
semicontinuity of leading Lyapunov exponents for continuous tempered
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cocycles when restricted to families of measures with uniformly exponentially
small measure in the cusp.

Lemma 3.8 Let A be atempered cocycle. Givens € G suppose the restriction
of the cocycle A: G x £ — & to the action of s is continuous.

Then—when restricted to a set of s-invariant Borel probability measures
with uniformly exponentially small mass in the cusps—the function

m = )‘top,s,u,A
is upper-semicontinuous with respect to the weak-x topology.

Proof Let M = {ju;}cez be a family of s-invariant Borel probability mea-
sures with uniformly exponentially small mass in the cusps. As the pointwise
infimum of continuous functions is upper-semicontinuous, is enough to show
that the function

M—=>R,  p /10g IAG™, )1l dpe(x)

is continuous with respect to the weak-* topology for each n. As the weak-*
topology is first countable, it is enough to show p > [ log || A(s™, x)|| d e (x)
is sequentially continuous.
Let u; — oo in M. Given M > 0, fix a continuous ¥pr: X — [0, 1]
with
Yy (x) =1ifd(x,x9) < M and ¥y (x) =0if d(x, x0) > M + 1.

As we assume our metric is proper, x — ¥ (x) log || A(s", x)| isabounded
continuous function whence

/10g¢M(X) log | AGs™, )|l dpwj(x) — fwmx) log [l AGs™, ) || d oo (x).

Moreover, there are C > 1,k > 1, and n > 0 such that for all x € X and
Mne € M

—log C — kd(x, x9) <log | A(s", x)|| <logC + kd(x, xp),

and
fe”d(x’x(’) dug(x) < C.
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In particular,
pe(x s d(x, x0) = M}) < Ce™"™M.

Thus for any ; € M, we have

/ [og IAG" 1| — Yns () log A", )1l diee ()
< / [ og LA™, )| — s (¥) log [LAG™, )| dpee (x)
{x:d(x,x0)>M}
< f [ og I1AG". )1l| dyue ()
{x:d(x,x0)>M}
< / log C + kd(x, x0) dp(x)
{x:d(x,x0)>M}

< (log C)Ce™™ +k f d(x, x0) dpug (x)
{x:d(x,x0)=M}
o0

< (logC +kM)Ce™™ +k/ pefx o d(x, xo) > €} d¢
M

o0
< (logC +kM)Ce ™™ 4+ k / Ce " du
=M
Ce'(=M)
< (logC +kM)Ce™™ 4 f———
n

It follows that given ¢ > 0 there is M so that

/ | log lAG", ) Il = ¥ (0) log LA™, x) ||| d e (x) < &

forall u, € M.
In particular, taking M and j sufficiently large we have

| [ tog 146" 0l i~ [ g 1AG". 1 |
< [ 1og IAG" 31 = s o ILAG" ] i
+| [ v toglAG” ol i~ [ artog IAG" ) diae

+ / | log [lAGs", )l = Yrar log AG", I dp

< 3e.
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Sequential continuity then follows. O

3.6 Lyapunov exponents under averaging and limits

We now consider the behavior of the top Lyapunov exponent Aop, s, ., 4 as We
average an s-invariant probability measure p over an amenable subgroup of
G contained in the centralizer of s.

Lemma 3.9 Lets € G and let u be an s-invariant probability measure on X
with exponentially small mass in the cusps. Let A: G x & — & be a tempered
continuous cocycle.

For any amenable subgroup H C Cg(s) and any Fglner sequence of pre-
compact sets F,, in H, if the family { F,, x i} has uniformly exponentially small
mass in the cusps then for any subsequential limit (' of {F,, * 1} we have

)\top,s,u,A = )\top,s,/x/,A-

Proof First note that Lemma 3.4 implies the family {F,, * u} U {u'} has uni-
formly exponentially small mass in the cusps. Note also that for every m, the
measure Fj, * [ is s-invariant.

We first claim that Aop s, 0,4 = Atop,s,u,.A fOr every m.

For t € H define ¢;(x) = sup{|.A(z, x)||, m(A(t, x))~'} and let ¢, (x) =
Sup;ep,, Cr(x). As Fy is precompact, from Claim 3.6 we have that logc,, €

L'(w).
For x € M and t € F,,, the cocycle property and subadditivity of norms
yields

log [l AGs™, tx)[| < log [AG ™", 1) || + log [LAGs", %) || + log [A(z, s"x)|
= log | A(, x) ™" +log [LAGs", x) || + log [LA(z, s"x) |
=< log ey (x) 4 log e (s" (x)) + log [ A(s™, x)].

Using that p is s-invariant, we have for every n that
1
/10g IAG™, )l d(Fp % p)(x) = m/ /10g IAG™, )l dt * pu(x) dt
m m
1 n
= —/ /log IAG", tx)|| du(x) dt
|Fm| Fy,
1
<= (/10gcm(X) + log cp (s" (x)) + log [l A(s™, x) | a’M(X)) dt

|Fm| Fn

<2 / log ¢ (x) dpe(x) + / log [l A(s", )1l dpu(x)
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Dividing by n yields Awp,s, Fpp, A < Atop,s,u,.A- The reverse inequality is
similar.

The inequality then follows from the upper-semicontinuity in Lemma 3.8.

|

Consider now any ¥ € g with |Y|| = 1, apoint x € X, and t > 0.
The empirical measure 7 (Y, ¢, x) along the orbit exp(sY)x until time ¢ is the
measure defined as follows: given a bounded continuous ¢: X — R, the
integral of ¢ with respect to the empirical measure n(Y, ¢, x) is

t
/qbdn(Y,t,x) = ;/ ¢(exp(sY) - x) ds.
0

Similarly, given a probability measure p© on X, the empirical distribution
n(Y, t, u) of u along the orbit of exp(sY) until time ¢ is defined as

1 t
/d)dn(Y,t,u) = ;/X/O ¢(exp(sY) - x) ds du(x).

Consider now sequences Y, € g with ||¥, || = 1 and ¢, > 0. For part (c) of
the following lemma, we add an additional assumption that the action of G on
(X, d) has uniform displacement: for any compact K C G there is C’ such
that forall x € X and g € K,

d(g-x,x) <C.

Lemma 3.10 Suppose the action of G on (X, d) has uniform displacement
and let A: G x £ — & be a tempered continuous cocycle.

Let Y, € gand t, > 0 be sequences with ||Y,|| = 1 for all n and t, — oo.
Let , be a sequence of Borel probability measures on X and define n,, =
N(Yy, ty, n) to be the empirical distribution of (,, along the orbit of exp(sYy)
for0 <s <t,. Assume that

(1) the family of empirical distributions {n,} defined above has uniformly
exponentially small mass in the cusps; and

() flog lAexp(t,Yy), X) |l diun (x) > ety.

Then

(a) the family {n,} is pre-compact;

(b) for any subsequential limit Yoo = lim o0 Yy, any subsequential limit
Noo Of {1} is invariant under the 1-parameter subgroup {exp(tYoo) : 1 €
R},

(€) Aop,exp(Yao) oo, A = € > 0.
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Proof of Lemma 3.10(a) and (b) As in the proof of Lemma 3.8, from the
assumption that {n,} has uniformly exponentially small mass in the cusps
we obtain uniform bounds

na({x 1 d(x,x09) = 4£}) < Ce

for all n. Combined with the properness of d, this establishes uniform tightness
of the family of measures {n,} and (a) follows.

For (b), let¢p: X — R be a compactly supported continuous function. Then
forany s > 0

/X¢ oexp(s¥eo) — P dn, = /qu oexp(s¥Ys) — ¢ oexp(sYy,) dn,
+ / ¢ oexp(s¥y) — ¢ dny
X

The first integral converges to zero as the functions ¢ o exp(wYso) — ¢ ©
exp(wY;,) converges uniformly to zero in n for fixed w. The second integral
clearly converges to zero since for t,, > s we have

/ 6 0 exXp(sY) — b din
X

1o
T /0 /X¢ (exp ((s + 1Y) x) — ¢ (exp(tY,)x) dpun(x) dt

1 s
:—[— / f $ (exp (1Y) x) i (x) dit
In 0 JX

th+s
+f f ¢ (exp (tYy,) x) dpy(x) dt]
th X

which converges to 0 as t,, — 00 as ¢ is bounded. O

The proof of Lemma 3.10(c) is quite involved. It is the analogue in the non-
compact setting of [4, Lemma 3.6]; we recommend the reader read the proof
of of [4, Lemma 3.6] first. Two technical complications arise in the proof of
Lemma 3.10(c). First, we must control for “escape of Lyapunov exponent”
as our cocycle is unbounded. Second, in [4] it was sufficient to consider the
average of Dirac masses d,, along a single orbit exp(sY,)x,; here we average
measures i, along an orbit of exp(sY;,).

To prove Lemma 3.10(c) we first introduce a number of standard auxiliary
objects. Let P — X denote the projectivization of the tangentbundle £ — X.
We represent a point in PE as (x, [v]) where [v] is an equivalence class of non-
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zero vectors in the fiber £(x). For each n, let 0;,: X — £~.{0} be a nowhere
vanishing Borel section such that

||A(6Xp(ln Y,), x) (00 (X)) ||l (o (x))”_l = ||.A(exp(tn Yn), x)|l

for every x € X. The G-action on £ by vector-bundle automorphisms induces
anatural G-action on P€ which restricts to projective transformations between
each fiber and its image. For each n, let 7, be the probability measure on PE
given as follows: given a bounded continuous ¢: P€ — R define

1 [
¢ dny = —/ / P(exp(tYy) - (x, [04(X)]) dpin(x) dt.
PE hJo Jx

We have that 7,, projects to ,, under the natural projection P€ — X; moreover,
if 1, is a subsequence converging to 1, then any weak-* subsequential limit
Noo Of {ﬁnjk} projects to 7so.

