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The Eisenbud-Green-Harris conjecture for
defect two quadratic ideals

SEMA GUNTURKUN AND MELVIN HOCHSTER

The Eisenbud-Green-Harris (EGH) conjecture states that a homo-
geneous ideal in a polynomial ring Klx1, ..., x,] over a field K
that contains a regular sequence fi, ..., f, with degrees a;, i =
1, ..., n has the same Hilbert function as a lex-plus-powers ideal
containing the powers z;*, ¢ = 1, ..., n. In this paper, we discuss
a case of the EGH conjecture for homogeneous ideals generated by
n + 2 quadrics containing a regular sequence fi, ..., f, and give

a complete proof for EGH when n =5 and a; = -+ = a5 = 2.

1. Introduction

Let R = K|x1, ..., x,] be the polynomial ring in n variables over a field K
with the homogeneous lexicographic order in which z; > --- > z,, and with
the standard grading R = € R;. We denote the Hilbert function of a Z-
i>0

graded R-module M by Hilby (i) := dimg M;, where M; is the homogeneous
component of M in degree i. When I is a homogeneous ideal of R and M
is R, or I, or R/I, the Hilbert function has value 0 when i < 0. When the
Hilbert function of M is 0 in negative degree, we may discuss the Hilbert
function of M by giving the sequence of its values, and we refer to this
sequence of integers as the O-sequence of M.

In 1927, Macaulay [13] showed that the Hilbert function of any ho-
mogeneous ideal of R is attained by a lexicographic ideal in R. Later, in
Kruskal-Katona’s theorem [11, 12], it is shown that the polynomial ring
R in Macaulay’s result can be replaced with the quotient R/(x?, ..., 22).
After this result, Clement and Lindstrom, in [5], generalized the result to
R/(x{", ..., a%) ifa; < -+ <a, < oo

In [7] Eisenbud, Green and Harris conjectured a generalization of the
Clement-Lindstrom result. Let a = (a1, ..., ap) € N*, where2 < ay < --- <
.-
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Conjecture 1.1 (Eisenbud-Green-Harris (EGH, ) Conjecture [7]).

If I is a homogeneous ideal in R = Klx1, ..., x,] containing a reqular se-
quence f1, fo, ..., fn with degrees deg f; = a;, then there is a monomial ideal
L= (z7", ..., z%) + J, where J is a lexicographic ideal in R, such that R/ L

and R/I have the same Hilbert function.

Although there has been some progress on the conjecture, it remains
open. The conjecture is shown to be true for n = 2 by Richert in [14]. Fran-
cisco [8] shows part of the conjecture in the case of an almost complete
intersection: see Theorem 2.3. Caviglia and Maclagan in [2] prove the re-

i—1
sult if a; > Y (a; — 1) for 2 <i < n. The rapid growth required for the
i=1
degrees does? not yield much insight into cases like the one in which the
regular sequence consists of quadratic forms. When n = 3, Cooper in [6]
proves the EGH conjecture for the cases where (aq, a9, a3) = (2,a2,as3) and
(a1,a2,a3) = (3,a2,a3) with as < a3z < as + 1.

One of the most intriguing cases is when ¢y = - -+ = a,, = 2 for any n > 2,
which is the case for which Eisenbud, Green and Harris originally stated their
conjecture. It is known that the conjecture holds for homogeneous ideals
minimally generated by generic quadrics: the case where char K = 0 was
proved by Herzog and Popescu [10] and the case of arbitrary characteristic
was proved by Gasharov [9] around the same time. There have been several
other results on the EGH conjecture. More recently, the case when every f;,
i1 =1, ..., n,in the regular sequence is a product of linear forms is settled by
Abedelfatah in [1], and results on the EGH conjecture using linkage theory
are given by Chong [4].

In this paper we focus on the case when the degrees of the elements
of the regular sequence are a; = --- = a, = 2. In [14], Richert claimed that
the conjecture for quadratic regular sequences is true for 2 < n < 5, but this
work has not been published, and other researchers have been unable to
verify this for n =5 thus far. Chen, in [3], has given a proof for the case
where n <4 when a1 =---=a, = 2.

In §2 we recall some definitions and results from the papers of Fran-
cisco [8], Caviglia-Maclagan [2] and Chen [3]. In §3 we study homogeneous
ideals I generated by n + 2 quadratic forms in n variables containing a
regular sequence of length n, and Theorem 3.17 shows that there is a mono-
mial ideal £ = (l’%, e x%) + J, where J is a lexicographic ideal in R, such
that R/I and R/ L have the same Hilbert function in degree 2 and 3 (i.e.,
EGH s, ... 2),n(2) holds: see Definition 2.5). In §4 we give a proof to the claim
of Richert for the quadratic regular sequence case when n = 5.
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2. Background and preliminaries

In this section we recall some definitions and state some known results that
are used throughout the paper.

Definition 2.1. Let u=2z{"---2% and v = xlil -+ 2% be monomials in R
of the same degree. We say that u is greater than v with respect to the
lezicographic (or lex) order if there exists an ¢ such that a; > b; and a; = b;
for all j < i.

A monomial ideal J C R is called a lexicographic ideal (or lex ideal) if,
for all degrees d, the d-th degree component of J, denoted by Jy, is spanned
over the base field K by an initial segment of the degree d monomials in the

lexicographic order.

Definition 2.2. Given 2 <a; <--- < ay,, a lez-plus-powers ideal (LPP
ideal) £ is a monomial ideal in R that can be written as £ = (z{*, ..., %) +
J where J is a lex ideal in R.

This definition agrees with the one in [2]. Some authors require that the
x}" be minimal generators of £, which we do not. However, since we consider
only nondegenerate homogeneous ideals in this paper, i.e., ideals contained
in (21, ..., T,)?, in the case where a; = --- = a, = 2 it is automatic that
the acf are minimal generators of the ideal under consideration.

In [8] Francisco showed the following for almost complete intersections.

Theorem 2.3 (Francisco [8]). Let integers 2 <a; <az <---<a, and
d > ay be given. Let the ideal I have minimal generators f1, ..., fn, g where
fi, ..., fn form a regular sequence with deg f; = a; and g has degree d.
Let £ = (z{*, ..., x%,m) be the lez-plus-powers ideal where m is the great-
est monomial in lex order in degree d that is not in (z{*, ..., x%). Then

Hilbg/;(d + 1) < Hilbg £(d +1).

