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Abstract

The factorized form of unitary coupled cluster theory (UCC) is a promising wave-

function ansatz for the variational quantum eigensolver algorithm. Here, we present a

quantum-inspired classical algorithm for UCC based on an exact operator identity for

the individual UCC factors. We implement this algorithm for calculations of the H10

linear chain and the H2O molecule with single and double ζ basis sets to provide insights

about UCC as a wave-function ansatz. We find that for weakly-correlated molecules,

the factorized form of the UCC provides similar accuracy to conventional coupled

cluster theory (CC); For strongly-correlated molecules, where CC often breaks down,

UCC significantly outperforms the configuration interaction (CI) ansatz. As a result,

the factorized form of the UCC is an accurate, efficient and reliable electronic structure

method in both the weakly and strongly correlated regions. This classical algorithm

now allows robust benchmarking of anticipated results from quantum computers and

application of coupled-cluster techniques to more strongly correlated molecules.
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1 Introduction

Unitary coupled cluster theory (UCC) was proposed as a wave-function ansatz for quantum

chemistry about four decades ago.1–3 In spite of efforts to develop computational methods for

this ansatz,4–7 UCC is not nearly as prevalent as the closely related coupled cluster theory

(CC)8,9 in electronic structure calculations. One major reason behind this lack of usage is

because the Baker-Campbell-Hausdorff expansion of the similarity-transformed Hamiltonian

does not terminate in UCC (unlike what happens in CC), which often makes an exact

calculation of this theory intractable on classical computers.

Quantum computing provides new ways to tackle the many-electron problem.10 For ex-

ample, the quantum phase-estimation algorithm is capable of calculating the ground-state

energy in polynomial time (provided a sufficiently good initial wavefunction is prepared, and

time evolution is feasible for the Hamiltonian). Unfortunately, limitations on the maximal

circuit depth that can be run on near-term quantum computers make the phase estima-

tion algorithm unrealistic at this time. The variational quantum eigenvalue solver (VQE), 11

which is an approximate quantum-classical hybrid approach, has shown a lot of promise for

the electronic structure problem in the near future. In VQE, a quantum circuit prepares

a wavefunction that depends on a set of variational parameters, and multiple measurement

circuits are employed to then evaluate the expectation value of the energy (multiple circuits

are needed because the Hamiltonian is broken up into a sum of unitary pieces to carry out

the computation on a quantum computer). Optimization of the energy with respect to the

variational parameters is then carried out in concert with a classical computer. Since most

operations on a quantum computer are unitary, UCC has been proposed as a low-circuit-

depth state-preparation ansatz for VQE.12

This UCC-based state-preparation strategy has been successfully implemented on an ion-

trap quantum computer13,14 for H2O using a minimal basis and up to three UCC factors.

This success further motivated research to improve both the UCC ansatz and the VQE al-

gorithm; examples include, (i) the Bogoliubov transformed UCC15 and (ii) the k-UpCCGSD
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approach16 (which utilizes generalized single and double excitations). An adaptive algo-

rithm (ADAPT) has also been developed,17 which is able to adjust the ansatz by selecting

the ordering of the most important operators to use.

Due to the current paucity of robust quantum hardware, most UCC calculations are

performed on classical computers. One way to do this is to directly simulate the quantum

circuits on classical computers. This approach is limited, because quantum circuits with

more than 50 qubits cannot be efficiently simulated. The other method available requires

a numerical computation of the matrix exponential (via a truncated power series, rescaling

and squaring, or diagonalization). Since the dimension of the matrices is equal to the dimen-

sionality of the Hilbert space, only small systems can be studied this way. As a result, the

molecules that have been examined contain only a handful of atoms, and usually are repre-

sented by a minimal basis set. How the UCC will work for larger molecules and basis sets

is critical to understanding how effective the VQE will be in advancing quantum chemistry

on a quantum computer. Our work now allows us to do this using classical computation.

