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Abstract: The association between two event times is of scientific importance in various fields. Due
to population heterogeneity, it is desirable to examine the degree to which local association depends
on different characteristics of the population. Here we adopt a novel quantile-based local association
measure and propose a conditional quantile association regression model to allow covariate effects on
local association of two survival times. Estimating equations for the quantile association coefficients are
constructed based on the relationship between this quantile association measure and the conditional copula.
Asymptotic properties for the resulting estimators are rigorously derived, and induced smoothing is used
to obtain the covariance matrix. Through simulations we demonstrate the good practical performance of
the proposed inference procedures. An application to age-related macular degeneration (AMD) data reals
interesting varying effects of the baseline AMD severity score on the local association between two AMD
progression times. The Canadian Journal of Statistics 00: 000–000; 2020 © 2020 Statistical Society of
Canada
Résumé: L’association entre les temps jusqu’à deux événements revêt une importance scientifique dans
plusieurs domaines. Il est intéressant de pouvoir observer à quel point leur degré d’association local dépend
de différentes caractéristiques d’une population lorsque celle-ci exhibe de l’hétérogénéité. Les auteures
adoptent une nouvelle mesure d’association locale basée sur les quantiles et proposent un modèle
conditionnel de régression quantile permettant aux covariables d’avoir un effet sur l’association locale
de deux temps de survie. Elles construisent les équations d’estimation pour les coefficients du modèle à
partir de la relation entre cette mesure d’association quantile et la copule conditionnelle. Elles dérivent
rigoureusement les propriétés asymptotiques des estimateurs résultants et utilisent un lissage induit afin
d’obtenir la matrice de covariance. À l’aide de simulations, les auteures démontrent les bonne performances
pratiques des procédures d’inférence proposées. Elles présentent une application à des données de
dégénérescence maculaire liées à l’âge (DMA) qui montrent des effets variables du score de sévérité de
base de la DMA sur l’association locale entre deux temps de progression de la DMA. La revue canadienne
de statistique 00: 000–000; 2020 © 2020 Société statistique du Canada
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1. INTRODUCTION

The association between two failure times is often of interest in familial studies, finance
and biomedical research. For example, in an atherosclerosis study, two diseases, myocardial
infarction and stroke, are likely associated with each other. Understanding their association may
help prevent the occurrence of one event, once the other event is observed. Another example is
the bilateral eye disease age-related macular degeneration (AMD) which is a leading cause of
vision loss in developed countries (Swaroop et al., 2009). A patient who was identified to have
AMD in one eye may have a higher risk of AMD development or progression in the other eye.

Several global dependence measures have been developed to quantify the strength of
association between pairs, including Kendall’s tau (Oakes, 1982; 2008; Wang & Wells, 2000;
Lakhal, Rivest & Beaudoin, 2009) and the correlation between two cumulative variates (Hsu
& Prentice, 1996). Global association measures are appealing for their ease of interpretation.
However, they cannot capture the local association structure which may vary over time. Research
attention has been attracted to local association measures, which can effectively capture the
association pattern in addition to the association strength. One approach to quantifying local
association is to analyze the bivariate survival data via a frailty or copula framework (Clayton,
1978; Oakes, 1989; Shih & Louis, 1995; Romeo, Meyer & Gallardo, 2018), which allow
time-dependent association between two failure times. Anderson et al., (1992) considered
the time-dependent conditional expected residual life and conditional probability to quantify
time-dependent association in bivariate survival data under the proportional hazard frailty model.
Local association measures that relax the parametric copula or frailty assumptions include a
martingale covariance function for two failure times (Prentice & Cai, 1992), a piecewise constant
cross hazard ratio (Nan et al., 2006), and a time-dependent cross ratio (Hu & Nan, 2011), among
others.

In the analysis of association, it is of interest to investigate how risk factors affect the local
association between two event times. Conditional association tends to be more informative than
their unconditional counterpart, because it can accommodate important risk factors and control
for potential confounders. In the AMD example, age, genetic risk alleles and smoking status
are possible risk factors for the development of AMD. They may also influence how the AMD
progression times of the two eyes relate with one another for the same subject. By identifying
those patients with stronger local association, clinicians can provide them earlier interventions
once they show symptoms of AMD in one eye, to prevent or delay the development of AMD
in the other eye. Earlier studies (Huster, Brookmeyer & Self, 1989; Gorfine, Zucker & Hsu,
2006; Zeng, Chen & Ibrahim, 2009) have focused on adjusting for covariate effects on marginal
distributions, but not directly on the association. More recently, Bogaerts & Lesaffre (2008)
and Geerdens, Acar & Janssen (2017) considered covariate-dependent conditional association
by modelling covariate effects on parameters in a frailty or copula model. Yan & Fine (2005)
proposed a functional association regression model on a temporal process with time-varying
coefficient effects, though the temporal association may be affected by the assumed marginal
distributions. Instead of focusing on copula parameters, Li et al., (2017) proposed an association
model based on the odds ratio for quantiles, and considered the covariate effects on the marginal
distributions only.

In this work, we propose a conditional association model for bivariate survival data,
by adopting a novel quantile-specific association measure—the quantile odds ratio (qor) as
proposed in Li, Cheng & Fine (2014). The qor is independent of the marginal distributions,
invariant to monotone transformations, and insensitive to outliers. Li, Cheng & Fine (2014)
utilized existing quantile regression models to allow covariate effects on marginal quantiles,
and developed regression models for the qor for completely observed bivariate outcomes. For
bivariate survival data, Li et al., (2017) successfully explored the quantile association through
the qor in the copula framework, and proposed two estimators of the quantile association by
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using non-parametric and semi-parametric methods, respectively. Although Li et al., (2017)
considered the covariate effects in the estimation procedures, they assumed that covariate effects
influence the quantile association via marginal quantiles only, which may be too restrictive in
many real-life settings.

In this work, we propose a conditional quantile association model that allows covariate
effects on both the marginal distributions and the association structure. This extension is a
significant step forward in allowing direct covariate effects on the local association patterns.
The modelling of covariate effects on quantile association is not trivial. The association is
captured by a functional surface that is indexed by both quantiles, and both event times are
subject to censoring. Meanwhile, we need to adjust for covariate effects on the marginals. To
address these challenges, we adopt the flexible censored quantile regression model for marginal
quantiles, and then propose a model to estimate the effects of the covariates on the conditional
qor, through the relationship between qor and the conditional copula function. The estimation
of covariance matrices is often tricky for quantile regression and quantile association analyses
due to the unsmooth estimating equation. We thus extend an idea of the induced smoothing
procedure (Brown & Wang, 2005) to explicitly estimate the influence functions for our proposed
estimators, and propose an algorithm to obtain a consistent estimator for the covariance matrix
of the proposed estimators. Our proposed method addresses the presence of right censoring and
greatly expands the application of the method in Li, Cheng & Fine (2014) to time-to-event types
of data.

The rest of this article is organized as follows. We propose our conditional quantile
association model and estimating equations in Sections 2.1 and 2.2. The asymptotic properties
for the coefficient estimators and the covariance estimation are given in Sections 2.3 and 2.4. We
present numerical simulations for the proposed method and procedure in Section 3, and apply to
an AMD study—age-related eye disease study (AREDS) in Section 4. Finally, some discussions
are given in Section 5.

