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SUMMARY

The net reclassification improvement (NRI) and the integrated discrimination improvement (IDI) were

originally proposed to characterize accuracy improvement in predicting a binary outcome, when new

biomarkers are added to regression models. These two indices have been extended from dichotomous

outcomes to multi-categorical and survival outcomes. Working on an AIDS study where the onset of cog-

nitive impairment is competing risks censored by death, we extend the NRI and the IDI to competing risk

outcomes, by using cumulative incidence functions to quantify cumulative risks of competing events, and

adopting the definitions of the two indices for multi-category outcomes. The “missing” category due to
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independent censoring is handled through inverse probability weighting. Various competing risks mod-

els are considered, such as the Fine and Gray, multistate, and multinomial logistic models. Estimation

methods for the NRI and the IDI from competing risks data are presented. The inference for the NRI is

constructed based on asymptotic normality of its estimator, and the bias-corrected and accelerated boot-

strap procedure is applied for the IDI inference. Simulations demonstrate that the proposed inferential

procedures perform very well. The Multicenter AIDS Cohort Study is used to illustrate the practical util-

ity of the extended NRI and IDI for competing risks outcomes.

Key words: Cumulative incidence function; Fine and Gray’s model; Integrated discrimination improvement; Multino-

mial logistic model; Multistate model; Net reclassification improvement.

1. INTRODUCTION

For clinicians, introducing a new biomarker into a statistical model may change the risks associated with

various outcomes of interest, and subsequently may influence treatment decisions. Risk prediction algo-

rithms using statistical modeling are among the most popular tools to evaluate significance of biomarkers.

Although effect size and statistical significance are important, they do not provide direct information on

the contribution of new biomarkers to diagnostic accuracy. For the latter, we are interested in evaluating

the improvement in correctly “classifying” patients into several outcome categories, such as dementia,

death and “nonevent,” with the additional information from new biomarkers. In contrast, risk prediction

algorithms typically attempt to predict the risks associated with each outcome in the course of time.

To investigate accuracy improvement over the course of variable additions for binary outcomes, the

commonly used Receiver Operating Characteristic (ROC) curve and its corresponding Area Under the

Curve (AUC) were shown to be insensitive to detecting the added values of new markers (Greenland and

O’Malley, 2005; Pepe and others, 2004; Ware, 2006), and novel indicators were developed to complement

the AUC measure (Pencina and others, 2008), such as the net reclassification improvement (NRI) and the
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integrated discrimination improvement (IDI). The NRI is the improvement in classification rates of disease

categories by the “new” model which incorporates additional markers over those by the “old” model

without the additional markers. On the other hand, the IDI quantifies the improvement in the integrated

sensitivity minus that of specificity over all possible cutoff values, from the model without new biomarkers

to the model with new biomarkers. Both indices have become popular in medical fields and been extended

from categorical outcomes to survival outcomes (Pencina and others, 2011; Uno and others, 2013).

However, there are few works in quantifying accuracy improvement for competing risks outcomes.

Shi and others (2014) were among the first to consider accuracy improvement for competing risks, where

the population is divided into two groups at a fixed time point – the “disease” group including subjects

who have developed the event of interest, and the “healthy” group including those who have not had any

event and those who have experienced competing events. Such a definition of the “healthy” group, which

is in line with the augmented “at-risk” set in a popular regression model by Fine and Gray (1999) for

competing risks data, is reasonable if competing events are not of interest, and those who have developed

competing events are more or less similar to those who have not failed yet. However, there are many

situations where we would like to separate subjects with competing events from those without any events.

As an example, the Multicenter AIDS Cohort Study (MACS) involves two endpoints, death and dementia,

where the age of dementia onset may be competing-risk censored by death. When the dementia onset is

of concern, it does not seem appropriate to group those subjects who died with those who were alive and

stayed healthy. Ideally they could be treated as separate categories in evaluation of accuracy improvement.

Li and others (2013) proposed reclassification statistics for assessing improvements in diagnostic

accuracy for multi-level outcomes. In this paper, we specifically consider how the definitions of the NRI

and the IDI for multi-category outcomes can be extended to the competing risks setting. The detailed

definitions are given in Sections 2.2 and 2.3 for two competing risks outcomes. One issue with estimating

the adapted NRI and IDI is that independent censoring often occurs in additional to competing risks

censoring, and a subject’s disease status may not be determinable if this subject was censored before the
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time of interest. As detailed in Sections 2.2 and 2.3, the “missingness” due to censoring can be overcome

by using the method of inverse probability of censoring weighting.

Demler and others (2017) have evaluated the feasibility of establishing U-statistics theory under dif-

ferent assumptions for changes in the NRI and the IDI. If the models are under the alternative, both the

NRI and the IDI are non-degenerate and variance estimators based on the U-statistics theory should work,

though some adjustments are needed for the IDI. The bootstrap technique is valid under this situation. On

the other hand, if the models are under the null, and the models compared by the NRI and the IDI are

nested, both the NRI and the IDI are degenerate and the theoretical formulas for estimating their variance

do not apply. In evaluating the accuracy improvement associated with new biomarkers, we are comparing

the “new” model with the additional variables and the “old” model without them. Since these two mod-

els are nested, the degeneracy of the NRI and the IDI under the null should be and can be remedied, as

suggested by Demler and others (2017).

Though the focus of this project is to evaluate diagnostic accuracy, it remains crucial to select a proper

regression model to distinguish all survival outcomes and identify covariate effects on each outcome at

different time points. In this work, we adopted three models, the proportional hazards regression, Fine-

Gray’s model (Fine and Gray, 1999) and the multinomial logistic risk regression model (Gerds and others,

2012). Three simulation designs were considered in Section 3, one for each of these three models. Robust-

ness of the NRI and the IDI towards model mis-specification was also examined. In Section 4, we applied

both NRI and IDI estimators to the MACS data for assessing whether including a new biomarker, CD4

cell count, would improve predictive ability over the old model. Some discussions are given in Section 5.

