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Abstract. In 1926, Erwin Schrödinger wrote a series of papers that invented wave

mechanics and set the foundation for much of the single-particle quantum mechanics

that we teach today. In his first paper, he solved the Schrödinger equation using

the Laplace method, which is a technique that is quite powerful, but rarely taught.

This is unfortunate, because it opens the door to examining quantum mechanics from

a complex-analysis perspective. Gaining this experience with complex analysis is a

useful notion to consider when teaching quantum mechanics, as these techniques can be

widely used outside of quantum mechanics, unlike the standard Frobenius summation

method, which is normally taught, but rarely used elsewhere. The Laplace method

strategy is subtle and no one has carefully gone through the arguments that Schrödinger

did in this first paper, instead it is often just stated that the solution was adopted from

Schlesinger’s famous differential equation textbook. In this work, we show how the

Laplace method can be used to solve for the quantum-mechanical energy eigenfunctions

of the hydrogen atom, following Schrödinger’s original solution, with all the necessary

details, and illustrate how it can be taught in advanced instruction; it does require

familiarity with intermediate-level complex analysis, which we also briefly review.
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1. Introduction

In January of 1926, Erwin Schrödinger changed the face of physics forever. In his first

paper, “Quantization as an eigenvalue problem (Part I)” [1], Schrödinger presents a

naive argument to “derive” the Schrödinger wave equation and then proceeds to solve for

the nonrelativistic energy eigenstates of hydrogen, determining the bound-state energy

eigenvalues (for E < 0) and the corresponding unnormalized wavefunctions. He also

briefly discusses the continuum solutions with E > 0. The method he uses is called

the Laplace method for solving differential equations. This technique, though similar

to the much more familiar Laplace transform, is somewhat different. It is employed

to solve differential equations of arbitrary order, but with coefficients that are at most

linear functions of the dependent variable. Schrödinger relied heavily on the first edition

of the differential equation book by Schlesinger [2], which uses this methodology in its

treatment of differential equations. Schrödinger is somewhat light on the specific details

for how the solution is carried out and, since it is not described in nearly all quantum

textbooks, this strategy he used to solve for the first wavefunction has become somewhat

of a lost art. In this work, we show the details behind how this first wavefunction was

solved in the winter of 1926. As a side note, there has been a lot of historical work

on how Schrödinger discovered the wave equation. The most comprehensive treatise on

this is by Mehra and Rechenberg [3]. So we will not discuss it further here.

Interestingly, the first textbook on “modern” quantum mechanics, The New

Quantum Mechanics, written by George Birtwistle in 1928 [4] does have an entire

section on the Laplace method, but it does not give any additional details beyond

what Schrödinger gave for solving for the wavefunctions of hydrogen. In general, the

Birtwistle book is an uncommon book, reading more like an armchair companion for the

original articles than as a true textbook. The 1929 textbook Quantum Mechanics by

Condon and Morse presents the Frobenius method for solving the hydrogen atom and

comments that “[Schrödinger] used the method of complex integration in arriving at

the results which are about to be obtained here by more elementary methods” and with

that somewhat innocuous comment, so ended the coverage of the Laplace method as a

technique for solving the wave equation in nearly all textbooks. Surprisingly, in Landau

and Lifshitz’s textbook [6], while they use the Frobenius method to solve hydrogen (and

many other problems), they use the Laplace method to determine the properties of

many of the special functions that appear in quantum mechanics when they cover their

mathematical properties in the appendix. These contour methods are briefly covered

for the continuum solutions of hydrogen in Bethe and Salpeter’s treatise on one and two

electron atoms [7], but they also use the Frobenius method for the bound states. There

is one other book that we are familiar with that uses the method, Konishi and Paffuti’s

Quantum Mechanics [8], which applies it to the linear potential and the properties of

the Airy function in an appendix, but not to the hydrogen problem. The appendix is a

rather complete supplement of the mathematical prerequisites needed for this approach.

There also have been some additional discussions of this material in the literature.
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In 1937, Dirac proposed to generalize momentum from the real axis to the complex

plane. He then used this approach to show how to find the wavefunctions of hydrogen,

but the treatment has even less details than Schrödinger’s original paper, although

it does appear to correspond to the same solution. More recently, there have been

a few papers published, which approach the hydrogen atom from the perspective of

the Laplace transform. Engelfield [10] describes how to calculate the solutions using

the Laplace transform approach (and then the inverse transform involves a contour

integral), but it does not give too many details and only examines asymptotic behavior

of the wavefunctions. Sherzer [11] uses a series expansion and term-by-term inverse

Laplace transforms to determine the wavefunction. Liu and Mei [12] discuss the series

method, the Laplace transform method and what they call the transcendental integral

method, which is Schrödinger’s approach via the Laplace method. But again, they

provide no details on how the calculation is completed. Tsaur and Wang [13] use the

Laplace transform method to solve a number of different potentials, but they use the

definition of the hypergeometric function in terms of the inverse Laplace transform

instead of showing details for how the Laplace method is applied to hydrogen.

Part of the motivation for this work is that it is an opportunity to bring complex

analysis in a meaningful way into the quantum curriculum for graduate students and

help them learn how complex analysis is a powerful tool in physics. The fact that

complex analysis is used for many other problems that arise in physics will give these

students an edge when they move into research. To some extent, Dirac’s long forgotten

1937 paper advocates for just such an approach.

2. Preliminaries

The Laplace method is a general technique for solving arbitrary order differential

equations that have constant and linear coefficients of each term in the differential

equation. While it is related to the well-known Laplace transform, it is distinctly

different from it as well. The history is complex [14]. We attribute the method to

Laplace, but it was developed by a number of different mathematicians in the latter

half of the 19th century. By the turn of the 20th century it was a well-established

technique and it made its way into textbooks on differential equations including the

textbook written by Schlesinger [2] in 1900, which was influential in Schrödinger’s first

publication of the solution of the quantum mechanical hydrogen atom in 1926.