2. METHOD

2.1. Bivariate Survival Data and Models
To begin, we introduce necessary notation for bivariate survival data with covariates. Let (T1,
T2) be a vector of bivariate survival times, and (C1, C2) be the corresponding vector of bivariate
right censoring times. Define Y𝑗 = min(T𝑗 ,C𝑗), 𝛿𝑗 = I(T𝑗 ≤ C𝑗), 𝑗 = 1, 2. Let Z𝑗 denote a vector
of time-independent covariates that are relevant to T𝑗 , 𝑗 = 1, 2, and Z𝑗 includes 1 as the first
element. Let Z3 denote the covariate vector that is directly related to the association between
the bivariate survival times. Define Z as a vector that consists all p covariates in Z1, Z2 and
Z3. In the presence of independent censoring, the observed bivariate survival data consist of n
i.i.d. replicates of {Y1i,Y2i, 𝛿1i, 𝛿2i,Zi}n

i=1.
For 𝑗 = 1, 2, define F𝑗(t|Z𝑗) = Pr(T𝑗 ≤ t|Z𝑗) as the marginal conditional cumulative distribu-

tion function (CDF) of T𝑗 , and Q𝑗(u|Z𝑗) = inf{t ∶ F𝑗(t|Z𝑗) ≥ u}, u ∈ (0, 1) as the corresponding
marginal conditional quantile function. Let H(t1, t2|Z) = Pr(T1 ≤ t1,T2 ≤ t2|Z) be the conditional
bivariate CDF of (T1,T2). The conditional copula function is defined as

(𝝉|Z) ∶= Pr{T1 ≤ Q1(𝜏1|Z1),T2 ≤ Q2(𝜏2|Z2)|Z} = H{Q1(𝜏1|Z1),Q2(𝜏2|Z2)|Z},
where 𝝉 ≡ (𝜏1, 𝜏2) ∈ (0, 1)2. To simplify the notation, we use F𝑗(T𝑗|Z) to denote F𝑗(T𝑗|Z𝑗), for
𝑗 = 1, 2, with the understanding that not all covariates in Z are significantly related to T𝑗 or the

conditional association. Thus, H{Q1(𝜏1|Z),Q2(𝜏2|Z)|Z} d
= H{Q1(𝜏1|Z1),Q2(𝜏2|Z2)|Z}.
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In this work we adopt a quantile association measure, quantile-specific odds ratio (qor), that
was proposed by Li, Cheng & Fine (2014), where

qor(𝝉|Z) = odds{T1 ≤ Q1(𝜏1|Z)|T2 ≤ Q2(𝜏2|Z)|Z}
odds{T1 ≤ Q1(𝜏1|Z)|T2 > Q2(𝜏2|Z)|Z}

=
odds{T1 > Q1(𝜏1|Z)|T2 > Q2(𝜏2|Z)|Z}
odds{T1 > Q1(𝜏1|Z)|T2 ≤ Q2(𝜏2|Z)|Z}

=
Pr{T1 ≤ Q1(𝜏1|Z),T2 ≤ Q2(𝜏2|Z)|Z} × Pr{T1 > Q1(𝜏1|Z),T2 > Q2(𝜏2|Z)|Z}
Pr{T1 ≤ Q1(𝜏1|Z),T2 > Q2(𝜏2|Z)|Z} × Pr{T1 > Q1(𝜏1|Z),T2 ≤ Q2(𝜏2|Z)|Z} .

(1)

The qor represents the odds that the first event occurs before (after) its quantile Q1(𝜏1|Z) given
that the second event occurred before (after) its quantile Q2(𝜏2|Z), compared to the odds that the
first event occurs before (after) its quantile Q1(𝜏1|Z) given that the second event occurred after
(before) its quantile Q2(𝜏2|Z) (Li, Cheng & Fine, 2014; Li et al., 2017). Expressed as an odds
ratio, the qor enjoys straightforward interpretation about the relationship between two event
times. If there exists a positive (negative) association between T1 and T2, given the covariates,
the qor is greater (less) than 1. If the two event times are conditionally independent, then the
qor is equal to 1. Under different copula models, the qor changes with 𝜏, except for the Plackett
copula under which the qor stays constant; see Li, Cheng & Fine (2014) for more details.

It is easy to see that the (𝝉|Z) uniquely determines the qor. The opposite direction also
holds true. Given that qor= y, by Equation (1), we have

(𝝉|Z){1 − 𝜏1 − 𝜏2 + (𝝉|Z)}
{𝜏1 − (𝝉|Z)}{𝜏2 − (𝝉|Z)} = y.

Because 0 < (𝝉|Z) < 1, there is one unique solution for (𝝉|Z) as a function 𝜒(y; 𝝉), where
the form of 𝜒 depends on the value of y. Thus, we can express (𝝉|Z) as a function of the qor,
𝜒{qor(𝝉|Z); 𝝉}, where

𝜒(y; 𝝉) ∶=
⎧⎪⎨⎪⎩

𝜏1+𝜏2
2

+
1−
√

(y−1)2(𝜏1−𝜏2)2+2(y−1)(𝜏1+𝜏2−2𝜏1𝜏2)+1

2(y−1) if 0 < y < 1 or y > 1,
𝜏1𝜏2 if y = 1,

limy→0+ 𝜒(y; 𝝉) = max(0, 𝜏1 + 𝜏2 − 1) and limy→∞ 𝜒(y; 𝝉) = min(𝜏1, 𝜏2). Thus, the conditional
copula function has a monotone relationship with the qor.

We consider modelling covariate-dependent local association by positing that

log qor(𝝉|Z) = ZT𝜸0(𝝉), (2)

where 𝜸0(𝝉) = {𝛾 (0)0 (𝝉), 𝛾 (1)0 (𝝉),… , 𝛾
(p−1)
0 (𝝉)} is a p × 1 vector of coefficients. 𝛾 (0)0 (𝝉) corresponds

to the baseline log qor(⋅) when all covariates are set to zero. The absolute value of 𝛾 (k)0 (𝝉) and the

sign of 𝛾 (k)0 (𝝉) represent the magnitude and the direction of the changes in the local association
at the 𝜏th quantiles, when the kth covariate increases by one unit, with k = 1,… , p − 1, while
other covariates stay constant. Under this structure, the conditional copula function has a form,
(𝝉|Z) = 𝜒[exp{ZT𝜸0(𝝉)}; 𝝉]. Again in this article, we simply use the same Z for both marginal
models and the local association model for notational brevity. In practice, different sets of
covariates are allowed in models (2) and (3).
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To model the qor(𝝉|Z), it is necessary to have a sensible model for the marginal quantile
functions, Q𝑗(𝜏𝑗|Z), 𝑗 = 1, 2. To this end, we adopt the flexible and robust modelling framework
of quantile regression (Koenker & Bassett, 1978). The framework is attractive in studying
dynamic effects of covariates on an outcome, because it allows researchers to assess covariate
effects across different quantiles of the outcome, and regression coefficients are easy to interpret.
Quantile regression has been well extended to univariate survival data under different scenarios,
such as survival data with independent censoring (Portnoy, 2003; Peng & Huang, 2008; Koenker,
2008), competing risks data (Peng & Fine, 2009) and left-truncated semi-competing risks data (Li
& Peng, 2011), among others. Here, we adopt the censored quantile regression model (Portnoy,
2003; Peng & Huang, 2008; Koenker, 2008), which assumes that

Q𝑗(𝜏𝑗|Z) = g𝑗{ZT𝜷𝑗0(𝜏𝑗)}, 𝜏𝑗 ∈ (0, 𝜏U𝑗 ), (3)

where 𝜷𝑗0(𝜏𝑗) is a p × 1 vector of unknown coefficients, 𝜏U𝑗 is the maximum quantile level
that is estimable from the censored data and g𝑗(⋅) is a pre-specified monotone link function, for
𝑗 = 1, 2. Common choices of g𝑗(⋅) include the identify link and the exp(⋅) link. In the following,
we adopt g𝑗(⋅) = exp(⋅), 𝑗 = 1, 2, without loss of generality.