Note that, necessarily, d < """ ,(a; — 1), since (fi, ..., fn) contains all
forms of degree larger than that. If ¢y = --- = a, = 2, then d < n.
The following corollary is an immediate consequence of Theorem 2.3

above. If g € R is a nonzero form of degree i we write gR; for the vector
space {gh : h € R;} C Ri;.

Corollary 2.4. Let I = (f1, ..., fn,g) be an almost complete intersection
as in Theorem 2.8 above such that a1 = --- = a,, = 2. Then

dim[( ((fl, ey fn)d+1 M gRl) S d
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Proof. We can write

dimK Id+1 = dimK(fl, ey fn)d+1 =+ dlmK gR1
- dlmK ((f17 DRI fn)d—‘,—l N gRl))

where dimg g1 = n. Then by Theorem 2.3, we have

dimg Igpq > dimg (2, ..., 2}, 21+ Ta)d
=dimg (23, ..., 22)g1+n—d
Since Hilbg, (s, ... 5,1 (i) = Hilbg/2  42)(i) for all i > 0, we can conclude
that
dlmK ((f17 DRI fn)d+1ng1) Sd 0
The next statement is a weaker version of the EGHg,, conjecture. It
focuses on the Hilbert function of the given homogeneous ideal only at the
two consecutive degrees d and d + 1 for some non-negative integer d.

Definition 2.5 (EGHan(d)). Following Caviglia-Maclagan in their pa-
per [2], we say that “EGHa ,(d) holds” if for any homogeneous ideal I €
K|z, ..., z,] containing a regular sequence of degrees a = (ai, ..., an),
where 2 < ay < --- < ay, there exists a lex-plus-powers ideal £ containing
{zf" : 1 <i < n} such that

dimK Id = diIIlK ,Cd and dimK Id+1 = dimK [’d—H .

Lemma 2.6. The condition EGHg . 4),(d) on a polynomial ring

Kz, ..., ] is equivalent to the statement that for the ideal I generated
by n+ 0 K-linearly independent forms of degree d containing a regular se-
quence, one has that dimg Iy, 1 > dimg Lqy1, where £ = (z¢, ..., 24) + J'
and J' is minimally generated by the greatest in lex order § forms of degree
d not already in (24, ..., z2).

Proof. If there is an LPP ideal (z{, ..., ) +J, where J is a lex ideal,
with the same Hilbert function as I in degrees d and d+ 1, it is clear
that J; must be spanned over K by the specified generators of J', so that
(x4, ..., 2d) +J C (2, ..., 2%) + J, which implies the specified inequal-
ity on the Hilbert functions. Moreover, when that inequality holds we may
increase £ := (¢, ..., ) + J’ to an LPP ideal with the same Hilbert func-
tion as I in degrees d and d + 1: if A = Hilb;(d + 1) — Hilbz(d + 1), we may
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simply include the greatest (in lex order) A forms of degree d + 1 not already
in L. O

Remark 2.7. We shall eventually be focused on EGH, ,,(d) in the case
where ay =---=a, =d=2, simply referred as EGHgq . 9),(2) or
EGHaz,(2). We shall routinely make use of this lemma in this case of
quadratic regular sequence and d = 2.

Lemma 2.8 (Caviglia-Maclagan [2]). Fiza= (a1, ..., a,) € N” where
2<a;<ay<---<ay,andsets= > (a;—1). Then for any 0 < d < s—1,
i=1

EGHa (d) holds if and only if EGHg y, (s-1-d) holds.

Furthermore, the EGHg y, conjecture holds if and only if EGHgan(d) holds
for all degrees d > 0.

From now on, we always assume a =2 = (2, ..., 2) for n > 2, unless it
is stated otherwise.

Remark 2.9. For any n > 2, EGHs,(0) holds trivially. In [3, Proposi-
tion 2.1}, Chen showed that EGHg ,,(1) is true for any n > 2.

Chen proved the following.
Theorem 2.10 (Chen [3]). The EGHg,, conjecture holds when 2 < n < 4.

Chen’s proof of this uses Lemma 2.8 above, and the observation that,
when n = 4, to demonstrate that the EGHgz 4 conjecture is true, it suffices
to show that EGH2 4(0) and EGHg2 4(1) are true.

3. EGH,,,(2) for defect two ideals

In this section, we focus on the homogeneous ideals in K|z1, ..., x,] forn >
5 that are generated by n + 2 quadratic forms containing a regular sequence.
In particular, we study their Hilbert functions in degree 3.

Definition 3.1. If I is a homogeneous ideal minimally generated by n + §
forms that contain a regular sequence of length n, then I is said to be a
defect § ideal.

Clearly, when § = 0 then [ is generated by a regular sequence, it is a
complete intersection, and we understand the Hilbert function completely.
If 6§ =1, then [ is an almost complete intersection.
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Definition 3.2. We call a homogeneous ideal a quadratic ideal if it is gen-
erated by quadratic forms.

Let I =(f1, ..., fn,g9,h) be a homogeneous ideal minimally generated
by n + 2 quadrics where fi, ..., f, form a regular sequence. We call such an
ideal a defect two ideal generated by quadrics or simply a defect two quadratic
ideal. More generally, if a quadratic ideal is a defect § ideal, then we call it
defect 6 quadratic ideal.

Example 3.3. The lex-plus-powers ideal £ = (23, ..., 22,2122, 7123) in R
is also a defect two quadratic ideal.

Further, for any homogeneous defect two quadratic ideal I, we have the
equality

dimg Is =n+ 2 = dimg Lo .

Main Question 3.4 (EGHz ,(2) for defect two quadratic ideals). For
any n > 5, is it true that

dimg I3 > n? +2n — 5 = dimg L3?

An affirmative answer for this question is proved completely in Theo-
rem 3.17 below.