In this paper, we introduce a quantum-inspired algorithm for a factorized form of UCC

that is based on an operator identity that recognizes a hidden SU(2) symmetry.18,19 To

illustrate how this approach work, we perform numerical calculations for the H10 linear

chain and for the H2O molecule with the minimal and the double-ζ basis set. Analysis of

these results sheds light onto the finer points of how one can employ the UCC on quantum

computers.

2 Theory and Method

In UCC, the trial wave-function is expressed in an exponential form, given by

|ΨUCC〉 = exp(σ̂)|Ψ0〉, (1)
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where |Ψ0〉 is a single reference state and the operator σ̂ is an anti-Hermitian combination

of particle-hole excitation and de-excitation:

σ̂ = T̂ − T̂ †; (2)

T̂ =
occ∑
i

vir∑
a

θai â
†
aâi +

occ∑
ij

vir∑
ab

θabij â
†
aâ
†
bâj âi + · · · , (3)

where the angles θ are the variational parameters. We use letters from the start of the

alphabet a, b, c, . . . to denote the virtual orbitals, with respect to the reference state, and

letters from the middle of the alphabet i, j, k, . . . to denote the occupied orbitals in the

reference state. To simply notation, we express a general n-fold excitation operator as âab...ij... =

â†aâ
†
b . . . âj âi (with the corresponding de-excitation operator being its Hermitian conjugate).

We work in a factorized form for the UCC, which is given by

|ΨUCC〉 =
occ∏
ij···

vir∏
ab···

exp[θab···ij··· (â
ab···
ij··· − â

ij···
ab···)]|Ψ0〉, (4)

since this is the form of the UCC operator that can be easily generated on quantum com-

puters. Note that this form is completely general, because we did not specify at all what the

strategy is for determining the different factors. In particular, we can express the traditional

UCC form (with all excitations appearing as a sum in the exponent) in this form, simply by

using a Trotter breakup, which entails repeating many of the same factors in the expansion.

Next, we discuss the operator identity for an arbitrary UCC factor appearing in Eq. (4)

and use it to develop a classical algorithm for the UCC.

2.1 Operator Identity For UCC Factors

We first examine UCC factors that correspond to single excitations:

Ûa
i = exp[θai (â

a
i − âia)]. (5)
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This exponential operator can be reframed into the sum of a much simpler operator ex-

pression by using a hidden SU(2) group structure associated with these UCC factors. First

define the “hidden” spin operators as

Ŝ+ = iâ†aâi; Ŝ− = (Ŝ+)† = −iâ+i âa; Ŝz =
1

2
[Ŝ+, Ŝ−] =

1

2
(â†aâa − â

†
i âi). (6)

One can see that this is the conventional fermionic representation of spin, if we think of the

virtual spin-orbital a as corresponding to spin-up and the real spin-orbital i as correspond-

ing to spin down. The commutation relations of these operators can then be immediately

determined to be

[Ŝ+, Ŝ−] = 2Ŝz, [Ŝz, Ŝ+] = Ŝ+, and [Ŝz, Ŝ−] = −Ŝ−, (7)

which can be recognized as the conventional SU(2) algebra. But these operators are not an

independent SU(2) algebra, instead they arise as a subgroup of the permutation symmetry

of all the generators of the allowed UCC factors (in factorized form). Hence, they represent

a direct sum of S = 0 and S = 1/2 representations when acting on any product state in the

Hilbert space. We see this when we examine some additional operator identities given by

Ŝ2
+ = Ŝ2

− = 0; (Ŝ+ + Ŝ−)2 = Ŝ+Ŝ− + Ŝ−Ŝ+;

(Ŝ+ + Ŝ−)3 = Ŝ+Ŝ−Ŝ+ + Ŝ−Ŝ+Ŝ− = 2ŜzŜ+ − 2ŜzŜ− = Ŝ+ + Ŝ−,

(8)

which are not general operator identities of the SU(2) algebra, but are specific to this direct-

sum space. These identities immediately imply that odd powers of Ŝ+ + Ŝ− are equal to

