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Abstract: The association between two event times is of scientific importance in various fields. Due
to population heterogeneity, it is desirable to examine the degree to which local association depends
on different characteristics of the population. Here we adopt a novel quantile-based local association
measure and propose a conditional quantile association regression model to allow covariate effects on
local association of two survival times. Estimating equations for the quantile association coefficients are
constructed based on the relationship between this quantile association measure and the conditional copula.
Asymptotic properties for the resulting estimators are rigorously derived, and induced smoothing is used
to obtain the covariance matrix. Through simulations we demonstrate the good practical performance of
the proposed inference procedures. An application to age-related macular degeneration (AMD) data reals
interesting varying effects of the baseline AMD severity score on the local association between two AMD
progression times. The Canadian Journal of Statistics 00: 000-000; 2020 © 2020 Statistical Society of
Canada
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de deux temps de survie. Elles construisent les équations d’estimation pour les coefficients du modele a
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pratiques des procédures d’inférence proposées. Elles présentent une application a des données de
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1. INTRODUCTION

The association between two failure times is often of interest in familial studies, finance
and biomedical research. For example, in an atherosclerosis study, two diseases, myocardial
infarction and stroke, are likely associated with each other. Understanding their association may
help prevent the occurrence of one event, once the other event is observed. Another example is
the bilateral eye disease age-related macular degeneration (AMD) which is a leading cause of
vision loss in developed countries (Swaroop et al., 2009). A patient who was identified to have
AMD in one eye may have a higher risk of AMD development or progression in the other eye.

Several global dependence measures have been developed to quantify the strength of
association between pairs, including Kendall’s tau (Oakes, 1982; 2008; Wang & Wells, 2000;
Lakhal, Rivest & Beaudoin, 2009) and the correlation between two cumulative variates (Hsu
& Prentice, 1996). Global association measures are appealing for their ease of interpretation.
However, they cannot capture the local association structure which may vary over time. Research
attention has been attracted to local association measures, which can effectively capture the
association pattern in addition to the association strength. One approach to quantifying local
association is to analyze the bivariate survival data via a frailty or copula framework (Clayton,
1978; Oakes, 1989; Shih & Louis, 1995; Romeo, Meyer & Gallardo, 2018), which allow
time-dependent association between two failure times. Anderson et al., (1992) considered
the time-dependent conditional expected residual life and conditional probability to quantify
time-dependent association in bivariate survival data under the proportional hazard frailty model.
Local association measures that relax the parametric copula or frailty assumptions include a
martingale covariance function for two failure times (Prentice & Cai, 1992), a piecewise constant
cross hazard ratio (Nan et al., 2006), and a time-dependent cross ratio (Hu & Nan, 2011), among
others.

In the analysis of association, it is of interest to investigate how risk factors affect the local
association between two event times. Conditional association tends to be more informative than
their unconditional counterpart, because it can accommodate important risk factors and control
for potential confounders. In the AMD example, age, genetic risk alleles and smoking status
are possible risk factors for the development of AMD. They may also influence how the AMD
progression times of the two eyes relate with one another for the same subject. By identifying
those patients with stronger local association, clinicians can provide them earlier interventions
once they show symptoms of AMD in one eye, to prevent or delay the development of AMD
in the other eye. Earlier studies (Huster, Brookmeyer & Self, 1989; Gorfine, Zucker & Hsu,
2006; Zeng, Chen & Ibrahim, 2009) have focused on adjusting for covariate effects on marginal
distributions, but not directly on the association. More recently, Bogaerts & Lesaffre (2008)
and Geerdens, Acar & Janssen (2017) considered covariate-dependent conditional association
by modelling covariate effects on parameters in a frailty or copula model. Yan & Fine (2005)
proposed a functional association regression model on a temporal process with time-varying
coefficient effects, though the temporal association may be affected by the assumed marginal
distributions. Instead of focusing on copula parameters, Li et al., (2017) proposed an association
model based on the odds ratio for quantiles, and considered the covariate effects on the marginal
distributions only.

In this work, we propose a conditional association model for bivariate survival data,
by adopting a novel quantile-specific association measure—the quantile odds ratio (gor) as
proposed in Li, Cheng & Fine (2014). The gor is independent of the marginal distributions,
invariant to monotone transformations, and insensitive to outliers. Li, Cheng & Fine (2014)
utilized existing quantile regression models to allow covariate effects on marginal quantiles,
and developed regression models for the gor for completely observed bivariate outcomes. For
bivariate survival data, Li et al., (2017) successfully explored the quantile association through
the gor in the copula framework, and proposed two estimators of the quantile association by
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using non-parametric and semi-parametric methods, respectively. Although Li et al., (2017)
considered the covariate effects in the estimation procedures, they assumed that covariate effects
influence the quantile association via marginal quantiles only, which may be too restrictive in
many real-life settings.