Notation 3.5. Throughout the rest of the paper we write f for the ideal
(fi, .-+, fn)Rwhen fi, ..., f, is a regular sequence of quadratic forms, and
in the defect § quadratic ideal case we write g for the additional generators
gi, - .., gs of the quadratic ideal. Here, f1, ..., fn, 91, ..., gs are assumed
to be linearly independent over K. Moreover, henceforth, we write J for the
ideal f+ (g1, ..., gs—1). However, when § =1 or 2 we may write g, h for
g1, g2, so that whenever § = 2 we henceforth write J for the ideal f + (g1) =
f+ (g9). We denote the graded Gorenstein Artin K-algebra R/f by A.

We know that, if a1 = --- = a,, = deg g = 2, Theorem 2.3 shows that
dimg J3 2n2+n—2
and then Corollary 2.4 gives dimg (fg N gRl) <2
Remark 3.6. In [3, Proposition 3.7] Chen gave a positive answer to the

Question 3.4 for defect two quadratic ideals I =f+ (g,h) if dimg (fg N
gRl) = 2. We shall make repeated use of this fact in the sequel.
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In this section we show EGHj ,,(2) for a defect two quadratic ideal I =
f+ (g, h) under the condition that dimg (f3sNg'Ry) <1 for all ¢ € Kg+
Kh — {0}: this covers all the cases for which Chen’s result in Proposition 3.6
is not applicable.

Lemma 3.7. As in Notation 3.5, J is the defect 1 quadratic ideal f 4+ gR.
Then:

dimg I3 = n* + 2n — dimg (f5 N gR1) — dimg (J3 N ARy).

Consequently, for the cases that are not covered by the Proposition 3.6
we have:

(i) If dimg (fs N gR1) =1 then dimg Is=n* 4 2n — 1 — dimg (J3 N hRy),
and EGHz ,(2) holds for a defect two quadratic ideal I if and only if
dimg (J3NhRy) < 4.

(ii) If dimg (fsNgR1) =0 then dimg I3 =n? +2n — dimg (J3 N hRy),
and EGHg ,,(2) holds for I if and only if dimg (Jg N th) <5.

Proof. We have:

dimg I3 = dimg Js + dimg (hRy) — dimg (J3 N hR;)
= (dimK fs + dimg (gRy) — dimg (fg N gRl))
+n —dimg (Jg N th)
=n? + 2n — dimg (f3 N gR1) — dimg (J3 N hRy),

and then (i) and (ii) are immediate. O

Remark 3.8. Let n=>5, so that f=(f1, ..., f5). For a defect two quadratic
ideal I = (f,g,h) C K[x1, ..., x5, if dimg (fg N gRl) =0 then clearly
dimpg ((f, g)3N th) <dimg(hR;y) <5, therefore EGHg 5(2) holds for such
an ideal I. However, we must give an argument to cover all possible cases,
that is, when dimg (fs N gR1) = 1, to be able to confirm EGHz 5(2) for every
defect two quadratic ideal. In the last section, we discuss the EGH conjecture
forn=>5and a1 =--- = a5 = 2 in detail.

Next, we proceed with two useful lemmas.

Lemma 3.9. Let A be the graded Gorenstein Artin K-algebra R/f with
dimg A1 =n. Let g, h be two quadratic forms such that gA; = hAy. Then
Anny, g = Anny, h.
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Moreover, Anny, (g) = Anng, (h) if i #n —2.

Proof. Suppose that the linear annihilator space of g, Anny, g, has dimen-
sion a and gA; = hA;. Thus gA; has dimension n — a and clearly hA; and
Anny, h have dimensions n — a and a, respectively.

Notice that gA(—2) = A/ Anna(g), hence it is Gorenstein and it has a
symmetric O-sequence

(O,O,l,n—a,e4,e5, ceey 65,64,71-&,1),

where e; denotes the dimension of [gA]; and e¢; = e,,_;12 for 2 < i < n. Then
the Hilbert function of A/gA is

(1,n, <2> 1, (3) Cnta, (4) e (3) e, (2> = en,a,0).

Since Anna(g) = Homg (A/gA, A) = (A/gA)Y, the Hilbert function of
Anny(g) is

0.0 (5) = en (7)o () -t (5) - 1n

Recall that gA; = hAj, gA; = hA; for alli > 2, so (g, h) A has the Hilbert

function

(0,0,2,n —a,eq, ..., e4,n —a,l).

the same as for gA

Then the O-sequence of A/(g,h) becomes

o (5) =2 (5) -nra (7)o (5) ~enn(5) - enc0

and it follows that Anna(g, h) has the Hilbert function

0.0 (5) = er (3) e () -t (5) ~2n.

We know that Anna(g,h) =Anny(g) N Anna(h), and in degree 1, Anny(g, h)
has dimension a, so Anny(g,h) = Anny, (g) = Anng, (h). Further, Anny(g)
and Anny(h) are the same in every degrees except in degree n — 2. O
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Lemma 3.10. Let g, h be two quadratic forms in a graded Gorenstein Artin
K-algebra A such that gA; = hA; and g, h have the same annihilator space
V in A; for some i > 1. Then there exists ¢ € Kg+ Kh — {0} such that

dimg Anng,(¢') > dimg V + 1.
Proof. Consider the multiplication maps by g and h,
gzﬁg : AZ/V — gAi and ¢h : AZ/V — hAZ

whose images gA;, hA; are subspaces in A;42 and gA; = hA; by assumption.
Then there is a automorphism

TAZ/V—>A1/V

such that g¢ = hT'(¢) for any ¢ € A;/V. However, T has at least one nonzero
eigenvector u with T'(u) = cu for some ¢ € K. Say ¢, be a form in degree i
represented by this eigenvector u in A; and not in the annihilator space V/,
thus gf, = hcl,. Then there is a quadratic form ¢’ := g —ch € Kg+ Kh —
{0} such that ¢’ is annihilated by the space V and also by £, € A; \ V. Hence
dimg Anny, (¢') > dimg V + 1. O

From now on, I = (fi, ..., fn,9,h) =§+ (g,h) is a homogeneous ideal
where dimg (f3 N g'R1) # 2 for a quadratic form g’ € Kg + Kh — {0}, which
means that dimg ¢’A; # n — 2. Therefore dimg g’ A; is either n or n — 1.