2.1. The Laplace method

The Laplace method is a technique to solve ordinary differential equations with constant

and linear coefficients, given by the general form∑
m

(am + bmx)y(m)(x) = 0. (1)

The differential equation can be of arbitrary order m, but for quantum-mechanics

applications, we are most interested in m = 2. Fixing m = 2 for concreteness, we
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obtain the explicit form

(a2 + b2x)y′′(x) + (a1 + b1x)y′(x) + (a0 + b0x)y(x) = 0. (2)

The solution to Eq. (1) is constructed by introducing integrating factors and is

represented in the form

y(x) =

∫
C

exzR(z)dz, (3)

with the added wrinkle that the integral is over a contour C in the complex z plane;

the function R(z) is the integrating factor. The challenge in implementing the Laplace

method of solution is choosing the correct contour C. Note that Eq. (3) has the generic

form of an inverse Laplace transform, but the standard treatment for solving differential

equations by Laplace transforms is simplified from the more general Laplace method.

In order to determine the complex function R(z) and the contour C, we evaluate

the derivatives of y(x) by differentiating under the integral sign

ym(x) =

∫
C

exzzmR(z)dz (4)

and requiring the contour C to be chosen in such a fashion that differentiating under the

integral sign is a valid mathematical procedure. Next, we substitute into the differential

equation in Eq. (1) and obtain∫
C

exz
∑
m

(am + bmx)zmR(z)dz = 0. (5)

It is convenient to define the polynomials

P (z) =
∑
m

amz
m and Q(z) =

∑
m

bmz
m. (6)

Then we rewrite Eq. (5) as∫
C

exz [P (z) +Q(z)x]R(z)dz = 0. (7)

In order for Eq. (7) to hold, the integrand needs to be the derivative of a complex-valued

function and additionally when the function is evaluated at the endpoints of the contour

C, those two values are required to be the same; often this identical value is zero if the

contour extends to infinity. In particular, if the complex-valued function is analytic,

and the integral is over a closed contour, then this condition always holds. But care

must be taken when the function has branch cuts in the complex plane. In equations,

we have the requirement that

P (z)R(z) =
d

dz
[Q(z)R(z)] , (8)

then Eq. (7) is rewritten as∫
C

(
d

dz
[Q(z)R(z)] exz +Q(z)R(z)

d

dz
exz
)
dz

=

∫
C

d

dz
[Q(z)R(z)exz] dz = 0. (9)



Schrödinger’s original quantum-mechanical solution for hydrogen 5

This requires us to choose the contour C in such a way that the function

V (z) = Q(z)R(z)exz (10)

has equal values at the endpoints of the contour. Note that more than one contour

can satisfy these conditions; indeed, for an order-m equation, we know that exactly m

linearly independent solutions are represented by m inequivalent contours. Now we still

need to determine the function R(z). So we simply integrate Eq. (8). The strategy begins

by first dividing Eq. (8) by Q(z)R(z) and recognizing that this produces a logarithmic

derivative, as follows:

P (z)

Q(z)
=

1

Q(z)R(z)

d

dz
[Q(z)R(z)] =

d

dz
ln[Q(z)R(z)]. (11)

Now evaluate the antiderivative on both sides (the constant can be ignored, because

the solution of a homogeneous linear differential equation is determined only up to a

multiplicative constant)

ln[Q(z)R(z)] =

∫ z P (z′)

Q(z′)
dz′, (12)

which, after exponentiation, yields R(z) in the following form:

R(z) =
1

Q(z)
exp

(∫ z P (z′)

Q(z′)
dz′
)
. (13)

Armed with R(z), we immediately find the solution of the differential equation to be

y(x) =

∫
C

exz
1

Q(z)
exp

(∫ z P (z′)

Q(z′)
dz′
)
dz, (14)

where the contour C needs to be chosen so that the condition in Eq. (9) is fulfilled. As

stated before, we expect there to be multiple valid choices for the contour C.

2.2. Complex contour integrals, branch cuts

The Laplace method requires us to calculate contour integrals in the complex plane,

such as in Eq. (14). In general, the integrand is not a single-valued, analytic function

in the entire complex plane, but a multi-valued function, which requires us to introduce

branch cuts because the integrand involves noninteger powers. For the integrands we

work with here, the branch cuts originate from the need to use logarithms to define how

z is raised to an arbitrary power.

The logarithm enters because zα (with noninteger α) is defined to be

zα = eα ln(z). (15)

The complex logarithm is determined most easily when we represent z in polar

coordinates given by the modulus |z| =
√
zz∗ and the polar angle φ, yielding z =

|z| exp(iφ). We then have

ln z = ln(|z|eiφ) = ln |z|+ iφ. (16)
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Figure 1. A possible branch cut for w = ln z, which runs along the negative real axis.

From Eq. (16), we can immediately see that ln z is multi-valued—as we move around

the origin in a counterclockwise direction, the angle φ increases from 0 to 2π, so that the

imaginary part of the logarithm is not single-valued through the entire complex plane.

We need to introduce a branch cut, which can be any curve that does not cross itself

and emerges from the origin and goes to infinity; since ln(z) = − ln(1/z) implies that

infinity is also a branch point of the logarithm. It is common to have the branch cut be

a line that goes straight from the origin to infinity and this is what we use here. The

branch cut for ln z drawn along the negative real axis is shown in Fig. 1. The imaginary

part of the logarithm is obviously discontinuous across the branch cut. Choosing how

we draw the branch cut determines how we define zα. In particular, zα has branch

points at z = 0 and z =∞ that are inherited from the logarithm employed in defining

the power. Note that no branch points and no branch cut for zα are needed when α is

an integer. In this case, zn is automatically single-valued because it is defined in terms

of z, which is also single valued.