Ŝ+ + Ŝ− and even powers are equal to Ŝ+Ŝ−+ Ŝ−Ŝ+. These identities are similar to a spin-1

representation, where the cube of the Cartesian angular momentum operators are equal to

the Cartesian angular momentum operators. Indeed, this same identity allows us to evaluate

the exponentials exactly. Simply expand the exponential of the corresponding UCC factor in

5



a power series and use the fact that all nonzero even powers of the operator are the same and

all odd powers of the operator are the same. Then the numerical factors can be immediately

resummed to yield

exp[−iθ(Ŝ+ + Ŝ−)] = 1− iθ(Ŝ+ + Ŝ−) +
(iθ)2

2
(Ŝ+ + Ŝ−)2 − (iθ)3

3!
(Ŝ+ + Ŝ−)3 + · · ·

= 1− i sin θ(Ŝ+ + Ŝ−) + (cos θ − 1)(Ŝ+Ŝ− + Ŝ−Ŝ+).

(9)

For this single UCC excitation, inserting Eq. (6) into Eq. (9) yields:

exp[θ(âai − âia)] = 1 + sin θ(âai − âia) + (cos θ − 1)(n̂a + n̂i − 2n̂an̂i), (10)

where n̂α = â†αâα is the density operator for α = a or i. The result of applying Eq. (10)

onto certain states can be found in Ref. 18. More importantly, this operator identity can be

generalized to any UCC factor of arbitrary n-particle excitations via the recognition of the

hidden SU(2) algebra for the general case, which is given by

Ŝ+ = iâa1a2···ani1i2···in , Ŝ− = −iâi1i2···ina1a2···an , and

Ŝz =
1

2
(n̂a1 . . . n̂an(1− n̂i1) · · · (1− n̂in)− (1− n̂a1) . . . (1− n̂an)n̂i1 · · · n̂in) .

(11)

These spin operators satisfy the SU(2) commutation relations in Eq. (7) and also satisfy the

additional operator identities in Eq. (8). Hence, we can perform the exact same expansion of

the power series for this UCC factor and find the same result as given in Eq. (9). Evaluating

the spin operators in terms of the excitation and de-excitation operators then yields the final

exact operator identity:

Ua1...an
i1...in

= exp[θ(âa1...ani1...in
− âi1...ina1...an

)] = 1 + sin θ(âa1...ani1...in
− âi1...ina1...an

)

+ (cos θ − 1)[n̂a1 . . . n̂an(1− n̂i1) . . . (1− n̂in) + (1− n̂a1) . . . (1− n̂an)n̂i1 . . . n̂in ].

(12)
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This identity acts in a direct sum space of S = 0 and S = 1/2: when S = 0, which happens

when no excitation or de-excitation is possible, the operator acts as the identity, but when

S = 1/2, which happens when an excitation or de-excitation is possible, the operator acts

analogous to a spin-one-half spinor, which is rotated by the angle θ.

2.2 The Quantum-Inspired Algorithm

Based on the exact operator identity derived above, we devise an algorithm inspired by

the VQE11 for UCC in a factorized form; this algorithm can be carried out on classical

computers. Eq. (12) guarantees that applying the UCC factor Ua1···an
i1...in

to the configuration

|Ψa1′ ···an′
i1′ ···in′ 〉, where |Ψa1′ ···an′

i1′ ···in′ 〉 is the result of applying â
a1′ ···an′
i1′ ···in′ to reference state |Ψ0〉, can only

have three outcomes:

1. (S = 1/2 case, excitation) If sets {a1 · · · an} and {a1′ · · · an′} have no common elements;

and sets {i1 · · · in} and {i1′ · · · in′} have no common elements, then applying the UCC

factor generates the sum of two configurations—the original configuration |Ψa1′ ···an′
i1′ ···in′ 〉

with coefficient cos θ and the excitation |Ψa1′ ···an′ai···an
i1′ ···in′ i1···in 〉 with coefficient ± sin θ. Because

excitations in the wavefunction can arise from multiple pathways, we must adopt a

consistent ordering scheme for the fermionic operators that determine each determinant

in the variational ansatz. We follow the convention used by Handy20 to keep track of

the signs; In some cases, there is an overall negative sign for a specific determinant

that produces a − sin θ.