2.2. Estimating Equations
Before evaluating the association coefficients, 𝜸0(𝝉), we need to first estimate the unknown
parameters, 𝜷𝑗0(𝜏𝑗), in the marginal censored quantile models. Without loss of generality, we
adopt Peng & Fine (2009)’s method which uses inverse probability of censoring weighting
(IPCW) to modify the standard quantile regression model in the estimation equation. More
specifically, let G𝑗(t|Z) be the survival function of C𝑗 given Z, 𝑗 = 1, 2. The estimating equation
for the true parameters, 𝜷𝑗0(𝜏𝑗), is,

Sn𝑗(b𝑗 ; 𝜏𝑗) = n−1
n∑

i=1

Zi

[ I{Y𝑗i ≤ g𝑗(ZTb𝑗)}𝛿𝑗i
Ĝ𝑗(Y𝑗i|Z) − 𝜏𝑗

]
,

where Ĝ𝑗(⋅|Z) denotes a consistent estimator for G𝑗 . For simplicity’s sake, here we assume
that C𝑗 is independent of (T𝑗 , 𝛿𝑗 ,Z) and adopt the Kaplan–Meier estimator for G𝑗(⋅), 𝑗 = 1, 2.
When censoring depends on covariates, one can adopt some semi-parametric or non-parametric
regression strategies to obtain Ĝ𝑗(⋅|Z). In practice, we focus on a pre-specified region of 𝝉 ∈ 𝔻,
where 𝔻 is a subset of (0, 𝜏U1

] × (0, 𝜏U2
]. Under mild regularity conditions, it has been shown

that Sn𝑗(b𝑗 ; 𝜏𝑗) is asymptotically mean zero at the true parameters 𝜷𝑗0, and solving the estimating
equation Sn𝑗(b𝑗 ; 𝜏𝑗) = 0 can be transformed into optimizing a L1-type convex function. Therefore,
despite that Sn𝑗(b𝑗 ; 𝜏𝑗) is not smooth, the solution to Sn𝑗(b𝑗 ; 𝜏𝑗) = 0 can still be obtained by
minimizing the L1-type convex function (Peng & Fine, 2009). We use the existing software
package, such as the rq() function in the R package quantreq, to obtain the estimators 𝜷𝑗(𝜏𝑗) and

the corresponding quantile estimators Q̂𝑗(𝜏𝑗|Z) = g𝑗{ZT𝜷𝑗(𝜏𝑗)} for 𝑗 = 1, 2.
We now consider the main objective of this article of evaluating the quantile association

effects, 𝜸0(𝝉), with bivariate survival data. For complete data, it is easy to see that

E{I(T1 ≤ Q1(𝜏1|Z),T2 ≤ Q2(𝜏2|Z)|Z)} = (𝝉|Z).
For bivariate survival data, we adapt a commonly used technique based on the IPCW to account
for censoring. Under the assumption that the censoring times are conditionally independent of

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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(T1,T2) given Z, we have

E
{

I(Y1 ≤ t1,Y2 ≤ t2)𝛿1𝛿2

G(Y1,Y2|Z)
||||Z
}

= E
[

E
{

I(T1 ≤ t1,T2 ≤ t2)I(T1 ≤ C1)I(T2 ≤ C2)
G(Y1,Y2|Z)

||||T1,T2,Z
}||||Z

]

= E
{

I(T1 ≤ t1,T2 ≤ t2)G(T1,T2|Z)
G(T1,T2|Z)

||||Z
}

= Pr(T1 ≤ t1,T2 ≤ t2|Z) = H(t1, t2|Z),
where G(t1, t2|Z) = Pr(C1 > t1,C2 > t2|Z). Let Ĝ(t1, t2|Z) be a consistent estimator of G(t1, t2|Z).
We can show that

E
[

I{Y1 ≤ Q1(𝜏1|Z),Y2 ≤ Q2(𝜏2|Z)}𝛿1𝛿2

Ĝ(Y1,Y2|Z)
||||Z
]
= Pr(T1 ≤ Q1(𝜏1|Z),T2 ≤ Q2(𝜏2|Z)|Z) + o(1)

= (𝝉|Z) + o(1) = 𝜒{qor(𝝉|Z), 𝝉} + o(1).

Along with the consistent estimators of Q𝑗(𝜏𝑗|Z), Q̂𝑗(𝜏𝑗|Z), from the marginal quantile
regression, and under the assumed conditional association effects model (2), we propose the
following estimating function to estimate 𝜸0(𝝉):

WĜ
n (𝜷1, 𝜷2, 𝜸; 𝝉)=

1
n

n∑
i=1

Zi

[
I{Y1i ≤ Q̂1(𝜏1|Z),Y2i ≤ Q̂2(𝜏2|Z)}𝛿1i𝛿2i

Ĝ(Y1i,Y2i|Z) − 𝜒{exp(ZT
i 𝜸); 𝝉}

]
,

where Q̂𝑗(𝜏𝑗|Z) = g𝑗{ZT𝜷𝑗(𝜏𝑗)} for 𝑗 = 1, 2. For a fixed 𝝉 , WĜ
n (𝜷1,𝜷2, 𝜸; 𝝉) is smooth in 𝜸. Let

𝜒 ′(⋅; 𝝉) be the derivative of 𝜒(⋅; 𝝉). 𝜒 ′(y, 𝝉) can be shown to be positive for y ∈ . Then,

𝜕WĜ
n (𝜷1,𝜷2, 𝜸; 𝝉)∕𝜕𝜸 = −n−1

n∑
i=1

ZiZT
i exp(ZT

i 𝜸)𝜒
′{exp(ZT

i 𝜸); 𝝉}

exists, and is a negative definite matrix. This ensures a unique solution to WĜ
n (𝜷1,𝜷2, 𝜸; 𝝉) = 0,

which can be found by using the Newton–Ralphson algorithm which is implemented by the
multiroot() function in the R package rootSolve.

There are a variety of methods to estimating G(y1, y2|Z). To simplify the estimation, we
assume that (C1,C2) are independent of (T1,T2, 𝛿1, 𝛿2,Z) and use a consistent estimator for
G(y1, y2). In the AMD study and many similar applications, (T1,T2) represent correlated event
times from the same participant, and the univariate censoring assumption is plausible. For
such scenarios, we have G(y1, y2) = Pr{C > max(y1, y2)}, and one can adopt the Kaplan–Meier
estimator on the basis of {max(Y1i,Y2i), 1 − 𝛿1i𝛿2i}n

i=1. For more general bivariate censoring,
consistent estimators such as the Prentice & Cai (1992) method can be used to estimate G(y1, y2)
on the basis of {Y1i, 1 − 𝛿1i,Y2i, 1 − 𝛿2i}n

i=1.