Taking proper account of how branch cuts are drawn in the complex plane then

determines what possible contours we can use for evaluating the contour integrals needed

in determining the solutions to the differential equation via Laplace’s method. This is

detailed below for the solution of hydrogen, but before doing that, we have some more

complex analysis we need to cover.

2.3. Γ-function and its Hankel representation

A crucial function needed for asymptotic approximations of contour integrals is Euler’s

Γ-function. It is defined from the integral

Γ(p) =

∫ ∞
0

e−ttp−1dt (17)

for real p > 0. For integer arguments we have

Γ(n+ 1) =

∫ ∞
0

e−ttndt = n!, (18)
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Figure 2. For the calculation of the contour integral in Eq. (21), we can deform and

split the Hankel contour γ into three contours: a straight line approaching the branch

point z = 0 from −∞ below the branch cut, a small circle with radius ε around the

branch point and another line going towards −∞ above the branch cut.

so that the Γ-function can be viewed as a function that interpolates the factorial for real

positive arguments. Furthermore, by using analytical continuation, one can show that

the domain of Γ(p) can be extended to the entire complex plane. This is one of the few

functions that can be explicitly analytically continued in the complex plane.

Some selected properties of the Γ-function, which we will need in the following, are

the recursive relation

Γ(p+ k) = p(p+ 1)(p+ 2)...(p+ k − 1)Γ(p) (19)

and the mirror relation

Γ(p)Γ(1− p) =
π

sin (πp)
. (20)

For a proof of these relations, we refer the reader to Whittaker and Watson [15].

Another important representation of the Γ-function that we will make use of is its

so-called Hankel representation

1

Γ(p)
=

1

2πi

∫
γ

ezz−pdz, (21)

where γ is a Hankel contour shown in Fig. 2. To establish that this relation holds,

we explicitly evaluate the integral in Eq. (21). Note that the integral over the Hankel

contour would be zero in the case of an analytic single-valued function, however z−p is

a multi-valued function (for noninteger p) and thus we fix the regular branch so that

z−p is real and positive for z > 0 (on the real axis); we introduce the branch cut from

z = −∞ to z = 0, as illustrated in Fig. 1. To evaluate the integral, we deform the

Hankel contour to the dashed contour in Fig. 2 (we can do this because the integrand is

analytic in the domain with the branch cut) and we split it into three contour integrals∫
γ

ezz−pdz = lim
ε→0

∫ −ε
−∞

ezz−pdz + lim
ε→0

∮
ezz−pdz + lim

ε→0

∫ −∞
−ε

ezz−pdz, (22)
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where the first integral is infinitesimally below the negative real axis (φ = −π) and the

third integral is slightly above (φ = π). We require Re p < 1 so that the middle integral

is finite as ε→ 0. However, the result is actually valid for all p, because the divergence

is just an artifact of the dashed-line contour (this apparent divergence can be avoided

by shifting the Hankel contour away from the origin).

With the assumption Re p < 1, we evaluate each integral in Eq. (22) separately.

For the first integral along the real axis below the branch cut, we substitute z = se−iπ

and calculate

lim
ε→0

∫ −ε
−∞

ezz−pdz = −
∫ 0

∞
e−s(se−iπ)−pds = eiπp

∫ ∞
0

e−ss−pds

= eiπpΓ(1− p). (23)

In a similar way we find that the integral from −ε to −∞ above the branch cut is

lim
ε→0

∫ −∞
−ε

ezz−pdz = −e−iπpΓ(1− p). (24)

The integral along the circle with radius ε around z = 0 vanishes for ε → 0. In fact,

with z = εeiφ, we get

lim
ε→0

∮
ezz−pdz = lim

ε→0
iε1−p

∫ π

−π
eiφ(1−p)dφ = 0. (25)

Combining these results together, we obtain

1

2πi

∫
γ

ezz−pdz =
1

2πi
Γ(1− p)(eiπp − e−iπp) =

1

2πi
Γ(1− p)2i sin(πp)

=
1

Γ(p)
, (26)

where the last step follows from the mirror relation in Eq. (20).

3. Laplace method for hydrogen

3.1. Schrödinger equation for hydrogen

The nonrelativistic, stationary Schrödinger equation for the hydrogen atom in coordinate

space reads

Hψ = − ~2

2µ
∇2ψ − e2

r
ψ = Eψ, (27)

where r =
√
x2 + y2 + z2 and µ is the reduced mass. We can rewrite Eq. (27) as

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+

2µ

~2

(
E +

e2

r

)
ψ = 0. (28)

By switching to spherical coordinates, Eq. (28) becomes separable and its solution can

be written as

ψ(r, θ, φ) = χ(r)Y m
l (θ, φ), (29)
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where Y m
l (θ, φ) is a spherical harmonic and χ(r) is the solution of the radial equation

d2χ(r)

dr2
+

2

r

dχ(r)

dr
+

(
2µE

~2
+

2

a0r
− l(l + 1)

r2

)
χ(r) = 0. (30)

Here, a0 = ~2/µe2 is the Bohr radius, l is the orbital angular momentum quantum

number, which can take values l = 0, 1, 2, 3..., and m is the magnetic quantum number,

which satisfies |m| ≤ l. The spherical harmonics are simultaneous eigenstates of ~̂L 2

(with eigenvalue ~2l(l + 1)) and L̂z (with eigenvalue ~m). Note that we are not using

Schrödinger’s original notation here for the integers n and l. Schrödinger used n to

denote the angular momentum quantum number and l to denote the principal quantum

number—in modern usage, we do the opposite. In order not to be confusing, we adopt

the modern notation throughout this paper.