2. METHODS

2.1 Notation

In a competing-risk setting, there are two or more types of events. To simplify the notation, only two

types are considered here, which are denoted as ε = 1,2, though the proposed methods can be naturally
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extended to more than two competing events. Let T be the time to first event from either type. With two

competing events, we can define three categories according to their disease status at a fixed time point t0.

For the i-th subject, if Ti ≤ t0 and εi = 1, the subject belongs to the first category; if Ti ≤ t0 and εi = 2, the

subject belongs to the second category; otherwise the subject is in the third category of being healthy. In

practice there is often independent censoring C . Hence X = min(T ;C ) and the combined cause indicator

η = I (T ≤ C )ε are observed. Let z1, a p-dimension vector, denote conventional predictors and let z2, a

q-dimension vector, denote new biomarkers. The data consist of {Xi ,ηi , z i 1, z i 2|i = 1, ...,n}. In the sequel

we denote the “old” model with conventional markers as M1 and the “new” model with both conventional

and new markers as M2.

An extension of the NRI in Li and others (2013) for a K-level categorical outcome D is:

S =
K∑

k=1
ωk P {p̂k (M2) = max p̂(M2), p̂k (M1) 6= max p̂(M1)|D = k}

−
K∑

k=1
ωk P {p̂k (M2) 6= max p̂(M2), p̂k (M1) = max p̂(M1)|D = k},

where ωk is some weight function for the k-th category of the outcome, and
∑

k ωk = 1, and p̂k (Mm) is

the estimated probability of the outcome being from the k-th category based on the model m for m =

1,2. When there are only two categories K = 2, and the weights are ωk = 1/2 for k = 1,2, then the S

is equivalent to the NRI given in Pencina and others (2008). Li and others (2013) also proposed an

extension of the IDI based on the relationship between the IDI and the increase in the coefficient of

determination R2 from the “old” multinomial logistic model to the “new” one with additional markers.

That is, R =
∑K

k=1ωk {R2
k (M2)−R2

k (M1)}, where ωk is again a weight function for the k-th category of

the outcome, and R2
k (Mm) is the coefficient of determination from Mm , m = 1,2. Again when K = 2 and

ωk = 1/2, the multi-category IDI reduces to the original IDI in Pencina and others (2008).

2.2 Net reclassification improvement for competing outcomes

Without loss of generality, we consider competing outcomes with three categories. For model Mm ,m =

1,2, define pk (Mm , t0) = P (T ≤ t0,ε = k|Mm), for k = 1,2, and p3(Mm , t0) = P (T > t0|Mm). A well-
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calibrated regression model such as the multi-state (Cheng et al., 1998), Fine and Gray (1999), and

Gerds (2012) models can be used. For each subject i , we obtain the estimators p̂1i (Mm , t0), p̂2i (Mm , t0),

p̂3i (Mm , t0), and p̂ = (p̂1, p̂2, p̂3). The NRI defined for multi-category outcomes can thus be extended to

the competing-risk setting at any t0 > 0:

S(t0) =
K∑

k=1
ωk P {p̂k (M2, t0) = max p̂(M2, t0), p̂k (M1, t0) 6= max p̂(M1, t0)|D = k}

−
K∑

k=1
ωk P {p̂k (M2, t0) 6= max p̂(M2, t0), p̂k (M1, t0) = max p̂(M1, t0)|D = k}.

(2.1)

One complication in estimating S(t0) with censored competing risks data is that not every subject

status is available. For example, some subjects may have been censored before t0, and hence their disease

status cannot be determined. Therefore, those subjects whose disease status can be decided based on the

observed pair (Xi ;ηi ) should be properly weighted to account for those subjects with “missing” disease

status due to censoring. Thus, we propose the following estimator of the NRI at any time point t0 as:

Ŝ(t0) =ω1

∑n
i =1(h+

i ,1(t0)−h−
i ,1(t0))∑n

i =1 I {Xi ≤ t0,ηi = 1}/Ĝ(Xi−)
+ω2

∑n
i =1(h+

i ,2(t0)−h−
i ,2(t0))∑n

i =1 I {Xi ≤ t0,ηi = 2}/Ĝ(Xi−)
+ω3

∑n
i =1(h+

i ,31(t0)−h−
i ,3(t0))∑n

i =1 I {Xi > t0}/Ĝ(t0)
,

h+
i ,k (t0) = I {p̂1i (M2, t0) = max p̂(M2, t0), p̂1i (M1, t0) 6= max p̂(M1, t0), Xi ≤ t0,ηi = k}/G(Xi−),k = 1,2,

h−
i ,k (t0) = I {p̂1i (M2, t0) 6= max p̂(M2, t0), p̂1i (M1, t0) = max p̂(M1, t0), Xi ≤ t0,ηi = k}/G(Xi−),k = 1,2,

h+
i ,3(t0) = I {p̂3i (M2, t0) = max p̂(M2, t0), p̂3i (M1, t0) 6= max p̂(M1, t0), Xi > t0}/G(t0),

h−
i ,3(t0) = I {p̂3i (M2, t0) 6= max p̂(M2, t0), p̂3i (M1, t0) = max p̂(M1, t0), Xi > t0}/G(t0),

where ωk ,k = 1,2,3, are weight functions for the three disease categories and can be simply set to be 1/3 if

there is no prior on the categories, and Ĝ is the Kaplan-Meier estimator of the censoring survival function.