Define ®: g x P€ — R by

(Y, (x, [v]) := log (| A(exp(¥), x)v| vlI™") .
Note for each fixed Y € g that ® satisfies a cocycle property:
D((s +0)Y, (x, [v]) = D(tY, (x, [v])) + P(sY, exp(tY) - (x, [v])) (13)

By hypothesis, there are C > 1, k > 1, and n > 0 such that

/end(x,m) dn, < C

for all n and

1
¢ < AGexp(), vl ol 7 < Cetde)

for all (x, [v]) € P€ and Y € g with ||V < 1.
For each n, let

My(x) = sup {d((exp(tY,)x),xo)}.

0<r<t,
As we assume the G-action on (X, d) has uniform displacement, take

Ci= sup {dexp)- -x,x)}.
IYI<lxeX
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We have
1 In
. /O f M@0 gy () gy — / M) gy < )
n X

If #, > 1 then for every x there is an interval /,, C [0, #,] of length 1 on which
d ((exp(tYy)x, x0) > (My(x) — Cy)

forall r € I,. It follows that

/emMn(x)—cl)dMn(x) 5/ / MO0 gy g (v) < .
X X JI

By Jensen’s inequality we have

f N(M,(x) — C1) din (x) < log f e"MnO=C0 g, (x)
X X

whence
/ M, (x) dun(x) < n~ ' (log C +1logt,) + Cy =: n~ ' logt, + Co.
Since || Y]] = 1, we have

sup / | (sYy, exp(rYy) - (x, [00 ()] dpin(x)
X

0=<r=<ty,0=s<1

5/ sup | P(sYy, exp(Yy) - (x, [on(X)D)| dpn(x)
X 0<t<t,,0<s<l1 (14)

< / og C| + kM, (x) djin (x)

< [log C| + k(n~ " logt, + C)

=: kn_l logt, + Cs.
In particular, we have
1
— [ log || A(exp(tnYn), X) |l dpin(x)
h Jx

1
_ 1 / O (1, Yy, (x, [0 (0)1)) ()
Ih Jx
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1
= /X B (Un] Yo, (x, 00 ()])) ditin ()
1
e /X Ot — Lin]) Vs xp(Ltn ] Yn) - (6, 00 ()])) i ().

Since

1
t_/xq)((t — DY, exp([tn1Yn) - (x, [02(X)]) ditn(x)

n

1
= —(kn~logt, + C3)
n
goes to 0 as t, — oo it follows that

lim inf/ thD(LthYn, (x, [0 (X)])) dan(x)
X

n—oo n

—liminf~ [ log | A@xp(tYa), Oll dinr) 1Y)
X

n—>00 f,

>e > 0.

With the above objects and estimates we complete the proof of Lemma 3.10.

Proof of Lemma 3.10(c) Consider first the expression f DYy, ) dn,. We
have

[ et di
_ tl /0 § /X (Y, exp(tYy) - (x. [0 (0)])) dpan (x) dt
- OU"J fX (¥, exp(tYy) - (2. [0w(0)])) dpn () dt
v fL :J | @0 exp(t1,) - (.o (60D) i)

Note that the contribution of the second integral is bounded by

1 In
F [ e(expur - o on) diano ar
In St} Jx
1
= —(kn~logt, + C3)
n
which goes to zero as t,, — 0.
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Repeatedly applying the cocycle property (13) of ®(Y,, ) we have for
t, > 1 that

Ltn]
1 / / (Y, exp(tY,) - (x. [o4()]) dt dptn(x)
th Jx Jo
1 1
=—// O (L1l Yn, exp(tYy) - (x, [04(X)])) dt dpn(x)

/ / ®(Lta) Yo, (. [0 ()D) = D (1Y, (x, [0, (0)]))
+ B (1, exp(1]Y,) - (x, [0 (0)]) ) dt ()
S f ®(Lta) Yo, (. [ ()]) dptn (x)
/ f (17, (x. [0 (0)])
+ B (1Y xp(Lia) Vo) - (¥, [02(0)D) ) dr i ()

From (14), the contribution of the second and third integrals is bounded by

t f f (1. (x. [0 (D) + S(1Tr. exp(Lin) o) - (5, (2 CD) ) iyt ()

< 7 2(kn—‘ logt, + C3) dt
n

1
= —2(kn""log1, + C3)
n

which tend to zero as t, — oo. We then conclude from (15) that

liminfoD(Yn, ) diin =1iminftlf D (Lt Yo (x, [0 (X)]) dpin (x)
n—oo n X

n—oo

>e>0. (16)

To complete the proof of (c), for M > 0 take {37 : X — [0, 1] continuous
with

Yy(x) =1ifd(x, x9) < M and ¥y (x) =0if d(x, xg) > M + 1.
Let Wy : PE — [0, 1] be

Wi (x, [v]) = ¥m (x).
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and define ®,;: g x P€ — R tobe

O (Y, (x, [0D) == War(x, DD (Y, (x, []).

As the family

N = {12} U {10}

has uniformly exponentially small mass in the cusps we have
[ etomay <

and hence n{x : d(x,xg) > £} < Ce™ " for all n € N. It follows for all
1 € {fln} U {flo} that—Iletting n € N denote the image of 77 in X—we have
for any Y € g with [|Y] <1 that

DY, ) — Pyu(Y, )l dn
Pe

|P(Y, ) — Py (Y, )| dn

/{(x, [v]IePE:d (x,x0)=M}

<

/ | DY, )| dn
{(x,[v]ePE:d (x,x0)=>=M}

<

/ log(C) + kd(x, xo) dij
{xeX:d(x,xg)>=M}

(0,
< (log C + kM)Ce™™ +k/ Alx s d(x, xo) > £} de
M

Cel(—M)
< (log C + kM)Ce™™ 4 =5

In particular, given any § > 0, by taking M > 0 sufficiently large we may
ensure that

/ (Y, ) — Dy (Y, )| dif < 8
PE
for any

1 € {7n} U {lloo}-
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Since the restriction of &y to {Y € g : |Y] < 1} x PE is compactly
supported, it is uniformly continuous whence

f Bt (Y, ) diitn — By (Yoo, ) difoo — 0

as n — oo. In particular given § > 0 we may take M and n sufficiently large
so that

[ ot din - [ ot din
PE PE
5/ (D (Y, ) — Byt (Vs )| i
PE
+/ (D41 (Yo, ) — Dyg (Yoo, )] i
PE
+f 1 (Yoo, ) — By (Yoo, )| difec
PE
< 36.

Let goo = exp(¥x). Note for each n that

/Xlog IA(g50: )1 dNoo(x) = /M log(|A(gh, )| vl dijeo(x, [v]).

It then follows for any § > 0

1 \
Mop.goonA = Jim = | 10g [A(g5e 01l doo ()

1
> lim inf — fpg log (| A(ghe, )v] I1vl™") dijeo(x, [0])

n—oo n

= lim inf l / D (nYs0, (x, [V]) dijoo(x, [V])
PE

n—o00 n

_ f D (Yoo, (x. [1])) diloo (x. [0])
PE

> liminf/ O (Yy, ) dity — 36.
PE

n—o0

where the third equality follows from the invariance of 7, and the cocycle
property of ®. Since

liminff dY,,)dn, >¢
PE

n—oo
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we conclude that
)‘tOP,goo,U,.A > &— 36

for any 6 > 0 whence the result follows. O

3.7 Oseledec’s theorem for cocycles over actions by higher-rank abelian
groups

Let A C G be a split Cartan subgroup. Then A ~ R? where d is the rank of
G. We have the following consequence of the higher-rank Oseledec’s multi-
plicative ergodic theorem (c.f. [5, Theorem 2.4]).

Fix any norm | - |on A ~ R? and let n: X — R be

n(x) := sup log || A(a, x)||.

la|<1

Proposition 3.11 Let u be an ergodic, A-invariant Borel probability measure
on X and suppose n € L% (). Then there are

(1) an a-invariant subset Ao C X with u(Ag) = 1;
(2) linear functionals A;: A — R for1 <i < p;
(3) and splittings E(x) = @le Ey; (x) into families of mutually transverse,
w-measurable subbundles Ej;(x) C £(x) defined for x € Ao
such that
(@) A(s, x)E;,(x) = E), (s - x) and
log || A(s, — A
) lim 28 IAG, DI = 2i(s) 0
|s|—o00 |S|

forall x € Ag and all v € Ej,;(p)~{0}.

Note that (b) implies for v € E;, (x) the weaker result that for s € A,
lim 11 k, = %i(s).
m 7 log [AG™, X)) = Ai(s)
Also note that for s € A, and i an A-invariant, A-ergodic measure that
Atop,s. . A = max Ai(s). (I7)

If 1 is not A-ergodic, we have the following.

Claim 3.12 Let p be an A-invariant measure with n € L%'(u) and
Aop,s,, 4 > O for some s € A. Then there is an A-ergodic component '
of n with
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(1) e LE ()
(2) there is non-zero Lyapunov exponent X j # 0 for the A-action on (X, /').