Equation (30) can have singular behavior when r → 0 and when r → ∞. These

points are the boundaries of the domain of the radial coordinate r in the differential

equation. Current textbooks state that the wavefunction must be square integrable.

In the standard approach, where one writes a differential equation for rχ(r), the

boundary condition assumed is that rχ(r) vanishes at both boundaries. This condition

is equivalent to the requirement that χ(r) be finite as r → 0 and vanish faster than 1/r

as r →∞. In fact, the modern theory of rigged Hilbert spaces actually requires χ(r) to

vanish faster than any power as r →∞, because it is bound state. Schrödinger stated his

requirement that χ(r) be endlich, which means finite. Recall, Schrödinger knew nothing

about normalization in his first paper, so there was no concept of square integrability

in early 1926. Indeed, the requirement that the wavefunction always is finite is likely

to be the correct condition on wavefunctions, even though textbooks usually use square

integrability; as an example consider the two-dimensional particle in a circular box—the

Bessel functions with index m are the solutions of the radial equation, yet for m = 0, the

irregular Neumann function is square integrable, but not finite—it must be eliminated

since it allows for particle current creation at the origin, hence the condition of a finite

wavefunction excludes it, while square integrability does not. As we will see below, the

requirement that χ(r) remains finite in these limits (r → 0 and r → ∞) acts as the

boundary condition for the solution and appears to be sufficient for determining the

solution.

The differential equation in Eq. (30) is not yet in the form that it can be solved by

the Laplace method, because the coefficients are not all linear. We re-express χ(r) in

the form

χ(r) = rαU(r) (31)

Using this expression, the differential equation becomes

U ′′(r) +
2

r
(α + 1)U ′(r) +

(
2µE

~2
+

2

a0r

)
U(r) (32)

+

(
α(α + 1)

r2
− l(l + 1)

r2

)
U(r) = 0.
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The last term vanishes if we choose α = l or α = −l − 1. We choose α = l, in order to

satisfy the finite condition on χ(r) with a finite condition on U(r). Requiring that U be

finite is a stronger condition than requiring χ be finite. It is likely that this finiteness

condition on U is what Schrödinger used in his analysis, but the paper is not completely

clear on this point. In the modern way of handling the differential equation in Eq. (30),

we look at an asymptotic analysis as r → 0, which immediately tells us that limr→0 U(r)

must be a nonzero constant. It is also well known, and Schrödinger explicitly states, that

one can construct the solution when one chooses α = −l − 1, but it is less convenient,

and so we do not show how to do it here.

After this specific choice of α, we obtain a differential equation with only linear

coefficients, which can now be solved with the Laplace method. We bring Eq. (32) into

a standard form

rU ′′(r) + 2(l + 1)U ′(r) +

(
2µE

~2
r +

2

a0

)
U(r) = 0 (33)

and construct the corresponding P (z) and Q(z) polynomials (with complex variable z)

P (z) = 2(l + 1)z +
2

a0
(34)

Q(z) = z2 +
2µE

~2
= (z − c1)(z − c2), (35)

which defines the two roots c1 and c2. After performing the factorization, we find that

the roots are

c1 = +

√
−2µE

~2
, c2 = −

√
−2µE

~2
. (36)

In this section, we focus on the bound-state solutions, so E < 0, and this implies that

both c1 and c2 are real numbers. The ratio P (z)/Q(z) then becomes

P (z)

Q(z)
=

2(l + 1)z + 2
a0

(z − c1)(z − c2)
=

α1

z − c1
+

α2

z − c2
, (37)

with

α1 =
~

a0
√
−2µE

+ l + 1 (38)

and

α2 = − ~
a0
√
−2µE

+ l + 1. (39)

We next calculate the antiderivative∫ z P (z′)

Q(z′)
dz′ =

∫ z ( α1

z′ − c1
+

α2

z′ − c2

)
dz′

= ln [(z − c1)α1(z − c2)α2 ] + c3 (40)

and choose c3 = 0 without loss of generality, because it only yields an overall

multiplicative constant to the wavefunction. In the next step, we compute the

integrating factor

R(z) =
1

Q(z)
exp

(∫ z P (z′)

Q(z′)
dz′
)

= (z − c1)α1−1(z − c2)α2−1, (41)
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which allows us to express the solution of the differential equation in Eq. (33) in the

form of a contour integral in the complex plane:

U(r) =

∫
C

ezr(z − c1)α1−1(z − c2)α2−1dz. (42)

The contour C must be chosen so that∫
C

d

dz
[ezr(z − c1)α1(z − c2)α2 ] dz = 0, (43)

which is equivalent to choosing a closed contour, or having the quantity in the square

brackets vanish at the endpoints of the contour.

3.2. Attempts at a general solution

For the moment, we exclude the case when α1 and α2 are integer numbers (this case will

be discussed in detail in the next section). Then the integrand in Eq. (42) is a multi-

valued function and one needs to draw a branch-cut in order to evaluate the integral.

Note that the points c1 and c2 are branch points, but unlike the logarithm, which has

a branch point at infinity, the integrand here does not, because α1 + α2 is an integer.

Hence the branch cut must go from c1 to c2 (but it can do so through infinity).

There is no unique way to draw branch cuts, but they must be chosen consistently

in the complex plane. One possible way of introducing a branch-cut is shown in Fig. 3.

In this case, the branch cut goes from c1 to c2 through the point at ∞. We choose

the phase of z to behave like exp(iπ) approaching the branch cut that ends at z = c2
from above and exp(−iπ) from below. We choose similarly for the branch cut ending at

z = c1—the phase is 0 from above and 2iπ from below.