2.3. Asymptotic Properties
In this subsection, we establish the uniform consistency and weak convergence of the proposed
estimator 𝜸̂0(𝝉) for 𝝉 ∈ 𝔻. We first state some notation and the regularity conditions. For
a vector u, define u⊗2 = uuT and ‖u‖ as its Euclidean norm. We use eigmin(A) to denote
the minimal eigenvalue of a square matrix A. Let 𝑓𝑗(t|z) = dF𝑗(t|z)∕dt, and h𝑗(t1, t2|Z) =
The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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𝜕H(t1, t2|Z)∕𝜕t𝑗 , for 𝑗 = 1, 2. Let A𝑗(b𝑗) = E[Z⊗2𝑓𝑗{g𝑗(ZTb𝑗)|Z}] and P𝑗(b1,b2) = E[Z⊗2

h𝑗{g1(ZTb1), g2(ZTb2)|Z}g′𝑗(Z
Tb𝑗)], where g′𝑗(u) = dg𝑗(u)∕du. Denote J(𝜸; 𝝉) = E[Z⊗2 𝜒 ′{exp

(ZT𝜸)} exp(ZT
i 𝜸)],where 𝜒 ′(u) = d𝜒(u)∕du. The required regularity conditions are listed below:

C1. Z is uniformly bounded, that is, supi ‖Zi‖ < ∞ for i = 1,… , n.
C2. There exists k𝑗 > 0 such that Pr(C𝑗 = k𝑗) > 0 and Pr(C𝑗 > k𝑗) = 0, for 𝑗 = 1, 2. Moreover,

there exists 𝛿 > 0 such that Pr(C1 ≥ c1,C2 ≥ c2) > 𝛿 > 0 for any c𝑗 ≤ k𝑗 , 𝑗 = 1, 2.
C3. (i) 𝑓𝑗(t|z) is bounded uniformly in t and z, for 𝑗 = 1, 2; (ii) 𝜷𝑗0(𝜏𝑗) is Lipschitz continuous

for 𝜏𝑗 , 𝑗 = 1, 2, where 𝜏 = (𝜏1, 𝜏2) ∈ 𝔻; (iii) there exists constants 𝜌b > 0 and kb > 0 such
that infb𝑗∈𝑗 (𝜌b)eigminA𝑗(b𝑗) > kb, where 𝑗(𝜌b) = {b𝑗 ∈ Rp ∶ inf𝝉∈𝔻 ‖b𝑗 − 𝜷𝑗0(𝜏𝑗)‖ ≤
𝜌b}, for 𝑗 = 1, 2, 𝝉 = (𝜏1, 𝜏2); (iv) the copula function is differentiable with continuous
partial derivatives with regard to 𝜏1 and 𝜏2 for any Z.

C4. (i) 𝜸0(𝝉) is Lipschitz continuous for 𝝉 ∈ 𝔻; (ii) sup𝝉∈𝔻 ‖𝜸0(𝝉)‖ is bounded above; (iii) there
exists a constant kr > 0 such that inf𝜏∈𝔻eigmin{J(𝜸0(𝝉); 𝝉)} > kr.

C5. (i) For 𝑗 = 1, 2, 𝑓𝑗(t|z) are continuously differentiable with bounded derivatives; (ii) for
𝑗 = 1, 2, 𝜕h𝑗(t1, t2|Z)∕𝜕t𝑗 are continuously differentiable with bounded derivatives.

Remarks: Condition C1 assumes the boundedness of covariates, and is often met in practice.
Condition C2 is satisfied in many clinical settings with administrative censoring. Conditions
C3 (i)–(iii) assume uniform boundedness of marginal densities and smoothness of coefficient
processes, which are standard assumptions for marginal quantile regression methods with
independent censoring data, and are usually reasonable in practice. Condition C3 (iv) implies
the boundedness of h𝑗(t1, t2|z) in (t1, t2) and z. Condition C4 lists standard assumptions for
quantile association models, including the boundedness of 𝜸0(𝝉) and the identifiability of 𝜸0(𝝉).
Condition C5 contains mild assumptions for adopting a consistent covariance estimator.

Let M
G𝑗
i (s) = I(Y𝑗i ≤ s, 𝛿𝑗i = 0) − ∫∞0 I(Y𝑗i ≥ u)dΛG𝑗 (u), where ΛG𝑗 (u) is the cumulative

hazard function for the censoring time C𝑗 . Define

𝜉1,𝑗i(𝜏𝑗) =Zi
(
I
[
Y𝑗i ≤ g

{
ZT

i 𝜷𝑗0(𝜏𝑗)
}]
𝛿𝑗iG𝑗(Y𝑗i)−1 − 𝜏𝑗

)
, and

𝜉2,𝑗i(𝜏𝑗) = ∫
∞

0
w(𝜷𝑗0(𝜏𝑗), s)P(Y𝑗i ≥ s)−1dM

G𝑗
i (s),

where w{𝜷𝑗0(𝜏𝑗), s} = E{ZI(Y𝑗 ≥ t)I[Y𝑗 ≤ g𝑗{ZT𝜷𝑗0(𝜏𝑗)}]𝛿𝑗G𝑗(Y𝑗)−1}. Define 𝜉𝑗i(𝜏𝑗) = 𝜉1,𝑗i(𝜏𝑗)
−𝜉2,𝑗i(𝜏𝑗). To obtain the explicit form of the influence function, we here assume the univariate
censoring mechanism. Let Y∗

i = max(Y1i,Y2i) and 𝛿∗i = 1 − 𝛿1i𝛿2i. The univariate censoring
function G(⋅) can be estimated from {Y∗

i , 𝛿
∗
i }

n
i=1. Let Ĝ(⋅) denote a consistent estimator of G.

Define NG
i (t) = I(Y∗

i ≤ t, 𝛿∗i = 0) and MG
i (t) = NG

i (t) − ∫∞0 I(Y∗
i ≥ s)dΛG(s), where ΛG is the

cumulative hazard function of G. Let

𝜉∗i (𝝉) = ∫
∞

0
w∗{𝜷10(𝜏1), 𝜷20(𝜏2), s}P(Y∗

i ≥ s)−1dMG
i (s),

where w∗{𝜷10(𝜏1), 𝜷20(𝜏2), s} = E[ZI{g−1
1 (Y1) ≤ ZT𝜷10(𝜏1), g−1

2 (Y2) ≤ ZT𝜷20(𝜏2)}𝛿1𝛿2

I(Y∗ ≥ s)G(Y∗)−1].

Theorem 1. Suppose models (2) and (3) hold for 𝜏 ∈ 𝔻. Under conditions C1–C5, sup𝝉∈𝔻 ‖𝜸̂
(𝝉) − 𝜸0(𝝉)‖ p

−→ 0.
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Theorem 2. Suppose models (2) and (3) hold for 𝜏 ∈ 𝔻. Under conditions C1–C5, n1∕2{𝜸̂(𝝉) −
𝜸0(𝝉)} converges weakly to a zero-mean Gaussian process for 𝜏 ∈ 𝔻 with a limiting covariance
matrix which equals

𝛀(𝝉 ′, 𝝉) = J{𝜸0(𝝉 ′); 𝝉 ′}−1E{𝜓i(𝝉 ′)𝜓i(𝝉)T}J{𝜸0(𝝉); 𝝉}−T ,

where

𝜓i(𝝉) = Zi

I
{

g−1
1 (Y1i) ≤ ZT

i 𝜷10(𝜏1), g−1
2 (Y2i) ≤ ZT

i 𝜷20(𝜏2)
}
𝛿1i𝛿2i

G(Y1i,Y2i)
− 𝜉∗i (𝝉)

− Zi𝜒{exp(ZT
i 𝜸0(𝝉)); 𝝉} −

2∑
𝑗=1

P𝑗{𝜷10(𝜏1),𝜷20(𝜏2)}A−1
𝑗 {𝜷𝑗0(𝜏𝑗)}𝜉𝑗i(𝜏𝑗). (4)

The proofs for Theorems 1 and 2 are detailed in the Supplementary Material.

2.4. Covariance Estimation
The covariance estimation under quantile regression models is often challenging, because the
asymptotic covariance matrix involves unknown conditional density functions. In previous
studies, covariance estimation has been conducted using a kernel-based density estimator or
resampling. These methods, however, do not extend well to the quantile association analysis Li,
Cheng & Fine (2014). In this article, we employ the idea of the induced smoothing procedure
that was proposed by Brown & Wang (2005) to estimate the covariance matrices for both
marginal regression estimators and the conditional association coefficient estimators. The induced
smoothing method smooths the original estimating equation by using a “pseudo-Bayesian”
approach and has been successfully extended to the quantile regression setting (Brown & Wang,
2007; Wang, Shao & Zhu, 2009; Pang, Lu & Wang, 2012; Li, Cheng & Fine, 2014).