We have the following which follows from the above definitions.

Lemma 3.13 Let i be an A-invariant probability measure on X with expo-
nentially small mass in the cusps. Suppose that A is a tempered cocycle. Then
n € L(w) forall ¢ > 1. In particular, n € L% ().

3.8 Applications to the suspension action

We summarize the previous discussion in the setting in which we will apply
the above results in the sequel. Recall we work with in a fiber bundle with
compact fiber

M—> MY=(GxM))T 5 G/T

over non-compact base G/ I'. From the discussion in [6, Section 2.1], we may
equip G x M with a C! metric that is

(1) T'-invariant;

(2) the restriction to G-orbits coincides with the fixed right-invariant metric
on G;

(3) there is a Siegel fundamental set D C G on which the restrictions to the
fibers of the metrics are uniformly comparable.

The metric then descends to a C! Riemannian metric on M%. We fix this
metric for the remainder. It follows that the diameter of any fiber of M¢ is
uniformly bounded. It then follows that if 1 is a measure on M then the image
v = m,p in G/ T" has exponentially small mass in the cusps if and only if u©
does; moreover, a family {u,} of probability measures on M* has uniformly
exponentially small mass in the cusps if and only if the family of projected
measures {m4/4c} on G/I' does. Note that by averaging the metric over the
left-action of K, we may also assume that the metric is left- K -invariant. This,
in particular, implies the right-invariant metric on G in (2) above is left-K-
invariant.

For the remainder, the cocycle of interest will be the fiberwise derivative
cocycle on the fiberwise tangent bundle,

A(g,x): F - F, A(g,x) = Dyg|F.
Given g € G and a g-invariant probability measure on M“, the average leading

Lyapunov exponent for the fiberwise derivative cocycle for translation by g is
written either as kgp’u’g Or as Ap,1i,g, A-
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The next observation we need is a variant of a fairly standard observation
about cocycle over the suspension action.

Lemma 3.14 The fiberwise derivative cocycle D, g|F is tempered.

Proof Write m: M* — G/ I'. By the construction of the metric in the fibers
of M* there is a C > 0 with the following properties: given x € M“ and
g € G, writing x = w(x) € G/I" we have

IDyg|p| < CPEDF!
and
m(Dyg|p) = CPEN=1,

The conclusion is then an immediate consequence of Lemma 2.1. O

We now assemble the consequences of the results in this section in the form
we will use them below in a pair of lemmas. The first is just a special case of
Corollary 3.7.

Lemma 3.15 Let s € A and let v be an s-invariant measure on G/ I" with
exponentially small mass in the cusps. Let u be an s-invariant measure on M*
projecting to v. Then the average leading Lyapunov exponent for the fiberwise

. . F . .
derivative cocycle, Mop,pu,s» 1S finite.

The second lemma summarizes the above abstract results in the setting of
G acting on M“.

Lemma 3.16 Let s € A and let v be an s-invariant measure on G/ I" with
exponentially small mass in the cusps. Let u be an s-invariant measure on M*
projecting to v.

(1) For any amenable subgroup H C Cg(s), if v is H-invariant then
(a) forany Folner sequence of precompact sets F,, in H, the family { Fy, * 1}
has uniformly exponentially small mass in the cusps, and
(b) for any subsequential limit 1" of {F,, * u} we have
F F
)‘top,s,u = )‘top,s,u/'
(2) For any one-parameter unipotent subgroup U centralized by s
(a) the family {UT % u} has uniformly exponentially small mass in the
cusps, and
(b) for any accumulation point ' of {U T xu)as T — oo we have

F F
)‘top,s,u = )‘top,s,,u/'
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Proof Part (a) of the first conclusion is immediate since H-invariance of v
implies v = m,(F, * u) for all n; part (b) then follows from Lemma 3.9. The
second conclusion follows from Proposition 3.2 and Lemma 3.9. O

We remark that we will also use Lemma 3.10 in the proof of the main theo-
rem, but we do not reformulate a special case of it here since the reformulation
adds little clarity.

4 Subexponential growth of derivatives for unipotent elements

In this section we show that the restriction of the action « to certain unipotent
elements in each copy A; ; = SL(2, Z) have uniform subexponential growth
of derivatives with respect to a right-invariant distance on SL(2, R). Note
that each SL(2, R) is geodesically embedded whence the SL(2, R) distance
is the same as the SL(m, R) distance. By [17,18], the SL(m, R) distance is
quasi-isometric to the word-length in SL(m, Z). Recall that d(-, -) denotes a
right-invariant distance on SL(m, R) and that Id is the identity in SL(m, R).

For1 <i < j # n,let A;j; = SL(2,Z) be the copy of SL(2,Z) in
SL(m, Z) corresponding to the elements in SL(m, Z) which acts only on the
lattice Z> < Z" generated by {e;, e j}. Note that as all A; ; are conjugate under
the Weyl group, it suffices to work with one of them.

Define the unipotent element u := |:(1) i] viewed as an element of A; ;.
Note that any upper or lower triangular unipotent element of A; ; is conjugate
to a power of u under the Weyl group.

Proposition 4.1 (Subexponential growth of derivatives for unipotent ele-
ments) For any A; j and any ¢ > 0, there exists N¢ > 0 such that for any
n > Ng:

I D(@(™))| < @1

To establish Proposition 4.1, we first show that generic elements in SL(2, Z)
have uniform subexponential growth of derivatives. This first part requires
reusing most of the key arguments from [4] in a slightly modified form. We
encourage the reader to read that paper first.

4.1 Slow growth for ‘“most’ elements in SL(2, Z)

Fore > 0,k > 0, and x € SL(2, R), we make the following definitions:

(1) For § € SL(2, R) let | S| denote the Haar-volume of S.
(2) Let K = SO(2) c SL(2,R). For § C K let |S| denote the Haar-volume
of S.
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(3) Let Bi(x) denote the ball of radius k centered at x in SL(2, R).

(4) Let T, := By(Id) N SL(2,7Z). Given S C SL(2,Z) write |S| for the
cardinality of S.

(5) Define the set of e-bad elements to be

M, ) = {y € Ty such that | D(a(y))|| > €.
(6) Define the set of e-good elements to be
Gs,k =T \ Ms,k-

To establish Proposition 4.1, we first show that the set G, contains a
positive proportion of 7T when k is large enough.

Proposition 4.2 For any § > 0, the set G, has at least (1 — 6)|T| elements
for every sufficiently large k.

We have the following well-known fact. See for instance [9, Section 2].
Lemma 4.3 There exist positive constants c, C such that for any k > 0:
¢|Bi| < |Tk| < C|Bk].

For an element x € SL(2,R), let x denote the projection in SL(2, R)/
SL(2,Z). Define

I DigllFiber = sup{llDyglrll : y € M, w(y) = x}.
Let
G, (x) := {g € Bi(x) such that || Dig||piper < €'V},
Lemma 4.4 For almost every x € SL(2, R) and any 6 > 0 we have
|G, (X)| > (1 —8)| By
for all k sufficiently large.

Proof Leta' € SL(2, R) be the matrix

e 0
a .- Oeit .

Recall that the action of the one-parameter diagonal subgroup {a’} on
SL(2, R)/SL(2, Z) is ergodic with respect to Haar measure.

@ Springer



Zimmer’s conjecture for actions of SL(m, Z) 1035

Let M denote the set of Borel probability measures on SL(2, R)/SL(2, Z)
equipped with the standard topology (dual to bounded continuous functions).
The topology on M is metrizable (see [2, Theorem 6.8]); fix a metric on p 4
on M.

Consider the function i : SL(2, R)/SL(2,Z) — R given by ¢ (x) :=
e"*:x0) where xg = SL(2,7Z) is the identity coset and n > 0 is chosen
sufficiently small so that v is L' with respect to the Haar measure. By the
pointwise ergodic theorem, for almost every x € SL(2, R) and almost every
k1 € SO(2) we have

1

T
lim —/ V(a'kix) dt = / Y dHaar < oo. (18)
T—oo T Jy SL(2,R)/SL(2,Z)

Similarly, for almost every x € SL(2, R) and almost every k; € SO(2) we
have

1 T
lim —/ 84tk x dt = Haar. (19)
0

T—oo T

Let S C SL(2,R) be the set of x € SL(2,R) such that (18) and (19) hold
for almost every k1 € SO(2). The set S is SL(2, Z)-invariant and co-null. We
show any x € § satisfies the conclusion of the lemma.

For fixed x € S and fixed § > 0, there exist T3 = Ts(x), a sequence
T; = Tj(x) for j € N, and a set K5 = K;s(x) C SO(2) such that |Ks| >
(1 —68/2)|SO(2)| with the property that for any k| € Ks and any 7" > Ts we
have

1 T
—/ V(a'kix) dt < 2/ Y dHaar (20)
T Jo SL(2,R)/SL(2,7)

and foreach 1 < j

1 (7 1
PM T 84tk 5 dt, Haar | < —. 21
0 J

forall T > T;. To finish the proof of the lemma, define the set
GZ(x) := {k1a'k, where k; € SO(2), k» € Ks(x) and (8/2)k <t < kJ.
For k large enough, we have that |GZ (x)| = (1 — 8)|Bx|. We claim that

G}(x) C Gl (x) (22)
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for k sufficiently large. For the sake of contradiction, suppose (22) fails. Using
that the norm on F is chosen to be K-invariant, there exists x, € SL(2, R)
with each x, in the Ks(x)-orbit of x such that || Dy, (a™)||giber > € for some

sequence ¢, — 00. Moreover, the corresponding empirical measures

1
Np = — Sat)?n dt
In Jo

have uniformly exponentially small mass in the cusps by equation (20).