Given those branch cuts, we now consider possible contours C in the complex plane,

which fulfill the condition in Eq. (43) about the vanishing of V (z) at the endpoints of

the contour. Since r > 0, we clearly have

lim
z→−∞

ezr = 0, (44)

so z = −∞ is always a valid endpoint for a contour (the rigorous condition is that

the real part of z approaches −∞). Other possible endpoints of a contour, where V (z)

also vanishes, are when z = c1 and z = c2. Because this is a second-order differential

equation, we expect at most two linearly independent solutions, and hence at most two

independent contours.

One possible contour, denoted by γ1 in Fig. 3, starts at z = c1 and then goes

directly towards −∞. Another possible one, the so-called Hankel contour γ2, comes in

from −∞ below the branch cut, circles around z = c2 and then goes back to −∞ above

the branch cut (see Fig. 3). We also could have a contour run from c2 directly to −∞
(above or below the branch cut), but the analysis we give below will rule this contour

out as well, so we focus primarily on the Hankel contour here.

To determine whether these contour-integral representations of the solutions of the

differential equation are finite, we must do an asymptotic analysis of the integral when
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r → ∞ and when r → 0. This is equivalent to applying boundary conditions to the

solutions of the differential equation. We now first investigate the contour integral over

γ2 in the limit r →∞

U2(r) =

∫
γ2

ezr(z − c1)α1−1(z − c2)α2−1dz, (45)

where we use the subscript 2 to associate this solution with the contour γ2. After a

change of variables, given by z − c2 = s, we obtain

U2(r) = ec2r
∫
γ2

esr(s+ c2 − c1)α1−1sα2−1ds, (46)

where the Hankel contour now encircles the origin in the s-plane. Due to the factor

esr, the main contribution to the integral for r → ∞ stems from the vicinity of s = 0.

Therefore, expand f(s) = (s+ c2− c1)α1−1 into a power series around s = 0. This yields

f(s) =
∞∑
k=0

1

k!
(c2 − c1)α1−1−ksk(α1 − 1)(α1 − 2) · · · (α1 − k) (47)

or

f(s) =
∞∑
k=0

fks
k (48)

with

fk =
1

k!
(c2 − c1)α1−1−k(α1 − 1)(α1 − 2) · · · (α1 − k). (49)

By inserting the power series in Eq. (48) into the integral in Eq. (46), we find

U2(r) ≈ ec2r
N∑
k=0

fk

∫
γ2

esrsα2+k−1ds (50)

under the assumption that we can switch the order of the summation and the integral.

It is well known that this analysis yields an asymptotic series, so typically, one only uses

a finite number of terms in the final series, because the infinite series will be formally

divergent. Nevertheless, a properly truncated asymptotic series can be highly accurate.

Note that γ2 is a Hankel contour and each integral term in the series in Eq. (50)

resembles the Hankel-representation of the Γ-function in Eq. (21). To express each term

in the series in terms of the Γ-function, we simply perform a change of variables s = ρ/r,

which then gives us for a general term∫
γ2

esrsα2+k−1ds =

∫
γ2

eρ
(ρ
r

)α2+k−1 dρ

r

= r−α2−k
∫
γ2

eρρα2+k−1dρ

= r−α2−k 2πi

Γ(1− α2 − k)
, (51)

where in the last line we have used the definition of the Γ-function in Eq. (21). By making

use of the mirror and recursive relations of the Γ-function, expressed in Eqs. (20) and
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Figure 3. The contours in the complex z-plane γ1 and γ2 fulfill the condition in

Eq. (43) and are employed to calculate U1(r) and U2(r).

(19), we can rewrite this term as∫
γ2

esrsα2+k−1ds = r−α2−k2i sin [(α2 + k)π]Γ(α2 + k) (52)

= r−α2−k2i(−1)k sin (α2π)α2(α2 + 1) · · · (α2 + k − 1)Γ(α2).

Inserting this result into Eq. (50), we obtain

lim
r→∞

U2(r) ≈ ec2rr−α22i sin (α2π)Γ(α2)

×
∞∑
k=0

(−1)kr−kfkα2(α2 + 1) · · · (α2 + k − 1). (53)

Equation (53) represents an asymptotic series for U2(r). It does not converge, but for

r →∞ it approximates U2(r) well with only a few terms. If we restrict ourselves to the

zeroth-order term, we obtain

lim
r→∞

U2(r) ≈ ec2rr−α22i sin (α2π)Γ(α2)(c2 − c1)α1−1. (54)

Since c2 < 0, Eq. (54) yields a finite result for U2(r) in the limit r → ∞, consistent

with our requirement of a finite wavefunction; applying a similar analysis with a Hankel

contour around c1 > 0 yields a diverging U(r), which then immediately rules out such

a solution.

We also need to make sure that U2(r) remains finite for r = 0. Setting r = 0

removes the exponential factor in the integral, yielding

U2(0) =

∫
γ2

(z − c1)α1−1(z − c2)α2−1dz

=

∫
γ2

(s+ c2 − c1)α1−1sα2−1ds (55)

where in the last line we have again used the substitution z− c2 = s. In examining this

integral, one can have diverging behavior for s near zero, if α2 < 0, but this singular

behavior can easily be controlled by deforming the Hankel contour to not go too close

to s = 0. The integral can also diverge if it does not decay fast enough when s → ∞.
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On the branch of the Hankel contour that lies below the negative real axis, the phase

of s is −iπ for the term raised to the α2 − 1 exponent and iπ for the term raised to the

α1 − 1 exponent according to our choice of branch cuts. But above the branch cut, the

phases are both equal to iπ. In this limit we approximate the integral as the sum of two

terms

U2(0) ≈
∫
γ2

sα1−1sα2−1ds ≈
∫ 0

∞
s2leiπ(α1−α2)ds+

∫ ∞
0

s2leiπ(α1+α2)ds

≈
∫ ∞
0

s2l
(
1− eiπ(α1−α2)

)
ds (56)

where we used the fact that α1 +α2 = 2l+ 2 and the other limit is chosen to be zero for

the approximation. The term in parentheses in the last integral is never zero, because

we assumed both α1 and α2 were not integers and their difference, which is equal to

2~/(a0
√
−2µE), cannot be an even integer. Since the angular quantum number l is a

nonnegative integer, we can easily see that the integral in Eq. (56) diverges for s→∞.