In this work, we propose a conditional quantile association model that allows covariate
effects on both the marginal distributions and the association structure. This extension is a
significant step forward in allowing direct covariate effects on the local association patterns.
The modelling of covariate effects on quantile association is not trivial. The association is
captured by a functional surface that is indexed by both quantiles, and both event times are
subject to censoring. Meanwhile, we need to adjust for covariate effects on the marginals. To
address these challenges, we adopt the flexible censored quantile regression model for marginal
quantiles, and then propose a model to estimate the effects of the covariates on the conditional
qor, through the relationship between gor and the conditional copula function. The estimation
of covariance matrices is often tricky for quantile regression and quantile association analyses
due to the unsmooth estimating equation. We thus extend an idea of the induced smoothing
procedure (Brown & Wang, 2005) to explicitly estimate the influence functions for our proposed
estimators, and propose an algorithm to obtain a consistent estimator for the covariance matrix
of the proposed estimators. Our proposed method addresses the presence of right censoring and
greatly expands the application of the method in Li, Cheng & Fine (2014) to time-to-event types
of data.

The rest of this article is organized as follows. We propose our conditional quantile
association model and estimating equations in Sections 2.1 and 22. The asymptotic properties
for the coefficient estimators and the covariance estimation are given in Sections 2.3 and 24. We
present numerical simulations for the proposed method and procedure in Section 3, and apply to
an AMD study —age-related eye disease study (AREDS) in Section 4. Finally, some discussions
are given in Section 5.

2. METHOD
2.1. Bivariate Survival Data and Models

To begin, we introduce necessary notation for bivariate survival data with covariates. Let (77,
T,) be a vector of bivariate survival times, and (C;, C,) be the corresponding vector of bivariate
right censoring times. Define ¥; = min(7}, C;), 6, = I(T; < C}), j = 1,2. Let Z; denote a vector
of time-independent covariates that are relevant to Tj, j=1,2,and Z ; includes 1 as the first
element. Let Z; denote the covariate vector that is directly related to the association between
the bivariate survival times. Define Z as a vector that consists all p covariates in Z;, Z, and
Z5. In the presence of independent censoring, the observed bivariate survival data consist of n
Li.d. replicates of {Y;, Y5;, 6y;, 62, Z;}_ ;-

For j = 1,2, define F;(1|Z;) = Pr(T; < t|Z;) as the marginal conditional cumulative distribu-
tion function (CDF) of T}, and Q;(u|Z;) = inf{z : F;(t/|Z;) > u},u € (0, 1) as the corresponding
marginal conditional quantile function. Let H(¢,, t,|Z) = Pr(T, < t;, T, < t,|Z) be the conditional
bivariate CDF of (T, T,). The conditional copula function is defined as

C(z|Z) :=Pr{T| < Q(1|1Z)), T, < Qy)(02|Z)|Z} = H{Q/(7(|Z)), Qr(1,1Z,)|Z},
where 7 = (7, 7,) € (0, 1)2. To simplify the notation, we use Fj(Tj |Z) to denote Fj(Tj|Zj), for

Jj = 1,2, with the understanding that not all covariates in Z are significantly related to T or the

conditional association. Thus, H{Q(7,|Z), Q,(1,|Z)|Z} < H{Q(t1Z,), Qy(1,|Z,)|Z}.
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In this work we adopt a quantile association measure, quantile-specific odds ratio (gor), that
was proposed by Li, Cheng & Fine (2014), where

odds{T, < Q,(t,|Z)|T, < O,(1,|Z)|Z}
odds{T; < O,(7,|DIT, > Oy(7,|Z)|Z}

_odds{T, > Q(r|2)|T, > Qy(1,|Z)|Z}

"~ odds{T, > Q,(1,|Z)|T, < Q,(1,|Z)|Z}

_ Pr{T, < Q,(1|2). T, < Qy(53|L)|Z} X Pr{T, > Q,(7,|2), T, > Q,(,|Z)|Z}

"~ Pr{T, < 0,(1112). T, > Oy(n,|Z)|Z} X Pr{T, > Q,(7,12), T, < O(1,|2)|Z} ’(1)

qor(t|Z)

The gor represents the odds that the first event occurs before (after) its quantile Q,(7,|Z) given
that the second event occurred before (after) its quantile Q,(z,|Z), compared to the odds that the
first event occurs before (after) its quantile Q,(z;|Z) given that the second event occurred after
(before) its quantile Q,(7,|Z) (Li, Cheng & Fine, 2014; Li et al., 2017). Expressed as an odds
ratio, the gor enjoys straightforward interpretation about the relationship between two event
times. If there exists a positive (negative) association between 7' and T, given the covariates,
the gor is greater (less) than 1. If the two event times are conditionally independent, then the
qor is equal to 1. Under different copula models, the gor changes with 7, except for the Plackett
copula under which the gor stays constant; see Li, Cheng & Fine (2014) for more details.