By Lemma 3.10 and (21), a subsequence of the measures 1, converge to an
a'-invariant measure o on M% whose projection to SL(m, R)/SL(m, Z) is
Haar measure on the embedded modular surface SL(2, R)/SL(2, Z) and has
positive fiberwise Lyapunov exponent for the action of a'. Since a’ is ergodic
on SL(2,R)/SL(2,Z), we can assume pg is ergodic by taking an ergodic
component without changing any other properties.

We average as in [4] to improve po to a measure whose projection is the
Haar measure on SL(m, R)/SL(m, Z). Difficulties related to escape of mass
are handled by the preliminaries in Sect. 3.

As above, we note that there is a canonical copy of H = SL(m — 2, R) in
SL(m, R) commuting with our chosen H; = SL(2, R). Recall A is the Cartan
subgroup of SL(m, R) of positive diagonal matrices. The subgroup A contains
the one-parameter group {a'} and a Cartan subgroup of H,. Let

e Ay =ANH, ={a'},
e Ap» = AN Hy, and
e A'=AN(H x H).

Note that A’ < A has codimension one. Our chosen modular surface
SL(2,R)/SL(2,Z) c SL(m,R)/SL(m, Z) is such that

SL(2,R)/SL(2,7Z) c SL(2,R)/SL(2,7Z) x SL(m —2,R)/SL(m — 2, Z)
C SL(m, R)/SL(m, Z).

Define an A’-ergodic, A’-invariant measure 1 on M“ that projects to Haar
measure on SL(2, R)/SL(2, Z) x SL(m —2, R)/SL(m — 2, Z) as follows: Let
Mé’" o denote the restriction of the fiber-bundle M* to SL(2, R)/SL(2, Z) x
SL(m — 2,R)/SL(m — 2, Z). Pick point y in SL(m — 2, R)/SL(m — 2,7)
that equidistributes to the Haar measure on SL(m — 2, R)/SL(m — 2, Z) under
a Fglner sequence in A,. Consider p1o as a measure on the restriction of M
to SL(2,R)/SL(2, Z) x {y}. Now average wo over a Fglner sequence in Aj
and take a limit 1. Note that jt| has positive fiberwise Lyapunov exponent

)»5) pal 0. This can be seen by mimicking the proof of Lemma 3.9. Let

w1 be an A’ ergodic component of fi1, then the measure . has the desired
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properties and is supported on the subset of M* defined by restricting the
bundle to SL(2, R)/SL(2, Z) x SL(m — 2, R)/SL(m — 2, Z).

We consider the A’-action on (M?, ;1) and the fiberwise derivative cocy-
cle A(g,y) = D,glr. By (17), there is a non-zero Lyapunov exponent
kﬁ LA A’ — R for this action. We apply the averaging procedure in Propo-
sition 3.5 to this measure. Take B’ to be either ap or § so that 8/: A’ — R
is not proportional to kﬁ LA Choose ay € A’ such that ag € ker(8’) and
)\’F
w1, A’
UT « p1as T — oo. Then ws is ap-invariant, and has positive fiberwise Lya-
punov exponent )\gp’ ao. > 0. Moreover, 1w, is H-invariant. By Lemma
3.16 and Proposition 3.5, u, has exponentially small mass in the cusps. We
may also assume w7 is ergodic by passing to an ergodic component and by

Claim 3.12 assume > has a non-zero fiberwise Lyapunov exponent AZ LA for
the A’-action.

We now average w; over A’ to obtain p3. Then 3 has a non-zero fiberwise
Lyapunov exponent )»5 LA and has exponentially small mass in the cusps by

(ap) > 0. Let U = U F" and let 2 be any subsequential limit of

Lemma 3.16(1). Since w4y was A’-invariant, we have m.u> = m.u3. Once
again, we may pass to an A’-ergodic component of 13 that retains the desired
properties.

Take B to be either —as or —§ so that 8 is not proportional to XZ L4 0N

A’. Select a; with )\53’A,(a1) > 0 and ,é(al) = 0. By Proposition 3.5 and
Lemma 3.16, we obtain a new measure jt4 with .4 the Haar measure on
SL(m,R)/SL(m, Z). We have )‘tlgp,ahm > 0. Finally, average p4 over all of
A to obtain us. Since 4 114 is the Haar measure and thus A-invariant, we have
that w4 = m.us. By Lemma 3.16, s has a non-zero fiberwise Lyapunov
exponent A 55’ 4 for the action of A. Replace us by an ergodic component with
positive fiberwise Lyapunov exponent.

Exactly as in [4, Section 5.5], we apply [6, Proposition 5.1] and conclude
that w5 is a G-invariant measure on M%. We then obtain a contradiction with
Zimmer’s cocycle superrigidity theorem. To conclude that ;5 is a G-invariant,
note that [6, Proposition 5.1] holds for actions induced from actions of any
lattice in SL(m, R) and shows that p5 is invariant under root subgroups corre-
sponding to non-resonant roots. Dimension counting exactly as in [4, Section
5.5] shows that the non-resonant roots of SL(m, R) generate all of G if the
dimension of M is at most m — 2 or if the dimension of M is m — 1 and the
action is preserves a volume. O

We derive Proposition 4.2 from Lemma 4.4.

Proof of Proposition 4.2 Fix 0 < ¢ < 1 sufficiently small so thatif d(Id, g) <
c then || Drgllgier < €°/*. Fix a point x € SL(2,R) as in Lemma 4.4
with d(Id, x) < c¢. Observe that if k > 1 and g € G;/4’k(x), then
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gx € G, 12kte (Id). In particular, for any § > 0 we have for all k sufficiently
large that

|Bite NGy pp g (1d)] < 5C|Bx| (23)

where C is a constant depending on c¢. Take U to be the ball of radius ¢
centered at the identity coset in SL(2, R)/SL(2, Z) and consider lifts of U to
SL(2, R) intersecting the ball By. If a lift of U intersects G; J2k+ .(d), then

the corresponding element of the deck group SL(2, Z) belongs to G, e/4, L (Id).

Let U be the set of lifts of U. From Lemma 4.3 and (23), it follows that ratio
of the measure of U N BN G’ £/, « (Id) to the measure of Un By goes to one as
k — oo. Finally, since the norms on the fiber of M* above the identity coset
and the original norm on M are uniformly comparable, the result follows. O

Remark 4.5 Using large deviations, one can make § to be decreasing with «,
_kl/IOOO

roughly as §; = e . See [1,10]. This is not necessary for our argument.

4.2 Subexponential growth of derivatives for unipotent elements in
SL(2, Z)

We work here with a specific copy of the group SL(2, R) x R? embedded in
SL(m, R) and its intersection with the lattice I'; the copy of SL(2, R) x R2
corresponds to the elements of SL,, (R) which differ from the identity matrix
only in the first two rows and first three columns. Any unipotent element of
any A; ; C I' considered in the statement of Proposition 4.1 is conjugate by
an element of the Weyl group to a power of the elementary matrix £ 3. Thus,
after conjugation, any such element is contained in the distinguished copy of
SL(2,7Z) x Z? generated by SL(2,Z) = A1,2 and the normal subgroup Z?
generated by E 3 and E» 3.

For the reminder of this subsection, we work with this fixed group. Iden-
tify Hj > with SL(2, R). Let Uy 2 := {u4,p} denote the abelian subgroup of
SL(m, R) consisting of unipotent elements of the form

S O =
S = O
—_ S
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Clearly, U; 2 is normalized by H; 2 and Hj» X U2 = SL(2,R) x R2. We
have an embedding

SL(2, R) x R?/SL(2, Z) x Z* — SL(m, R)/SL(m, Z)

where Z? is identified with the subgroup generated by the unipotent elements
u1,0 and ug, 1. Note that SL(2, R) x RZ/SL(Z, 7) x Z? is a torus bundle over
the unit-tangent bundle of the modular surface.

Equip Z? with the L, norm with respect to the generating set {u1 0, 10,1}
and let B, (Z?) denote the closed ball of radius n in Z2 centered at 0 with
respect to this norm. Given S C Z? let | S| denote the cardinality of the set S.

Define the set of “e-good unipotent elements” of Z2 C I, denoted by GUg p,
to be the following subset of Z?:

GU,, = {ua,b € B,(Z?) such that || D(a(u;, )| < e81°g<”)} . (24

The main results of this subsection is the following.

Proposition 4.6 For any ¢ > 0, there exists No > O such that if n > N, then
GUen = Ba(Z?)

Proposition 4.1 follows from Proposition 4.6 using that any subgroup (u")
in Proposition 4.1 is conjugate to a subgroup of the group Z? and the fact
that d(u", Id) = O (log(n)) from (6). The proof of Proposition 4.6 consists of
conjugating elements of Uj 2 by elements of G, , in order to obtain a subset
of G, , that contains a positive density of elements of B, (Z?). Then, using the
fact that Z? is abelian, we promote such a subset to all of B, (Z?) by taking
sufficiently large sumsets in Proposition 4.9.