Thus the contour integral over γ2 yields a diverging U2(r) for r = 0, which is clearly

not the physical U(r) we are looking for. This divergence is arising entirely from the

way we treat the phases in the two different branch cuts, because then the divergence

of the integral as s→∞ cannot be cancelled. Of course a similar analysis rules out any

contour originating at c2 and running to −∞ either above or below the branch cut.

Next, we investigate if γ1 can yield the correct solution for U(r). This time, we

change our integration variable to s = z−c1 and, again, perform a power-series expansion

around s = 0, since in the limit r → ∞ the main contribution to the integral stems

from the area close to s = 0. This yields

U1(r) =

∫
γ1

ezr(z − c1)α1−1(z − c2)α2−1dz

= ec1r
∫
γ1

esrsα1−1(s+ c1 − c2)α2−1ds, (57)

where we shifted s → s + c1 in the second line. Next, we examine the limit as r → ∞
and after using the power series and interchanging the summation with the integral, we

find the asymptotic approximation

lim
r→∞

U(r) ≈ ec1r
N∑
k=0

fk

∫
γ1

esrsα1+k−1ds (58)

by truncating the series after N terms. The coefficients in this expression can be found

exactly and they satisfy

fk =
(c1 − c2)α2−1−k

k!
(α2 − 1)(α2 − 2) · · · (α2 − k). (59)

By using a second change of variables, given by s = eiπρ/r, we obtain

lim
r→∞

U1(r) ≈ ec1r
N∑
k=0

fkr
−(α1+k)eiπ(α1+k)

∫ ∞
0

e−ρρα1+k−1dρ

≈ ec1rr−α1eiπα1

N∑
k=0

fk(−1)kr−kΓ(α1 + k) (60)
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Figure 4. Another possible contour γ3 which fulfills the condition in Eq. (43) and can

be used to evaluate the integral for U(r).

Figure 5. Another possibility of drawing a branch cut and contour γ4 in order to

evaluate the integral for U(r).

where in the last line we have used the standard definition of the Γ-function in Eq. (17).

If we restrict ourselves to the zeroth-order term, we obtain

lim
r→∞

U1(r) ≈ ec1rr−α1eiπα1Γ(α1)(c1 − c2)α2−1 (61)

which, up to some phase factors, has a similar functional form as U2(r) in Eq. (54).

However, since c1 > 0, U1(r) diverges for r →∞. Hence, this contour γ1 cannot be used

to define a solution that is finite everywhere.

Having not yet found an acceptable solution we consider yet another contour γ3,

shown in Fig. 4, which starts at z = c1 and ends at z = c2. For r = 0 the contour

integral over γ3 does not pose any problem. Near c1, the integrand behaves like a power

law with a positive exponent. Near c2, the integrand also behaves like a power law and

is integrable and finite as long as ~/a0
√
−2µE < l + 2. However, in the limit r → ∞,

the integral over γ3 will pick up a contribution proportional to Eq. (61), with a leading

diverging term ec1r. Thus, U3(r) does not represent the solution we are looking for,

either.

Finally, we consider changing the branch cut to one that runs from c1 to c2 directly
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on the real axis through the origin, as shown in Fig. 5. As we wind around the contour

γ4, the integrand is single valued, because we wind by an angle of 2π around c1 and

around c2, so the integrand winds by an angle of 2π(α1+α2), which is an integer multiple

of 2π and hence is single-valued.

This new choice of branch cut allows us to draw the new contour γ4 circling around

both branch points c1 and c2. The asymptotic analysis for such an integral requires us

to use the stationary phase approximation. Writing the integrand as an exponential,

taking the derivative with respect to z, and setting it equal to zero in the limit r →∞
tell us where the dominant contribution to the integral comes from and allows us to

estimate its value. We find that

r +
α1 − 1

z − c1
+
α2 − 1

z − c2
= 0 (62)

is the stationary phase requirement for all r. Taking the limit r → ∞ requires us to

analyze the asymptotic behavior near z = c1 and z = c2. This has already been done

above, and we find that the point z = c1 leads to an exponentially diverging behavior

for U4(r) as r →∞.

Thus, none of the possible allowed contour integrals lead to a finite U(r). Indeed,

the differential equation in Eq. (33) does not have a solution which remains finite for

r → 0 and r →∞ for general α1 and α2. The analysis we have given here assumed that

α1 and α2 were not integers. The only way to find a finite solution is to examine that

case where they are integers. Indeed, this restriction is what leads to energy quantization

and the Schrödinger wavefunction for the hydrogen atom. We show how to do this next.

3.3. Solution with quantization

We now investigate the case when α1 and α2, as defined in Eq. (38), are real integer

numbers. We note that the condition for both of them to be integers is the same, namely

~
a0
√
−2µE

= n with n = 1, 2, 3, ... (63)

(this quantity is obviously nonnegative and if it equalled zero, then E → −∞, which

we do not allow). From this we directly obtain for the energy

En = − ~2

2µa20n
2
, (64)

which we recognize as the quantized energy levels in the hydrogen atom, with the

principal quantum number n. Schrödinger also knew these energy levels were correct

from experiment, the Bohr model, and Pauli’s work, although it is not clear he knew

about Pauli’s work when he did his work. The condition in Eq. (63) should thus lead

us to the correct solution of the radial wavefunction U(r). First, we note that in the

case where α1,2 are integers, the integrand in Eq. (42) is not multivalued anymore, but

becomes single valued because it is raising the complex monomials z − c1 and z − c2 to

integer powers, namely:

U(r) =

∫
C

ezr(z − c1)n+l(z − c2)−n+ldz. (65)
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Figure 6. Possible open contours with integer exponents α1 = n+ l and α2 = −n+ l

(see Eq. (65)), with n ≤ l.