Proposition 3.11. For the graded Gorenstein Artin K-algebra A, if gA1 =
hAy, with dimg gA1 =n — 1 = dimg hA;, that is

dimg (f3 NgR1) = dimg (fs N hRy) =1,

then EGHz,,(2) holds for the homogeneous defect two quadratic ideal I =
f+(g,h).

Proof. Since dimg Anny, (g) = dimg Anng, (h) = 1 there is some ¢’ € Kg +
Kh — {0} with dimg Anng,(¢') =2 by Lemma 3.10. In consequence,
dimg (f3 N g’Rl) = 2, and so we are done by Proposition 3.6. g

Proposition 3.12. For the graded Gorenstein Artin K-algebra A, if
dimg gA; = dimg hA; = n, then there exists a quadratic form ¢ in Kg +
Kh with a nonzero linear annihilator in A.
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Proof. By assumption dimg A1 = dimg gA; = dimg hA; = n, and so we
may consider again the multiplication maps ¢4 : A1 — gA; and ¢y : A1 —
hAi. Then we obtain a automorphism 7T : A; — A; and there exists an
nonzero linear form ¢ € A; such that T'(¢) = ¢/ for some c € K, that is
gl = chl. Consider ¢’ = g — ch € Kg+ Kh. Clearly, £ € Anny, (¢'). O

Next we assume that there is a linear annihilator L € A; of g where Lh #
0 over the Gorenstein ring A = R/f. This case may come up either when
dimg gA; = dimg hA; =n — 1 and the linear annihilator spaces Anny, (g)
and Anng, (h) are distinct, or when dimg gA4; = n — 1 and dimg hA; = n.

We shall make repeated use of the following result, which is Lemma 3.3
of Chen’s paper [3].

Lemma 3.13 (Chen [3]). If fi, ..., fu is a reqular sequence of 2-forms
in R and we have a relation ui f1 +uafo + -+ + unfr = 0 for some t-forms
ULy «nvy Up, then ur, ..., up € (f1, ..., fu)t. More precisely, we have that
t > 2 and there exists a skew-symmetric n X n matriz B of (t — 2)-forms

such that (upug -+ up) = (f1 fo -+ fu)B.

Proposition 3.14. Let I =f+g be a defect §, where 2 <§<n-—1,
quadratic ideal of R as in Notation 3.5. If there is a linear form L in
Anna(g1, ..., gs—1) such that Lgs # 0 in A, then

dimg ((f1, -5 frs 91, -5 95-1)3N gsR1) <3

Chen [3] used an argument involving the Koszul relations on (z1, ..., x,)
for r < n while introducing another proof for Theorem 2.3. In the proof of
this proposition we use a very similar argument.

Proof. As in Notation 3.5, let J =f+ (g1, ..., gs—1), and denote the row
vector of the regular sequence f1, ..., f, by f and the row vector of quadratic

forms g1, ..., gs—1 by &.

Suppose dimg (J3 NgsR1) > 4, and without loss of generality we may
assume that

r1gs =€ -0 +f-pi
zogs =€ - lo+f -1
x39s = - {3 +f-p3

z4gs = €Ly +f - pi
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where E_; and p; are column vectors of linear forms of lengths 6 — 1 and n,
respectively.
We assume that there is a linear form L such that Lg; = 0 for each
1,..., 0 —1but Lgs # 0in A. Then we get ann x (6 — 1) matrix (¢; ;) =
a G - (j’g_l) of linear forms such that

Lg=f- (gij)-

We observe that each x;Lgs is in f, and write z;Lgs = £ Q} where QZ is
a column of quadratic forms for i = 1,2, 3, 4. Therefore:

(1) Lgs (z1 w2 a3 x4) = f (@1 Q2 @3 Q).
Let
T2 T3 T4 0 0 0
. —X1 0 0 I3 Ty 0
Ml o 0 —I1 0 —X9 0 Ty
0 0 —I1 0 —T2 —I3
Note that (.1‘1 T - x4) - My = 0. Multiplying the equation (1) by M;

from right gives that f. (Ql C,jg @3 Q4) - My = 0, and so all entries are 0 in

—

f(22Q1 —21Q2 23Q1 — 21Q3 24Q1 — 21Qs  23Q2 — 12Q3 Qs — 22Qs  14Q3 — 13Q1)

By Lemma 3.13, there are alternating n x n matrices B2, B1s, B14, Bos,
Bsy, B3y of linear forms such that

(2) <$2Q1 - 371@2 374@3 — 963@4) = <B12f'T Bg4FT)

a column vector
of cubic forms

T3 T4 0 0

—x2 0 T4 0
Similarly, consider the matrix My = 0 —zz -~y 0 such

1 0 0 T4

0 T 0 —XI3

0 0 T T2

that M; - My = 0 and multiply equation (2) by My from right to obtain:

((1‘3312 — 1‘2313 + $1323) f_:T s ($4B23 — 1’3B24 + 33'2334)?71) = 0.

n X n matrix of
quadratic forms
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Then again by Lemma 3.13, there are alternating n x n matrices
123 123 124 124 234 234
Ci=, ., G, G, o, O, o, O L, O

of scalars such that

—

fojs
13B12 — 19B13 + 11 B3 = :
f-'0123
n
Fop2s
24B12 — x9B1a + x1Boy = :
f0124
3) Foin
1
24B13 — x3B14 +x1B34 = :
§0134
n
Fop
24Bog — x3Boy + x9 B34 = :
Foz
T4
Repeating the previous steps with Mz = _;3 , so that Ms - M3 = 0, we
2
get
0 = (B12 Big Bia Ba3z Bay Bsy)MoMs3
fcllzzz f-Cl124 §01134 fcl234
= : f : s M
fclzzz §C124 §0134 fC234
n n n n
and then for all : = 1,2, ..., n we obtain

f(24C%% — 33012 + 2,03 — 1,07 = 0.

Then, finally, 24C}? — 23C}?4 + 250131 — 2,CP* = 0foralli = 1,2, ..., n.
Hence,

CIB == =CB =0 forall i=1,2,...,n.
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Thus, in (3) we get x3B12 — x2B13 + x1B3 = 0. This shows that x3
d1V1des every entry in a:QBlg — x1Boa3. Therefore we may rewrite Big =
:chlg + D13 and Bog = :EgBQ:), + Ds3, where B13 and Bsz are alternating
matrices of scalars, Di3 and D3 are alternating matrices of linear forms
that do not contain x3, and x9D13 — x1 D23 = 0. We obtain the following

1 __ ——
Bis = ;3(552313 — x1B23) = 29B13 — 71 Ba3

Returning to equation (2), we obtain

22Q1 — 11Q2 = Biof T = (22B13 — 21 B3 .
Consequently,
21(Q2 — Basf") = 25(Q1 — Buaf")
which tells us that x; divides every entry of Q1 — El/ng It follows that

F(Ql — Z?Tgf'T) = F@l as 23\1/3 is alternating and FBEFT =0
=ux1Lgs by equation (1).

This shows that Lgs = fi (Ql — E;FT> € (f1, .-, fn)3, which contradicts
our assumption L ¢ Anny(gs). O

Corollary 3.15. Let I =f+ g C R be a defect § quadratic ideal with 2 <
0 <n—1. Suppose that

(1) Anng, (g1, -- -, gs—1) \ Anng, (g5) # 0.

Then
dimK I3 > dimK £3

where £ = (23, ..., 22) + (172, 123, ..., T12541) 48 the defect § lex-plus-
powers ideal of R. That is, EGHa ,(2) holds for any defect 6 quadratic ideal

with property (1).
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Proof. Notice that dimg £3 = n? 4+ nd — @. We use induction on §. Let

J=F+ (g1, ..., gs—1) be the defect 6 — 1 quadratic ideal.

dimg Is = dimg J3 +n — dimg (J3 ﬂggRl)
-1
> <n2+((5—1)n—<5)(5+2)> +n—3

2
:n2—|—n5—6(5;—3)—|—5—2
st D0

O

We notice that a special case of Corollary 3.15 when § = 2 shows that
the inequality is strict.

Corollary 3.16. Let I =f+ (g,h) be a defect two ideal generated by
quadrics in R. If Anng, (g) = Span{L} for some L € Ry and L does not
annihilate h in A = R/f, then

dimg Is >n?+2n—4 > dimK(a:%, ey x%, T1T2, T1T3)3 = n?+2n—5

Proof. The result follows from Proposition 3.14 as

dimg I3 = n?+2n — dimg (f3s NgRy) —dimg (J3 N hRy)
=dimg Annga, (g9)=1 §,3
which is > n? + 2n — 4. O
Finally, we give an affirmative answer to the Main Question 3.4.

Theorem 3.17. Let I =+ (9,h) C R= Klz1, ..., Ty forn > 5 be a de-
fect two ideal quadratic ideal. Then

dimg I3 > n? + 2n — 5.

More precisely, EGHz ,(2) holds for homogeneous defect two quadratic
ideals in R for any n > 5.

Proof. If the given defect two ideal satisfies Proposition 3.6 , then, by Chen’s
result, the theorem is proved.

Assume that dimg (fsNg'R1) #2 for any ¢ € Kg+ Kh\{0}. If
dim g (fg N gRl) = dimg (fg N th) = 0, by Proposition 3.12, we can always
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find another quadratic form ¢’ € Kg+ Kh\ {0} so that ¢’ has a linear an-
nihilator in A. Then we can apply Corollary 3.16. If dimg (fg N gRl) =
dim g (f3 N th) =1 and the same linear form annihilates both ¢ and h
in A, by Proposition 3.11. we have a situation that contradicts our assump-
tion. (]

Corollary 3.18. EGHgy,(2) holds for every defect two ideal containing a
reqular sequence of quadratic forms.

Proof. This result follows from Lemma 2.6 and Theorem 3.17. O

4. The EGH conjecture when n =5 and a; = -+ = a5 = 2

In this section R = K[z1,..., x5 and I = (f1, ..., f5) + (91, ---, g5) =+
g is a homogeneous defect § ideal in R, where f1, ..., f5 is a regular se-
quence of quadrics and degg; > 2 for j =1, ..., . Throughout, we shall
write A := R/f, which is a graded Gorenstein local Artin ring. We will show
the existence of a lex-plus-powers ideal £ C R containing 2 fori =1, ..., 5
with the same Hilbert function as I by proving the following main theorem.

Theorem 4.1. The EGH conjecture holds for all homogeneous ideals con-
taining a reqular sequence of quadrics in K|xy, ..., x5).

Lemma 2.8 of Caviglia-Maclagan tells us that EGHgp 5(d) holds if and
only if EGHz5(5 — d — 1) holds. Thus it will be enough to show EGHz 5(d)
when d = 0, 1,2. By Remark 2.9 we know that EGHg 5(d) is true when d =
0,1, therefore EGHz 5(3) and EGHz 5(4) both hold as well.

Our goal in this section is to prove EGHg5(2) for any homogeneous
ideal containing a regular sequence of quadrics: this will complete the proof
of EGHg 5. To achieve this, it suffices to understand EGHg 5(2) for quadratic
ideals with arbitrary defect ¢ (but, of course, § < 10, since dimg Ry = 15),
by Lemma 2.6.

Remark 4.2. As a result of Corollary 3.18, we see that EGHgz ,, holds for
any defect 6 = 2 quadratic ideal in K{[zq, ..., x,]| for n = 5.

To accomplish our goal we will prove EGHg 5(2) for defect § > 3 quadratic
ideals. In the next subsection, we prove that if one knows the case where
6 = 3, one obtains all the cases for d > 4. In the final subsection we finish
the proof by establishing EGHg 5(2) for § = 3.
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Quadratic ideals with defect § > 4

Lemma 4.3. If EGHz25(2) holds for all defect three quadratic ideals, then
it holds for all quadratic ideals with defect § > 4.

Proof. Let I = (f1, ..., f5,91,92,93,94) = f+ g C R be a defect 4 homoge-
neous ideal generated by quadrics, where f1, ..., f5 form a regular sequence.
By assumption the defect three quadratic ideal J = f+ (g1, g2, ¢93) C I sat-
isfies EGHg 5(2), that is, dimg J3 > 31.

Let £ = (22, ..., 22, 2122, 7173, 7174, 7175) be the LPP ideal with
dimg Lo = dimg Io = 9. Then we get dimg I3 > dimg J3 > 31 = dimg L3,
as we need for the case of defect § = 4.

Now assume 5 < § < 10. Let °T denote an arbitrary defect § quadratic
ideal, and let °C denote the lex-plus-power ideal with defect § > 5. More
precisely, oL := (22, ..., 23) + (ma, ..., ms) where m; are the next greatest
quadratic square-free monomials with respect to lexicographic order. We
need to show that Hilbg s;(3) < Hilbg s (3).

We assume that Hilbg/s;(3) > Hilbg/s(3) + 1, and we shall obtain a
contradiction.

Using duality for Gorenstein rings, we know that for 0 < d < 5 we have
that

Hilb s (d) = Hilbp;(d) — Hilbpg juor) (5 — d).

Then, for d = 3, using the assumption we get

Hilb (g1 (2) = Hilbg)(3) — Hilbg)s;(3) < 10 — (Hilbg sz (3) + 1)

7 if § =5,
<9 —Hilbgs(3) = { 8 if §=6,7,
9 if § = 8,9, 10.

We next show that dimg (f: °T); = 0. If there is a nonzero linear form
¢ € §: 9T then dimg Anny, A > § > 5, so we get that dimg Az/fA; > 5. On
the other hand, we see that Az/fAs = [R/(f1, ..., f1, f5,1)]3 where the f;
are the images of the f;, and the dimension of [R/(f1, ..., f1, f5,1)]3 as a
K -vector space is at most 4.

Then we can find a defect v quadratic ideal %J C f : I for y = 3,2, 1 if the
defect of T is § =5 or 6 = 6,7 or § = 8,9, 10, respectively. We then have the
inequalities shown below, where the first is obvious as 7J is contained in f : o
and the second follows by comparison with Hilbert functions of quotients by
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LPP ideals in degree 3 and the fact that, by assumption, EGHz 5(2) holds
for quadratic ideals with defect less than or equal to three.
Hilbg)(s.5r)(3) < Hilbg,;(3)
4 if 7J is a defect v = 3 quadratic ideal when § = 5,

< <5 if 7J is a defect v = 2 quadratic ideal when 6 < 0 < 7,
7 if 7J is a defect v = 1 quadratic ideal when 8 < § < 10.

However, each of the cases above contradicts the following equality:
HﬂbR/(f:‘SI) (3) == Hlle/f(2) - Hlle/6[(2) == 5

Thus, we get Hilbg/s;(3) < Hilbg/s-(3) for any defect § > 5 quadratic
ideal T in R. O

Defect three quadratic ideals

Lemma 4.4. Let I =+ (g1,92,93) be a defect three quadratic ideal in the
polynomial ring R. Then, for any 1 < i1 < i < 3,

dlmK(f (gimgiz))l < 17
and, furthermore, dimg (f : (91, 92,93))1 < 1.

Proof. Suppose that dimg (f : (g1, 92))1 > 2, and assume there are {1, 3 € Ry
such that £;¢1, ;g2 € f for both i = 1, 2. Without loss of generality we assume
that ¢1 = x1 and /9 = z9.

Therefore, we can write (1, x2, f1, ..., f5) C§: (f1, ---, f5,91,92). Then

2 =Hilby,, .. f,.0,.9.)/1(2)
_ Hlle/(f:(fl, o) (5—2), (by duality)

S HﬂbR/(ml,Imfh sy fs) (3)
= Hilby 1y, w005/ (i, ., ) (3), (where fi is the image of f; in K|x3, x4, 75),)

<<5_2>:17
- 3

which is a contradiction. O

Hence, working in the graded Gorenstein Artin K-algebra A = R/f, we
have from the lemma just above that Anng, (g1, g2) is a K-vector space of
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dimension at most one, and, therefore
dlmK AIlIlAl (917 g2, 93) S 1

since Anng, (91, g2, 93) € Annuy, (g1, g2)-

Remark 4.5. By Remark 4.2 we know that for any defect two quadratic
ideal J in R, dimg J3 is at least 30. Then EGHg5(2) holds for the de-
fect three quadratic ideals I containing a defect two quadratic ideal J with

We henceforth focus on defect three quadratic ideals I =+ (g1, g2, 93)
in R such that every defect two quadratic ideal J C I containing f has
dimg J3 = 30.

For such defect three quadratic ideals, we observe the following.

Lemma 4.6. Consider the ideal T = (g1,92,93)A in the Gorenstein ring
A such that any ideal (gi,,gi,)A contained in T has degree three component
of dimension dimg (gi,, gi,) A1 = 5. Assuming that dimg Anny, (g1) = 1, we
have that

Anng, (g1, g2, 93) = Anny, (g1).

Furthermore, if g1 A1 is 5-dimensional, that is, there is no linear form
that annihilates g1 in A, then for any quadric g in Kg1 + Kgo + Kgs the
vector space gA1 C As is either 3 or 5 dimensional.

Proof. Let dimgx Anng, (91) = 1, and let the linear form L annihilate g; but
not some form ¢’ € Kgo + Kg3 in A. We define a defect two quadratic ideal

J = (f17 ) f5aglag/) - f+(917927g3)

in R. Hence, by Corollary 3.16, we know already that dimg Js > 31, which
means that dimg(g1,¢")A; = 6. This contradicts our assumption. Thus, L
must be in Anny, (g1, g2, g3)- O

Recall that the following holds, by Proposition 3.14, when § = 3.
Proposition 4.7. Let I =1f+ (g1,92,93) C K[z1,...,25] be a defect 3
quadratic ideal. As wusual, let A= R/f. If there is a linear form L €
Anny (g1, 92) such that L ¢ Anna(gs), then

dimg ((f 4 (91,92))3 N gsR1) < 3.
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When a defect three quadratic ideal I satisfies the condition of the above
proposition, we notice a sharp bound for Hilbg,;(3).

Corollary 4.8. Given a defect three quadratic ideal I =§+ (g1, g2,93) in
R = K|xy, ..., z5], and, as usual, let A = R/f, which is a graded Gorenstein
Artin ring. If dimg Anny, (g1,92) =1 and Anng, (g1, 92,93) = 0 then

dimg I3 > 32 > dimg Eg,
where L = (:U%, e x%,xlazg,xlxg,xlaq) and dimg L3 = 31.