2. (S = 1/2 case, de-excitation) If set {a1 · · · an} is subset of {a1′ · · · an′} with complement

set {a1′′ · · · an′′} = {x ∈ {a1′ · · · an′}|x /∈ {a1 · · · an}}; and set {i1 · · · in} is a subset

of {i1′ · · · in′} with complement set {i1′′ · · · in′′} = {x ∈ {i1′ · · · in′}|x /∈ {i1 · · · in}},

then applying UCC factors generates two configurations—the original |Ψa1′ ···an′
i1′ ···in′ 〉 with

coefficient cos θ and the de-excitation |Ψa1′′ ···an′′
i1′′ ···in′′ 〉 with coefficient − sin θ. Similar to the

excitation case, a sign (+1 or −1) needs to be determined for each the de-excitation
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determinant.

3. (S = 0 case, nothing) If the above two conditions are not satisfied, then the result is

one configuration, the original |Ψa1′ ···an′
i1′ ···in′ 〉 with coefficient 1.

Equipped with these exact rules, we can efficiently produce UCC wavefunctions (in the

factorized form) on classical computers. Configurations generated by sequentially applying

UCC factors fit into a tree-type data structure. The root node of the tree is the initial

reference configuration. Each level except the last one corresponds to the application of one

of the UCC factors in sequential order. Each parent node gives rise to one or two child nodes

according to Eq. (12) and the three rules stated above. Starting from the root node with

coefficient 1, we can calculate the coefficients for all the nodes on the tree according to the

exact rules. The last level of the tree (leaf nodes) is the final UCC wave-function expressed

as a linear combination of configurations. It is important to condense all final leaves (those

indicated by the interrupted line pairs in the last row of the figure) to save space during

the tree construction. One example of this tree structure built on three UCC factors can be

found in Fig. 1.

This tree structure can not only be used to generate the UCC wave-function, but also the

derivatives of the wavefunction with respect to the variational parameters, which is extremely

useful in optimizing the variational ansatz. We can take the derivative of Eq. (12):

dÛa1...an
i1...in

(θ)

dθ
= cos θ(âa1...ani1...in

− âi1...ina1...an
)

− sin θ[n̂a1 . . . n̂an(1− n̂i1) . . . (1− n̂in) + (1− n̂a1) . . . (1− n̂an)n̂i1 . . . n̂in ].

(13)

The result of applying this operator to a configuration is similar to what has been discussed

above, but with the coefficients modified. The derivative of the wavefunction with respect

to each variational parameter immediately follows as

d|ΨUCC〉
dθi

= Ûn · · · Ûi+1
dÛi
dθi
· · · Û2Û1|Ψ0〉. (14)
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Figure 1: Tree structure of configurations generated by three UCC factors. Red arrows
represent excitation, grey identity and blue de-excitation. Lines with two arrows at the
bottom level represent elimination of the repeating configurations.
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The tree structured wave-function and derivatives can also be used to carry out the

ADAPT algorithm17 on classical computers, since repeating factors are allowed when con-

structing the tree. But, calculations using a generalized UCC ansatz16 cannot be performed

with the same algorithm. The SU(2) operator identities still hold for each excitation/de-

excitation pair in factorized form, but the algorithm to construct the tree for the wavefunction

would need to be modified for general orbitals.