This implies that we do not need any branch cuts in the complex plane. The

removal of the branch cuts, allows us to have different options for the contours that

satisfy the requirement in Eq. (43). We now need to distinguish two different cases:

n ≤ l, where all exponents are nonnegative integers and n > l, where one exponent is

positive and one is negative.

We consider first the case with n ≤ l. This case has no poles in the integrand,

anywhere in the complex plane. In fact, the integrand is an analytic function, so any

closed contour gives a vanishing result from Cauchy’s theorem. The only contours which

give a nonzero solution for U(r) are the open contours shown in Fig. 6. However, the

divergences we already identified with these contours as r → ∞ or r → 0 remain even

in the absence of a branch cut. In particular, for r → 0, γa and γb yield a divergence.

The integral over γc is finite for r = 0, but diverges as ec1r in the limit r → ∞ (recall

c1 > 0). We thus do not obtain any physical solution that has a finite U(r) everywhere

for n ≤ l.

We now consider the case n > l. Here, the integrand has a pole at z = c2 of (n−l)th
order. This allows yet another contour in the complex plane, which yields a non-zero

solution for U(r) in Eq. (65)—namely a closed contour encircling the pole at z = c2
(see Fig. 7). Since this is a closed contour, it automatically satisfies the condition in

Eq. (43). The integral in Eq. (65) can be evaluated by using Cauchy’s residue theorem,

which yields

U(r) =

∮
γf

ezr(z − c1)n+l(z − c2)−n+ldz

=
2πi

(n− l − 1)!

dn−l−1

dzn−l−1
{
ezr(z − c1)n+l

}∣∣∣∣
z=c2

. (66)

The expression in Eq. (66) already resembles the Rodrigues’ formula for the Laguerre

polynomials, which reads

L(α)
m (y) =

1

m!
eyy−α

dm

dym
[
e−yym+α

]
. (67)

In order to bring Eq. (66) into this standard form, we use the substitution (z − c1)r =
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Figure 7. For n > l, z = c2 represents a pole of (n− l)th order. Thus, one can choose

a closed contour enclosing z = c2 to evaluate the integral for U(r) in Eq. (65)

−2x. With this substitution, the point where the derivative in Eq. (66) needs to be

evaluated, z = c2, becomes −2x = (c2 − c1)r = −2c1r and thus x = c1r. With this

identification in hand, we obtain

U(r) =
2πi

(n− l − 1)!
(−1)n−l−1rn−l−1

dn−l−1

d(2x)n−l−1

{
ec1re−2x

(
−2x

r

)n+l}∣∣∣∣∣
x=c1r

=
2πi

(n− l − 1)!
(−1)−2l−1r−2l−1ec1r

dn−l−1

d(2x)n−l−1
{
e−2x(2x)n+l

}∣∣∣∣
x=c1r

= 2πi(−1)−2l−1(2c1)
2l+1e−x

(2x)−2l−1e2x

(n− l − 1)!

dn−l−1

d(2x)n−l−1
{
e−2x(2x)n+l

}∣∣∣∣
x=c1r

= 2πi(−1)−2l−1(2c1)
2l+1e−xL

(2l+1)
n−l−1(2x) (68)

by identifying y = 2x, m = n−l−1 and α = 2l+1. Thus, by recalling that χ(r) = rlU(r),

we finally determine the radial solution of the Schrödinger equation for the hydrogen

atom (up to a constant prefactor):

χ(x) = xle−xL
(2l+1)
n−l−1(2x) with x = c1r =

√
−2mE

~
r. (69)

We use the definition of the Laguerre-polynomials as given by the sum

Lαn(x) =
n∑
k=0

(−x)k

k!

(
n+ α

n− k

)
. (70)

Using this form, we obtain our final result for the hydrogen wavefunction

χ(x) = xle−x
n−l−1∑
k=0

(−2x)k

k!

(
n+ l

n− l − 1− k

)
, (71)

which is exactly the form Schrödinger wrote in the original paper in 1926 (except for

our interchanging of the integers n and l according to modern nomenclature). When

Schrödinger completed this work, the concept of normalization of the wavefunction and

of the meaning of the wavefunction as a probability amplitude were not yet known. So

he did not normalize his final result (although he did discuss normalization as being one

way to determine the overall scale of the wavefunction).
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3.4. Continuum solution for hydrogen

Schrödinger did not spend much time discussing the continuum solution and provided

no final formulas. Instead, he relied on the Schlesinger solutions and simply stated that

there are no issues involved with using the formulas from that book to determine the

continuum solutions. Since the steps needed to carry out this calculation are quite

similar to what we have already done with the asymptotic analysis of the contour

integrals for the bound states, we will be able to go through the continuum analysis much

more quickly and we will complete the study by presenting the continuum wavefunction

up to an overall constant.

The first thing to note is that the constants c1 and c2 are pure imaginary when

E > 0 (for concreteness, we pick c1 = −ic and c2 = ic, with c = |c1|). Furthermore, the

exponents α1 and α2 are always complex (and are complex conjugates of each other).