In the following, we first estimate the influence functions for the marginal regression
estimators, and then further derive the influence function for the conditional association
estimator. Without loss of generality, the univariate censoring scenario is considered to simplify
the asymptotic representation. First, it has been shown in Peng & Fine (2009) that, under
regularity conditions,

√
nSn𝑗(b𝑗 , 𝜏𝑗) converges weakly to a mean-zero Gaussian process with

covariance 𝚺𝑗(𝜏′𝑗 , 𝜏𝑗) = cov{𝜉𝑗(𝜏𝑗)} and the estimators, 𝜷𝑗(𝜏𝑗), are consistent estimators of the

true values 𝜷𝑗0(𝜏𝑗). The asymptotic distribution for n1∕2{𝜷𝑗(𝜏𝑗) − 𝜷𝑗0(𝜏𝑗)} would be a mean-zero
Gaussian process with covariance

D𝑗(𝜷𝑗0; 𝜏𝑗) = A𝑗{𝜷𝑗0(𝜏𝑗)}−1𝚺𝑗(𝜏′𝑗 , 𝜏𝑗)A𝑗{𝜷𝑗0(𝜏𝑗)}−T ,

where A𝑗(b𝑗) = E[Z⊗2𝑓𝑗{g𝑗(ZTb𝑗)}] = limn→∞ n−1 ∑n
i=1 Z⊗2

i 𝑓𝑗{g𝑗(ZT
i b𝑗)}, for 𝑗 = 1, 2.

We now adopt the induced smoothing approach to Sn𝑗(b𝑗 , 𝜏𝑗) and obtain a consistent

estimator of A𝑗{𝜷𝑗0(𝜏𝑗)}. First, by the asymptotic normality of 𝜷𝑗(𝜏𝑗), we can approximately

write 𝜷𝑗(𝜏𝑗) = 𝜷𝑗0(𝜏𝑗) + B1∕2
𝑗 V𝑗 , where B𝑗 = n−1D𝑗 , V𝑗 ∼ N(0, Ip), and Ip is the p × p identity

matrix. We can regard 𝜷𝑗(𝜏𝑗) as a random perturbation of 𝜷𝑗0(𝜏𝑗). Hence, we define a considerably
smoother estimating function,

S̃n𝑗(b𝑗 ,B𝑗 ; 𝜏𝑗) = EV𝑗{Sn𝑗(b𝑗 + B1∕2
𝑗 V𝑗 ; 𝜏𝑗 ,B𝑗)}

= n−1
n∑

i=1

Zi

[
𝛿𝑗i

Ĝ𝑗(Y𝑗i)
Φ
{ZT

i b𝑗 − g−1
𝑗 (Y𝑗i)√

ZT
i B𝑗Zi

}
− 𝜏𝑗

]
,
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where Φ(⋅) is the CDF of the standard normal distribution. Through the smoothed estimating
function S̃n𝑗(b𝑗 ,B𝑗 ; 𝜏𝑗), the estimator of A𝑗(b𝑗) can be achieved from the derivative of the
smoothed estimating equation with respect to b𝑗 , which has the form,

Ã𝑗(b𝑗 ,B𝑗) =
𝜕S̃n𝑗(b𝑗 ,B𝑗 ; 𝜏𝑗)

𝜕b𝑗
= n−1

n∑
i=1

𝛿𝑗iZ
⊗2
i

Ĝ𝑗(Y𝑗i)
√

ZT
i B𝑗Zi

𝜙

{ZT
i b𝑗 − g−1

𝑗 (Y𝑗i)√
ZT

i B𝑗Zi

}
, (5)

where 𝜙(⋅) is the probability density function of the standard normal distribution. Given B𝑗 , we
can obtain the estimator 𝜷̃𝑗 by solving S̃n𝑗(𝜷̃𝑗 ,B𝑗 ; 𝜏𝑗) = 0 and then plug it into (5) to get the
estimator,

Ã𝑗(𝜷̃𝑗 ,B𝑗) = n−1
n∑

i=1

𝛿𝑗iZ
⊗2
i

Ĝ𝑗(Y𝑗i)
√

ZT
i B𝑗Zi

𝜙

{ZT
i 𝜷̃𝑗 − g−1

𝑗 (Y𝑗i)√
ZT

i B𝑗Zi

}
.

In general, the matrix B𝑗 is unknown. Hence, we develop an iterative algorithm to achieve
the optimal solutions for both 𝜷𝑗0(𝜏𝑗) and B𝑗 . The detailed procedure is given below:

Step A0. Set the initial B̃(0)
𝑗 = n−1Ip and 𝜷̃

(0)
𝑗 = 𝜷𝑗(𝜏𝑗), and let 𝚺̂𝑗(𝜏′𝑗 , 𝜏𝑗) = n−1 ∑n

i=1 𝜉
⊗2
𝑗i .

Step A1. In the kth iteration, update 𝜷̃
(k)
𝑗 by solving S̃n(𝜷̃

(k−1)
𝑗 , B̃(k−1)

𝑗 ; 𝜏𝑗) = 0.

Step A2. Update B̃(k)
𝑗 = n−1(Ã(k)

𝑗 )−1𝚺̂𝑗(𝜏′𝑗 , 𝜏𝑗)(Ã
(k)
𝑗 )−T , where

Ã(k)
𝑗 = n−1

n∑
i=1

𝛿𝑗iZ
⊗2
i

Ĝ𝑗(Y𝑗i)
√

ZT
i B̃(k−1)

𝑗 Zi

𝜙

⎧⎪⎨⎪⎩
ZT

i 𝜷̃
(k)
𝑗 − g−1

𝑗 (Y𝑗i)√
ZT

i B̃(k−1)
𝑗 Zi

⎫⎪⎬⎪⎭
.

Step A3. Repeat Steps A1–A2 until convergence.

This algorithm is computationally efficient and leads to a consistent covariance estimator
D̃𝑗 = nB̃(k)

𝑗 after the convergence of the iterations. More theoretical justifications and arguments
were discussed in Pang, Lu & Wang (2012).

We next develop explicit estimators for the variance covariance matrix of 𝜸̂(𝝉). In Section 2.
3, we have shown that the proposed asymptotic distribution of

√
n{𝜸̂(𝝉) − 𝜸0(𝝉)} is a mean-zero

Gaussian process with covariance𝛀(𝝉 ′, 𝝉) = J{𝜸0(𝝉); 𝝉}−1E{𝜓i(𝝉 ′)𝜓i(𝝉)T}J{𝜸0(𝝉); 𝝉}−T . Define
a consistent estimator of J{𝜸0(𝝉); 𝝉} as

Ĵ(𝜸̂; 𝝉) = n−1
n∑

i=1

Z⊗2
i 𝜒 ′{exp(ZT

i 𝜸̂)} exp(ZT
i 𝜸̂),

where 𝜒 ′(u) = 𝜕𝜒(u)∕𝜕u. To have a consistent estimator for E{𝜓i(𝝉 ′)𝜓i(𝝉)T}, we first estimate
P𝑗{𝜷10(𝜏1),𝜷20(𝜏2)}, where

P𝑗{𝜷10(𝜏1), 𝜷20(𝜏2)} = E
(
Z⊗2h𝑗[g1{ZT𝜷10(𝜏1)}, g2{ZT𝜷20(𝜏2)}]g′𝑗{ZT𝜷𝑗0(𝜏𝑗)}

)
.