The Hamiltonian of the molecule is constructed from the reference state. We use canon-

icalized Hartree-Fock (HF) wave-functions as the reference state. the second quantized

Hamiltonian becomes

Ĥ = h0 +
∑
pq

hpqâ
†
pâq +

1

2

∑
pqrs

â†pâ
†
qârâs, (15)

where p, q, r, s label orthogonal spin-orbitals; h0 is the nuclear repulsion energy, and hpq and

hpqrs are one- and two-electron integrals generated by PySCF package:21,22

hpq =

∫
drφp(r)

(
−∇

2
−
∑
i

Zi
|Ri − r|

)
φq(r); (16)

hpqrs =

∫
dr1dr2

φp(r1)φq(r2)φs(r1)φr(r2)

|r1 − r2|
. (17)

To initialize these calculations, we need a set of UCC factors in a particular order. Dif-

ferent orderings of the same set of factors can possibly correspond to different wavefunction

ansatzes, as pointed out previously23 (and verified by simply looking carefully at how the tree

is formed). In this work, we use second-order Møller–Plesset perturbation theory 24 (MP2) to

choose the UCC factors and their ordering. MP2 provides amplitudes for double excitations,

which are easy to obtain and serve as good estimations of their importance. UCC factors

are chosen in descending order of the absolute value of the corresponding MP2 amplitudes.
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This strategy to order UCC factors is well defined and provides a concrete selection and

ordering scheme for the UCC factors, as the later factors are assumed to be less relevant. A

drawback is that MP2 only has amplitudes for double excitations; to include single excita-

tions in calculations, we put the single factors after the double factors, with random order.

As we will see later, variational parameters associated with single UCC factors are generally

small, thus their ordering ends up being of minor significance. A non-HF starting point, like

natural orbitals could be used to improve screening of UCC factors in the future.

With Hartree-Fock spin-orbitals, a parameterized Hamiltonian, UCC factors chosen in

MP2 order, and MP2 amplitudes as the initial guess for variational parameters, the initializa-

tion step is complete. In the next step, the tree structure of the configurations is generated.

When the number of UCC factors is large, the number of configurations on the tree becomes

prohibitively large. Eliminating repeating configurations on each level of the tree greatly

reduces the memory requirement of the calculation. But this also means one child node can

have more than one parent node. In the third step, coefficients for all the configurations on

the tree are calculated; the coefficients for the wavefunction and its derivatives are obtained

from the leaf nodes. Then, the energy and its derivatives are evaluated from the expectation

values of Hamiltonian. Subsequently, the energy and derivatives are fed into an optimization

algorithm. We used the Broyden–Fletcher–Goldfarb–Shannon (BFGS) minimization scheme

as implemented in SciPy.25 If convergence is not achieved, an updated set of values for the

variational parameters are employed to recalculate the coefficients. Since the tree structure

is fixed and saved in memory, it is not necessary to re-generate it during optimization; this

procedure greatly saves time in completing the calculation. This then is the classical algo-

rithm for UCC in factorized form, and its flowchart is illustrated in Fig. 2. To speed up

the energy and derivative calculations, we prune the leaf nodes and keep only configurations

with an absolute value of their amplitude larger than a specified threshold. In this work, we

set the threshold to 10−6, and differences in total energies due to pruning are always found

to be smaller than 10−5 Ha in several test cases.
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Figure 2: Flowchart of the quantum-inspired algorithm for factorized form of UCC.
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3 Results and Discussion

3.1 H10 Linear Chain

We apply this quantum inspired UCC algorithm to calculate the ground state of the H10 linear

chain with the minimal basis set STO-6G. We choose this model system because extensive

benchmark calculations using many state-of-art computational methods have already been

applied to it.26 Comparison of our results with these standards provides insight into the

accuracy of UCC as an electronic structure tool. With the minimal basis set, the reference

state of the H10 linear chain has 10 molecular orbitals, and half of them are occupied. The

Hilbert space for the 〈ŝz〉 = 0 sector contains 63,504 determinants, with 825 of them doubles

and 50 of them singles; we use a lower case ŝz to refer to the physical z-component of spin of

the different product states. Correlation energies (difference between the calculated energy

and the Hartree-Fock energy) and the error (difference between the calculated energy and

the full configuration interaction (FCI) energy) of several methods as a function of bond

length between the H atoms are plotted in Fig. 3.

The correlation energy of the hydrogen chain increases with the bond length, which indi-

cates that the system crosses over from being weakly correlated to being strongly correlated.

In the weakly correlated regime, UCCSD results are very close those obtained by CCSD,

which is known to be the method of choice for weakly correlated molecules. When the

correlation strength goes beyond a certain point (where the bond length is approximately

2.5 Bohr in this case), CCSD energy is no longer bounded by FCI from below, and the

error can become quite large. As constructed, the UCCSD calculation is always variational.

Calculations show that the UCCSD curve follows the FCI results closely. Compared to the

configuration interaction singles and doubles (CISD), which is also variational, and the MP2

method, which is not, the UCCSD provides significantly improved energies for all the bond

lengths covered here.

Additional insights about the UCC can be obtained by examining the final variational
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Figure 3: Correlation energy (panel A) and error (panel B) calculated with several quantum
chemistry methods as a function of the bond length of the hydrogen linear chain. Data for
CCSD are from Ref. 26. Data for other methods are from calculations performed in this
work.
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wavefunctions generated in the calculations. Values of the variational parameters θ after

optimization, for the weakly and strongly correlated systems are plotted in Fig. 4. A couple

of observations can be made about the values of θ. First, a large number of UCC factors of

double excitations have θ very close to zero (here essentially all UCC doubles factors with

index larger than 450; recall the singles come last). Those factors can be ignored in the

UCC calculations if we have good estimations of each UCC factor’s importance beforehand.

Second, the absolute values of θ are tied to correlation energies. Strongly correlated systems

(such as the bond length of 3.6 Bohr, plotted with red squares) have much larger θ values

than the weakly correlated system (such as the bond length of 1.0 Bohr, plotted with black

circles). It is interesting that all of these angles, even in strongly correlated systems, are

clustered close to θ = 0.

Figure 4: Variational parameters θ obtained from energy optimization at bond lengths of
1.0 (black circles) and 3.6 Bohr (red squares). The first 825 θ values are for UCC double
factors and last 50 are for the UCC singles factors.

The quantum phase-estimation algorithm is the ideal approach to calculate the ground-
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state energy (and to prepare the ground state) on a quantum computer; it should be possible

to use this method once fault-tolerant quantum computation with high depth circuits is fea-

sible. One potential application of the factorized form of UCC is to use it as the initial

wave-function preparation method to start the phase-estimation algorithm. The success

rates of the phase-estimation algorithm depend on the fidelity of the initially prepared wave-

functions, which is determined by the squared overlap between the prepared wave-function

and the exact ground state wave-function, (FCI wave-function): F = |〈ψapprox.|ψFCI〉|2. Since,

HF and CISD are variational, their states can in principle be prepared on quantum com-

puters, with the Hartree-Fock being trivial in a second-quantized formalism. The fidelity of

these approximate wavefunctions is plotted in Fig. 5. We see that factorized form of UCCSD

provides a wavefunction with higher fidelity for all bond lengths studied here. The difference

is significant in the strongly-correlated regime, which makes UCC a much more suitable state

preparation method for the phase-estimation algorithm in those cases.

3.2 H2O with single and double ζ basis sets

The next molecule we study is the H2O molecule. With a minimum basis set STO-3g, a

calculation using 3 UCC factors has been performed on a trapped ion quantum computer, and

simulations (with more factors) on a classical computer. These latter calculations showed

that only a small number of UCC factors (about 20) are necessary for UCC to achieve

chemical accuracy, which is an energy window of 1.6 milliHartree (mHar) from the ground

state.14 With the STO-3g basis set, the H2O molecule has 7 molecular orbitals and 10

electrons, which leads to 120 double excitations and 20 single excitations. We put double and

single UCC factors in descending order of their MP2 amplitudes, and applied our algorithm

to this system. Similarly, we find that 20 UCC factors, (all doubles in our case) are needed

to reach chemical accuracy (see Fig. 6). After incorporating all the double and single UCC

factors, the UCCSD energies are slightly better than CCSD, and they are much better than

CISD.
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Figure 5: Fidelity of wavefunction prepared by HF, CISD and UCCSD, which are calculated
as the squared overlap between the approximate wavefunction |ψapprox.〉 and exact ground-
state wavefunction (from FCI calculations): F = |〈ψapprox.|ψFCI〉|2
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It is known that the performance of the minimum basis sets is generally poor, and a

double-ζ basis set can give a striking improvement.27 Here, we perform a UCC calculation

for the H2O molecule with a 6-31g basis set, which has 13 molecular orbitals. To make

the calculations more manageable, the orbital of lowest energy (oxygen 1s orbital) is frozen.

In total, this system (with one frozen orbital) has 1360 double and 64 single excitations.

Results of these calculations are plotted in panel (B) of Fig. 6. First, similar to the H10

linear chain, we find that after about 400 doubles, the remaining 1000 doubles UCC factors

do not further improve the energy. The energy after including all the single and double UCC

factors is again, slightly lower than CCSD, and much better than MP2 and CISD. Unlike

the system with sto-3g basis set, the chemical accuracy can only be achieved after including

all the important singles and doubles, which indicates chemical accuracy is harder to reach

when we use larger basis sets.

As apparent from the tree structure, UCC in a factorized form provides a low-rank rep-

resentation for the many-body wave-function. This is similar to conventional coupled cluster

theory, which also uses a low-rank representation, with the added benefit that the factorized

form of UCC has higher accuracy for more strongly correlated systems. Computationally, two

steps in the procedure are time consuming: the construction of the wave-functions and the

calculation of the energy expectation values for the given wavefunction. For molecules stud-

ied here, the energy-expectation-value calculation, which involves multiplying a Hamiltonian

matrix times a state vector, is the more time-consuming of the two. The iterative diagonal-

ization method used in CI calculations is also limited by matrix-vector multiplications. So,

UCC as implemented in this work, has similar computational cost as a selective configuration

interaction method with the same number of determinants in the wave-function; the factor-

ized form of the UCC approach is expected to have more matrix-vector multiplications than

a typical selective CI will have, due to its use of an optimizer. Total number of determinants

can grow exponentially as number of UCC factors increases, which eventually limits size of

systems can be studied by this method.
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Figure 6: Panel(A): correlation energy of the H2O molecule from a UCC calculation with
the single-ζ basis set STO-3g. The first 120 UCC factors are doubles, and the last 20 are
singles. Panel (B): correlation energy from a calculation with the double-ζ basis set 6-31g.
The first 1360 UCC factors are doubles and last 64 are singles.
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4 Conclusion

In this work, we presented a classical algorithm for the factorized form of UCC, which was

inspired by the quantum VQE algorithm. The foundation of this algorithm is an operator

identity for the general UCC factor, uncovered from a hidden SU(2) symmetry. Implemen-

tation of this algorithm allowed us to apply UCC to larger systems than studied before on

classical computers. Compared to more established quantum chemistry methods, the fac-

torized form UCC is as accurate as CC for weakly correlated systems, and provides much

better results than CI with the same excitations for strongly correlated systems. Since we

can choose factors and their orders, the factorized form of UCC can be molded for different

needs and computational budgets. This accuracy and flexibility make UCC a very valuable

tool for chemistry, material science and condensed matter physics.
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