Lemma 4.7 There exists 8’ > 0 with the following properties: for any ¢ > 0
there is an N/ > 0 such that for any n > N| we have

|GUe.n| = 8'|Bu(Z7)).
Proof Recall that T, denotes the intersection of the ball of radius k in
SL(2,R) = Hj » with SL(2, Z) = A2 and | T;| denotes the cardinality of 7.
As |Ty| grows exponentially in k, we may take s fixed so that |T;_;| < %|Tk|

for all k sufficiently large. Given ¢’ > 0, define the subset Sy C SL(2, Z) to
be

Sti=Gox NGl N (Ti \ Tiy).

From Proposition 4.2, we may assume that
|Sk| = 1ITI
kb= 5kl
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ac

From (3), there exists C; > 0 such that if A = |:b d

] belongs to Si then

either

1 1
(@, b)lloc = C1e2*79 or ||(c, d) oo = Cre2*™),

Without loss of generality, we assume that at least half of the elements in Sx
satisfy [|(a, b)lloc = Cre2®=).

Consider the map P: Sy — Z that assigns A = |:Z Z,i| to (a, b). By (3),

thereis C» > 1 such that the image P (Si) of Sk lies in the norm-ball BC k (Z3)
e
for all k. ’
Let k(n) = 2log(n) —log C>. Then P (Skn)) C By (Z*).If n is sufficiently

ac

bd € Sk(n) then we have u, , € GU(5¢ pp); indeed

large and A = [

a(gp) = a(A) o a(urp) oa(A™")
whence
1D (g p)l| < | Dax(uy o) €**™,

We have |B,,(Z?)| < Din? for some D; > 1. Also, from (4) and Lemma 4.3
we have |Si)| > %|Tk(n)| > %ek(”) = Dlzn2 for some D, > 1.

To to complete the proof, we show that the preimage P~!((a, b)) in S of
any (a,b) € Z?* satisfying ||(a,b)]oc > C 1245 hag uniformly bounded
cardinality depending only on s. Observe that if A, A’ € SL(2,Z) satisfy

P(A) = P(A'),then A’ = AU, where U = [ :| for some m € Z and we

1m
01
have

_|ac , _|aam+c
A_[bd]’ and A_|:bbm+di|'

If A’ belongs to Ty then || (am + ¢, bm +d)|| s < Czeg and if A belongs to T}

then ||(c, d)|loo < Cae?. We thus have that |am| < 2Cse? and |bm| < 2Cae>.
As we assume that

k—s
(@, b)lloc = Cie 2
we have that |m| < Zg—fe%. Thus, the preimage P~'((a, b)) has at most

42—?& + 1 elements in S, .

@ Springer



Zimmer’s conjecture for actions of SL(m, Z) 1041

With ¢’ = %8, having taken n sufficiently large, we thus have

L 5
T 24802 41 Din?

|G U n] - 1 %|Sk(n)|
|Bn(ZZ)| B D1n2 4%65/2+1

which completes the proof. O

To complete the proof of Proposition 4.6, we show that any element in
B, (7?%) can be written as a product of a bounded number of elements in GU;,
independent of . This follows from the structure of sumsets of abelian groups.

From the chain rule and submultiplicativity of norms, we have the following.

Claim 4.8 For any positive integers n,m and €1,&2 > 0, if ugp € GUg,
and uc g € GUg, p then the product ug pitc g € GUmax{e;,e2),n4m

For subsets A, B C Z? we denote by A + B the sumset of A, B.

Claim 4.9 For any 0 < & < 1, there exists a positive integer ks and a finite
set Fs C 77 such that for any n and any symmetric set S, C B,(Z*) with
|S,| > 8| By|, we have that

B, CFs+S,+S+...+8,.

ks times

Proof Fix M € Z with 4; < 8. Take Nj := (M + 1)!, ks = 4Ns, and Fs :=
By, (Z?). Consider a symmetric set S, C B, (Z?*) with |S,| > 8| B, (Z?)|.

If n < Nj then B,(Z*) C Fs and we are done. Thus, consider n > Njs. To
complete the proof the claim, we argue that the set

an =S, + S, +...+ 8,

ks ks times

contains the intersection of the sublattice N5Z2 with B, (Z?). Adding Fjs to
the sumset then implies the claim. Consider any non-zero vector & € NsZ? N
B, (Z?) of the form (Z, 0) for some le [—n,n] N NsZ. Then v = Nsv where
v = (¢,0)issuch that 0 < |€] < [nN;'].

Consider the equivalence relation in B, (Z?) defined by declaring that two
elements x, y € R(n) are equivalent if x — y is an integer multiple of v. Each
equivalence class is of the form

Ci={..,x—v,x,x+v,x+2v,...}.

As |S,| > %|Bn (Zz)l, there exists one equivalence class C, such that |Cy N
Sul > %ICXL Since 0 < |[£| < LnN(;IJ, each equivalence class contains at
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least M + 1 elements and hence C, NS, contains at least two elements a, b with
b =a+ivfor|i| < M.Inparticular, sincea —b = iv, we have iv € S, + S,.
As i divides Ns, we have that 9 = Nsv € ZzN,g Sy.

Similarly, for n > Ns and any & € NsZ? N B, (Z?) of the form (0, 57) we
have it € ),y Sy Then

ﬁ+5eZSn

4Ng
completing the proof. O

Proof of Proposition 4.6 Given e’ > 0,let 8’ and N/, be given by Lemma 4.7.
Let S, := GUy , be as in (24) and take ké and Fy as in Lemma 4.9. Note
that GU, , is symmetric by definition. Take N > N ;, such that Fy € GU, ,
whenever n > N.Forn > N and any u, ) € Bn(ZZ) we have that u, ;, €
Fs+ S, + Sy + ...+ S, (kg times) by Proposition 4.9. Proposition 4.8 then
implies that usp € GUp (ky41n 80 [ D(ap)™|| < e 8ke+Dm With
g’ = ¢/2, take N, > max{N, (kg + 1)}. Then for all n > N, we have

g log((ky + 1)n) < elog(n)
whence
1D (g )= < €12

and for u, , € By, (Z*) with n > N,. O

5 Proof of Theorem B
5.1 Reduction to the restriction of an action by A; ;

We recall the work of Lubotzky, Mozes, and Raghunathan, namely [17] and
[18], which establishes quasi-isometry between the word and Riemannian
metrics on lattices in higher-rank semisimple Lie groups. In the special case
of I' = SL(m, Z) form > 3, in [17, Corollary 3] it is shown that any element
y of SL(m, Z) is written as a product of at most m? elements y;. Moreover
each y; is contained some A; ; >~ SL(2, Z) and the word-length of each y; is
proportional to the word-length of y.

Thus, to establish that an action «: I' — Diff! (M) has uniform subex-
ponential growth of derivatives in Theorem B, it is sufficient to show that
the restriction a4, = Diff! (M) has uniform subexponential growth
of derivatives for each 1 < i # j < m. We emphasize that to measure
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subexponential growth of derivatives, the word-length on A; ; is measured
as the word-length as embedded in SL(m, Z) (which is quasi-isometric to
the Riemannian metric on SL(m, R)) rather than the intrinsic word-length in
A j ~ SL(2, Z) (which is not quasi-isometric to the Riemannian metric on
SL(2, R)).

As the Weyl group acts transitively on the set of all A; ;, it is sufficient to
consider a fixed A; j. Thus to deduce Theorem B, in the remainder of this
section we establish the following, which is the main proposition of the paper.

Proposition 5.1 For any action «: I' — Diff Y(M) as in Theorem B, the
restricted action o|p, ,: I' — Diff V(M) has uniform subexponential growth
of derivatives.

5.2 Orbits with large fiber growth yet low depth in the cusp

To prove Proposition 5.1, as in Sect. 4.2 we consider a canonical embedding
X =Hjp/A120f SL(2,R)/SL(2, Z) in SL(m, R)/SL(m, Z). Write

a' := diag(e'/?, e7"/*) c SL(2, R)

for the geodesic flow on X. Let Xk be a fixed compact SO(2)-invariant
“thick part” of X; that is, relative to the Dirichlet domain D in (7), points in
SO(2)\ Xhick corresponds to the points in SO(2)\D whose imaginary part is
bounded above, say, by 17.

A geodesic curve in the modular surface of length ¢ corresponds to the image
of an orbit ¢ = {a’(x)}o<s< where x € X and ¢ > 0. Denote the length of
such a curve by [(¢). For an orbit ¢ = {a®(x)}o<s<; of {a'} in X we define

c(¢) := log(|| Dx (a")lFiber)-

The following claim is straightforward from the compactness Xickx and the
quasi-isometry between the word and Riemannian metrics on I'.

Claim 5.2 Foran actiono : SL(m, Z) — Diff' (M), the following statements
are equivalent:

(1) the restriction a|p,,: A1 — Diff Y(M) has uniform subexponential
growth of derivatives;

(2) for any € > O there is a t; > 0 such that for any orbit { = {a®(x)}o<s<s
with x € Xick, a’'(x) € Xick, and [(¢) =t > t, we have

c(¢) < el(%).
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Define the maximal fiberwise growth rate of orbits starting and returning to
Xthick to be

Xmax .= lim sup
t>0

log || Dy (a")|Fi
{sup{ gl x(ta ) |Fiber |l - x € Xiniek. a’(x) c Xthick}} '

(25)

Using Claim 5.2, to establish Proposition 5.1 it is sufficient to show that xmax =
0.