Proof. By assumption there is a linear form in Annyu(g1,92), say L, such
that L does not annihilate g3. Hence, Proposition 4.7 gives us dimg ((f +
(91,92))3 N g3R1) < 3. Then we get

dimg (f + (91, 92, 93))3 = dimg (f + (91, 92))3 + dimg g3 Ry
—dimg ((F+ (91,92))3 N gsRa)
>30+5—-—3=32>31=dimg L3. O

Proposition 4.9. Suppose that for all quadratic forms g in Kg1 + Kgo,
the subspace gAy of As is a 3-dimensional. If dimg(g1,g92)A1 =5, then
dimg Anny, (g1, g2) = 1.

We first state the following observation in a linear algebra setting, which
will be useful for the proof Proposition 4.9.

Lemma 4.10. Let S, T be linear transformations from V to W, both n-
dimensional vector spaces over K, such that rank(S) = rank(7T") = rank(S —
T) =r, and the kernels of S, T are disjoint. Then the images of S and T
are contained in the same (3r — n)-dimensional subspace of W.

Proof. Vy =ker(S —T) is (n —r)-dimensional. S and T are injective on
Vo, since for v € Vp, S(v) = 0 iff T'(v) = 0, and Ker(S) N Ker(7T') = 0. Thus,
S(Vo) =T(Vp) is an (n — r)-dimensional space in S(V)NT(V). Since
S(V),T(V) are r-dimensional and overlap in a space of dimension at least
n—r, S(V)+ T(V) has dimension at most r +r — (n —r) = 3r — n. O

Proof of Proposition 4.9. Assume that dimg Anng,(g1,¢92) = 0. Since all
quadratic forms ¢ in Kg; + Kgo are such that gA; C As has vector space



1360 S. Guntirkiin and M. Hochster

dimension 3, we have from Lemma 4.10 with n =5,r =3, that (Kg; +
Kg2)A; C As is at most 4-dimensional. Consequently,

dimg[A/(g1,92) Als = dimg [R/F + (g1, 92)]3 = 6,
contradicting EGHg 5(2) for defect 2 quadratic ideals. Hence,
dimg Anny, (g1,92) = 1. O

Proposition 4.11. Let I =§+ (g1, 92,93) be a defect three quadratic ideal
in R= Klz1, ..., x5]. If dimg Anngy, (g1, g2, 93) = 0 then Hilbg,;(3) < 4.

Proof. First, by Remark 4.5 we note that it suffices to consider any defect
two quadratic ideal J C I with Hilbg,;(3) = 5.

Suppose that dimg Anng, (g1, g2, 93) = 0. Then, clearly, no g;, for ¢ =
1,2,3 has a 1-dimensional linear annihilator space in A, since, otherwise, by
Lemma 4.6, we obtain that dimg Anngy, (g1, 92,93) = 1, which contradicts
our assumption. Thus, for the rest of the proof we may assume that each
giAq, i =1,2,3, is either 3 or 5 dimensional.

If all forms g in Kg1 + Kgo + Kg3 are such that dimg gA; = 3 then we
can find two independent quadratic forms whose linear annihilator spaces
intersect in 1-dimensional space, and the result follows from Corollary 4.8.

Let g1 A1 be a 5-dimensional subspace of A3 and suppose for every g €
Kgo + Kg3, gA1 has dimension either 3 or 5.

We complete the proof by obtaining a contradiction. We assume that
Hilbg,/;(3) = 5. In other words, the space W = (K g1 + Kg2 + Kg3)A1 C A3
is 5-dimensional. Then we get W = g1 A1 = (K g2 + Kg3)A;.

Consider the multiplication maps by g1, g2 and g3 from A; to the sub-
space W of As. By adjusting the bases of A; and W we can assume the
matrix of g1 is the identity matrix I5 of size 5. Denote the matrices of go and
g3 by a and (3, respectively. We can assume that « and § are both singular,
and so have rank 3, by subtracting the suitable multiples of I5 from them if
they are not singular.

We see that all matrices zI5 + xa + yf must have at most two eigenval-
ues, otherwise we can form a linear combination whose kernel is 1-dimen-
sional, which corresponds to a quadratic form with 1-dimensional linear
annihilator space. Then there are two main cases: one is that every matrix
in the space spanned by I5,« and S has one eigenvalue. The other is that
almost all matrices in the form zll5 + xa + y5 have two eigenvalues, since
the subset with at most one eigenvalue is Zariski closed.



The EGH conjecture for defect two quadratic ideals 1361

Define D(z,y,z) = det(zl5 — za — yf), a homogeneous polynomial in
x,y, z of degree 5 that is monic in z. Note that D is also the characteristic
polynomial, in z, of xa + y5. Notice that the singular matrices in the sub-
space of 5 x 5 matrices spanned by I, @ and § are defined by the vanishing
of D.

If the determinant D is square-free (as the characteristic polynomial in
z), then the ideal (D) is a radical ideal and it cannot contain a nonzero
polynomial of degree less than 5, which contradicts the fact that all size 4
minors of a singular matrix must vanish, since in our situation these singular
matrices have rank 3. Therefore the size 4 minors, whose degrees are at most
4, are in the radical (D).

If the determinant D is not square-free, then its squared factor must be
linear or quadratic: in the latter case the other factor is linear, so that in
either case D has a linear factor, say z — ax — by.

Consider the independent matrices o/ = alls — o, 3/ = bll5 — 3. Then we
think of any linear combination of them, say ra’ + s = r(all; — «) + s(bl5 —
B) = (ar + bs)ls — ra — sB. As z —ax — by is a factor of D(x,y,z), and
hence, D vanishes for x = r,y = s, z = ar + bs. This means that every linear
combination of o and 3’ is singular. Therefore, we can replace «, 8 by o’
and ' and so we can assume that we are in the case where every linear
combination of the two non-identity matrices is singular, and, if not 0, of
rank 3. By Lemma 4.10, this implies that the kernels of o’ and /3’ cannot be
disjoint, so we are done by Proposition 4.9 and Corollary 4.8. O

Finally, we complete the proof of Theorem 4.1 by showing EGHg 5(2) for
every defect three quadratic ideal I =f+ (g1, 92,93) in R = K|x1, ..., x5]
when there is a nonzero linear form L € Ann4(g1, g2, 93) in the following
proposition.

Proposition 4.12. Let I =§+ (g1, 92,93) be a defect three quadratic ideal
in R. If Anng,(g1,92,93) is a 1-dimensional K-subspace of Ay, say KL,
then

Hilbg/(3) = 4.

Proof. The proof of this proposition will be completed as soon as we prove
the following lemmas 4.13 and 4.15 along with propositions 4.14 and 4.16
below.

Lemma 4.13. Let L be a nonzero linear form in Anna(g1,ge,g3). Then
one of the quadratic forms f; in the reqular sequence has the linear factor L.
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Proof of lemma. As g1,92,93 € Anng, (L) C A for L € Anny, (g1, 92, 93) we
know that

dimg Anny, (L) > 3.

This tells us that dimg LAy < 7, which implies
(4) dimg (As/LAg) = dimg[A/LA]3 > 3

as dimg Az = 10.

Assume that L = 25 and let f; be the image of f; modulo x5 .

Suppose that f = (f1, fo, f3, f1, f5) is an almost complete intersection in
the polynomial ring K{[z1,x2, x3, z4]. Thus,

A/LA% K[:El’ o :ES] ~ K[Q:l,ﬂfg,xg,.le]'
f+ (25) f

However, using the Francisco’s result for almost complete intersections
[8], we know that

Kz, x2, x3, 4] Kz, 29,3, x4]

f

This contradicts (4).
Hence the images of f; modulo L form a regular sequence in
K[x1, ..., 4], that is, one of them has a linear factor zs. O

dimg ]3§2:dimK[

2 2 2 2 :
(a1, x5, x5, x5, v122)13

As a result of the claim, after a suitable change of variables, we may as-
sume that the linear annihilator is L = x5 and may consider I in two possible
forms: either [ is in the form of (5) in Case 1 below, where f1, fo, f3, fa, T125
is the regular sequence, or [ is as in (6) in Case 2 below, where fi, fa, fs3,
fa, x% form a quadratic regular sequence in 1.

Case 1. Suppose that f5 = x1x5. Then we can assume that gy = z1x3, go =
r1T3, g3 = r1x4. Furthermore, after we alter the f; by getting rid of all
the terms containing z; except z?, we may assume that the defect three
quadratic ideal I looks like

(5) I = (f1, fo, f3, fa+cal, xixs, T120, 123, T124),

where f1, fo, f3, fa form a regular sequence in K|[zg,x3,24,25) and ¢ € K,

c# 0.
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Proposition 4.14. LetI:(fl, fg, f3, f4 + CZ‘%, r1T5, 122, T1X3, 1‘1.%'4) be
a defect three quadratic ideal in R where f1, fa, f3, f1 is an K[z2, x5, x4, T5)-
sequence. Then

Hilbg,;(3) = 4 = Hilbg, £(3)

(2 2
where L = (x5, ..., T, T1T2, T1T3, T1T4).

Proof. One can easily see that I contains all cubic monomials divisible by z;
since x1z; € I for alli=2,3,4,5 and f4 is a quadratic form in K[z, z3, 24, 5],
therefore z1f, € I and so is x:f Thus, the Hilbert functions of R/I and
k[$2,$3,$4,3§‘5]/1 N Klxy, 3,24, 5] agrees in degree 3. So

HﬂbR/I(?)) = HﬂbK[mQ7:,33@4@5}/](7]([12,137334@5] (3)

= Hilb (3)=4.

K[xzwsyﬂfmxd/(fhf27f3,f4 OJ
Case 2. Suppose that f5 = x% by altering the variables and generators, and
then we can assume that g1 = x125, g2 = T2x5, g3 = x325. As we did in the
case above, we get rid of all the terms containing x5 except x4z5 in the f;,
and so the defect three quadratic ideal can be written as follows:

2
(6) I =(f1, f2, f3, fa+ cxaxs, x5, 1175, Tox5, T375),
where f1, fo, f3, f1 form a regular sequence in K[x1,x2,x3,z4] and ¢ € K.

Lemma 4.15. Let a = (f1, fo, f3, fa + craxs, 22) : (125, T275, T375) be
the colon ideal in R. Then we have Hilbg,q(2) = 6.

Proof. 1t suffices to show dimg as = 9.

We know that zizs5, Toxs5, £375, T4T5, 1‘% are all in ao, and f1, fo, f3,
f1 € ag as well. Thus we see that dimg as > 9.

If there is another independent quadratic form in a, it must be in
K[z, 2,23, x4], as we have all quadratic monomials containing x5, so call it
Q in K[z, 2,23, x4]. Then we consider the cubic form H = z5Q). Clearly H
is not in the Ri-span of f1, fa, f3, f1, 22, therefore we can define the ideal
J = (f1, f2, f3, fa, 22, H), which is an almost complete intersection in R.
Then we get dimg ((f1, f2, f3, f1,22)a N HRy) >4 as x1H,zoH, 23H and
zsH are in (f1, fo, f3, f1,72)4, but by Corollary 2.4 this dimension must
be at most 3. This proves that there cannot be such a quadratic form @
in a. Il
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Proposition 4.16. Let I=(f1, fo, f3, fa + cwaxs, ¥3, 1175, T2T5, T375) be
a defect three quadratic ideal in R where f1, fa, f3, fa is an K[z1,x9, x3, 24]-
sequence. Then

Hilbg;(3) = 4 = Hilbp, (3)

2 2
where L = (21, ..., T§, T1T2, T1T3, T1T4).

Proof. Using the duality of Gorenstein algebras, again we can obtain

Hilbg/1(3) = Hilbg) (5. fo. fy. futerses,2)(3) — Hilbg/o(5 — 3),

where a is the colon ideal (f1, fo, f3, f1 + cxaxs, asg) 1.
Then proof is done, since Hilbgr/ (s, 1, f, fitemizs,22)(3) = 10 and

Hilbg/q(2) = 6 by the above lemma. O

This finishes the proof of Proposition 4.12 and hence the proof of The-

orem 4.1. O
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