We now establish the asymptotic normality of Ŝ(t0), starting with introducing more notation. Let

QX (t ) = P (Xi > t ), and define the martingale of the censoring time C as MCi (t ) = I {ηi = 0, Xi ≤ t } −∫t
0 I {Xi ≥ u}dΛC (u), where ΛC (·) is the cumulative hazard function of C . For k = 1,2 and the third

“healthy” category, we define fi ,k (t0) = I {Xi ≤ t0,ηi = k}/G(Xi−) and fi ,3(t0) = I {Xi > t0}/G(t0). For

k = 1,2,3, define h+/−
k (t0) = Eh+/−

i ,k (t0), fk (t0) = E fi ,k (t0), where the expectation is with respect to T , C ,

and covariates Z . Let M̂C be the estimator defined by plugging in the usual Nelson-Aalen estimator of
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the cumulative hazard function of the censoring time C and let ĥ+/−
i ,k , f̂i ,k be defined by plugging in the

Kaplan-Meier estimator Ĝ(·), if applicable. Define

ĥ+/−
k (t0) =

1

n

n∑
i =1

ĥ+/−
i ,k (t0), f̂k (t0) =

1

n

n∑
i =1

f̂i ,k (t0), Ŝ(t0) =
3∑

k=1
ωk

ĥ+
k (t0)− ĥ−

k (t0)

f̂k (t0)
.

Since G(t0) in h+/−
i ,3 (t0) and fi ,3(t0) will be canceled out, we redefine h+/−

i ,3 (t0) and fi ,3(t0) by multiply-

ing G(t0). Following P. and others (2013), the Martingale representation of the Kaplan-Meier estimator

of the censoring survival function entails that: supt

pn(Ĝ(t )−G(t )) + G(t )p
n

∑n
i =1

∫t
0

d MCi (u)
QX (u)

 = op (1). By

Taylor’s expansion, supt0

pn(ĥ+
k (t0)−h+

k (t0))−
[ p

n
n(n−1)

∑n
i =1

∑n
j 6=i h+

i ,k (t0){1 +
∫Xi

0

d MC j (u)

QX (u) }−h+
k (t0)

] =

op (1), for k = 1,2. Similar results hold for ĥ−
k (t0),k = 1,2. Moreover, supt0

pn( f̂k (t0)− fk (t0))−[ p
n

n(n−1)

∑n
i =1

∑n
j 6=i fi ,k (t0){1 +

∫Xi
0

d MC j (u)

QX (u) }−Fk (t0)

] = op (1). When k = 3, again we have supt0
|pn(ĥ+

3 (t0)−

h+
3 (t0))− 1p

n

∑n
i =1 (h+

i ,3(t0)−h+
3 (t0))| = 0 and supt0

|pn( f̂3(t0)− f3(t0))− 1p
n

∑n
i =1 ( fi ,3(t0)− f3(t0))| = 0. Then

Ŝ(t0) can be further formulated using Taylor’s expansion:

sup
t

|pn(Ŝ(t0)−S(t0))−
p

n

n(n −1)

n∑
i =1

n∑
j 6=i
Ψi j (t0)| = op (1),

where

Ψi j (t0) =
2∑

k=1
ωk {

I Fh+
k (t0) − I Fh−

k (t0)

fk (t0)
− h+

k (t0)−h−
k (t0)

f 2
k (t0)

I F fk (t0)}

=
2∑

k=1
ωk {[h+

i ,k (t0)−h−
i ,k (t0)− fi ,k (t0)

fk (t0)
(h+

k (t0)−h−
k (t0))](1 +

∫Xi

0

d MC j (u)

QX (u)
)}/ fk (t0)

+ω3{h+
i ,3(t0)−h−

i ,3(t0)− fi ,3(t0)

f3(t0)
(h+

3 (t0)−h−
3 (t0))}/ f3(t0),

and I F denotes the influence function of each estimator respectively. By Hájek’s projection principle, the

following Hoeffding’s decomposition holds:

p
n

n(n −1)

n∑
i 6= j

Ψi j (t0) =
1p
n

n∑
i =1

I F (Xi ,ηi , t0) + op (1).

Given Martingale’s properties, we also know that E [I F (Xi ,ηi , t0)] = 0. Let M̂C be the estimator by plug-

ging in the usual Nelson-Aalen estimator of the cumulative hazard function of the censoring time C . ĥ+/−
k ,

F̂k , ĥ+/−
i ,k , and f̂i ,k were defined as above. Q̂X is the estimate of Q using the empirical distribution of X .
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Plugging in these estimators to estimate Ψi j , we compute I F (Xi ,ηi , t0) as

ˆI F (Xi ,ηi , t0) =
1

n −1

n∑
i =1

n∑
j 6=i

[Ψ̂i j (t0) + Ψ̂j i (t0)]. (2.2)

2.3 Integrated discrimination improvement for competing outcomes

We first define the time-dependent IDI for competing risks outcomes by adapting its definition for multi-

category outcomes as following:

R(t0) =
K∑

k=1
ωk {R2

k (M2, t0)−R2
k (M1, t0)}, (2.3)

where ωk are again some weight functions. The estimation of the IDI at time t0 involves the evaluation of

R2
k (Mm , t0), which is the proportion of variability in the k-th category that is explained by model Mm , for

m = 1,2 and k = 1,2. Without any covariates, we estimate the probability of falling into the k-th category by

π̂k (t0), where π̂k (t0) = n̂k (t0)/(n̂1(t0)+n̂2(t0)+n̂3(t0)), with n̂k (t0) =
∑n

i =1 I {Xi ≤ t0,ηi = k}/Ĝ(Xi−),k = 1,2

and n̂3(t0) =
∑n

i =1 I {Xi > t0}/Ĝ(t0). Hence the variance without any model is π̂k (t0)(1−π̂k (t0)). With model

Mm ,m = 1,2, the variance can be estimated by 1
n

∑n
i =1 {p̂ki (Mm , t0)− p̂k (Mm , t0)}2, where p̂k (Mm , t0) =

1
n

∑n
i =1 p̂ki (Mm , t0). Therefore, we propose the following estimator of the IDI at time t0:

R̂(t0) =
3∑

k=1

ωk

nπ̂k (t0){1− π̂k (t0)}

n∑
i =1

[{p̂ki (M2, t0)− p̂k (M2, t0)}2 − {p̂ki (M1, t0)− p̂k (M1, t0)}2].