For an orbit ¢ = {a®(x)}o<s<:, define the following function which mea-
sures the depth of ¢ into the cusp:

d(Z) = max dist(a®(x), Xthick)-
O<s<t

The following lemma is the main result of this subsection.

Lemma 5.3 If xuac > O then there exists a sequence of orbits {, =
{as(xn)}Ogsft,, with x, € Xthick, atn(xn) € Xthick, and t, = [(&y) — o0

such that
Xmax

(1) c(&) = 5 Iny
2) lim d(f”) =0.

We first have the following claim.

Claim 5.4 Forany ¢ > 0 there exists t, with the following properties: for any
x € 0Xthick and t > t, such that a®(x) € X~ Xick forall 0 < s < t and
a'(x) € 3 Xuick then, for the orbit { = {a*(x)}o<s<t, we have

c(¢) < et =cel(?).

Indeed, the claim follows from the fact that the value of the return cocycle
B(a’, x) is defined by geodesic in the cusp of X is given by a unipotent matrix

1n
01
Proof of Lemma 5.3 Let ¢, := {a’(x,)}o<s<:, be a sequence of orbits with
Xn € Xthick, @ (x) € Xthick» tn — 00, and such that

. c(&n)
Xmax = lim .
n—oo tn

of the form ) € A1 C SL(m, Z) and Proposition 4.1.

Replacing ¢, with a subsequence, we may assume the following limit exists:

B:= lim d@”).

n—00 tn

@ Springer



Zimmer’s conjecture for actions of SL(m, Z) 1045

We aim to prove that 8 = 0. Arguing by contradiction, suppose 0 < 8 < 1.
We decompose the orbit

$n = Qk, Wp,_ Ok, * - W1O]

as a concatenation of smaller orbit segments «;, w; with the following prop-
erties:

(1) each orbit «; is such that d(«;) < gtn;

(2) the endpoints of each orbit ¢; are contained in X jck;

(3) each orbit wj; is contained entirely in (X ~\ Xhick ) U d Xhick With endpoints
contained in 0 Xhick;

(4) each orbit w; satisfies d(w;) > gt,, whence [ (w;) > gtn for t,, sufficiently
large.

Note for each n, that k,, < L%J + 1 and thus k, is bounded by some k inde-
pendent of n. Additionally, since SL(m, Z) is finitely generated and (equipped
with the word metric) is quasi-isometrically embedded in SL(m, R), there
exists a constant K such that for any orbit segment { whose endpoints are
contained in Xick, we have c(¢) < KI(¢). By the definition of ymax, for any
& > 0 there is a positive constant M, such that for any orbit sub-segment «;

(D) c(@i) < (Xxmax + &)l (o) whenever [(a;) > M,
(2) c(a;) < KM, whenever [(«;) < M,.

From Claim 5.4, for any ¢ > 0 we have, assuming that n and hence ¢, are
sufficiently large, that

c(wi) < el(w;)

for all orbit sub-segmants w;.
Taking n sufficiently large we have

(tmax — ) < () < Y clwi) + Y c(ar). (26)

1

As we assume 8 > 0, for all sufficiently large n there exists at least one orbit
sub-segment w; and thus for such n

Zc(ai) <kKM; + (Xmax + €)

i

x Y @) < kKM + (Xmax + €)(1 = B/2)t. 27)

]
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From (26) and (27) we obtain that

Otmas = )t = (et0) + (KK My + Gtmas + (1= B/20). ©8)
Dividing by #, and taking n — oo obtain

Xmax — € < & + (Xmax + &) (1 — B/2).

As we assumed ymax > 0 and 8 > 0, we obtain a contradiction by taking
& > 0 sufficiently small. O

5.3 Construction of a Fglner sequence and family averaged measures

Assuming that xmax in (25) is non-zero, we start from the orbit segments
constructed in Lemma 5.3 and perform an averaging procedure to obtain a
family of measures {{t,} on M* whose properties lead to a contradiction. In
particular, the projection of any weak-* limit (o of u, to M* will be A-
invariant, well behaved at the cusps, and have non-zero Lyapunov exponents.
These measures on M“ are obtained by averaging certain Dirac measures
against Fglner sequences in a certain amenable subgroup of G.

Consider the copy of SL(m —1, R) C SL(m, R) as the subgroup of matrices
that differ from the identity away from the mth row and mth column. Let
N’ ~ R~ be the abelian subgroup of unipotent elements that differ from the
identity only in the mth column; that is given a vectorr = (1,72, ..., 7p—1) €
R~ define u” to be the unipotent element

1 0 O ri
1 0 ... 1)
u" = : (29)
1 I'm—1
1

and let N = {u"}. N’ is normalized by SL(m — 1, R).
Identifying N’ with R”~! we have an embedding SL(m — 1, R) x R"~!
SL(m, R). The subgroup SL(m — 1, R) x R™~1 has as a lattice the subgroup
SL(m —1,Z) x Z" ' ;=T N (SL(m — 1, R) x R""1)
and there is a natural embedding given by the inclusion

(SLim — 1,R) x R™ 1 /(SL(m — 1, Z™") x Z"~1)) c SL(m, R)/SL(m, Z).
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Recall A is the group of diagonal matrices with positive entries. Leta’, b® €
A denote matrices

a' =diag(e'?, 7%, 1,1...,1)

b* = diag(e®, e’, e’ ..., ¢e°, e sm=1y,

Complete the set {a, b} to a spanning set {a, b, c1, ¢3 . ..cy—3} of A viewed as
vector space where the ¢; are diagonal matrices whose (m, m)-entry is equal
to 1.

Let F,, C AN’ be the subset of G consisting of all the elements of the form

m—3
a'b’ [ clu (30)

c=1

where, for some § > 0 to be determined later (in the proof of Proposition 5.10
below),

() 0<t <ty

(2) 6ty /2 < 5 < Oty;
3) 0 < s; < /ty;

(4) r € Bgn-1(e2).

Claim 5.5 {F,} is Folner sequence in AN’.

Observe that F), is linearly-long in the a-direction and exponentially-long
in the N’-direction. From conditions (2) and (4), the A-component of F), is
much longer in the a’-direction than in the other directions. The condition (2)
that 61,/2 < s is fundamental in our estimates in Sect. 5.4 that ensure the
measures constructed below {1t} have uniformly exponentially small mass in
the cusps. These estimates are related to the fact that orbits of N’ correspond
to the unstable manifolds for the flow defined by by in SL(m, R)/SL(m, Z)
and open subsets of unstable manifolds equidistribute to the Haar measure on
SL(m, R)/SL(m, Z) under the flow b®.

Recall we have a sequence of fiber bundles

F— M*— G/T

and may consider F as a fiber bundle over G/ I'. Givenx € G/ TI', let F(x) =~
T M denote the fiber of F over x. An element v € F(x) is a pair v = (y, &)
where, identifying the fiber of M* through x with M, we have y € M and
& € TyM. Givenv = (y, &) € F(x), we write ||v]| = ||| using our chosen
norm on F. Given v = (y, §) € F(x), let p(v) = y denote the footpoint of v
in the fiber of M“ through x.
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If uniform subexponential growth of derivatives fails for the restriction of the
o to Aq 2, then there exist sequences x, € Xthick, Vn € F(x,) with v, || =1,
and 1, € R as in Lemma 5.3 and Claim 5.2 with t,, — 00, such that

1Dy, ay (vn) | = € (31)
for some A > 0.

Note that AN’ is a solvable group. We may equip AN’ with any left-
invariant Haar measure. Note that the ambient Riemannian metric induces
a right-invariant Haar measure on AN’ but as AN’ is not unimodular these
measures do not coincide.

For each n, take u, to be the measure on M obtained by averaging the
Dirac measure 8y, p(v,)) over the set Fy:

P

- HW/ g 8Cin, p(un)) dg

Fy

where | F},|¢ is the volume of F,, and dg indicates integration with respect to
left-invariant Haar measure on AN’.

We expand the above integral in our coordinates introduced above. Then
for any bounded continuous function f: M“ — R, integrating against our
Euclidean parameters ¢, s, s;, and r we have

ty Oty

m—3
2/ / / / f (atbs l_[ C;viur : (xﬂ’ p(vn))> dr dS,' ds dt
c=1

0 81 /2[0, 51"~ By (¢200m)
S dpn = m—3 2001,
J tn8tu /T [ By 1 (£2000))|

(32)
where | Bpm-1 (€29%)| denotes the volume of
Bgu-1(€®®") =N/ C N’

with respect to the Euclidean parameters r.

For each n, let v, denote the image of the measure p,, under the canonical
projection from M“ to G/ I'. The following proposition is shown in the next
subsection.

Proposition 5.6 There exists n > 0 such that the sequence of measures {v,}
has uniformly exponentially small mass in the cusp with exponent .

By the uniform comparability of distances in fibers of M, this implies the
family of measures {u,} has uniformly exponentially small measure in the
cusp.
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By Lemma 3.10(a) the families of measures {u,} and {v,} are precompact
families. As F), is a Fglner sequence in a solvable group, we have that any
weak-x subsequential limit of {1, } or {v,} is AN’-invariant. Moreover, from
Theorem 3.1(d), it follows that any weak-* subsequential limit v, of {v,} is
invariant under the group —N’ generated by the root groups U™/ for each
1 < j <m—1.Since N and —N’ generate all of G, we have that v is a
G-invariant measure on G/ T'.

5.4 Proof of Proposition 5.6
5.4.1 Heuristics of the proof

The heuristic of the proof is the following. Observe that for a fixed choice of
t and s; as given by the choice of Fglner set F},, the point

m—3

a' l_[ i (xn)

i=1

lies at sub-linear distance to the thick part of G/ I" with respect to #,. Observe
that the N’-orbit of such point is an embedded (m — 1)-dimensional torus in
G/ T. As the range of points in N in the Fglner set F), is quite large, averaging
a Dirac measure of the point a’ ]_[ -1 cl % (x,) in the N'-direction in F, yields
a measure quite close to Haar measure on the N’-orbit.

Observe that N’-orbits correspond to unstable manifolds for the action of
the flow »* on SL(m, R)/SL(m, Z). As the action of b, is known to be mix-
ing, we expect that if s is sufficiently large, flowing by by the N’-orbit of

al ]—[l 1 cﬁ’ (x,,) will become equidistributed and in particular it will inter-
sect non-trivially the thick part of G/ I". This is the reason why the condition
s > &/2t, is assumed.

While intuition about mixing motivates the proof, we do not use it explicitly.
Instead we use that for large enough s, the action of by expands the N’-orbits
in a way that forces them to hit the thick part. We verify this fact by explicit
matrix multiplication.

As b’ normalizes N’, the image under b* of the N'-orbit of a’ ]_[l i’ (xn)
is the N’-orbit of a point y, in the thick part of G/T". Having in mind the
quantitative non-divergence of unipotent flows as in the proof Proposition 3.2,
the N’-orbits have uniformly (over all n, s;, and ¢) exponentially small mass
in the cusps whence so do the measures v;,.

The following proof of Proposition 5.6 uses explicit matrix calculations and
estimates to verify these heuristics.
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5.4.2 Proof of Proposition 5.6
Recall that we identify each coset
gSL(m,Z) € SL(m,R)/SL(m, Z)

with a unimodular lattice A, := g - Z™ in R™. We define the systole of a
unimodular lattice A C R™ to be

S(A) = i
(A) ver?\l\%} llv]l

and for an element g € SL(m, R), we denote by §(g) the systole

5(g) =8(g-Z"™).

From (9), to prove Proposition 5.6 it is sufficient to find n > 0 so that the
integrals

/ 5(g) " dv,(gT")
G/T

are uniformly bounded in 7.
As discussed in the above heuristic, from (32) to bound the integrals
fG/F 87 "(g) dv,(gl) it is sufficient to show each integral

1 tys KA -n
(20| B(ezomn)(s(a b (Ile;*Hu" x,) " dr
is uniformly bounded in n and in all parameters #,s,s; for 0 < t < f,,
8ty/2 < s < 8ty, and 0 < 5; < /1,. Recall here that x, € G/ T are the
points x, € Xmick C Hi2/A1 2 satisfying (31) used in the construction of the
measures [i,.

We have Hj 7 is canonically embedded in SL(m, R). Givenx, € Hy 2/ A1 2,
let

Xp € Hi o C SL(m, R)
denote the element mapping to x,, under the map H;» — Hj2/A12 which
is contained in a fundamental domain contained in the Dirichlet domain D C

SL(2, R) in (7) in Sect. 2.2. Let || - || denote the operator norm on SL(m, R)
and m(-) the associated conorm.
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Claim 5.7 Foreveryn, t <t,, and0 < s; < \/t, as above, there exist

An = An,t,sl,...,sm_3 € SL(m - 1’ ]R) Cll’ld Vn = yl’l,t,sl,‘..,sm_3 S SL(m - 1, Z)

such that:
m—3
= AnYn Om—1x1
t .S _ n¥Yn YUm—1x
(1) a llj! ¢Vix, = (lem_l |
1 A ] A
@ tim sup Mo im e 08AD)
n_)ootitn,Ofsig n In n—>00 t<t, 0<s; </, tn

Proof (1) is immediate from construction. The uniform limit in (2) follows
from Lemma 5.3(2), equation (5), and the fact that the s; are chosen so that
0 <s; < /t, whence

d(x,, a' (Tle;*) - xp)
—

In

0

uniformly in ¢, s;. O

In the remainder, we will suppress the dependence of choices on ¢, s, s5;. We
take K, € SL(m — 1, R) be such that

% = Kn Om—lxl
" Orxm—1 1 ’

Note that K,, differs from the identity only in the first two rows and columns.
Since each x;,, is contained in Xick, we have that the matrix norm and conorm
| K, | and m(K,) are bounded above and below, respectively, by constants M
and MLI independent of n.

Recall r denotes a vector in R”~! and u” € SL(m, R) is the unipotent
element given by (29). Matrix computation yields

g, = (o i)

O1xm—1 1
whence

s N —1
bs(l_[c,'s")alur)?n — <e AnVn e AnVnKn r> .

Orxm—1 e Mm=Ds
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We have

S(b*(Te;*Ha'u"x,) = 8(b* (Tle;*Ha'u” xp,)

(eSAnyn esAnynKn_lr> ZH (33)

= inf
Orxm—1 e m=Ds

zeZ™\{0}

To reduce notation, for fixed ¢, s, and s; define
B(r) := —log8(a'b’ (Tc;*Hu"x,).
We aim to find an upper bound of

1
- nB(r) g
|B(6200fn)| B(ZZOOI”) ¢ r
that is independent of n and 7, s, and s;.
Observe that if r — r’ differ by an element of the unimodular lattice
K,Z" 1 ¢ R™! then B(r) = B(+'). Indeed, if ¥’ = r + K,z for some
7=, 2, )€ Z"Vandifz € Z"~{0}is z = (z1, ..., Zm) then

eSApvn esAnynKn_lr/ (e Ay e“AnynKn_lr -
Orxm—1 e m=Ds T 01y etm=Ds )%

where Z = (21 + ZmZ], - - s Zm—1 + ZmZ,_1> Zm) € Z"~{0}. Thus we have
that 8: R™=1 — (0, 00) descends to a function on the torus Rm_l/(Kn zm=h.

LetD, = K, -([—1/2,1/ 2]1™=1) be a fundamental domain for this torus in
R™~! centered at 0. Let ¢,, denote the number of (K, Z™~!)-translates of D,

that intersect B(e2%%). Then, if 1, is sufficiently large we have that

1 1
_ PO g <L [ PO gy < 2/ B0 gy
| B(e200m)] [ p200m) | B(e200m)| ™" [ D,

The first inequality follows from inclusion. The second inequality follows from
the fact that the perimeter of B(q) grows like g2, the volume of B(g) grows
like qm_l, and the domains D, = K, - ([—1/2, 1/2]’"_1) have uniformly
comparable geometry over n.

It remains to estimate || D, ") dr. Given ¢ > 0 and fixed n, ¢, s;, and s
we define

T.={r e D, : B(r) > c}.

Proposition 5.6 follows immediately from the estimate in the following lemma.
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Lemma 5.8 There exists constants M3, M4 > 0, independent of n, t, s;, and
s, such that

|T,| < Mze M+,

Indeed, if n~' > My then
o0
/ e dr =/ [{r € D, : ™" > 1}| dt
n 0
0
< 1+/ {r € D, : " > 1}| dt
1

=1 +foo (r € Dy : B(r) = log (v7)}] dr
1

=1+ Mzt 1 dt < o0

and Proposition 5.6 follows.

Proof of Lemma 5.8 From (33), given any r € R™~! if B(r) > c then there
exists a non-zero z = (z1, 22, 23, - - - » Zm) € Z™ such that

c —ce(m—l)s

e’ ||A,,y,,(Z1, ey Zm—1) +zmAnynKn_1r|| <e € and |zn| <e

which (as y, € SL(m — 1, Z)) holds if and only if there is a non-zero z =
(21,22,235-+-»2m) € Z™

e’ HA"<(Z1’ ey Zm—1) —I—me,:l(KnynK,l_l)r) H <e ¢ and
|Zm| < e—Ce(m—l)S (34)
AsK,yn K, !'induces a volume-preserving automorphism of R”~! /(K , 2"~ 1),

the set of r € D, satisfying (34) for some z € Z™ has the same measure as
the set of r € D,, satisfying

eS

Ay ((21, cey Zm—1) + ZmKn_lr) ” <e ¢ and |zn| < e Vs
for some z € Z™.

For every integer k satisfying |k| < e~¢e" =15, let T, be the subset of
r € D, such that there exists (z1, z2, ..., Zm—_1) € Z""! satisfying

et HA,[<(11, s Zm—1) +kK;1r> H <e “.
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Then |T,| < ZI k| <e—cetm=s | Te kl. Thus the estimate reduces to the following.

Claim 5.9 There exists Ms > 0 such that |T. x| < Mse= =06+ for all n
sufficiently large.

Proof Recall that 61, /2 < s. If k = 0 then, for any non-zero (z1, ..., Zm—1) €
7"=1 we have

ENALzL - ZmD Il > P m(Ay).

From Claim 5.7(2), if n is large enough then m(A,) > e ~%"/4 and so the
term in the left hand side above is greater than one, therefore 7, o = & for n
sufficiently large.

If k # 0, observe that the map My : R"~1/K,z"~! — R"~1/K,7""]
given by

r+ K, Z" s ke + K2
preserves the Lebesgue measure on R”~! /K, 7"~ In particular, this implies
that 7 x and T, 1 have the same volume.

We thus take k¥ = 1. Note that Kn_lD,1 = [—1/2,1/2]. Thereisa L > 1,
depending only on m — 1, such that the set

0=1{7eZ" |17 +r|<1forsomer e Kn_an}

has cardinality at most L. From Claim 5.7(2), if n is large enough then m (A,,) >

e~%/4 whence for all (z1, ..., Zm_1) € Zm_l\Q andall »r € D,,,
e an(@rn o+ k)| = 1
We thus need only consider (zy, ..., Zm—1) € Q.
Givenafixedz = (z1,...,2m-1) € O C /i using that K,, € SL(m —
1, R) we have
[r e R™ 1z 4+ K, )l < )] < oy !
whence
|{r eR™ iz, zme) + Kn_lrll =< e_c}| < m—lg=clm=1)

If r € T, 1 so that

eS

An((zls e Zm—1) +Ky?1r) H <e ¢
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then
|40 (G amn + K1) e, (35)

Since A,, € SL(m — 1, R) the set of r € R”~! satisfying (35) has the same
volume as the set of » € R"~! satisfying

||(Z1, s Zm—1) t K,,_II’H <e .
It follows that |7, | < 2"~ Le=(+a)tm=1, O
To finish the proof of Lemma 5.8, from Claim 5.9 we have

Tl < ) |Texl < Qe ™ D 4 ) Mse™ " DETO < et

|k\ <€—ce(m—1)s

for some constants M3, M4 independent of 7. O

5.5 Positive Lyapunov exponents for limit measures

To deduce Proposition 5.1, having assumed that xmax in (25) is non-zero, we
show that any weak-* subsequential limit of the sequence of measures {u,}
has a positive Lyapunov exponent from which we derive a contradiction.
Recall from Sect. 5.3 that we fixed sequences xj,, v, t, such that
| Dy, a" (vy)|| > e* for some fixed A > 0. Let A: G x F — F be the
fiberwise derivative cocycle over the action of G on M“.
Our main result is the following.

Proposition 5.10 For any weak-* subsequential limit jLo of {|4,} we have

)\.top’a7uoo’¢4 Z )\./2 > 0

We first show that averaging over N does not change the Lyapunov expo-
nents of the cocycle.

Claim 5.11 Given any ¢ > 0 there is t, > 0 such that for any t > t. and any
r € Bpm-1(e") we have
| Dxu’ ||Fiver < e

for any x € Xick.
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Proof Recall that the N’-orbit of any x € X := H;2/A;2 C SL(m,R)/
SL(m, 7Z) is a closed torus. Then the N '-orbit of Xpick i compact. Recall
our fixed fundamental domain /' C D contained in the Dirichlet domain
D of the identity for SL(m, R)/SL(m, Z) as discussed i,Il Sect. 2.2. Given
x € SL(m,R)/SL(m, Z), let x be the lift of x in F. Let Xmick C Hi2 NF
denote the lift of Xk to F and let )A(thick Be the lift of the orbit N X pjck to
JF. As discussed in Sect. 2.2, we have that Xick 1S contained in the Dirichlet
domain D of the identity for the Aj;-action on Hj ;. Moreover, )A(thick is
precompact in SL(m, R).
Fix r € R ! and x € Xipjck. Write

. (KO
*Zloi
for some K € SL(m — 1, R); we have | K| < M; and m(K) > MLI for all
x € Xihick. The deck group of the orbit N'X is
utizez"m Wi =Wk ezl
Thus, there is z € Z" ! and r’ € R™~! such that
re (K r\ _(K r+Kz\_ (1 r"\(K 0\(1l z
“Y*=\lo 1)7 o 1 JTlo 1)\o 1)\o 1
= " Fut
and u”'% € Xthick- Then
I D" || < | Dx& " eiver - | Diarte IFiver - | Diaru” % [ piver-
Since % and u” ¥ are in precompact sets, the first and last terms of the right

hand side are uniformly bounded in 7 and x € Xpick.
There exists some C such that

I Dra ru® llpiber < CllDor(u®)]l.

Since r € Bpm-1(e") we have z € Bpm-1(M1e") whence d(u®, Id) < Cot+C3
for some constants C, and C3. Proposition 4.1 implies for any &’ that

IDa(u?)]| < e 2+
and taking ¢’ > 0 sufficiently small, the claim follows. O
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By Lemma 2.1, the fact that SL(m, Z) is finitely generated, and the uniform
comparability of the fibers of M, we also have the following.

Claim 5.12 There are uniform constants Cs5 and Cg with the following prop-
erty: Let x € G/ I'. Then for any X € gwith | X|| < 1 we have
)il < Cst+Csd(x,1d)+Cé

H (Dx exp(rX) Fiber —

We now prove Proposition 5.10.

Proof of Proposition 5.10 Recall we take x, € Xijck, tn — 00, and v, €

F (x,) with |Jv,|| = 1 such that || Dy, a™ (v,)]l > e’ for some fixed A > 0 in
(31) in Sect. 5.3. We also write A: G x F — F for the fiberwise derivative
cocycle.

The measures u, constructed in Sect. 5.3 are defined by averaging last along
the orbita’, 0 <t < 1,,. Let &, be the measure on M¥ given by

2( 1\ 1 ot
R ) M ==Y O N R
M " st \ Vi | Bron—1(€299m)| Js1, 12 J10. i mn=3 J By (e200m)

m-—3
X (atbs l_[ cf’ur - (xp, p(vn))> dr ds; ds.
c=1

In the context of Lemma 3.10, the measures u, = fot" (al&,) dt con-
structed in Sect. 5.3 correspond to the empirical measures n, = n(loga, t,, &,)
appearing in the proof of Lemma 3.10. From Lemma 3.10, to establish Propo-
sition 5.10 it is sufficient to show that

A
/log ”A(atn’ ) d&, > Etn-
We have

/ log [l A(a™, || d&,
M(X

2 1 \"3 1 Sty
= E(\/E) m 8tp /2 k/[}x\/;?]m?& /f;]Rm](EZOO[")
x log H.A(atn’ b TIE) U - (x, P(Un)))H dr ds; ds

2 (1 \"? 1 Ot
> — e
= 8ty (\/E ) | Brm—1(€2%0)| Js1, 2 /[0,@]»13 /BRm_l(ewOfn)
Dy (a5 )0 |

i

— dr ds; ds.
Xn i n
| Ds, (b T ) ) |

X log

@ Springer



1058 A. Brown et al.

Consider fixed 7, s, and s;. Take ' € R™~! such that a™u” = u" a'. Then

” Dx,l( tnbsncsz r)(vn)” HD tn.x, (bs]'[cs, r ) o Dx)latn (Un)
i = log S
[Dn, @) )] o G i) )]
> log || Dy, a™ (va) |l — log ||(Dxnb ¢} u”) lIFiber
- log ”( amn.x, (bsHCSl " )) ||Fiber
> log ||Dxna (vn)” — log || Dy, (”r)”Fiber log [| Dyry, (bsnc )”Flber
—102 (D, ., (0 T1E)) ™ liber — 102 | Dy, (4™") e

log

Observe thatboth u” -x,, and u” "aln -X, are contained in a fixed compact subset
of G/ I" and hence, by Claim 5.12, having taken § > O sufficiently small in the
construction of the Fglner sequence, from the constraints on s; and s we have
| Dur e, TS 0¥ [iber < /1% and [[ (D, oy T B*) ™ lpiber < €*/190 for
all n sufficiently large.

Moreover, from Claim 5.11, we have || Dy, u"||Fiber < e Mn/100 for all n
sufficiently large.

Finally, there exists k > 0 such that ||r'|| < e*|r| whence r' €
Bpm-1 (200490 - Again from Claim 5.11, we have || Dy ~x,,u_r/”Fiber
/100 for n sufficiently large. Combined with (31) we then have

u’ amn

A

1 4
~ [ o dEn = A — —— .
- / og A" ) dgy = 1~ -

Proposition 5.10 then follows from Lemma 3.10. O

5.6 Proof of Proposition 5.1

Having assumed that ymax in (25) is non-zero, we arrive at a contradiction.
Take any weak-* subsequential limit (o, of the sequence of measure {u,} on
M®. We have that 1~ is A-invariant and has a non-zero fiberwise Lyapunov
exponent for the fiberwise derivative over the action of a’. Moreover, we have
that (o projects to v, on G/I" which, as discussed above after Proposi-
tion 5.6, is the Haar measure on G/ I'. We may replace oo with an A-ergodic
component u’ with the same properties as above. Then u is A-ergodic, projects
to Haar, and the fiberwise derivative cocycle over the A-action on (M%, ) has
a non-zero Lyapunov exponent functional A;: A — R.

As in the conclusion of Lemma 4.4, the arguments of [4, Section 5.5] using
[6, Proposition 5.1] imply that the measure  is, in fact, SL(m, R)-invariant. As
before, we note that [6, Proposition 5.1] does not assume I" is cocompact, so the
algebraic argument applying that proposition in [4, Section 5.5] goes through
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verbatim. For a more self-contained proof that applies since we only consider
the case of SL(m, R) see [3, Proposition 4]. We then obtain a contradiction
with Zimmer’s cocycle superrigidity by constraints on the dimension of the
fibers of M*. Thus we must have ymax = 0 and Proposition 5.1 follows.
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