When determining the possible contours that produce a finite-valued wavefunction, we

find as r →∞, the wavefunction is always finite, because it will behave like ec1r or ec2r,

which are both bounded since the c1,2 coefficients are purely imaginary (a more complete

analysis is given below). Because the exponents in the integrand become pure imaginary

for l = 0, we cannot have any integral that has c1 or c2 as an endpoint anymore, as the

condition in Eq. (43) no longer holds at those points. This means that the only possible

contours that work for all l are closed contours or Hankel-like contours, depending on

how the branch cuts are chosen. Then the only condition that remains is to guarantee

that the wavefunction is finite for r → 0; note that Schrödinger did not discuss this

issue in his original paper. Here the analysis is also similar to the bound-state problem.

If the branch cuts run to infinity, none of the contours that run to infinity yield finite

wavefunctions because they all diverge as r → 0. We find the only acceptable contour

arises when we draw the branch cut from c1 to c2 (here along the imaginary axis) and

we pick the contour γ5 to run in the counter-clockwise direction around both c1 and c2
as shown in Fig. 8. Note that the exponents are never integers here, so the only choice

that will work must be a closed contour; Hankel contours suffer from the same issues

we saw with the bound states and have the wavefunction diverge as r → 0.

One can immediately verify that when we choose the contour around the branch

cut, limr→0 U5(r) satisfies

lim
r→0

U5(r) =

∮
γ5

dz (z − c1)α1−1(z − c2)α2−1. (72)

By deforming the contour tight around the branch cut (dashed contour), one

immediately sees that the two circular integrals around c1 and c2 vanish, because they

depend on the infinitesimal radius with a positive integer power εl+1. The remainder of

the integral is given by a path along the vertical lines that run up from c1 to c2 on one

side of the branch cut and then back down on the other. The phases for the branch cut

are π/2 for (z + ic)α1−1 and −π/2 for (z − ic)α2−1 on the right side of the branch cut

and −3π/2 for (z + ic)α1−1 and 3π/2 for (z − ic)α2−1 on the left side of the branch cut.
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Figure 8. Contour γ5 in the complex plane to obtain the continuum solutions with

E > 0. We denote c1 = −ic and c2 = ic with c = |c1|.

This gives

lim
r→0

U5(r) = ei
π
2
(α1−α2)(2c)2l+1

∫ 1

0

dx xα1−1(1− x)α2−1

+ e−i
3π
2
(α1−α2)(2c)2l+1

∫ 1

0

dx xα2−1(1− x)α1−1

= ei
π
2
(α1−α2)(2c)2l+1B(α1, α2)

(
1 + e−2iπ(α1−α2)

)
. (73)

Here, B(x, y) is the beta function. Using the values for α1 and α2, we find B(α1, α2) =

|Γ(l+1+ i~/(a0
√

2µE))|2/Γ(2l+2), which is finite for all l. The key for this calculation

is that the wavefunction is well-defined and finite everywhere and thereby yields the

continuum solution. A more careful analysis shows that the continuum wavefunction

is also real. The treatise by Bethe and Salpeter [7] discusses this solution to a limited

extent. They do not provide a detailed analysis, but do present the final results.

Schrödinger did discuss the asymptotic behavior as r →∞, finding these functions

behave like exp(±icr)r−l−1, which implies that the functions χ(r) = rlU5(r) all behave

asymptotically as exp(±icr)/r. This is easy to show by two changes of variables. The

wavefunction is given by

U5(r) =

∮
γ5

dz erz(z + ic)α1−1(z − ic)α2−1. (74)

The asymptotic analysis requires just two steps. We illustrate it for the contributions

that come from the integral around c2: first, shift z → z + ic, which gives us

U5(r) = eicr
∮
dz erz(z + 2ic)α1−1zα2−1; (75)
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second, rescale z = w/r to yield

U5(r) = eicr
1

rα2

∮
dw ew

(w
r

+ 2ic
)α1−1

wα2−1. (76)

The asymptotic behavior with respect to r has now emerged from the integral because

Re(α2) = l + 1. The remaining integral is approximately constant, and is proportional

to Γ(α2) in the limit as r → ∞. A similar analysis can be done for the contributions

coming from the region around c1. One can easily see now how to verify Schrödinger’s

claims about the asymptotic behavior.

We have now determined the continuum wavefunction, but it is expressed as a

contour integral; this is because contour integrals around two branch points connected

by a branch cut usually do not have simple alternative analytic expressions. This contour

integral can be related to the confluent hypergeometric function of a complex argument

or one can determine power series expansions that approximate the wavefunction using

standard methods. We do not go into further details of this, as they were not discussed

by Schrödinger and the results are well known [7].

One final point remains, we could, in principle, have defined the solution via an

integral that runs from c1 to c2 only (rather than surrounding it as γ5 does) for the

cases where l 6= 0. Because such a function has the same asymptotic behavior as r → 0

and r → ∞, it must be proportional to the solution we did employ with the contour

enclosing both branch points, so we do not discuss this issue further here.

4. Conclusions

In this work, we describe how one can employ the Laplace method for solving differential

equations to determine the quantum-mechanical wavefunctions of hydrogen. The

methodology requires an intermediate knowledge of complex analysis that includes how

to define branch cuts, what the definitions of the logarithm and Γ function are, and how

to determine the asymptotic behavior of contour integrals via the techniques of steepest

descents and stationary phase. Much of this material can be taught within the quantum

classroom if one wants to move away from the standard Frobenius method for solving

differential equations. We feel that this is worthwhile, even if it may take substantial

time, because there are many fields of physics that require advanced knowledge of

complex analysis and this is a good opportunity to incorporate it within the quantum-

mechanics curriculum. Most likely this would be done at the graduate level. In addition,

we showed in detail just how Schrödinger solved the original hydrogen problem, including

all of the technical details omitted in the original work. It is important to make sure

that this critical scientific achievement does not become a lost art. We conclude with a

comment that the application of the Laplace method need not end with just the solution

of hydrogen. It can be also applied to essentially all of the analytically solvable problems

in quantum mechanics.
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