However, estimating P𝑗{𝜷10(𝜏1), 𝜷20(𝜏2)} directly is difficult since P𝑗(⋅, ⋅) involves an unknown
partial density function h𝑗(⋅, ⋅). To address this issue, we propose an induced-smoothing type
estimator for P𝑗{𝜷10(𝜏1), 𝜷20(𝜏2)}, for 𝑗 = 1, 2. For brevity, we simply the notation, such as
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𝜷𝑗 = 𝜷𝑗(𝜏𝑗) and 𝜸̂ = 𝜸̂(𝝉). Adapting the induced smoothing methods for the marginal quantile
effects, we obtain a smoothed estimating function, where

W̃Ĝ
n𝑗(b𝑗 ;𝜷𝑗∗ , 𝜸̂, B̃𝑗) = EV𝑗{WĜ

n (b𝑗 + B̃1∕2
𝑗 V𝑗 ,𝜷𝑗∗ , 𝜸̂; 𝝉)}

= n−1
n∑

i=1

Zi

⎡⎢⎢⎢⎣
𝛿1i𝛿2iI{g−1

𝑗∗ (Y𝑗∗i) ≤ ZT
i 𝜷𝑗∗}

Ĝ(Y1i,Y2i)
Φ
⎧⎪⎨⎪⎩

ZT
i b𝑗 − g−1

𝑗 (Y𝑗i)√
ZT

i B̃𝑗Zi

⎫⎪⎬⎪⎭
− 𝜒{exp(ZT

i 𝜸̂); 𝝉}
⎤⎥⎥⎥⎦
,

where B̃𝑗 is the induced-smoothing type estimator for B𝑗 from marginal quantile models, and
𝑗∗ = 3 − 𝑗, for 𝑗 = 1, 2. Therefore, P𝑗{𝜷10(𝜏1), 𝜷20(𝜏2)} can be estimated by

P̂Ĝ
𝑗 (𝜷1,𝜷2, B̃𝑗) =

𝜕W̃Ĝ
n𝑗(b𝑗 ;𝜷𝑗∗ , 𝜸̂, B̃𝑗)

𝜕b𝑗

||||b𝑗=𝜷𝑗
= n−1

n∑
i=1

Z⊗2
i 𝛿1i𝛿2iI{g−1

𝑗∗ (Y𝑗∗i) ≤ ZT
i 𝜷𝑗∗}

Ĝ(Y1i,Y2i)
√

ZT
i B̃𝑗Zi

𝜙

⎧⎪⎨⎪⎩
ZT

i 𝜷𝑗 − g−1
𝑗 (Y𝑗i)√

ZT
i B̃𝑗Zi

⎫⎪⎬⎪⎭
,

where 𝑗∗ = 3 − 𝑗, for 𝑗 = 1, 2.
Combining these results, an algorithm for estimating the influence function 𝜓i(𝝉) can be

obtained by the following procedures:

Step A. For 𝑗 = 1, 2, employ Steps A0–A3 in the aforementioned algorithm to assess B̃𝑗 .
Step B. For 𝑗 = 1, 2, let 𝑗∗ = 3 − 𝑗 and define

P̂Ĝ
𝑗 (𝜷1,𝜷2, B̃𝑗) = n−1

n∑
i=1

Z⊗2
i 𝛿1i𝛿2iI{g−1

𝑗∗ (Y𝑗∗i) ≤ ZT
i 𝜷𝑗∗}

Ĝ(Y1i,Y2i)
√

ZT
i B̃𝑗Zi

𝜙

⎧⎪⎨⎪⎩
ZT

i 𝜷𝑗 − g−1
𝑗 (Y𝑗i)√

ZT
i B̃𝑗Zi

⎫⎪⎬⎪⎭
,

and

Â𝑗(𝜷𝑗) = n−1
n∑

i=1

𝛿𝑗iZ
⊗2
i

Ĝ𝑗(Y𝑗i)
√

ZT
i B̃𝑗Zi

𝜙

⎧⎪⎨⎪⎩
ZT

i 𝜷𝑗 − g−1
𝑗 (Y𝑗i)√

ZT
i B̃𝑗Zi

⎫⎪⎬⎪⎭
.

Step C. Plug in 𝜷𝑗 , 𝜸̂, 𝜉𝑗i, 𝜉
∗
i , and the above estimates into (4). The resulting estimator for 𝜓i(𝝉)

is

𝜓̂i(𝝉) = Zi

I
{

g−1
1 (Y1i) ≤ ZT

i 𝜷1, g
−1
2 (Y2i) ≤ ZT

i 𝜷2
}
𝛿1i𝛿2i

Ĝ(Y1i,Y2i)
− Zi𝜒{exp(ZT

i 𝜸̂); 𝝉}

− 𝜉∗i −
2∑
𝑗=1

P̂𝑗{𝜷1,𝜷2, B̃𝑗}Â−1
𝑗 {𝜷𝑗}𝜉𝑗i(𝜏𝑗).
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By applying Steps A–C, we can further obtain an estimator for the covariance matrix,

𝛀̂(𝝉 ′, 𝝉) = Ĵ{𝜸̂; 𝝉 ′}−1
{

n−1
n∑

i=1

𝜓̂i(𝝉 ′)𝜓̂i(𝝉)T
}

Ĵ{𝜸̂; 𝝉}−T ,

where

Ĵ(𝜸̂; 𝝉) = n−1
n∑

i=1

Z⊗2
i 𝜒 ′{exp(ZT

i 𝜸̂)} exp(ZT
i 𝜸̂),

which is a consistent estimator of J{𝜸̂; 𝝉 ′}. Detailed justification for the consistency of 𝜓̂i(𝝉) are
provided in the Supplementary Material.

3. SIMULATION

In this section, numerical simulations are conducted to investigate the finite-sample performance
of our proposed models. Without loss of generality, we focus on the case that 𝜏1 = 𝜏2 = 𝜏, as it
has been shown in Li, Cheng & Fine (2014) that quantile association along the diagonal line can
effectively depict the association structure. Two covariates are generated, Z1 and Z2, where Z1 is
a standard normal distributed variate and truncated at −2 and 2, and Z2 is a Bernoulli distributed
variate with probability 0.5. Denote Z = (Z1,Z2). For two event times T1 and T2, their marginal
distributions follow the marginal quantile regression models with the exponential link function,
g1(t) = g2(t) = exp(t), and

log Q1(𝜏|Z) = 0.2Φ−1(𝜏) + 0.2Z1 + {0.4Φ−1(𝜏) − 0.2Φ−1(𝜏)}Z2,

log Q2(𝜏|Z) = 0.3Φ−1(𝜏) − 0.2Z1 + 0.5Z2,

where Φ−1(⋅) is the inverse function of the CDF of the standard normal distribution. From the
above models, the effect of Z1 is constant across 𝜏 for both log Q1(𝜏|Z) and log Q2(𝜏|Z). The
effect of Z2 is constant on log Q2(𝜏|Z) but varies for log Q1(𝜏|Z) by 𝜏.

To generate the association structure, we consider the situation that (T1,T2) follow a
flipped-Clayton model with parameter 𝜃 when Z2 = 1, and they are conditionally independent
when Z2 = 0. Specifically,

(𝝉|Z2 = 1) = 𝜏1 + 𝜏2 − 1 + max[{(1 − 𝜏1)−𝜃 + (1 − 𝜏2)−𝜃 − 1}−1∕𝜃, 0],

where 𝜃 = exp(1). Thus, the underlying quantile association follows

log qor(𝝉|Z) = log[𝜒−1{(𝝉|Z)}]Z2,

where 𝜒−1(y) is the inverse function of 𝜒 and is monotone increasing in y. Under this setting, the
true value of 𝜸0(𝝉) is (0, 0, log[𝜒−1{(𝝉|Z)}])T , and Z2 affects both the associational strength
and structure.