Define πk = En̂k /n, for k = 1,2,3. Analogous to the arguments in Section 2.2, we have

sup
t0

pn(π̂k (t0)−πk (t0))− {

p
n

n(n −1)

n∑
i =1

n∑
j 6=i

ni ,k (t0)(1 +
∫Xi

0

d MC j (u)

QX (u)
)−πk (t0)}

 = op (1), k = 1,2,

sup
t0

pn(π̂3(t0)−π3(t0))− {

p
n

n(n −1)

n∑
i =1

n∑
j 6=i

ni ,3(t0)(1 +
∫t0

0

d MC j (u)

QX (u)
)−π3(t0)}

 = op (1).

Let Qi j ,k (t0) = ni ,k (t0)

(
1 +

∫Xi
0

d MC j (u)

QX (u)

)
−πk (t0),k = 1,2, and Qi j ,3(t0) = ni ,3(t0)

(
1 +

∫t0
0

d MC j (u)

QX (u)

)
−

π3(t0). When covariates are involved, the variance that is explained by model Mm ,m = 1,2, is given as
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D̂k(m) = 1
n

∑n
i =1 {p̂ki (Mm , t0)− p̂k (Mm , t0)}2. D̂k(m) can be rewritten as

D̂k(m) =
1

n

n∑
i =1

{p̂ki (Mm , t0)−pki (Mm , t0) + pki (Mm , t0)− p̂k (Mm , t0)}2

=
1

n

n∑
i =1

[{p̂ki (Mm , t0)−pki (Mm , t0)}2 + {pki (Mm , t0)− p̂k (Mm , t0)}2

+ 2{p̂ki (Mm , t0)−pki (Mm , t0)}{pki (Mm , t0)− p̂k (Mm , t0)}].

Let Dk(m) = ED̂k(m). By taking Taylor’s expansion, it’s easy to get the asymptotic linear representation for

D̂k(m). For k = 1,2,3:

sup
t0

|pn(D̂k(m) −Dk(m))−
p

n

n

n∑
i =1

[2(pki (Ml , t0)−pk (Mm , t0))I Fp̂ki

+(pki (Mm , t0)−pk (Mm , t0))2 −Dk(m)]| = op (1), m = 1,2,

where I Fp̂ki is the influence function that is specific to the estimated CIF from a particular competing

risks model, and will be discussed again in the following paragraph. Denote Bki (m)(t0) = (p̂ki (Mm , t0)−

pk (Mm , t0))2 −Dk(m). By Taylor’s expansion:

sup
t0

∣∣∣∣∣pn(R̂(t0)−R(t0))−
p

n

n(n −1)

n∑
i 6= j

Ψ∗∗
i j (t0)

∣∣∣∣∣ = op (1),

where

Ψ∗∗
i j (t0) =

3∑
k=1

ωk {
Bki (2) −Bki (1)

πk (t0)(1−πk (t0))
+

Qi j ,k (t0)(Dk(2) −Dk(1))(2πk (t0)−1)

π2
k (t0)(1−πk (t0))2 } .

By Hájek’s projection principle, the following Hoeffding decomposition holds:

p
n

n(n −1)

n∑
i =1

n∑
j 6=i
Ψ∗∗

i j (t0) =
1p
n

n∑
i =1

I F∗∗(Xi ,ηi , Mi , t0) + op (1),

where

I F∗∗(Xi ,ηi , Mi , t0) = E(Ψ∗∗
i j (t0) +Ψ∗∗

j i (t0)|(Xi ,ηi , Mi ))

and E [I F∗∗(Xi ,ηi , Mi , t0)] = 0. Using the same procedure from the previous proof, we can also estimate

I F∗∗(Xi ,ηi , Mi , t0) using the sample.

However, the IDI estimator relies on the estimated probabilities from a particular competing-risk

model, and asymptotic variance will change if another model is used. Some competing-risk models have
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well-defined influence functions I Fp̂ki , while others do not have explicit forms. Thus, we propose to use a

bias-corrected and accelerated (BCa) bootstrap procedure to obtain confidence intervals for the IDI, which

correct the skewness and the bias of the bootstrap distribution (Efron, 1987; Efron and Tibshirani, 1994).

3. SIMULATION STUDIES

In practice, we usually do not know the “right” model, and there is a chance that we could pick a rea-

sonable yet incorrect model for our data. Thus, we need to evaluate the impact of model choices on the

performance of accuracy improvement evaluation with new biomarkers included, and it is important that

the extended NRI and IDI are relatively robust against model mis-specification. Here, we first designed

three different sets of data with respect to three popular competing-risk models, including multi-state,

Fine and Gray, and multinomial logistic models, to examine the proposed estimators for the extended NRI

and IDI in competing risks settings. Three covariates were used in all three designs, where Z1 and Z3

were generated from standard normal distribution, truncated at ±3.5 to prevent extreme values, and Z2

was generated from a Bernoulli (0.7) distribution. The three cases of data were simulated as follows:

Case 1. We simulated the event time from a Weibull model with three covariates,

log(T ) =β0 +β1Z1 +β2Z2 +β3Z3 +σW,

where W was generated from the standard extreme value distribution. This error distribution gives the

proportional hazard interpretations for all covariates. We set β0 = 2.5, β1 = 0.05, β2 = −0.05, β3 = 0.15

and σ = 0.2. Since the coefficient for the new marker β3 is three times the size of the coefficients β1

and β2 for two conventional predictors, we expect that the “new” model including Z1, Z2 and Z3 would

have improved predictive ability over the “old” model that only uses Z1 and Z2. The cause indicators,

k = 1,2, were generated with equal probability. The censoring time was simulated from a uniform [2,31]

distribution, resulting in about 30% censoring, and from a uniform [1,21] with 50% censoring.

Case 2. We used a simulation design similar to the one proposed by Fine and Gray (1999) in this case.
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The subdistribution for cause 1 is defined by

F1(t |Z) = 1− [1−p{1−exp((t/20)5)}]exp(β11 Z1+β12 Z2+β13 Z3),

with a mass of 1−p when t is at ∞ and all covariates are zeros. When a uniform random number exceeds

F1(∞|Z), subjects are assumed to experience the cause 2 event with the conditional probability

P (T ≤ t |ε = 2,Z) = 1−exp(−exp(β21Z1 +β22Z2 +β23Z3)(t/20)5).

We set β11 = 0.2, β12 = −0.5, β13 = 1, β21 = 0.02, β22 = −0.05, β23 = 0.1, and p = 0.65. Including Z3 in the

model, besides Z1 and Z2, is expected to improve prediction over the one not including Z3. The censoring

distribution follows uniform [10,37.5] with 30% censoring and uniform [7,29.5] with 50% censoring.

Case 3. We considered a multinomial logistic regression model as suggested by Gerds and others

(2012) in this case. Define Fk (t , Z ) = P (T ≤ t ,ε = k|Z ) , k = 1,2. For cause k, logistic-transformed proba-

bilities were set as

log{Fk (t )/(1−F1(t )−F2(t ))} =µ(t ) +β1Z1 +β2Z2 +β3Z3, t > 0,

where µ(t ) was set to be t + 11, β1 = 0.5, β2 = 0.5 and β3 = 1. Since β3 is twice the size of β1 and β2,

we expect the new model including Z3 would have a better predictive ability than the old one using

only Z1 and Z2. The event time was simulated by inverting the survival probability, and cause indicators

were assigned with equal probabilities. Independent censoring time was simulated from a uniform [0,32]

distribution for 30% censoring and from a uniform [0,29.2] distribution for 50% censoring.

In light of Demler and others (2017), we also want to examine the robustness of the inferential proce-

dures for the NRI and the IDI under the null, where adding the new biomarker into “old” model doesn’t

improve the predictive ability. Thus, we consider the following three scenarios:

Case 4. Similar to Case 1, we set β0 = 2.5, β1 = 0.25, β2 = −0.05, β3 = 0 and σ = 0.2. Censoring time

was simulated from uniform [3, 32] for 30% censoring, and from uniform [1, 21] for 50% censoring.

Case 5. Similar to Case 2, we set β11 = 0.2, β12 = −0.5, β13 = 0, β21 = 0.02, β22 = −0.05, β23 = 0, and
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p = 0.65. The censoring distributions followed a uniform [10,39] distribution for the 30% censoring case

and from uniform [7,30] for 50% censoring.

Case 6. Similar to Case 3, we set β1 = 3, β2 = 1 and β3 = 0. Independent censoring time was simulated

from uniform [0, 32] for 30% censoring and from uniform [0, 29.2] for 50% censoring.

Under Cases 4, 5 and 6, we expect that the predictive ability of the “new” model would not be im-

proved. Thus the true NRI and IDI are zero. For each simulation case, we generated 1,000 samples of

size 400, and applied all three models, Cox’s proportional hazard model, Gerds’ multinomial logistic risk

regression, and Fine-Gray’s subdistribution hazard model.Cox regression and Fine-Gray’s model estimate

the CIF for each cause separately, while Gerds’ model estimates CIFs for both causes simultaneously. We

built confidence intervals (CIs) for the NRI based on (2.2) and CIs for the IDI using biased-corrected accel-

erated (BCa) bootstrapping. Simulation was run in R, where packages survival, riskRegression

and cmprsk were used for competing risks modeling, and package boot was used for BCa bootstrap-

ping. The simulation results for the NRI and the IDI from cases 1, 2 and 3 under 30% censoring, in which

model predictive ability should improve with the “new” marker, are shown in Table 1 and Table 2, respec-

tively. Table 3 and Table 4 summarize the simulation results for the NRI and the IDI under cases 4, 5 and

6 with 30% censoring, when the added covariate does not improve prediction accuracy.

From Table 1 and Table 2, we first notice that, for both NRI and IDI, estimated Ŝ and R̂ on average are

very close to true values S and R, when the correct model for a specific data design. The average standard

deviations of the estimated NRIs based on formula (2.2) approximate the empirical standard errors closely.

The 95% CIs based on asymptotic normality and estimated standard deviation cover the true values about

95% times, though the coverage rates are a bit lower than 95% at time 13. One possible reason is that, at

time 13, simulated event times are more likely to be censored, and due to the use of approximation from

Taylor’s expansion, our formula-based asymptotic variance could underestimate the true variance of the

proposed NRI estimators in this situation. Nevertheless, when models are specified correctly, the results

are very good in general. Similar to the NRI, IDI estimators are close to their true values when models are
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correctively specified, average bootstrap standard deviations are comparable to empirical standard errors,

and coverage rates are around 95% using BCa bootstrap CIs. As the censoring rate increases from 30% to

50% (results shown in Tables S1 and S2 in the supplementary material), standard errors of both NRI and

IDI estimators increase but similar coverage rates are observed.

When the model is mis-specified, the NRI seems to be a more robust measure than the IDI towards

model mis-specification, in the sense that coverage rates of the NRI from the misspecified models are

in general satisfactory, and NRI estimators are close to true values obtained from correct models. This

follows that the NRI uses ranks of estimated probabilities instead of probabilities themselves, which are

used in the IDI estimation. However, despite the appealing interpretation of covariate effects on cumulative

incidence functions, Fine and Gray’s model does not guarantee the sum of all cause probabilities is equal

to one. So, proposed standard deviation estimation for the NRI often underestimates.The underestimation

is worse for the IDI estimators when Fine and Gray is mis-used in predicting event probabilities.

Similar conclusions are observed from Table 3 and Table 4. Even though the true underlying data are

from the null and both NRI and IDI are degenerate, the probabilities of covering zero are high for both the

NRI’s formula-based CIs and the IDI’s BCa bootstrap CIs. This applies no matter whether the model is

correctly specified. Our methods are robust against degenerate cases and model mis-specification. Demler

and others (2017) suggested to “un-nest” the models by including independent weak predictors in both

models such that they are not nested any more. However, by doing so, bias would be introduced into the

IDI estimation, which might lead to lower coverage rate of CIs. Thus, we chose to simply use the BCa

bootstrapping procedure instead. Results for the null hypothesis under 50% censoring are summarized in

Tables S3-S4 in the supplemental material. The same patterns and robustness are observed.

4. APPLICATION TO THE MULTICENTER AIDS COHORT STUDY

We applied the NRI and IDI methods to data obtained by the MACS. It is an ongoing study of homosexual

and bisexual men at risk for or infected with HIV, recruited from four institutions in Baltimore, Chicago,
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Pittsburgh and Los Angeles (Kingsley and others, 1987; Kaslow and others, 1987). The data used for this

analysis were gathered between April 2,1984 and April 8, 2017. Each participant underwent a clinical

examination semi-annually, and neuropsychological testing approximately every two years (however, see

Miller and others (1990); Becker and others (2014) for details) until they drop out of the study voluntarily

or die. The current analysis utilizes the data from a substudy of the legacy effect of HIV on cognitive

impairment, which contains 2,783 HIV seropositive men (Farinpour and others, 2003).

Individuals with HIV disease have historically been at risk for cognitive impairment. The MACS

measured cognitive functions over time with a battery of neuropsychological (NP) tests which were sum-

marized by T scores in six cognitive domains: working memory & attention, learning, motor speed &

coordination, executive functioning, speed of information processing, and memory. We adopted the Mul-

tivariate Normative Comparison (MNC) method to define abnormality in cognition as in Su and others

(2015) and Wang and others (2019). Time to impairment was defined as the interval between study entry

and the first visit where the six domain scores were deemed abnormal by the MNC method. Those sub-

jects who were impaired at their first visit were excluded from the analyses. If a subject died after the last

complete NP visit and no cognitive impairment was detected, his time to impairment was competing-rick

censored by death. Otherwise, subjects were censored at their last visit.

In the presence of competing-risk censoring, techniques such as Cox regression, Gerds’ model, and

Fine-Gray’s model can be used to identify potential risk factors affecting cognition after the onset of

HIV infection. However, these methods do not directly quantify the relative importance a factor is in

predicting who might develop impairment, who might die, or who might be alive and disease free after a

fixed time interval. Here we apply the NRI and the IDI treating CD4+ cell count as the “new” biomarker

(with both linear and quadratic terms to account for nonlinearity when modeling cognitive impairment) to

examine whether the inclusion of this variable will yield a better prediction. In the Legacy substudy (Popov

and others, 2019), three other predictors – age, center for epidemiologic studies depression scale, and

recruitment cohort (before or after 2001) – were found to be significantly related to cognitive impairment
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and were treated here as conventional predictors. Final analysis included 1,972 seropositive subjects who

had at least one visit with complete cognitive tests and the information on four predictors.

Within this subsample, 553 men were classified with cognitive impairment using the MNC method

(28.0%), 597 died during follow-up without any cognitive impairment (30.3%), and 822 were censored

by the “end” (at the data freeze) of the study (41.7%). Time to event or time in the study ranged from 5

months to 33 years. We examined the performance of CD4+ cell count and its quadratic transformation

as the “new” biomarkers in predicting health status at 10 and 12 years since the start of the study with

a proportional hazard model, Fine-Gray’s model, and Gerds’ model, using both NRI and IDI. The two

events, cognitive impairment and death without cognitive impairment, were again modeled separately with

Cox’s model or Fine-Gray’s model, and they were modeled simultaneously in the Gerds model. Based on

the predicted probabilities of both events that were calculated from the three models, we computed the

values of the NRI and IDI. For IDI, 10,000 bootstrap samples were used to produce 95% BCa bootstrap

CIs. In order to select the most suitable regression model, we also computed Brier scores (Gerds and

Schumacher, 2006) for all three models under consideration. The results are summarized in Table 5.

In Table 5 we can see that the estimated NRI and IDI and their 95% CIs are comparable across the

three different models. This is consistent with the robust nature of the NRI/IDI estimators under model

misspecification that was observed in our simulation studies. Among the three models, Cox regression

has the lowest Brier scores for both events at 10 and 12 years, suggesting that Cox regression is the most

suitable competing risks model for our data. Moreover, from the Cox-Snell residual plots shown in Fig. 1,

we can see that Cox regression provides a good overall fit to the MACS data, as the cumulative hazards

of Cox-Snell residuals for both events go through a straight line with slope 1.

From the Cox regression model the estimated NRIs at 10 and 12 years since the start of the study are

.042 and .079 with 95% CIs [.027, .056] and [.062, .096] respectively. The estimated IDIs are .049 and .060

with 95% BCa CIs [.039, .065] and [.048, .078]. Because the 95% CIs of both NRI and IDI do not include

zero, we conclude that including the CD4+ cell counts in competing risks models increases the accuracy
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of predicting cognitive impairment and death after 10 and 12 years in the study. More specifically, the

probabilities of correctly predicting health status (impairment, death, or neither) for a subject after 10

and 12 years of observation improves by 4.2% and 7.9%, by simply incorporating CD4+ all counts with

its quadratic transformation into the model. Also, the variability explained by the predictive model is

increased by 4.9% and 6.0% for events at 10 and 12 years with the addition of the CD4+ counts.

However, some participants withdrew from the legacy study and died many years afterwards. If a

subject died more than 4 years after his last NP visit, he may have experienced cognitive impairment

between his last NP visit and death. As a sensitivity analysis, we censored such subjects four years after

their last NP visit, assuming cognition stayed relatively stable over two consecutive NP visits (about 4

years as scheduled). In this way, 553 men were classified with cognitive impairment using the MNC

method (28.0%), 425 died within 4 years after the last NP visit without any cognitive impairment (21.6%),

and 994 were censored either at their last study visit or 4 years following the last NP exam, whichever

was first (50.4%). Using the Cox regression model, the estimated NRIs at 10 and 12 years since the start

of the study are .100 and .106 with 95% confidence intervals [.082, .118] and [.088, .124] respectively.

The estimated IDIs are .095 and .100 with 95% BCa confidence intervals of [.084, .137] and [.086, .143].

Again, these findings suggest that including CD4+ cell counts in competing risks models can increase

prediction accuracy of death and cognitive impairment after 10 and 12 years in the study.

5. DISCUSSION

We have demonstrated here the good practical performance of the extended NRI and IDI in competing

risks settings. Although a CI for the IDI can be efficiently constructed based on the asymptotic linear rep-

resentation for a well-studied regression model, the BCa bootstrap method serves as a flexible alternative

when a model is relatively new and its theoretical properties are less known. When the added variables

have no effect on the events and models to be compared are nested, Demler and others (2017) showed

that the theory based on U-statistics fails. Still, the CIs for the NRI based on asymptotic normality and the
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BCa bootstrap CIs for the IDI seem to have satisfactory coverage as demonstrated by simulations.

In this work we have considered three reasonable competing risks models. However, one can use

any other semiparametric or parametric models such as Scheike and others (2008) and Cheng (2009).

Although certain robustness of the NRI and IDI against model mis-specification has been observed, it

remains important to select a proper predictive model before examining diagnostic accuracy improvement

over the course of variables’ addition. Metrics, such as the Brier score, are useful in choosing the most

appropriate model for the data.

Competing endpoints are common in biomedical research, although they are often neglected in anal-

ysis. The extended NRI and IDI for competing events provide alternative and straightforward interpre-

tations of the importance of new biomarkers on top of conventional factors. They also serve as more

unifying metrics than model coefficients such as hazards ratio or odds ratio, since the latter depend on the

types and the scales of covariates. Moreover, this is in line with recent debate about moving away from

statistical significance of 0.05 level (Wasserstein and others, 2019). Instead of simply looking at p values

for the added variables in a regression model, one can assess the contribution of additional risk factors in

prediction through interval estimates of the IDI and NRI. Thus, the extended NRI and IDI for multiple

competing endpoints might be useful in screening and selecting covariates in high dimensional settings.

SOFTWARE

Software in the form of R code, together with a sample input data set and complete documentation is

available on request from the corresponding author (yucheng@pitt.edu).

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Table 1. Simulation details for the NRI when the added covariate improves predictability (30% censor-
ing). Results from correct models are given in bold. True mean S was calculated using 1,000 samples with
size 1,000. 1,000 samples with size 400 each was used to calculate the sample mean Ŝ and empirical stan-
dard error SEŜ . Mean of estimated standard deviations SDŜ was outputted by formula provided. Coverage

rate CRŜ=(count of true NRI entering the intervals [Ŝ −1.96SDŜ , Ŝ + 1.96SDŜ ])/1,000.

Data Design
Cox Regression Fine Gray Gerds

S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 1)

S .114 .100 .126 .114 .100 .126 .114 .100 .126
Ŝ .112 .105 .125 .068 .105 .100 .108 .104 .121

SEŜ .027 .030 .031 .027 .029 .033 .025 .030 .031
SDŜ .024 .030 .030 .016 .028 .026 .024 .030 .030
CRŜ .935 .944 .943 .346 .926 .754 .930 .945 .937

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 2)

S .109 .127 .123 .109 .127 .123 .109 .127 .123
Ŝ .114 .131 .127 .115 .128 .126 .121 .132 .126

SEŜ .035 .033 .028 .038 .035 .030 .035 .033 .030
SDŜ .032 .029 .025 .033 .032 .026 .032 .028 .025
CRŜ .919 .911 .902 .911 .918 .909 .907 .886 .873

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 3)

S .209 .189 .169 .209 .189 .169 .209 .189 .169
Ŝ .208 .193 .176 .065 .143 .165 .205 .186 .172

SEŜ .027 .031 .031 .029 .028 .029 .028 .031 .031
SDŜ .025 .027 .030 .015 .020 .027 .026 .027 .030
CRŜ .924 .897 .933 0 .435 .933 .929 .920 .937
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Fig. 1: Cox-Snell Residual Plots for the MACS Data with Cox Regression
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Table 2. Simulation details for the IDI when the added covariate improves predictability (30% censor-
ing). Results from correct models are given in bold. True mean R was calculated using 1,000 samples
with size 1,000. 1,000 samples with size 400 was used to calculate the sample mean R̂ and empirical stan-
dard error SER̂ . Each sample was bootstrapped 1,000 times, and the mean of 1,000 bootstrap standard
deviations is denoted as BSDR̂ . Coverage rate CRR̂ =(count of true IDI entering the 95% BCa bootstrap

intervals)/1,000.