It is easy to see that the C(7|Z) uniquely determines the gor. The opposite direction also
holds true. Given that gor=y, by Equation (1), we have

CID){1 -7, — 1, + C(x|Z)}
{r) = CalD)}z, - C(z12)}

Because 0 < C(t|Z) < 1, there is one unique solution for C(r|Z) as a function y(y; ), where
the form of y depends on the value of y. Thus, we can express C(z|Z) as a function of the gor,
x{qor(z|Z); T}, where

ntn 1-4/ 0= D2(e1~0) 2420~ D(r 1412 -271 1)+
(1) = 2 20-1)
TTy ify=1,

if0<y<lory>l,

limy_o, x(v; 7) = max(0,7; + 7, — 1) and lim_, , x(y; 7) = min(z;, 7). Thus, the conditional
copula function has a monotone relationship with the gor.
We consider modelling covariate-dependent local association by positing that

log gor(z|Z) = Z"y(v), @

where y,(7) = {y((]o)('r), y((]])('r), . yép_l)(r)} isap X 1 vector of coefficients. y(()o)(r) corresponds
to the baseline log gor(-) when all covariates are set to zero. The absolute value of y(()k)(r) and the

sign of y(()k)(r) represent the magnitude and the direction of the changes in the local association
at the zth quantiles, when the kth covariate increases by one unit, with k = 1,...,p — 1, while
other covariates stay constant. Under this structure, the conditional copula function has a form,
C(t|Z) = ylexp{Z”yy(7)}; T]. Again in this article, we simply use the same Z for both marginal
models and the local association model for notational brevity. In practice, different sets of
covariates are allowed in models (2) and (3).
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To model the gor(zr|Z), it is necessary to have a sensible model for the marginal quantile
functions, Q;(z;|Z), j = 1,2. To this end, we adopt the flexible and robust modelling framework
of quantile regression (Koenker & Bassett, 1978). The framework is attractive in studying
dynamic effects of covariates on an outcome, because it allows researchers to assess covariate
effects across different quantiles of the outcome, and regression coefficients are easy to interpret.
Quantile regression has been well extended to univariate survival data under different scenarios,
such as survival data with independent censoring (Portnoy, 2003; Peng & Huang, 2008; Koenker,
2008), competing risks data (Peng & Fine, 2009) and left-truncated semi-competing risks data (Li
& Peng, 2011), among others. Here, we adopt the censored quantile regression model (Portnoy,
2003; Peng & Huang, 2008; Koenker, 2008), which assumes that

0,(7;12) = g, {Z" B,o(z))}. 7; € (0. 7). 3)

where B4(7;) is a p X 1 vector of unknown coefficients, Ty, is the maximum quantile level
that is estimable from the censored data and g;(-) is a pre-specified monotone link function, for
Jj =1,2. Common choices of g;(-) include the identify link and the exp(-) link. In the following,
we adopt g;(-) = exp(-), j = 1,2, without loss of generality.

2.2. Estimating Equations

Before evaluating the association coefficients, y,(t), we need to first estimate the unknown
parameters, f,)(7;), in the marginal censored quantile models. Without loss of generality, we
adopt Peng & Fine (2009)’s method which uses inverse probability of censoring weighting
(IPCW) to modify the standard quantile regression model in the estimation equation. More
specifically, let G;(7|Z) be the survival function of C; given Z, j = 1, 2. The estimating equation
for the true parameters, jo(rj), is,

" [I{in <g;(Z"b))}5;;

Snj(bj;fj):n_l ZZi =
i=1 G;(Y;|Z)

where (A}j(-|Z) denotes a consistent estimator for G;. For simplicity’s sake, here we assume
that C; is independent of (7, 6;,Z) and adopt the Kaplan—Meier estimator for G,(-), j = 1, 2.
When censoring depends on covariates, one can adopt some semi-parametric or non-parametric
regression strategies to obtain G ;(Z). In practice, we focus on a pre-specified region of 7 € D,
where D is a subset of (0, rUl] X (0, TU2]- Under mild regularity conditions, it has been shown
that S,,;(b;; 7;) is asymptotically mean zero at the true parameters f;,, and solving the estimating
equation S, ;(b;; 7;) = 0 can be transformed into optimizing a L, -type convex function. Therefore,
despite that Snj(b j;rj) is not smooth, the solution to Snj(bj;rj) = 0 can still be obtained by
minimizing the L,-type convex function (Peng & Fine, 2009). We use the existing software
package, such as the rq() function in the R package quantreq, to obtain the estimators ﬁ ;(7;) and
the corresponding quantile estimators @j (Tj |Z) = gj{ZTﬁj (rj)} forj=1,2.

We now consider the main objective of this article of evaluating the quantile association
effects, yo(t), with bivariate survival data. For complete data, it is easy to see that

E{I(T) < 0/(1)|1), T, £ Qy)(r,| )| 2)} = C(z|Z).

For bivariate survival data, we adapt a commonly used technique based on the IPCW to account
for censoring. Under the assumption that the censoring times are conditionally independent of
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E{ 1Y, <1,,Y, < 1,)58,5,

d
G(Y, ,|Z)

E[E { I(T, <1,,T, < )T, < CPIT, < Cy)
G(Y,, Y,|Z)

—E{I(T] <1,T, < r2>G(T1,T2|Z>’Z}
G(T\, T,1Z)

=Pr(T, <1,,T, < |Z) = H(1, ,|Z),

1z fe]

where G(t,,1,|Z) = Pr(C| > t;,Cy > t,|Z). Let @(zl, t,]Z) be a consistent estimator of G(¢,, t,|Z).
We can show that
E[I{Yl <L 0\(112),Y, < 0,(1,|Z)}6,6,
G(Y,.Y,|Z)

Z] =Pr(T), < 0,(7)|2), T, £ Oy (1| D)|Z) + o(1)

= C(t|Z) + o(1) = y{qor(t|Z),t} + o(1).

Along with the consistent estimators of Q(z;|Z), @j(rj—lZ), from the marginal quantile
regression, and under the assumed conditional association effects model (2), we propose the
following estimating function to estimate y,(7):

— xlexp(Zly);t}|,

n i=1 G(Yl,w Yz,'lZ)
where @j(rjll) = gj{ZTBj(Tj)} for j = 1,2. For a fixed 7, Wf(ﬁl,ﬁz, y; ) is smooth in y. Let
' (; T) be the derivative of y(-; 7). y'(y, T) can be shown to be positive for y € R. Then,

n
OWSB,, By y:1)/0y = —n7' Y ZZT exp(Z]y) y' {exp(Z y); 7}
i=1

exists, and is a negative definite matrix. This ensures a unique solution to Wf(ﬁl s ﬁz, y;7) =0,
which can be found by using the Newton—Ralphson algorithm which is implemented by the
multiroot() function in the R package rootSolve.

There are a variety of methods to estimating G(y,,y,|Z). To simplify the estimation, we
assume that (C;, C,) are independent of (7,T5,0,,6,,Z) and use a consistent estimator for
G(y;,y,). In the AMD study and many similar applications, (7, T,) represent correlated event
times from the same participant, and the univariate censoring assumption is plausible. For
such scenarios, we have G(y,y,) = Pr{C > max(y,,y,)}, and one can adopt the Kaplan—Meier
estimator on the basis of {max(Yy;, Y,,),1 — 6,;65;}"_,. For more general bivariate censoring,
consistent estimators such as the Prentice & Cai (1992) method can be used to estimate G(y, y,)
on the basis of {¥};, 1 =6y, Yo;, 1 — 65} .

2.3. Asymptotic Properties

In this subsection, we establish the uniform consistency and weak convergence of the proposed
estimator ¥,(z) for 7 € D. We first state some notation and the regularity conditions. For
a vector u, define u®? = uu’ and ||u|| as its Euclidean norm. We use eigmin(A) to denote
the minimal eigenvalue of a square matrix A. Let f;(7[z) = dF j(tlz)/dt, and h;(t),5,|Z) =

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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OH(t,,1,|Z)/ot;, for j =1,2. Let A;(b;) = E[Z®2fj{gj(ZTbj)|Z}] and P;(b;,b,) = E[28?
hi{g(Z™b,), gz(Zsz)ll}g;.(ZTbj)], where g’ (u) = dg;(u)/du. Denote J(y; 7) = E[Z®? y'{exp
(Z7y)) exp(Zl.Ty)], where y'(u) = d y(u)/du. The required regularity conditions are listed below:

Cl1. Z is uniformly bounded, that is, sup; || Z;|| < oo fori =1,...,n.

C2. There exists kj > 0 such that Pr(Cj = kj) > (0 and Pr(Cj > kj) =0, for j = 1,2. Moreover,
there exists 6 > 0 such that Pr(Cy > ¢, C, 2 ¢;) > 6> Oforanyc; <k;,j=1,2.

C3. () f j(t|z) is bounded uniformly in 7 and z, for j = 1,2; (ii) jo(Tj) is Lipschitz continuous
for T Jj =1,2, where t = (7, 7,) € D; (iii) there exists constants p, > 0 and k;, > 0 such
that inf, cp5 (, eigminA;(b;) > k,, where B;(p,) = {b; € R : inf p [[b; = B;o(z))| <
pp), for j =1,2, T = (7, 7,); (iv) the copula function is differentiable with continuous
partial derivatives with regard to 7, and 7, for any Z.

C4. (i) yy(7) is Lipschitz continuous for T € D; (ii) sup,¢p ||7(7)|| is bounded above; (iii) there
exists a constant k, > 0 such that inf  cpeigmin{J(y(7); T)} > k,.

CS5. (i) For j = 1,2, f;(t]z) are continuously differentiable with bounded derivatives; (ii) for
j=1,2,0h ; (t,,1,|2) /ot ; are continuously differentiable with bounded derivatives.

Remarks: Condition C1 assumes the boundedness of covariates, and is often met in practice.
Condition C2 is satisfied in many clinical settings with administrative censoring. Conditions
C3 (i)—(iii) assume uniform boundedness of marginal densities and smoothness of coefficient
processes, which are standard assumptions for marginal quantile regression methods with
independent censoring data, and are usually reasonable in practice. Condition C3 (iv) implies
the boundedness of h;(,1,|z) in (¢;,1,) and z. Condition C4 lists standard assumptions for
quantile association models, including the boundedness of y((7) and the identifiability of y,(7).
Condition C5 contains mild assumptions for adopting a consistent covariance estimator.

Let Ml.Gj () =1(Y;; < 5.8;; =0)— [°I(Y;; > u)dA% (1), where A (u) is the cumulative

hazard function for the censoring time C;. Define

&) =Z; (1Y} < {Z] B0z }]6;,G,(Y;)™" = 1;), and

[se]

&0 i(T)) = L W(Bo(z)), OP(Y,; = )" dM " (s),

where w{B,0(z;), s} = E{ZI(Y; > DI[Y; < g;{Z" B;y(z)}16,G,(Y,)""}. Define &;,(z,) = & (7))

=&, ;i(7;). To obtain the explicit form of the influence function, we here assume the univariate
censoring mechanism. Let Y = max(Yy;, Y,;) and 67 = 1 — 6,;6,;. The univariate censoring

function G(-) can be estimated from {Yi*, 5;" W, Let G(+) denote a consistent estimator of G.
Define NO(r) = I(Y} < 1,67 =0) and MC(1) = NE(1) — [° I(Y} > 5)dA%(s), where A is the
cumulative hazard function of G. Let

(o)

&)= L W {B1o(71), Bao(72), s}P(Y] > S)_ldM,-G(S),

where w*{B1(7)), Bag(72), s} = E[ZI{g7' (V) < ZT B 1o(7)), g5 (V5) < Z7 B (7)}8,6,
I(Y* > 5)GY*)™ 1.

Theorem 1.  Suppose models (2) and (3) hold for T € D. Under conditions C1—-C5, sup ¢p |7
P
() =79 = 0.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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Theorem 2. Suppose models (2) and (3) hold for t € D. Under conditions C1-C5, nl/2 {y(r) —
vo(T)} converges weakly to a zero-mean Gaussian process for t € D with a limiting covariance
matrix which equals

Q' 1) = Jyo(t'): 7'} E{w (2 wi(o) W yo(o): T T
where

I{gl_l(yli) SZIBo(7)). 8, (Yy) < Z?ﬁZO(TZ)}élzﬁZi

yi(t) = Z,;
G(Yy;, Vo))

=& (1)

2
= Zx (expZyo(0): 1) = Y P{Bio(r)). Bro(T)IAT (B o (e ))E(x).  (4)
j=1

The proofs for Theorems 1 and 2 are detailed in the Supplementary Material.

2.4. Covariance Estimation

The covariance estimation under quantile regression models is often challenging, because the
asymptotic covariance matrix involves unknown conditional density functions. In previous
studies, covariance estimation has been conducted using a kernel-based density estimator or
resampling. These methods, however, do not extend well to the quantile association analysis Li,
Cheng & Fine (2014). In this article, we employ the idea of the induced smoothing procedure
that was proposed by Brown & Wang (2005) to estimate the covariance matrices for both
marginal regression estimators and the conditional association coefficient estimators. The induced
smoothing method smooths the original estimating equation by using a “pseudo-Bayesian”
approach and has been successfully extended to the quantile regression setting (Brown & Wang,
2007; Wang, Shao & Zhu, 2009; Pang, Lu & Wang, 2012; Li, Cheng & Fine, 2014).

In the following, we first estimate the influence functions for the marginal regression
estimators, and then further derive the influence function for the conditional association
estimator. Without loss of generality, the univariate censoring scenario is considered to simplify
the asymptotic representation. First, it has been shown in Peng & Fine (2009) that, under
regularity conditions, \/ES,L j(b;,7;) converges weakly to a mean-zero Gaussian process with

covariance X j(r; ,T;) = cov{é j(rj)} and the estimators, /AS j(rj), are consistent estimators of the

true values f8 jo(T j). The asymptotic distribution for nl/2{ ﬁ ; (r j) - B jO(T j)} would be a mean-zero
Gaussian process with covariance

D;(Bjo: 7)) = A (B0t} (el A (B

where A;(b;) = E[Z®2fj{gj(ZTbj)}] =lim,_n~! ho Zl@zfj{gj(Zinj)}, forj=1,2.

We now adopt the induced smoothing approach to §,;(b;,7;) and obtain a consistent
estima/t\or of A;{B;y(z;)}. First, by the asymptotic normality of ﬁ ;(7;), we can approximately
write B,(z;) = fo(z;) + B)*V,, where B; = n"'D,, V; ~ N(0.1,). and I, is the p x p identity
matrix. We can regard ﬁ ; (r j) as arandom perturbation of jo(T j). Hence, we define a considerably

smoother estimating function,

1/2
J

:n_lzzi[,\ ! Q){ L ;! }—Tj],
i=1 G;(Y;) \/ZiTBjZi
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where ®(-) is the CDF of the standard normal distribution. Through the smoothed estimating
function S,,j(bj,B j;rj), the estimator of Aj(bj) can be achieved from the derivative of the
smoothed estimating equation with respect to b;, which has the form,

3 05, (b,.B,:7;) " 5,2%* Z'b; —g7'(Y)
Aj(bj,B - SN J> 7] =l’l_1 Ji™i { J J J }’ (5)

ob; /2B Z,
i

where ¢(-) is the probability density function of the standard normal distribution. Given B;, we
can obtain the estimator ; by solving S‘nj([i' ;»B;;7;) =0 and then plug it into (5) to get the
estimator,

=1 G,(Y;)\/Z"B,Z,;

" 6.2%? ¢>{ Z,'TB/' - gj_l(in) }

~ o~ o Jl
\/Z'B,Z,;

In general, the matrix B; is unknown. Hence, we develop an iterative algorithm to achieve
the optimal solutions for both f,4(z;) and B;. The detailed procedure is given below:

s apO 20) _ 2 3 _ o~ ¥ 22
Step AO. Set the initial B;” = n~'I, and ,Bj = B,(z;), and let Ej(rj'., t)=n"' Y, éjl. .
Step Al. In the kth iteration, update B;k) by solving S’n(ﬁj.k_l), I?;k_l); )=0
Step A2. Update ﬁ;k) = n‘l(AEk))‘lf‘. j(rjf, rj)(AEk))‘T, where

®2 Tk _ -1
A0 1N 8,2 Zh —& (T
®
S TRED TR*D
LG\ ZBz | 2B g,

Step A3. Repeat Steps A1—A2 until convergence.

This algorithm is computationally efficient and leads to a consistent covariance estimator

D ;= nB(k> after the convergence of the iterations. More theoretical justifications and arguments
were dlscussed in Pang, Lu & Wang (2012).

We next develop explicit estimators for the variance covariance matrix of 7(z). In Section 2.
3, we have shown that the proposed asymptotic distribution of \/Z {7(z) — yo(7)} is a mean-zero
Gaussian process with covariance Q(z’, ) = J{y,(7); 7} “TE{w, (e (t)T }J{ Yo(T); T} ~T Define
a consistent estimator of J{y,(7); t} as

J@i0)=n"" D 28 4 (exp(Z]'7)) exp(Z D),
i=1

where y’(u) = 0 y(u)/du. To have a consistent estimator for E{y,(t’ )wi(r)T}, we first estimate
Pj{ﬂ]O(T1)7 ﬂzo(Tz)}, where

P {B10(r): Boo(72)} = E(ZZ ;[ {Z] B1o(1)), 82{ 27 Baro(e) S/ AZT Bo(7)))).
However, estimating P;{ 8,(7}), B(7,)} directly is difficult since P;(-, -) involves an unknown

partial density function 4;(-,-). To address this issue, we propose an induced-smoothing type
estimator for P;{f,,(7), Br(7,)}, for j =1,2. For brevity, we simply the notation, such as

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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3 = 3 ;(7;) and 7 = 7(z). Adapting the induced smoothing methods for the marginal quantile
effects, we obtain a smoothed estimating function, where

~_ 7 S ~ g G ~1 2 S A
WE (b B 7.8) = By (WS(b, +B)°V,, B,..7: 7))

LG st v < 2By |2 - g ()
=n Z Z, = P
i=1 G(Y;, Yy) | /Z.TINSJ»ZI»

where B ; 1s the induced-smoothing type estimator for B; from marginal quantile models, and
Jj*=3—j, for j =1,2. Therefore, P;{B,o(7)), B1(7,)} can be estimated by

— x{exp(Z]7): T} |,

oWS (b,:B,..7.B))

ob,

PY(B.B,.B)) =

b;=B;
2 B A ~ B
_1 . Z;g 51i52i1{gj*1(yj*i) < Z,-Tﬁj*} ZiTﬁj -t I(in)

i=1 G(Y,;, Y2)\/ 2B, Z,; \/Z'B,Z,

where j* =3 — j, for j = 1,2.

Combining these results, an algorithm for estimating the influence function y;(t) can be
obtained by the following procedures:

Step A. For j = 1,2, employ Steps AO—A3 in the aforementioned algorithm to assess B it
StepB. For j = 1,2, let j* = 3 — j and define

n 2225,6, (g7 (V) <ZTB .} |Z2TB, - g7\(¥))
Al A A~ _ i w \LjHi) =& Pj i i
P;;(ﬁl,ﬂzaBj) =n 1 Z J i TJ J J

i=1 G(Y,;, Y>)\/ 2! B,Z, \/Z'B,Z,

and

n 5. 722 Z7B. — g \(Y,)
Ny R | Ji™ i) J Jt
ABp=n"Y

=1 G;(Y;)\/ZB,Z, \/Z'B,Z,

StepC. Plugin §;, 7, EJ, &', and the above estimates into (4). The resulting estimator for y,(7)
is

~

H{g7' (V) SZTBy, 85" (Vo) S ZT By }5,65

pi(t) =7, =
G(Yy;, Yy)

—Zy{exp(Z[7); T}
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By applying Steps A—C, we can further obtain an estimator for the covariance matrix,
Q@' 1) =J{7: ') {n—‘ > v }3{?; o),
i=1

where

J@io) =n"" Y 224 (exp(Z] 7))} exp(Z]7),
i=1

which is a consistent estimator of J{¥; 7’}. Detailed justification for the consistency of () are
provided in the Supplementary Material.

3. SIMULATION

In this section, numerical simulations are conducted to investigate the finite-sample performance
of our proposed models. Without loss of generality, we focus on the case that 7, = 7, = 7, as it
has been shown in Li, Cheng & Fine (2014) that quantile association along the diagonal line can
effectively depict the association structure. Two covariates are generated, Z; and Z,, where Z; is
a standard normal distributed variate and truncated at —2 and 2, and Z, is a Bernoulli distributed
variate with probability 0.5. Denote Z = (Z;, Z,). For two event times 7} and T, their marginal
distributions follow the marginal quantile regression models with the exponential link function,
g1(1) = g,(1) = exp(7), and

log Q,(z|Z) = 0207 () + 0.2Z, + {0.4D~ () — 0207 (1)} Z,,
log 0,(7]Z) = 0307 () — 0.2Z, + 0.5Z,,

where ®~!(-) is the inverse function of the CDF of the standard normal distribution. From the
above models, the effect of Z; is constant across 7 for both log Q,(r|Z) and log Q,(7|Z). The
effect of Z, is constant on log Q,(7|Z) but varies for log Q,(z|Z) by z.