For the censoring time, we consider the univariate censoring setting following the AMD data
example, and generate C from a mixture distribution of Unif(0, cb) with probability 0.8, and a
point mass at cb with probability 0.2. Here, cb mimics time to the end of a study in practical
scenarios. The observed bivariate survival data are (Y1,Y2, 𝛿1, 𝛿2,Z), where Y𝑗 = min(T𝑗 ,C) and
𝛿𝑗 = I(Y𝑗 ≤ C), for 𝑗 = 1, 2.

We performed 2,000 simulations with sample sizes n = 200 and 400. We set cb = 6
or 4 so that the percentage of the censoring is about 20% or 30% respectively. For 𝜏 =
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12 CHEN, CHENG, DING AND LI Vol. 00, No. 00

0.2, 0.25, 0.3, 0.4, 0.5, 0.6, Table 1 presents the results of the empirical bias (Bias), the empirical
standard error (Empse), the average estimated standard error (Estse) and the empirical coverage
probability of 95% Wald-type confidence intervals (Cov) for (I) 𝜷1(𝜏), (II) 𝜷2(𝜏) and (III) 𝜸̂(𝝉),
under 20% censoring rate. The results for 30% censoring are given in Table 2. From the top and
middle parts of Table 1, we can see that, with 20% censoring rate, the estimated marginal quantile
coefficients are largely unbiased across all 𝜏s; the induced smoothing standard errors agree well
with the empirical ones, and the Wald-type confidence intervals based on the induced smoothing
standard errors are close to the nominal level 95%. The results for the conditional association
coefficients are shown in Table 1 (III) for 20% censoring. The biases for the association
coefficients are larger than those for the marginal regression coefficients. This is as expected,
since the estimation of covariate effects on the association structure is more challenging than the
estimation of marginal effects. Nevertheless, the biases are largely negligible and shrink with
the sample size, suggesting that the proposed estimator 𝜸̂(𝝉) provides accurate estimation of the
true association effect across 𝜏s. The standard errors based on induced smoothing tend to be
slightly larger than the empirical standard errors. Consequently, the coverage rates of Wald-type
confidence intervals are greater than the nominal level 95% when n = 200. Li, Cheng & Fine
(2014) also reported an inflated coverage rate of the confidence interval that was constructed
based on the induced smoothing standard error for uncensored pairs. However, as the sample
size increases, we observe that the coverage rates of Wald-type confidence intervals are closer
to the nominal level 95%. This result implies that our proposed procedure performs adequately
on the covariance estimation under moderate sample sizes. With 30% censoring rate, the results
in Table 2 give similar conclusions as under 20% censoring rate, though the estimated standard
deviations tend to be larger under 30% censoring than those under 20% censoring. We further
conducted a simulation study with sample size n = 600 and censoring rate about 50% to mimic
the AMD example. The results, given in Table 3 for 𝜏 = 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, present
similar patterns as those under the previous scenarios. This result confirms the applicability of
our methods to the AMD example.

4. DATA ANALYSIS

We illustrate our proposed methods by applying them to an AMD dataset from the AREDS
(ARDES-Group, 1999), which was designed to examine the development and progression of
AMD. This cohort study collected data on several risk factors at baseline, together with the
progression times to late AMD in both eyes. The associational strength and pattern between the
AMD progression times in two eyes reflect the prognostic value of one eye for the other eye
and thereby have important implications in disease monitoring and treatment decision making.
We aim to explore the explanatory factors for the underlying association using the proposed
quantile-based association model, while adjusting for covariate effects on the marginals.

Data from 630 Caucasian patients who had at least one eye in moderated AMD stage but no
eye in late AMD at baseline are used in the current analysis. The bivariate survival times are the
progression times (from baseline, i.e., the enrollment time) to late AMD in the left and right eyes.
By the definition of the qor in Equation (1), the association will stay the same if we switch the
labels for T1 and T2. Thus, we simply treat the event time from the left eye as T1, and that from
the right eye as T2. Three potential risk factors, age, smoking status (Never, Former and Current),
and the baseline eye-level AMD severity score (SevereBL-L or SevereBL-R), are considered in
the marginal models for AMD progression in the left or right eye. For the conditional association
model, instead of including both eyes’ AMD severity scores, we adopt the average of AMD
severity scores (AvgSevereBL) in both eyes at baseline to avoid the collinearity issue. The
censoring rates for the left and right eyes are 47% and 44%, respectively. Since each bivariate
survival pair is from the same patient, the censoring mechanism follows univariate censoring in
this application. The overall censoring rate for the univariate censoring is 56%. Due to the heavy
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FIGURE 1: The estimated covariate effects on the association using the proposed model. The
solid bold line is the estimated effect at each quantile level and the dotted line is the average

across all levels. The dash-dot line is the 95% pointwise confidence interval.
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FIGURE 2: The log qor for two selected patients with different average baseline severity score
(5 and 7 respectively). Both patients are non-smokers with 70 years of age. The left figure is the
estimated log qor(𝝉) for the two patients using Li et al., (2017), which does not allow covariate
effects on the local association. The middle and the right figures are the estimated log qor(𝝉|Z)
using the proposed method for the selected patients with average baseline severity score of 5 and

7, respectively.

censoring, we restrict attention to quantile levels up to 0.4. Meanwhile, due to sparse information
at the boundary, there were some convergence issues at 𝜏 = 0.1 for this data example. Thus, we
select the lower limit 0.12 at which the estimation procedure converges.

The results for the marginal eyes are given in the Supplementary Material. For the marginal
models, age and baseline severity score are mostly significant across quantiles, but the smoking
status is only significant in a small range. The results for the conditional association model are
shown in Figure 1. It suggests that the average AMD severity score has a significantly positive
effect on the association at quantile level between 0.15 and 0.35. Moreover, the estimated
coefficient for the average baseline AMD severity score is gradually decreasing but still positive,
when the quantile increases. First, the positive coefficient implies that the odds of developing
late AMD in one eye given the developed late AMD in the other eye is increasing, when the
average baseline AMD severity score increases. Therefore, the associational strength between
the progression times of the two eyes is stronger among those with higher AMD severity score
at baseline. Next, the impact of the baseline average AMD severity score on the odds ratio is
higher at short survival times (low quantiles) than at long survival times (high quantiles) while
conditioning on age and smoking status. This suggests a varying effect of the baseline AMD
severity score on the local association that cannot be captured by global association models. This
result implies that, for a person who has a large average AMD severity score, if she/he suffers
the development of late AMD in one eye in a short period, it is of importance to monitor the
other eye as soon as possible.

In addition, we consider a benchmark analysis comparing our method and the one studied in
Li et al., (2017). The marginal models in both approaches are the same. The major difference is
that Li et al., (2017) only allowed covariate effects on the marginals, but did not allow covariate
effects on the association structures. As our method detected significant associational effect of
the severity score, the underlying assumption in Li et al., (2017) is likely not satisfied for this
dataset. To see this, we selected two patients with different average severity scores at baseline,
5 and 7, but with the same age around the overall mean of 70 years and both non-smokers. We
calculated the log qor for these two patients using our method and compared with the previous
method. The results are given in Figure 2, where the left plot is the estimated log qor(𝝉) using
the previous method as a benchmark analysis for both selected patients, and the middle and right
figures are the log qor(𝝉|Z) using our current method for each of the two selected patients. The
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plots using our proposed method show that the patient with higher average of severity score at
baseline exhibited stronger associations between two eyes across quantiles than the patient with
lower severity score. This is completely missed by the benchmark analysis, as it forces everyone
to have the same local association. Thus, additional insights are gained from directly modelling
covariates to more accurately capture the association patterns over time or quantiles.