Data Design
Cox Regression Fine Gray Gerds

R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 1)

R .109 .106 .099 .109 .106 .099 .109 .106 .099
R̂ .110 .108 .100 .018 .025 .034 .101 .092 .079

SER̂ .016 .016 .015 .005 .006 .008 .017 .016 .016
BSDR̂ .017 .016 .016 .007 .008 .010 .018 .017 .016
CRR̂ .953 .952 .946 0 0 .008 .935 .873 .810

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 2)

R .151 .158 .165 .151 .158 .165 .151 .158 .165
R̂ .128 .137 .144 .148 .155 .162 .035 .045 .055

SER̂ .020 .021 .022 .020 .021 .021 .014 .015 .016
BSDR̂ .021 .022 .023 .021 .021 .022 .015 .017 .017
CRR̂ .661 .730 .781 .946 .946 .950 .012 .002 .002

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 3)

R .288 .271 .251 .288 .271 .251 .288 .271 .251
R̂ .266 .251 .234 .034 .045 .058 .289 .272 .252

SER̂ .026 .024 .023 .007 .008 .010 .020 .018 .018
BSDR̂ .027 .024 .023 .010 .011 .012 .023 .020 .019
CRR̂ .512 .606 .732 0 0 0 .947 .958 .949
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Table 3. Simulation details for the NRI when added covariate does not improve predictability (30% cen-
soring). Results from correct models are given in bold. 1,000 samples with size 400 each was used to
calculate the sample mean Ŝ, and empirical standard error SEŜ . Mean of estimated standard deviations
SDŜ was outputted by formula provided. Coverage rate CRŜ=(count of true NRI entering the intervals

[Ŝ −1.96SDŜ , Ŝ + 1.96SDŜ ])/1,000.

Data Design
Cox Regression Fine Gray Gerds

S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 4)

Ŝ .005 .005 .005 .005 .004 .003 .004 .004 .004
SEŜ .015 .015 .015 .013 .015 .015 .015 .015 .016
SDŜ .013 .014 .014 .010 .013 .015 .014 .014 .015
CRŜ .915 .919 .939 .845 .918 .940 .931 .949 .935

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 5)

Ŝ .005 .004 .002 .005 .004 .002 .006 .004 .002
SEŜ .016 .015 .012 .015 .015 .011 .016 .016 .011
SDŜ .014 .014 .010 .013 .013 .010 .014 .014 .010
CRŜ .915 .934 .891 .913 .913 .897 .916 .919 .918

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 6)

Ŝ .005 .005 .005 .004 .007 .005 .005 .006 .006
SEŜ .016 .016 .016 .010 .015 .016 .018 .017 .016
SDŜ .015 .015 .015 .006 .011 .014 .015 .015 .015
CRŜ .915 .922 .933 .709 .856 .907 .769 .783 .786

Table 4. Simulation details for the IDI when added covariate does not improve predictability (30% cen-
soring). Results from correct models are given in bold. 1,000 samples with size 400 each was used to
calculate the sample mean R̂ and empirical standard error SER̂ . Each sample was bootstrapped 1,000
times, and mean of 1,000 bootstrap standard deviations is denoted as BSDR̂ . Coverage rate CRR̂ =(count

of true IDI entering the 95% BCa bootstrap intervals)/1,000.

Model
Cox Regression Fine Gray Gerds

R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 4)

R̂ .002 .002 .002 .002 .002 .002 .002 .002 .002
SER̂ .002 .003 .003 .003 .003 .003 .002 .002 .002

BSDR̂ .004 .004 .005 .004 .005 .005 .004 .004 .004
CRR̂ .962 .947 .953 .897 .903 .909 .955 .957 .955

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 5)

R̂ .002 .003 .003 .002 .002 .002 .0004 .0007 .0009
SER̂ .003 .003 .003 .002 .002 .003 .0006 .0008 .001

BSDR̂ .004 .005 .005 .004 .004 .004 .001 .001 .002
CRR̂ .864 .857 .842 .776 .773 .755 .865 .872 .870

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 6)

R̂ .003 .003 .003 .002 .002 .002 .002 .002 .002
SER̂ .003 .003 .003 .003 .003 .004 .002 .002 .003

BSDR̂ .005 .005 .005 .004 .005 .005 .004 .004 .004
CRR̂ .953 .927 .932 .910 .907 .905 .960 .943 .935



REFERENCES 29

Table 5. NRI and IDI results for the MACS data at times 10 and 12 years. Competing risk censoring by
death occurred when subjects died without cognitive impairment.

Model Time NRI IDI
Brier Score with Event

Cognitive Impairment Death

Cox Regression
t=10

.042 .049
.089 .112

[.027, .056] [.039, .065]

t=12
.079 .060

.098 .128
[.062, .096] [.048, .078]

Gerds
t=10

.018 .050
.090 .116

[.007, .028] [.040, .068]

t=12
.065 .055

.098 .137
[.049, .081] [.044, .074]

Fine and Gray
t=10

.020 .030
.090 .116

[.011, .029] [.022, .041]

t=12
.073 .038

.100 .133
[.058, .087] [.028, .051]
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