To generate the association structure, we consider the situation that (7',7,) follow a
flipped-Clayton model with parameter & when Z, = 1, and they are conditionally independent
when Z, = 0. Specifically,

CrlZ,=D=1+7,— l+max[{{(1 - )’ + (1 —7)"? = 1}7/%,0],
where 6 = exp(1). Thus, the underlying quantile association follows
log gor(z|Z) = log[x ' {C(z|Z)}12,,

where y~!(y) is the inverse function of y and is monotone increasing in y. Under this setting, the
true value of y(7) is (0,0, log[;(‘l{C(TIZ)}])T, and Z, affects both the associational strength
and structure.

For the censoring time, we consider the univariate censoring setting following the AMD data
example, and generate C from a mixture distribution of Unif(0, ¢,) with probability 0.8, and a
point mass at ¢, with probability 0.2. Here, ¢, mimics time to the end of a study in practical
scenarios. The observed bivariate survival data are (Y}, Y5, 6, 6,, Z), where Y ;= rnin(Tj, C) and
6, =1(Y; <), forj=1,2

We performed 2,000 simulations with sample sizes n =200 and 400. We set ¢, =6
or 4 so that the percentage of the censoring is about 20% or 30% respectively. For = =
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0.2,0.25,0.3,0.4,0.5,0.6, Table 1 presents the results of the empirical bias (Bias), the empirical
standard error (Empse), the average estimated standard error (Estse) and the empirical coverage
probability of 95% Wald-type confidence intervals (Cov) for (I) ﬁl(r), (ID) ﬁ2(r) and (II1) 7(7),
under 20% censoring rate. The results for 30% censoring are given in Table 2. From the top and
middle parts of Table 1, we can see that, with 20% censoring rate, the estimated marginal quantile
coefficients are largely unbiased across all zs; the induced smoothing standard errors agree well
with the empirical ones, and the Wald-type confidence intervals based on the induced smoothing
standard errors are close to the nominal level 95%. The results for the conditional association
coefficients are shown in Table I (III) for 20% censoring. The biases for the association
coefficients are larger than those for the marginal regression coefficients. This is as expected,
since the estimation of covariate effects on the association structure is more challenging than the
estimation of marginal effects. Nevertheless, the biases are largely negligible and shrink with
the sample size, suggesting that the proposed estimator ¥(r) provides accurate estimation of the
true association effect across zs. The standard errors based on induced smoothing tend to be
slightly larger than the empirical standard errors. Consequently, the coverage rates of Wald-type
confidence intervals are greater than the nominal level 95% when n = 200. Li, Cheng & Fine
(2014) also reported an inflated coverage rate of the confidence interval that was constructed
based on the induced smoothing standard error for uncensored pairs. However, as the sample
size increases, we observe that the coverage rates of Wald-type confidence intervals are closer
to the nominal level 95%. This result implies that our proposed procedure performs adequately
on the covariance estimation under moderate sample sizes. With 30% censoring rate, the results
in Table 2 give similar conclusions as under 20% censoring rate, though the estimated standard
deviations tend to be larger under 30% censoring than those under 20% censoring. We further
conducted a simulation study with sample size n = 600 and censoring rate about 50% to mimic
the AMD example. The results, given in Table 3 for r = 0.15,0.2,0.25,0.3,0.35, 0.4, present
similar patterns as those under the previous scenarios. This result confirms the applicability of
our methods to the AMD example.

4. DATA ANALYSIS

We illustrate our proposed methods by applying them to an AMD dataset from the AREDS
(ARDES-Group, 1999), which was designed to examine the development and progression of
AMD. This cohort study collected data on several risk factors at baseline, together with the
progression times to late AMD in both eyes. The associational strength and pattern between the
AMD progression times in two eyes reflect the prognostic value of one eye for the other eye
and thereby have important implications in disease monitoring and treatment decision making.
We aim to explore the explanatory factors for the underlying association using the proposed
quantile-based association model, while adjusting for covariate effects on the marginals.

Data from 630 Caucasian patients who had at least one eye in moderated AMD stage but no
eye in late AMD at baseline are used in the current analysis. The bivariate survival times are the
progression times (from baseline, i.e., the enrollment time) to late AMD in the left and right eyes.
By the definition of the gor in Equation (1), the association will stay the same if we switch the
labels for 7} and 7,. Thus, we simply treat the event time from the left eye as 7, and that from
the right eye as T,. Three potential risk factors, age, smoking status (Never, Former and Current),
and the baseline eye-level AMD severity score (SevereBL-L or SevereBL-R), are considered in
the marginal models for AMD progression in the left or right eye. For the conditional association
model, instead of including both eyes’ AMD severity scores, we adopt the average of AMD
severity scores (AvgSevereBL) in both eyes at baseline to avoid the collinearity issue. The
censoring rates for the left and right eyes are 47% and 44%, respectively. Since each bivariate
survival pair is from the same patient, the censoring mechanism follows univariate censoring in
this application. The overall censoring rate for the univariate censoring is 56%. Due to the heavy
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FiGure 1: The estimated covariate effects on the association using the proposed model. The
solid bold line is the estimated effect at each quantile level and the dotted line is the average
across all levels. The dash-dot line is the 95% pointwise confidence interval.
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F1GURE 2: The log gor for two selected patients with different average baseline severity score

(5 and 7 respectively). Both patients are non-smokers with 70 years of age. The left figure is the

estimated log gor(t) for the two patients using Li et al., (2017), which does not allow covariate

effects on the local association. The middle and the right figures are the estimated log gor(t|Z)

using the proposed method for the selected patients with average baseline severity score of 5 and
7, respectively.

censoring, we restrict attention to quantile levels up to 0.4. Meanwhile, due to sparse information
at the boundary, there were some convergence issues at = = 0.1 for this data example. Thus, we
select the lower limit 0.12 at which the estimation procedure converges.

The results for the marginal eyes are given in the Supplementary Material. For the marginal
models, age and baseline severity score are mostly significant across quantiles, but the smoking
status is only significant in a small range. The results for the conditional association model are
shown in Figure 1. It suggests that the average AMD severity score has a significantly positive
effect on the association at quantile level between 0.15 and 0.35. Moreover, the estimated
coefficient for the average baseline AMD severity score is gradually decreasing but still positive,
when the quantile increases. First, the positive coefficient implies that the odds of developing
late AMD in one eye given the developed late AMD in the other eye is increasing, when the
average baseline AMD severity score increases. Therefore, the associational strength between
the progression times of the two eyes is stronger among those with higher AMD severity score
at baseline. Next, the impact of the baseline average AMD severity score on the odds ratio is
higher at short survival times (low quantiles) than at long survival times (high quantiles) while
conditioning on age and smoking status. This suggests a varying effect of the baseline AMD
severity score on the local association that cannot be captured by global association models. This
result implies that, for a person who has a large average AMD severity score, if she/he suffers
the development of late AMD in one eye in a short period, it is of importance to monitor the
other eye as soon as possible.

In addition, we consider a benchmark analysis comparing our method and the one studied in
Li et al., (2017). The marginal models in both approaches are the same. The major difference is
that Li et al., (2017) only allowed covariate effects on the marginals, but did not allow covariate
effects on the association structures. As our method detected significant associational effect of
the severity score, the underlying assumption in Li et al., (2017) is likely not satisfied for this
dataset. To see this, we selected two patients with different average severity scores at baseline,
5 and 7, but with the same age around the overall mean of 70 years and both non-smokers. We
calculated the log gor for these two patients using our method and compared with the previous
method. The results are given in Figure 2, where the left plot is the estimated log gor(t) using
the previous method as a benchmark analysis for both selected patients, and the middle and right
figures are the log gor(t|Z) using our current method for each of the two selected patients. The
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plots using our proposed method show that the patient with higher average of severity score at
baseline exhibited stronger associations between two eyes across quantiles than the patient with
lower severity score. This is completely missed by the benchmark analysis, as it forces everyone
to have the same local association. Thus, additional insights are gained from directly modelling
covariates to more accurately capture the association patterns over time or quantiles.

5. DISCUSSION

In this work, we propose a quantile-based regression model for the association between two
event times with independent right censoring. The proposed quantile-based association regression
model enables the evaluation of the strength of the local dependency between different quantiles
of marginal survival times. More specifically, we use the idea of the copula to connect with the
quantile-based local association gor, and estimate the coefficients for the association at different
quantile levels. Our proposed model is very flexible, since it does not require any assumptions
on the marginal distributions, and the form of the copula does not need to be specified either.
We examine covariate effects on the quantile association directly while adjusting for risk factors
in the marginal distributions. The estimated coefficients can be easily interpreted via the gor.

To have an explicit form of the asymptotic distribution, we assume the univariate censoring
when evaluating the bivariate censoring function. In fact, the asymptotic distribution can still
be established without the univariate censoring assumption. However it will not lead to a nice
equation for the influence function, which has a consistent induced-smoothing type estimator.
With the bivariate survival censoring, the covariance estimation can be achieved by using the
bootstrap technique. However, it may result in a larger estimated standard deviation for the
quantile type estimator, which is a common issue in the quantile approaches.

As Li, Cheng & Fine (2014) mentioned, the recommended range of quantiles for a study
is associated with the sample size and the number of covariates. In our article for the bivariate
survival data, the censoring rate also affects the range of quantiles, especially the upper bound
level. Following Peng & Huang (2008), we recommend to choose the quantile range by taking
into account the censoring rates and using an adaptive manner in practice. One may start by
setting the lower range to 0.1 and the upper range to 1 minus the overall censoring rate. The
range can be further adjusted if there are any signs of poor fit at the boundary of the quantile
range, such as non-convergence or diverging standard error estimates. The restriction, in fact, is
much accepted and universal in any quantile regression analyses of censored data.

We also notice through simulations (not reported here) that the strength of association in two
event times may be affected by some residual covariate effects that have not been properly taken
into account in the marginal models. Thus, we recommend considering all potential risk factors
when evaluating the marginal distributions.

Finally, the dynamic association measurement is useful in capturing the local dependency.
However, it would be desirable if we can connect our quantile association model with some
commonly used global association measures, such as Kendall’s tau. Some weighted local
association across quantile levels may be considered. This will be a topic of future work.
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