5. DISCUSSION

In this work, we propose a quantile-based regression model for the association between two
event times with independent right censoring. The proposed quantile-based association regression
model enables the evaluation of the strength of the local dependency between different quantiles
of marginal survival times. More specifically, we use the idea of the copula to connect with the
quantile-based local association qor, and estimate the coefficients for the association at different
quantile levels. Our proposed model is very flexible, since it does not require any assumptions
on the marginal distributions, and the form of the copula does not need to be specified either.
We examine covariate effects on the quantile association directly while adjusting for risk factors
in the marginal distributions. The estimated coefficients can be easily interpreted via the qor.

To have an explicit form of the asymptotic distribution, we assume the univariate censoring
when evaluating the bivariate censoring function. In fact, the asymptotic distribution can still
be established without the univariate censoring assumption. However it will not lead to a nice
equation for the influence function, which has a consistent induced-smoothing type estimator.
With the bivariate survival censoring, the covariance estimation can be achieved by using the
bootstrap technique. However, it may result in a larger estimated standard deviation for the
quantile type estimator, which is a common issue in the quantile approaches.

As Li, Cheng & Fine (2014) mentioned, the recommended range of quantiles for a study
is associated with the sample size and the number of covariates. In our article for the bivariate
survival data, the censoring rate also affects the range of quantiles, especially the upper bound
level. Following Peng & Huang (2008), we recommend to choose the quantile range by taking
into account the censoring rates and using an adaptive manner in practice. One may start by
setting the lower range to 0.1 and the upper range to 1 minus the overall censoring rate. The
range can be further adjusted if there are any signs of poor fit at the boundary of the quantile
range, such as non-convergence or diverging standard error estimates. The restriction, in fact, is
much accepted and universal in any quantile regression analyses of censored data.

We also notice through simulations (not reported here) that the strength of association in two
event times may be affected by some residual covariate effects that have not been properly taken
into account in the marginal models. Thus, we recommend considering all potential risk factors
when evaluating the marginal distributions.

Finally, the dynamic association measurement is useful in capturing the local dependency.
However, it would be desirable if we can connect our quantile association model with some
commonly used global association measures, such as Kendall’s tau. Some weighted local
association across quantile levels may be considered. This will be a topic of future work.

ACKNOWLEDGEMENTS

The research was partially supported by the U.S. National Science Foundation to Cheng (DMS
1916001) and by the U.S. National Institute of Diabetes and Digestive and Kidney Diseases to Li
(R01DK117209) as well as the University of Pittsburgh Center for Research Computing through
the resources provided. We are grateful to the editor, the review editor, and two anonymous
reviewers for their constructive comments and suggestions that led to an improved article.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



24 CHEN, CHENG, DING AND LI Vol. 00, No. 00

BIBLIOGRAPHY
Anderson, J. E., Louis, T. A., Holm, N. V., & Harvald, B. (1992). Time-dependent association measures

for bivariate survival distributions. Journal of the American Statistical Association, 87, 641–650.
ARDES-Group. (1999). The age-related eye disease study (AREDS): Design implications AREDS report

no. 1. Controlled Clinical Trials, 20, 573.
Bogaerts, K. & Lesaffre, E. (2008). Modeling the association of bivariate interval-censored data using the

copula approach. Statistics in Medicine, 27, 6379–6392.
Brown, B. & Wang, Y. (2005). Standard errors and covariance matrices for smoothed rank estimators.

Biometrika, 92, 149–158.
Brown, B. & Wang, Y. (2007). Induced smoothing for rank regression with censored survival times.

Statistics in Medicine, 26, 828–836.
Clayton, D. (1978). A model for association in bivariate life tables and its application in epidemiological

studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151.
Geerdens, C., Acar, E. F., & Janssen, P. (2017). Conditional copula models for right-censored clustered

event time data. Biostatistics, 19, 247–262.
Gorfine, M., Zucker, D. M., & Hsu, L. (2006). Prospective survival analysis with a general semiparametric

shared frailty model: A pseudo full likelihood approach. Biometrika, 93, 735–741.
Hsu, L. & Prentice, R. L. (1996). On assessing the strength of dependency between failure time variates.

Biometrika, 83, 491–506.
Hu, T. & Nan, B. (2011). Time-dependent cross ratio estimation for bivariate failure times. Biometrika, 98,

341–354.
Huster, W. J., Brookmeyer, R., & Self, S. G. (1989). Modelling paired survival data with covariates.

Biometrics, 145–156.
Koenker, R. (2008). Censored quantile regression Redux. Journal of Statistical Software, 27, 1–25.
Koenker, R. & Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.
Lakhal, L., Rivest, L. -P., & Beaudoin, D. (2009). IPCW estimator for Kendall’s tau under bivariate

censoring. The International Journal of Biostatistics, 5, 10.2202/1557-4679.1121.
Li, R., Cheng, Y., Chen, Q., & Fine, J. (2017). Quantile association for bivariate survival data. Biometrics,

73, 506–516.
Li, R., Cheng, Y., & Fine, J. P. (2014). Quantile association regression models. Journal of the American

Statistical Association, 109, 230–242.
Li, R. & Peng, L. (2011). Quantile regression for left-truncated semicompeting risks data. Biometrics, 67,

701–710.
Nan, B., Lin, X., Lisabeth, L. D., & Harlow, S. D. (2006). Piecewise constant cross-ratio estimation for

association of age at a marker event and age at menopause. Journal of the American Statistical
Association, 101, 65–77.

Oakes, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society,
Series B: Methodological, 44, 414–422.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical
Association, 84, 487–493.

Oakes, D. (2008). On consistency of Kendall’s tau under censoring. Biometrika, 95, 997–1001.
Pang, L., Lu, W., & Wang, H. J. (2012). Variance estimation in censored quantile regression via induced

smoothing. Computational Statistics & Data Analysis, 56, 785–796.
Peng, L. & Fine, J. (2009). Competing risks quantile regression. Journal of the American Statistical

Association, 104, 1440–1453.
Peng, L. & Huang, Y. (2008). Survival analysis with quantile regression models. Journal of the American

Statistical Association, 103, 637–649.
Portnoy, S. (2003). Censored regression quantiles. Journal of the American Statistical Association, 98,

1001–1012.
Prentice, R. & Cai, J. (1992). Covariance and survivor function estimation using censored multivariate

failure time data. Biometrika, 79, 495–512.
Romeo, J. S., Meyer, R., & Gallardo, D. I. (2018). Bayesian bivariate survival analysis using the power

variance function copula. Lifetime data analysis, 24, 355–383.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2020 QUANTILE ASSOCIATION REGRESSION 25

Shih, J. H. & Louis, T. A. (1995). Inferences on the association parameter in copula models for bivariate
survival data. Biometrics, 51, 1384–1399.

Swaroop, A., Chew, E. Y., Bowes Rickman, C., & Abecasis, G. R. (2009). Unraveling a multifacto-
rial late-onset disease: From genetic susceptibility to disease mechanisms for age-related macular
degeneration. Annual Review of Genomics and Human Genetics, 10, 19–43.

Wang, W. & Wells, M. T. (2000). Estimation of Kendall’s tau under censoring. Statistica Sinica, 10,
1199–1215.

Wang, Y., Shao, Q., & Zhu, M. (2009). Quantile regression without the curse of unsmoothness. Computa-
tional Statistics & Data Analysis, 53, 3696–3705.

Yan, J. & Fine, J. (2005). Functional association models for multivariate survival processes. Journal of the
American Statistical Association, 100, 184–196.

Zeng, D., Chen, Q., & Ibrahim, J. G. (2009). Gamma frailty transformation models for multivariate survival
times. Biometrika, 96, 277–291.

Received 16 July 2019
Accepted 01 June 2020

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique


