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Abstract

Thermodynamic models of gene regulation can predict transcriptional regula-

tion in bacteria, but in eukaryotes chromatin accessibility and energy expen-

diture may call for a different framework. Here we systematically tested the

predictive power of models of DNA accessibility based on the Monod-Wyman-

Changeux (MWC) model of allostery, which posits that chromatin fluctuates

between accessible and inaccessible states. We dissected the regulatory dy-

namics of hunchback by the activator Bicoid and the pioneer-like transcription

factor Zelda in living Drosophila embryos and showed that no thermodynamic or

non-equilibrium MWC model can recapitulate hunchback transcription. There-

fore, we explored a model where DNA accessibility is not the result of thermal

fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone

acetylation, and found that this model can predict hunchback dynamics. Thus,

our theory-experiment dialogue uncovered potential molecular mechanisms of

transcriptional regulatory dynamics, a key step toward reaching a predictive

understanding of developmental decision-making.
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1. Introduction

Over the last decade, hopeful analogies between genetic and electronic cir-

cuits have posed the challenge of predicting the output gene expression of a

DNA regulatory sequence in much the same way that the output current of

an electronic circuit can be predicted from its wiring diagram (Endy, 2005).5

This challenge has been met with a plethora of theoretical works, including

thermodynamic models, which use equilibrium statistical mechanics to calcu-

late the probability of finding transcription factors bound to DNA and to relate

this probability to the output rate of mRNA production (Ackers et al., 1982;

Buchler et al., 2003; Vilar and Leibler, 2003; Bolouri and Davidson, 2003; Bintu10

et al., 2005b,a; Sherman and Cohen, 2012). Thermodynamic models of bacte-

rial transcription launched a dialogue between theory and experiments that has

largely confirmed their predictive power for several operons (Ackers et al., 1982;

Bakk et al., 2004; Zeng et al., 2010; He et al., 2010; Garcia and Phillips, 2011;

Brewster et al., 2012; Cui et al., 2013; Brewster et al., 2014; Sepulveda et al.,15

2016; Razo-Mejia et al., 2018) with a few potential exceptions (Garcia et al.,

2012; Hammar et al., 2014).

Following these successes, thermodynamic models have been widely applied

to eukaryotes to describe transcriptional regulation in yeast (Segal et al., 2006;

Gertz et al., 2009; Sharon et al., 2012; Zeigler and Cohen, 2014), human cells20

(Giorgetti et al., 2010), and the fruit fly Drosophila melanogaster (Jaeger et al.,

2004a; Zinzen et al., 2006; Segal et al., 2008; Fakhouri et al., 2010; Parker et al.,

2011; Kanodia et al., 2012; White et al., 2012; Samee et al., 2015; Sayal et al.,

2016). However, two key differences between bacteria and eukaryotes cast doubt

on the applicability of thermodynamic models to predict transcriptional regula-25

tion in the latter. First, in eukaryotes, DNA is tightly packed in nucleosomes and

must become accessible in order for transcription factor binding and transcrip-
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tion to occur (Polach and Widom, 1995; Levine, 2010; Schulze and Wallrath,

2007; Lam et al., 2008; Raveh-Sadka et al., 2009; Li et al., 2011; Fussner et al.,

2011; Bai et al., 2011; Li et al., 2014a; Hansen and O’Shea, 2015). Second, recent30

reports have speculated that, unlike in bacteria, the equilibrium framework may

be insufficient to account for the energy-expending steps involved in eukaryotic

transcriptional regulation, such as histone modifications and nucleosome remod-

eling, calling for non-equilibrium models of transcriptional regulation (Kim and

O’Shea, 2008; Estrada et al., 2016; Li et al., 2018; Park et al., 2019).35

Recently, various theoretical models have incorporated chromatin accessibil-

ity and energy expenditure in theoretical descriptions of eukaryotic transcrip-

tional regulation. First, models by Mirny (2010), Narula and Igoshin (2010),

and Marzen et al. (2013) accounted for chromatin occluding transcription-

factor binding by extending thermodynamic models to incorporate the Monod-

Wyman-Changeux (MWC) model of allostery (Fig. 1A; Monod et al., 1965).

This thermodynamic MWC model assumes that chromatin rapidly transitions

between accessible and inaccessible states via thermal fluctuations, and that the

binding of transcription factors to accessible DNA shifts this equilibrium toward

the accessible state. Like all thermodynamic models, this model relies on the

“occupancy hypothesis” (Hammar et al., 2014; Garcia et al., 2012; Phillips et al.,

2019): the probability pbound of finding RNA polymerase (RNAP) bound to the

promoter, a quantity that can be easily computed, is linearly related to the rate

of mRNA production dmRNA
dt

, a quantity that can be experimentally measured,

such that
dmRNA

dt
= Rpbound. (1)

Here, R is the rate of mRNA production when the system is in an RNAP-bound

state (see Appendix section 1.1 for a more detailed overview). Additionally,

in all thermodynamic models, the transitions between states are assumed to

be much faster than both the rate of transcriptional initiation and changes in

transcription factor concentrations. This separation of time scales, combined40

with a lack of energy dissipation in the process of regulation, makes it possible
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to consider the states to be in equilibrium such that the probability of each state

can be computed using its Boltzmann weight (Garcia et al., 2007).

Despite the predictive power of thermodynamic models, eukaryotic tran-

scription may not adhere to the requirements imposed by the thermodynamic45

framework. Indeed, Narula and Igoshin (2010), Hammar et al. (2014), Estrada

et al. (2016), Scholes et al. (2017), and Li et al. (2018) have proposed the-

oretical treatments of transcriptional regulation that maintain the occupancy

hypothesis, but make no assumptions about separation of time scales or en-

ergy expenditure in the process of regulation. When combined with the MWC50

mechanism of DNA allostery, these models result in a non-equilibrium MWC

model (Fig. 1B). Here, no constraints are imposed on the relative values of the

transition rates between states and energy can be dissipated over time. To our

knowledge, neither the thermodynamic MWC model nor the non-equilibrium

MWC model have been tested experimentally in eukaryotic transcriptional reg-55

ulation.

Here, we performed a systematic dissection of the predictive power of these

MWC models of DNA allostery in the embryonic development of the fruit fly

Drosophila melanogaster in the context of the step-like activation of the hunch-

back gene by the Bicoid activator and the pioneer-like transcription factor Zelda60

(Driever et al., 1989; Nien et al., 2011; Xu et al., 2014). Specifically, we com-

pared the predictions from these MWC models against dynamical measurements

of input Bicoid and Zelda concentrations and output hunchback transcriptional

activity. Using this approach, we discovered that no thermodynamic or non-

equilibrium MWC model featuring the regulation of hunchback by Bicoid and65

Zelda could describe the transcriptional dynamics of this gene. Following re-

cent reports of the regulation of hunchback and snail (Desponds et al., 2016;

Dufourt et al., 2018) and inspired by discussions of non-equilibrium schemes of

transcriptional regulation (Coulon et al., 2013; Wong and Gunawardena, 2020),

we proposed a model in which Bicoid and Zelda, rather than passively biasing70

thermal fluctuations of chromatin toward the accessible state, actively assist the

overcoming of an energetic barrier to make chromatin accessible through the re-
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Figure 1: Three models of chromatin accessibility and transcriptional regulation. (A) Ther-

modynamic MWC model where chromatin can be inaccessible or accessible to transcription

factor binding. Each state is associated with a statistical weight given by the Boltzmann

distribution and with a rate of transcriptional initiation. ∆εchrom is the energy cost associ-

ated with making the DNA accessible and ω is an interaction energy between the activator

and RNAP. a = [activator]/Ka and p = [RNAP]/Kp with Ka and Kp being the dissociation

constants of the activator and RNAP, respectively. This model assumes the occupancy hy-

pothesis, separation of time scales, and lack of energy expenditure described in the text. (B)

Non-equilibrium MWC model where no assumptions about separation of time scales or energy

expenditure are made. Transition rates that depend on the concentration of the activator or

RNAP are indicated by an arrow incorporating the respective protein. (C) Transcription

factor-driven chromatin accessibility model where the activator catalyzes irreversible transi-

tions of the DNA through m silent states before it becomes accessible. Once this accessible

state is reached, the system is in equilibrium.
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cruitment of energy-consuming histone modifiers or chromatin remodelers. This

model (Fig. 1C) recapitulated all of our experimental observations. This inter-

play between theory and experiment establishes a clear path to identify the75

molecular steps that make DNA accessible, to systematically test our model of

transcription factor-driven chromatin accessibility, and to make progress toward

a predictive understanding of transcriptional regulation in development.

2. Results

2.1. A thermodynamic MWC model of activation and chromatin accessibility by80

Bicoid and Zelda

During the first two hours of embryonic development, the hunchback P2

minimal enhancer (Margolis et al., 1995; Driever et al., 1989; Perry et al., 2012;

Park et al., 2019) is believed to be devoid of significant input signals other than

activation by Bicoid and regulation of chromatin accessibility by both Bicoid85

and Zelda (Perry et al., 2012; Xu et al., 2014; Hannon et al., 2017). As a result,

the early regulation of hunchback provides an ideal scaffold for a stringent test

of simple theoretical models of eukaryotic transcriptional regulation.

Our implementation of the thermodynamic MWC model (Fig. 1A) in the

context of hunchback states that in the inaccessible state, neither Bicoid nor90

Zelda can bind DNA. In the accessible state, DNA is unwrapped and the binding

sites become accessible to these transcription factors. Due to the energetic cost

of opening the chromatin (∆εchrom), the accessible state is less likely to occur

than the inaccessible one. However, the binding of Bicoid or Zelda can shift the

equilibrium toward the accessible state (Adams and Workman, 1995; Miller and95

Widom, 2003; Mirny, 2010; Narula and Igoshin, 2010; Marzen et al., 2013).

In our model, we assume that all binding sites for a given molecular species

have the same binding affinity. Relaxing this assumption does not affect any

of our conclusions (as we will see below in Sections 2.3 and 2.4). Bicoid upreg-

ulates transcription by recruiting RNAP through a protein-protein interaction100

characterized by the parameter ωbp. We allow cooperative protein-protein in-
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teractions between Bicoid molecules, described by ωb. However, since to our

knowledge there is no evidence of direct interaction between Zelda and any

other proteins, we assume no interaction between Zelda and Bicoid, or between

Zelda and RNAP.105

In Fig. 2A, we illustrate the simplified case of two Bicoid binding sites and

one Zelda binding site, plus the corresponding statistical weights of each state

given by their Boltzmann factors . Note that the actual model utilized through-

out this work accounts for at least six Bicoid binding sites and ten Zelda binding

sites that have been identified within the hunchback P2 enhancer (Section 4.1;110

Driever and Nusslein-Volhard, 1988; Driever et al., 1989; Park et al., 2019).

This general model is described in detail in Appendix section 1.2.

The probability of finding RNAP bound to the promoter is calculated by

dividing the sum of all statistical weights featuring RNAP by the sum of the

weights corresponding to all possible system states. This leads to

pbound =

(
1 + z

)nz

p
(

1 +
∑nb

i=1

(
nb

i

)
biωi−1

b ωibp

)
e∆εchrom/kBT︸ ︷︷ ︸
inaccessible

state

+
(

1 + z
)nz

︸ ︷︷ ︸
Zelda binding

(
1 + p+

∑
j=0,1

nb∑
i=1

(
nb
i

)
biωi−1

b pjωijbp

)
︸ ︷︷ ︸

Bicoid and RNAP binding

,

(2)

where b = [Bicoid]/Kb, z = [Zelda]/Kz, and p = [RNAP ]/Kp, with [Bicoid],

[Zelda], and [RNAP ] being the concentrations of Bicoid, Zelda, and RNAP,

respectively, and Kb, Kz, and Kp their dissociation constants (see Appendix115

sections 1.1 and 1.2 for a detailed derivation). Given a set of model parameters,

plugging pbound into Equation 1 predicts the rate of RNAP loading as a function

of Bicoid and Zelda concentrations as shown in Fig. 2B. Note that in this work,

we treat the rate of transcriptional initiation and the rate of RNAP loading

interchangeably.120
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Figure 2: Thermodynamic MWC model of transcriptional regulation by Bicoid and Zelda. (A)

States and statistical weights for a simplified version of the hunchback P2 enhancer. In this

model, we assume that chromatin occluded by nucleosomes is not accessible to transcription

factors or RNAP. Parameters are defined in the text. (B) 3D input-output function predicting

the rate of RNAP loading (and of transcriptional initiation) as a function of Bicoid and Zelda

concentrations for a given set of model parameters.
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2.2. Dynamical prediction and measurement of input-output functions in devel-

opment

In order to experimentally test the theoretical model in Fig. 2, it is nec-

essary to measure both the inputs – the concentrations of Bicoid and Zelda –

as well as the output rate of RNAP loading. Typically, when testing models125

of transcriptional regulation in bacteria and eukaryotes, input transcription-

factor concentrations are assumed to not be modulated in time: regulation is

in steady state (Ackers et al., 1982; Bakk et al., 2004; Segal et al., 2008; Garcia

and Phillips, 2011; Sherman and Cohen, 2012; Cui et al., 2013; Little et al.,

2013; Raveh-Sadka et al., 2009; Sharon et al., 2012; Zeigler and Cohen, 2014;130

Xu et al., 2015; Sepulveda et al., 2016; Estrada et al., 2016; Razo-Mejia et al.,

2018; Zoller et al., 2018; Park et al., 2019). However, embryonic development is

a highly dynamic process in which the concentrations of transcription factors are

constantly changing due to their nuclear import and export dynamics, and due

to protein production, diffusion, and degradation (Edgar and Schubiger, 1986;135

Edgar et al., 1987; Jaeger et al., 2004b; Gregor et al., 2007b). As a result, it

is necessary to go beyond steady-state assumptions and to predict and measure

how the instantaneous, time-varying concentrations of Bicoid and Zelda at each

point in space dictate hunchback output transcriptional dynamics.

In order to quantify the concentration dynamics of Bicoid, we utilized an140

established Bicoid-eGFP line (Sections 4.2, 4.4, and 4.5; Fig. 3A and Ap-

pendix fig. 3A; Video 1; Gregor et al., 2007b; Liu et al., 2013). As expected, this

line displayed the exponential Bicoid gradient across the length of the embryo

(Appendix section 2.1; Appendix fig. 3B). We measured mean Bicoid nuclear

concentration dynamics along the anterior-posterior axis of the embryo, as ex-145

emplified for two positions in Fig. 3A. As previously reported (Gregor et al.,

2007b), after anaphase and nuclear envelope formation, the Bicoid nuclear con-

centration quickly increases as a result of nuclear import. These measurements

were used as inputs into the theoretical model in Fig. 2.

Zelda concentration dynamics were measured in a Zelda-sfGFP line (Sec-150

tions 4.2, 4.4, and 4.5; Fig. 3B; Video 2; Hamm et al., 2017). Consistent with
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previous results (Staudt et al., 2006; Liang et al., 2008; Dufourt et al., 2018), the

Zelda concentration was spatially uniform along the embryo (Appendix fig. 3).

Contrasting Fig. 3A and B reveals that the overall concentration dynamics of

both Bicoid and Zelda are qualitatively comparable. As a result of Zelda’s spa-155

tial uniformity, we used mean Zelda nuclear concentration dynamics averaged

across all nuclei within the field of view to test our model (Appendix section 2.1;

Fig. 3B).

Given the high reproducibility of the concentration dynamics of Bicoid and

Zelda (Appendix fig. 3), we combined measurements from multiple embryos by160

synchronizing their anaphase in order to create an “averaged embryo” (Ap-

pendix section 2.1), an approach that has been repeatedly used to describe

protein and transcriptional dynamics in the early fly embryo (Garcia et al.,

2013; Bothma et al., 2014, 2015; Berrocal et al., 2018; Lammers et al., 2019).

Our model assumes that hunchback output depends on the instantaneous165

concentration of input transcription factors. As a result, at each position along

the anterior-posterior axis of the embryo, the combined Bicoid and Zelda concen-

tration dynamics define a trajectory over time along the predicted input-output

function surface (Fig. 3C). The resulting trajectory predicts the rate of RNAP

loading as a function of time. However, instead of focusing on calculating RNAP170

loading rate, we used it to compute the number of RNAP molecules actively

transcribing hunchback at each point in space and time, a more experimentally

accessible quantity (Section 2.3). This quantity can be obtained by accounting

for the RNAP elongation rate and the cleavage of nascent RNA upon termi-

nation (Appendix section 2.2; Appendix fig. 4; Bothma et al., 2014; Lammers175

et al., 2019) yielding the predictions shown in Fig. 3D.

Instead of examining the full time-dependent nature of our data, we analyzed

two main dynamical features stemming from our prediction of the number of

RNAP molecules actively transcribing hunchback: the initial rate of RNAP

loading and the transcriptional onset time, ton, defined by the slope of the180

initial rise in the predicted number of RNAP molecules, and the time after

anaphase at which transcription starts as determined by the x-intercept of the

10
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Figure 3: Prediction and measurement of dynamical input-output functions. (A) Measure-

ment of Bicoid concentration dynamics in nuclear cycle 13. Color denotes different positions

along the embryo and time is defined with respect to anaphase. (B) Zelda concentration dy-

namics. These dynamics are uniform throughout the embryo. (C) Trajectories defined by the

input concentration dynamics of Bicoid and Zelda along the predicted input-output surface.

Each trajectory corresponds to the RNAP loading-rate dynamics experienced by nuclei at the

positions indicated in (A). (D) Predicted number of RNAP molecules actively transcribing

the gene as a function of time and position along the embryo, and calculation of the cor-

responding initial rate of RNAP loading and the time of transcriptional onset, ton. (E, F)

Predicted hunchback (E) initial rate of RNAP loading and (F) ton as a function of position

along the embryo for varying values of the Bicoid dissociation constant Kb. (A, B, error bars

are standard error of the mean nuclear fluorescence in an individual embryo, averaged across

all nuclei at a given position; D, the standard error of the mean predicted RNAP number in a

single embryo, propagated from the errors in A and B, is thinner than the curve itself; E, F,

only mean predictions are shown so as to not obscure differences between them; we imaged

n=6 Bicoid-GFP and n=3 Zelda-GFP embryos.)
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linear fit to the initial rise, respectively (Fig. 3D).

Examples of the predictions generated by our theoretical model are shown

in Fig. 3E and F, where we calculate the initial rate of RNAP loading and185

ton for different values of the Bicoid dissociation constant Kb. This framework

for quantitatively investigating dynamic input-output functions in living em-

bryos is a necessary step toward testing the predictions of theoretical models of

transcriptional regulation in development.

2.3. The thermodynamic MWC model fails to predict activation of hunchback190

in the absence of Zelda

In order to test the predictions of the thermodynamic MWC model

(Fig. 3E and F), we used the MS2 system (Bertrand et al., 1998; Garcia et al.,

2013; Lucas et al., 2013). Here, 24 repeats of the MS2 loop are inserted in the

5’ untranslated region of the hunchback P2 reporter (Garcia et al., 2013), result-195

ing in the fluorescent labeling of sites of nascent transcript formation (Fig. 4A;

Video 3). This fluorescence is proportional to the number of RNAP molecules

actively transcribing the gene (Garcia et al., 2013). The experimental mean

fluorescence as a function of time measured in a narrow window (2.5% of the

total embryo length, averaged across nuclei in the window) along the length of200

the embryo (Fig. 4B) is in qualitative agreement with the theoretical prediction

(Fig. 3D).

To compare theory and experiment, we next obtained the initial RNAP

loading rates (Fig. 4C, blue points) and ton (Fig. 4D, blue points) from the ex-

perimental data (Appendix section 2.3; Appendix fig. 5B). The step-like shape205

of the RNAP loading rate (Fig. 4C, blue points) agrees with previous measure-

ments performed on this same reporter construct (Garcia et al., 2013). The

plateaus at the extreme anterior and posterior positions were used to constrain

the maximum and minimum theoretically allowed values in the model (Ap-

pendix section 1.3). With these constraints in place, we attempted to simulta-210

neously fit the thermodynamic MWC model to both the initial rate of RNAP

loading and ton. For a given set of model parameters, the measurements of
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Bicoid and Zelda concentration dynamics predicted a corresponding initial rate

of RNAP loading and ton (Fig. 3E and F). The model parameters were then

iterated using standard curve-fitting techniques (Section 4.6) until the best fit215

to the experimental data was achieved (Fig. 4C and D, blue lines).

Although the model accounted for the initial rate of RNAP loading (Fig. 4C,

blue line), it produced transcriptional onset times that were much lower than

those that we experimentally observed (Appendix fig. 6B, purple line). We hy-

pothesized that this disagreement was due to our model not accounting for

mitotic repression, when the transcriptional machinery appears to be silent

immediately after cell division (Shermoen and O’Farrell, 1991; Gottesfeld and

Forbes, 1997; Parsons and Tg, 1997; Garcia et al., 2013). Thus, we modified

the thermodynamic MWC model to include a mitotic repression window term,

implemented as a time window at the start of the nuclear cycle during which

no transcription could occur; the rate of mRNA production is thus given by

dmRNA

dt
=

0 if t < tMitRep

Rpbound if t ≥ tMitRep

, (3)

where R and pbound are as defined in Eqns. 1 and 2, respectively, and tMitRep

is the mitotic repression time window over which no transcription can take

place after anaphase (Appendix sections 1.2 and 3). After incorporating mitotic

repression, the thermodynamic MWC model successfully fit both the rates of220

RNAP loading and ton (Fig. 4C and D, blue lines, Appendix fig. 6A and B blue

lines).

Given this success, we next challenged the model to perform the simpler task

of explaining Bicoid-mediated regulation in the absence of Zelda. This scenario

corresponds to setting the concentration of Zelda to zero in the models in Ap-225

pendix section 1.2 and Fig. 2. In order to test this seemingly simpler model, we

repeated our measurements in embryos devoid of Zelda protein (Video 4). These

zelda− embryos were created by inducing clones of non-functional zelda mutant

(zelda294) germ cells in female adults (Sections 4.2, 4.3; Liang et al., 2008). All

embryos from these mothers lack maternally deposited Zelda; female embryos230
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Figure 4: The thermodynamic MWC model can explain hunchback transcriptional dynamics

in wild-type, but not zelda−, embryos. (A) The MS2 system measures the number of RNAP

molecules actively transcribing the hunchback reporter gene in live embryos. (B) Representa-

tive MS2 trace featuring the quantification of the initial rate of RNAP loading and ton. (C)

Initial RNAP loading rate and (D) ton for wild-type (blue points) and zelda− (red points)

embryos, compared with best fit to the thermodynamic MWC model (lines). The red and

blue fit lines are close enough to overlap substantially. (E) Fraction of transcriptionally active

nuclei for wild-type (blue) and zelda− (red) embryos. Active nuclei are defined as nuclei that

exhibited an MS2 spot at any time during the nuclear cycle. Purple shading indicates the

spatial range over which at least 30% of nuclei in the zelda− background display transcription.

(B, error bars are standard error of the mean observed RNAP number, averaged across nuclei

in a single embryo; C, D solid lines indicate mean predictions of the model, shading represents

standard error of the mean; C, D, E, error bars in data points represent standard error of the

mean over 11 wild-type embryos (blue) or 12 zelda− embryos (red))
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still have a functional copy of zelda from their father, but this copy is not tran-

scribed until after the maternal-to-zygotic transition, during nuclear cycle 14

(Liang et al., 2008). We confirmed that the absence of Zelda did not have a

substantial effect on the spatiotemporal pattern of Bicoid (Appendix section 4;

Xu et al., 2014).235

While close to 100% of nuclei in wild-type embryos exhibited transcription

along the length of the embryo (Fig. 4E, blue; Video 5), measurements in the

zelda− background revealed that some nuclei never displayed any transcrip-

tion during the entire nuclear cycle (Video 6). Specifically, transcription oc-

curred only in the anterior part of the embryo, with transcription disappearing240

completely in positions posterior to about 40% of the embryo length (Fig. 4E,

red).We confirmed that no visible transcription spots were present in zelda−

embryo posteriors by imaging in the posteriors of three zelda− embryos. These

embryos are not included in our total embryo counts.

From those positions in the mutant embryos that did exhibit transcription in245

at least 30% of observed nuclei, we extracted the initial rate of RNAP loading

and ton as a function of position. Interestingly, these RNAP loading rates

were comparable to the corresponding rates in wild-type embryos (Fig. 4C, red

points). However, unlike in the wild-type case (Fig. 4D, blue points), ton was not

constant in the zelda− background. Instead, ton became increasingly delayed250

in more posterior positions until transcription ceased posterior to 40% of the

embryo length (Fig. 4D, red points). Together, these observations indicated that

removing Zelda primarily results in a delay of transcription with only negligible

effects on the underlying rates of RNAP loading, consistent with previous fixed-

embryo experiments (Nien et al., 2011; Foo et al., 2014) and with recent live-255

imaging measurements in which Zelda binding was reduced at specific enhancers

(Dufourt et al., 2018; Yamada et al., 2019). We speculate that the loss of

transcriptionally active nuclei posterior to 40% of the embryo length is a direct

result of this delay in ton: by the time that onset would occur in those nuclei,

the processes leading to the next mitosis have already started and repressed260

transcriptional activity.
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Next, we attempted to simultaneously fit the model to the initial rates of

RNAP loading and ton in the zelda− mutant background. Although the model

recapitulated the observed initial RNAP loading rates (Fig. 4C, red line), we

noticed a discrepancy between the observed and fitted transcriptional onset265

times of up to ∼5 min (Fig. 4D, red). While the mutant data exhibited a

substantial delay in more posterior nuclei, the model did not produce significant

delays (Fig. 4D, red line). Further, our model could not account for the lack

of transcriptional activity posterior to 40% of the embryo length in the zelda−

mutant (Fig. 4E, red).270

These discrepancies suggest that the thermodynamic MWC model cannot

fully describe the transcriptional regulation of the hunchback promoter by Bicoid

and Zelda. However, the attempted fits in Fig. 4C and D correspond to a

particular set of model parameters and therefore do not completely rule out the

possibility that there exists some parameter set of the thermodynamic MWC275

model capable of recapitulating the zelda− data.

In order to determine whether this model is at all capable of accounting

for the zelda− transcriptional behavior, we systematically explored how its pa-

rameters dictate its predictions. To characterize and visualize the limits of our

model, we examined two relevant quantitative features of our data. First, we

defined the offset in the transcriptional onset time as the value of the onset time

at the position 20% along the embryo length, the most anterior position studied

here (Fig. 5A), namely

offset = ton(x = 20%) (4)

where x is the position along the embryo. Second, we measured the average tran-

scriptional onset delay along the anterior-posterior axis (Fig. 5A). This quantity

is defined as the area under the curve of ton versus embryo position, from 20%

to 37.5% along the embryo (the positions where the zelda− embryos display

transcription in at least 30% of nuclei), divided by the corresponding distance

along the embryo

〈onset delay〉 =
1

37.5%− 20%

∫ 37.5%

20%

(ton(x)− ton(x = 20%)) dx, (5)
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where the offset in the onset time was used to define the zero of this integral

(Appendix section 5.1). While the offset in ton is similar for both wild-type and

zelda− backgrounds (approximately 4 min), the average ton delay correspond-

ing to the wild-type data is close to 0 min, and is different from the value of280

about 0.7 min obtained from measurements in the zelda− background within

experimental error (Fig. 5C, ellipses).

Based on Estrada et al. (2016) and as detailed in Appendix section 5.1, we

used an algorithm to efficiently sample the parameter space of the thermody-

namic MWC model (dissociation constants Kb and Kz, protein-protein interac-285

tion terms ωb and ωbp, energy to make the DNA accessible ∆εchrom, and length

of the mitotic repression window tMitRep), and to calculate the corresponding

ton offset and average ton delay for each parameter set. Fig. 5B features three

specific realizations of this parameter search; for each combination of parame-

ters considered, the predicted ton is calculated and the corresponding ton offset290

and average ton delay computed. Although the wild-type data overlap with the

thermodynamic MWC model region, the range of the ton offset and average

ton delay predicted by the model (Fig. 5C, green) did not overlap with that of

the zelda− data. We concluded that our thermodynamic MWC model is not

sufficient to explain the regulation of hunchback by Bicoid and Zelda.295

2.4. No thermodynamic model can recapitulate the activation of hunchback by

Bicoid alone

Since the failure of the thermodynamic MWC model to predict the zelda−

data does not necessarily rule out the existence of another thermodynamic model

that can account for our experimental measurements, we considered other possi-

ble thermodynamic models. Conveniently, an arbitrary thermodynamic model

featuring nb Bicoid binding sites can be generalized using the mathematical

expression

dmRNA

dt
=

(∑nb

i=0 P1,iR[Bicoid]i
)

pinacc +
∑1
r=0

∑nb

i=0 Pr,i[Bicoid]i
, (6)
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Figure 5: Failure of thermodynamic models to describe Bicoid-dependent activation of hunch-

back. See caption on next page.
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Figure 5: Failure of thermodynamic models to describe Bicoid-dependent activation of hunch-

back. (A) Experimentally determined ton with offset and average delay. Horizontal dashed

lines indicate the average ton delay with respect to the offset in ton at 20% along the embryo

for wild-type and zelda− data sets. (B) Exploration of ton offset and average ton delay from

the thermodynamic MWC model. Each choice of model parameters predicts a distinct ton

profile of along the embryo. (C) Predicted range of ton offset and average ton delay for the

three cases featured in B (green points), for all possible parameter choices of the thermody-

namic MWC model (green region), as well as for all thermodynamic models considering 12

Bicoid binding sites (yellow region), compared with experimental data (red and blue regions).

(A, C, error bars/ellipses represent standard error of the mean over 11 and 12 embryos for

the wild-type and zelda− datasets, respectively; B, solid lines indicate mean predictions of the

model)

where pinacc and Pr,i are arbitrary weights describing the states in our gener-

alized thermodynamic model, R is a rate constant that relates promoter occu-

pancy to transcription rate, and the r and i summations refer to the numbers of300

RNAP and Bicoid molecules bound to the enhancer, respectively (Appendix sec-

tion 6.1; Bintu et al., 2005a; Estrada et al., 2016; Scholes et al., 2017). Note,

that this generalized thermodynamic model also included the possibility of Bi-

coid binding to the inaccessible chromatin state (Appendix section 6.3).

Although this generalized thermodynamic model contains many more pa-305

rameters than the thermodynamic MWC model previously considered, we could

still systematically explore reasonable values of these parameters and the re-

sulting ton offsets and average ton delays (Appendix section 6.2). For added

generality, and to account for recent reports suggesting the presence of more

than six Bicoid binding sites in the hunchback minimal enhancer (Park et al.,310

2019), we expanded this model to include up to 12 Bicoid binding sites.

The generalized thermodynamic model also failed to explain the zelda−

data (Appendix section 6.2; Fig. 5C, yellow). Note that the region of parame-

ter space occupied by the generalized thermodynamic model does not entirely

include that of the thermodynamic MWC model due to differences in the con-315

straints of parameter values used in the parameter exploration, as described in

Appendix sections 1.3 and 6.2. Nevertheless, our results strongly suggest that
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no thermodynamic model of Bicoid-activated hunchback transcription can pre-

dict transcriptional onset in the absence of Zelda, casting doubt on the general

applicability of these models to transcriptional regulation in development.320

Qualitatively, the reason for the failure of thermodynamic models to predict

hunchback transcriptional is revealed by comparing Bicoid and Zelda concen-

tration dynamics to those of the MS2 output signal (Appendix fig. 10). The

thermodynamic models investigated in this work have assumed that the system

responds instantaneously to any changes in input transcription factor concen-325

tration. As a result, since Bicoid and Zelda are imported into the nucleus

by around 3 min into the nuclear cycle (Fig. 3A and B), these models always

predict that transcription will ensue at approximately that time. Thus, thermo-

dynamic models cannot accommodate delays in the ton such as those revealed

by the zelda− data (see Appendix section 6.4 for a more detailed explanation).330

Rather than further complicating our thermodynamic models with additional

molecular players to attempt to describe the data, we instead decided to ex-

amine the broader purview of non-equilibrium models to attempt to reach an

agreement between theory and experiment.

2.5. A non-equilibrium MWC model also fails to describe the zelda− data335

Thermodynamic models based on equilibrium statistical mechanics can be

seen as limiting cases of more general kinetic models that lie out of equilibrium

(Appendix section 6.5; Fig. 1B). Following recent reports (Estrada et al., 2016;

Li et al., 2018; Park et al., 2019) that the theoretical description of transcrip-

tional regulation in eukaryotes may call for models rooted in non-equilibrium340

processes – where the assumptions of separation of time scales and no energy

expenditure may break down – we extended our earlier models to produce a non-

equilibrium MWC model (Appendix sections 6.5 and 7.1; Kim and O’Shea, 2008;

Narula and Igoshin, 2010). This model, shown for the case of two Bicoid binding

sites in Fig. 6A, accounts for the dynamics of the MWC mechanism by positing345

transition rates between the inaccessible and accessible chromatin states, but

makes no assumptions about the relative magnitudes of these rates, or about
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the rates of Bicoid and RNAP binding and unbinding.

Since this model can operate out of steady state, we calculate the proba-

bilities of each state as a function of time by solving the system of coupled350

ordinary differential equations (ODEs) associated with the system shown in

Fig. 6A. Consistent with prior measurements (Blythe and Wieschaus, 2016), we

assume that chromatin is inaccessible at the start of the nuclear cycle. Over

time, the system evolves such that the probability of it occupying each state

becomes nonzero, making it possible to calculate the fraction of time RNAP355

is bound to the promoter and, through the occupancy hypothesis, the rate of

RNAP loading. Mitotic repression is still incorporated using the term tMitRep.

For times t < tMitRep, the system can evolve in time but the ensuing transcrip-

tion rate is fixed at zero.

We systematically varied the magnitudes of the transition rates and solved360

the system of ODEs in order to calculate the corresponding ton offset and average

ton delay. Due to the combinatorial increase of free parameters as more Bicoid

binding sites are included in the model, we could only explore the parameter

space for models containing up to five Bicoid binding sites (Appendix section 7.2;

Fig. 6B and Appendix fig. 9). Regardless, none of the non-equilibrium MWC365

models with up to five Bicoid binding sites came close to reaching the mutant

ton offset and average ton delay (Fig. 6B). Additionally, an alternative version

of this non-equilibrium MWC model where the system could not evolve in time

until after the mitotic repression window had elapsed yielded similar conclusions

(see Appendix section 7.3 for details). We conjecture that the observed behavior370

extends to the biologically relevant case of six or more binding sites. Thus, we

conclude that the more comprehensive non-equilibrium MWC model still cannot

account for the experimental data, motivating an additional reexamination of

our assumptions.
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Figure 6: Non-equilibrium MWC model of transcriptional regulation cannot predict the ob-

served ton delay. See caption on next page.
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Figure 6: Non-equilibrium MWC model of transcriptional regulation cannot predict the ob-

served ton delay. (A) Model that makes no assumptions about the relative transition rates

between states or about energy expenditure. Each transition rate i, j represents the rate of

switching from state i to state j. See Appendix section 7.1 for details on how the individ-

ual states are labeled. (B) Exploration of ton offset and average ton delay attainable by the

non-equilibrium MWC models as a function of the number of Bicoid binding sites compared

to the experimentally obtained values corresponding to the wild-type and zelda− mutant

backgrounds. While the non-equilibrium MWC model can explain the wild-type data, the

exploration reveals that it fails to explain the zelda− data, for up to five Bicoid binding sites.

(B, ellipses represent standard error of the mean over 11 and 12 embryos for the wild-type

and zelda− datasets, respectively)

2.6. Transcription factor-driven chromatin accessibility can capture all aspects375

of the data

Since even non-equilibrium MWC models incorporating energy expenditure

and non-steady behavior could not explain the zelda− data, we further revised

the assumptions of our model in an effort to quantitatively predict the regulation

of ton along the embryo. In accordance with the MWC model of allostery, all380

of our theoretical treatments so far have posited that the DNA is an allosteric

molecule that transitions between open and closed states as a result of thermal

fluctuations (Narula and Igoshin, 2010; Mirny, 2010; Marzen et al., 2013; Phillips

et al., 2013).

In the MWC models considered here, the presence of Zelda and Bicoid does385

not affect the microscopic rates of DNA opening and closing; rather, their bind-

ing to open DNA shifts the equilibrium of the DNA conformation toward the

accessible state. However, recent biochemical work has suggested that Zelda

and Bicoid play a more direct role in making chromatin accessible. Specifically,

Zelda has been implicated in the acetylation of chromatin, a histone modification390

that renders nucleosomes unstable and increases DNA accessibility (Li et al.,

2014b; Li and Eisen, 2018). Further, Bicoid has been shown to interact with the

co-activator dCBP, which possesses histone acetyltransferase activity (Fu et al.,

2004). Additionally, recent studies by Desponds et al. (2016) in hunchback and
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by Dufourt et al. (2018) in snail have proposed the existence of multiple tran-395

scriptionally silent steps that the promoter needs to transition through before

transcriptional onset. These steps could correspond to, for example, the re-

cruitment of histone modifiers, nucleosome remodelers, and the transcriptional

machinery (Li et al., 2014b; Park et al., 2019), or to the step-wise unraveling

of discrete histone-DNA contacts (Culkin et al., 2017). Further, Dufourt et al.400

(2018) proposed that Zelda plays a role in modulating the number of these steps

and their transition rates.

We therefore proposed a model of transcription factor-driven chromatin ac-

cessibility in which, in order for the DNA to become accessible and transcription

to ensue, the system slowly and irreversibly transitions through m transcription-

ally silent states (Appendix section 8.1; Fig. 7A). We assume that the transitions

between these states are all governed by the same rate constant π. Finally, in a

stark deviation from the MWC framework, we posit that these transitions can

be catalyzed by the presence of Bicoid and Zelda such that

π = cb[Bicoid] + cz[Zelda]. (7)

Here, π describes the rate (in units of inverse time) of each irreversible step,

expressed as a sum of rates that depend separately on the concentrations of

Bicoid and Zelda, and cb and cz are rate constants that scale the relative contri-405

bution of each transcription factor to the overall rate (see Appendix section 8.2

for a more detailed discussion of this choice). We emphasize that this is only

one potential model, and there may exist several other non-equilibrium models

capable of describing our data.

In this model of transcription factor-driven chromatin accessibility, once the410

DNA becomes irreversibly accessible after transitioning through the m non-

productive states, we assume that, for the rest of the nuclear cycle, the system

equilibrates rapidly such that the probability of it occupying any of its possible

states is still described by equilibrium statistical mechanics. Like in our previ-

ous models, transcription only occurs in the RNAP-bound states, obeying the415

occupancy hypothesis. Further, our model assumes that if the transcriptional
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onset time of a given nucleus exceeds that of the next mitosis, this nucleus will

not engage in transcription. Thus, this transcription factor-driven model is an

extension of the non-equilibrium MWC model with two crucial differences: (i)

we allow for multiple inaccessible states preceding the transcriptionally active420

state, and (ii) the transitions between these states are actively driven by Bicoid

or Zelda.

Unlike the thermodynamic and non-equilibrium MWC models, this model

of transcription factor-driven chromatin accessibility quantitatively recapitu-

lated the observation that posterior nuclei in zelda− embryos do not engage in425

transcription as well as the initial rate of RNAP loading, and ton for both the

wild-type and zelda− mutant data (Fig. 7B and C). Additionally, we found that

a minimum of m = 3 steps was required to sufficiently explain the data (Ap-

pendix section 8.3; Appendix fig. 14). Interestingly, unlike all previously con-

sidered models, the model of transcription factor-driven chromatin accessibility430

did not require mitotic repression to explain ton (Appendix sections 3 and 8.1).

Instead, the timing of transcriptional output arose directly from the model’s

initial irreversible transitions (Appendix fig. 14), obviating the need for an ar-

bitrary suppression window in the beginning of the nuclear cycle. The only

substantive disagreement between our theoretical model and the experimental435

data was that the model predicted that no nuclei should transcribe posterior

to 60% of the embryo length, whereas no transcription posterior to 40% was

experimentally observed in the embryo (Fig. 7B and C). Finally, note that this

model encompasses a much larger region of parameter space than the thermody-

namic and non-equilibrium MWC models and, as expected from the agreement440

between model and experiment described above, contained both the wild-type

and zelda− data points within its domain (Fig. 7D).

3. Discussion

For four decades, thermodynamic models rooted in equilibrium statistical

mechanics have constituted the null theoretical model for calculating how the445
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Figure 7: A model of transcription factor-driven chromatin accessibility is sufficient to reca-

pitulate hunchback transcriptional dynamics. See caption on next page.
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Figure 7: A model of transcription factor-driven chromatin accessibility is sufficient to re-

capitulate hunchback transcriptional dynamics. (A) Overview of the proposed model, with

three (m = 3) effectively irreversible Zelda and/or Bicoid-mediated intermediate transitions

from the inaccessible to the accessible state. (B, C) Experimentally fitted (B) initial RNAP

loading rates and (C) ton for wild-type and zelda− embryos using a single set of parameters

and assuming six Bicoid binding sites. (D) The domain of ton offset and average ton delay cov-

ered by this transcription factor-driven chromatin accessibility model (brown) is much larger

than those of the generalized thermodynamic model (yellow) and the non-equilibrium MWC

models (green), and easily encompasses both experimental datasets (ellipses). (B-D, error

bars/ellipses represent standard error of the mean over 11 and 12 embryos for the wild-type

and zelda− datasets, respectively)

number, placement and affinity of transcription factor binding sites on regula-

tory DNA dictates gene expression (Bintu et al., 2005a,b). Further, the MWC

mechanism of allostery has been proposed as an extra layer that allows thermo-

dynamic and more general non-equilibrium models to account for the regulation

of chromatin accessibility (Mirny, 2010; Narula and Igoshin, 2010; Marzen et al.,450

2013).

In this investigation, we tested thermodynamic and non-equilibrium MWC

models of chromatin accessibility and transcriptional regulation in the context

of hunchback activation in the early embryo of the fruit fly D. melanogaster

(Driever et al., 1989; Nien et al., 2011; Xu et al., 2014). While chromatin455

state (accessibility, post-translational modifications) is highly likely to influence

transcriptional dynamics of associated promoters, specifically measuring the in-

fluence of chromatin state on transcriptional dynamics is challenging because

of the sequential relationship between changes in chromatin state and tran-

scriptional regulation. However, the hunchback P2 minimal enhancer provides a460

unique opportunity to dissect the relative contribution of chromatin regulation

on transcriptional dynamics because, in the early embryo, chromatin accessibil-

ity at hunchback is granted by both Bicoid and Zelda (Hannon et al., 2017). The

degree of hunchback transcriptional activity, however, is regulated directly by

Bicoid (Driever and Nusslein-Volhard, 1989; Driever et al., 1989; Struhl et al.,465
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1989). Therefore, while genetic elimination of Zelda function interferes with

acquisition of full chromatin accessibility, the hunchback locus retains a measur-

able degree of accessibility and transcriptional activity stemming from Bicoid

function, allowing for a quantitative determination of the contribution of Zelda-

dependent chromatin accessibility on the transcriptional dynamics of the locus.470

With these attributes in mind, we constructed a thermodynamic MWC

model which, given a set of parameters, predicted an output rate of hunch-

back transcription as a function of the input Bicoid and Zelda concentrations

(Fig. 2B). In order to test this model, it was necessary to acknowledge that de-

velopment is not in steady-state, and that both Bicoid and Zelda concentrations475

change dramatically in space and time (Fig. 3A and B). As a result, we went

beyond widespread steady-state descriptions of development and introduced a

novel approach that incorporated transient dynamics of input transcription-

factor concentrations in order to predict the instantaneous output transcrip-

tional dynamics of hunchback (Fig. 3C). Given input dynamics quantified with480

fluorescent protein fusions to Bicoid and Zelda, we both predicted output tran-

scriptional activity and measured it with an MS2 reporter (Figs. 3D and 4B).

This approach revealed that the thermodynamic MWC model sufficiently

predicts the timing of the onset of transcription and the subsequent initial rate

of RNAP loading as a function of Bicoid and Zelda concentration. However,485

when confronted with the much simpler case of Bicoid-only regulation in a zelda

mutant, the thermodynamic MWC model failed to account for the observations

that only a fraction of nuclei along the embryo engaged in transcription, and

that the transcriptional onset time of those nuclei that do transcribe was sig-

nificantly delayed with respect to the wild-type setting (Fig. 4D and E). Our490

systematic exploration of all thermodynamic models (over a reasonable param-

eter range) showed that that no thermodynamic model featuring regulation by

Bicoid alone could quantitatively recapitulate the measurements performed in

the zelda mutant background (Fig. 5C, yellow).

This disagreement could be resolved by invoking an unknown transcription495

factor that regulates the hunchback reporter in addition to Bicoid. However, at
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the early stages of development analyzed here, such a factor would need to be

both maternally provided and patterned in a spatial gradient to produce the

observed position-dependent transcriptional onset times. To our knowledge,

none of the known maternal genes regulate the expression of this hunchback500

reporter in such a fashion (Chen et al., 2012; Perry et al., 2012; Xu et al., 2014).

We conclude that the MWC thermodynamic model cannot accurately predict

hunchback transcriptional dynamics.

To explore non-equilibrium models, we retained the MWC mechanism of

chromatin accessibility, but did not demand that the accessible and inaccessible505

states be in thermal equilibrium. Further, we allowed for the process of Bicoid

and RNAP binding, as well as their interactions, to consume energy. For up

to five Bicoid binding sites, no set of model parameters could quantitatively

account for the transcriptional onset features in the zelda mutant background

(Fig. 6B). While we were unable to investigate models with more than five Bi-510

coid binding sites due to computational complexity (Estrada et al., 2016), the

substantial distance in parameter space between the mutant data and the in-

vestigated models (Fig. 6B) suggested that a successful model with more than

five Bicoid binding sites would probably operate near the limits of its explana-

tory power, similar to the conclusions from studies that explored hunchback515

regulation under the steady-state assumption (Park et al., 2019). Thus, despite

the simplicity and success of the MWC model in predicting the effects of pro-

tein allostery in a wide range of biological contexts (Keymer et al., 2006; Swem

et al., 2008; Martins and Swain, 2011; Marzen et al., 2013; Rapp and Yifrach,

2017; Razo-Mejia et al., 2018; Chure et al., 2019; Rapp and Yifrach, 2019), the520

observed transcriptional onset times could not be described by any previously

proposed thermodynamic MWC mechanism of chromatin accessibility, or even

by a more generic non-equilibrium MWC model in which energy is continuously

dissipated (Tu, 2008; Kim and O’Shea, 2008; Narula and Igoshin, 2010; Estrada

et al., 2016; Wang et al., 2017).525

Since Zelda is associated with histone acetylation, which is correlated with

increased chromatin accessibility (Li et al., 2014b; Li and Eisen, 2018), and Bi-
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coid interacts with the co-activator dCBP, which has histone acetyltransferase

activity (Fu et al., 2004; Fu and Ma, 2005; Park et al., 2019), we suspect that

both Bicoid and Zelda actively drive DNA accessibility. A molecular pathway530

shared by Bicoid and Zelda to render chromatin accessible is consistent with

our results, and with recent genome-wide experiments showing that Bicoid can

rescue the function of Zelda-dependent enhancers at high enough concentra-

tions (Hannon et al., 2017). Thus, the binding of Bicoid and Zelda, rather than

just biasing the equilibrium toward the open chromatin state as in the MWC535

mechanism, may trigger a set of molecular events that locks DNA into an ac-

cessible state. In addition, the promoters of hunchback (Desponds et al., 2016)

and snail (Dufourt et al., 2018) may transition through a set of intermediate,

non-productive states before transcription begins.

We therefore explored a model in which Bicoid and Zelda catalyze the tran-540

sition of chromatin into the accessible state via a series of slow, effectively ir-

reversible steps. These steps may be interpreted as energy barriers that are

overcome through the action of Bicoid and Zelda, consistent with the coupling

of these transcription factors to histone modifiers, nucleosome remodelers (Fu

et al., 2004; Li et al., 2014b; Li and Eisen, 2018; Park et al., 2019), and with545

the step-wise breaking of discrete histone-DNA contacts to unwrap nucleoso-

mal DNA (Culkin et al., 2017). In this model, once accessible, the chromatin

remains in that state and the subsequent activation of hunchback by Bicoid is

described by a thermodynamic model.

Crucially, this transcription factor-driven chromatin accessibility model550

successfully replicated all of our experimental observations. A minimum

of three transcriptionally silent states were necessary to explain our data

(Fig. 7D and Appendix fig. 14C). Interestingly, recent work dissecting the tran-

scriptional onset time distribution of snail also suggested the existence of three

such intermediate steps in the context of that gene (Dufourt et al., 2018). Given555

that, as in hunchback, the removal and addition of Zelda modulates the timing

of transcriptional onset of sog and snail (Dufourt et al., 2018; Yamada et al.,

2019), we speculate that transcription factor-driven chromatin accessibility may
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also be at play in these pathways. Thus, taken in consideration with similar

works examining the dynamics of transcription onset (Desponds et al., 2016;560

Dufourt et al., 2018; Fritzsch et al., 2018; Li et al., 2018), our results strongly

suggest that chromatin state does not fluctuate thermodynamically, but rather

progresses through a series of stepwise, transcription factor-driven transitions

into a final RNAP-accessible configuration (Coulon et al., 2013).

Intriguingly, accounting for these intermediate states also obviated the565

need for the ad hoc imposition of a mitotic repression window (Appendix sec-

tions 3 and 8.1), which was required in the thermodynamic MWC model (Ap-

pendix fig. 6). Our results thus suggest a mechanistic interpretation of the phe-

nomenon of mitotic repression after anaphase, where the promoter must traverse

through intermediary transcriptionally silent states before transcriptional onset570

can occur.

These clues into the molecular mechanisms of action of Bicoid, Zelda, and

their associated modifications to the chromatin landscape pertain to a time scale

of a few minutes, a temporal scale that is inaccessible with widespread genome-

wide and fixed-tissue approaches. Here, we revealed the regulatory action of575

Bicoid and Zelda by utilizing the dynamic information provided by live imaging

to analyze the transient nature of the transcriptional onset time, highlighting

the need for descriptions of development that go beyond steady state and ac-

knowledge the highly dynamic changes in transcription-factor concentrations

that drive developmental programs.580

While we showed that one model incorporating transcription factor-driven

chromatin accessibility could recapitulate hunchback transcriptional regulation

by Bicoid and Zelda, and is consistent with molecular evidence on the modes

of action of these transcription factors, other models may have comparable ex-

planatory power. In the future, a systematic exploration of different classes585

of models and their unique predictions will identify measurements that deter-

mine which specific model is the most appropriate description of transcriptional

regulation in development and how it is implemented at the molecular level.

While all the analyses in this work relied on mean levels of input concentra-
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tions and output transcription levels, detailed studies of single-cell features of590

transcriptional dynamics such as the distribution of transcriptional onset times

(Narula and Igoshin, 2010; Dufourt et al., 2018; Fritzsch et al., 2018) could shed

light on these chromatin-regulating mechanisms. Simultaneous measurement of

local transcription-factor concentrations at sites of transcription and of tran-

scriptional initiation with high spatiotemporal resolution, such as afforded by595

lattice light-sheet microscopy (Mir et al., 2018), could provide further informa-

tion about chromatin accessibility dynamics. Finally, different theoretical mod-

els may make distinct predictions about the effect of modulating the number,

placement, and affinity of Bicoid and Zelda sites (and even of nucleosomes) in

the hunchback enhancer. These models could be tested with future experiments600

that implement these modulations in reporter constructs.

In sum, here we engaged in a theory-experiment dialogue to respond to the

theoretical challenges of proposing a passive MWC mechanism for chromatin ac-

cessibility in eukaryotes (Mirny, 2010; Narula and Igoshin, 2010; Marzen et al.,

2013); we also questioned the suitability of thermodynamic models in the con-605

text of development (Estrada et al., 2016). At least regarding the activation of

hunchback, and likely similar developmental genes such as snail and sog (Dufourt

et al., 2018; Yamada et al., 2019), we speculate that Bicoid and Zelda actively

drive chromatin accessibility, possibly through histone acetylation. Once chro-

matin becomes accessible, thermodynamic models can predict hunchback tran-610

scription without the need to invoke energy expenditure and non-equilibrium

models. Regardless of whether we have identified the only possible model of

chromatin accessibility and regulation, we have demonstrated that this dialogue

between theoretical models and the experimental testing of their predictions at

high spatiotemporal resolution is a powerful tool for biological discovery. The615

new insights afforded by this dialogue will undoubtedly refine theoretical de-

scriptions of transcriptional regulation as a further step toward a predictive

understanding of cellular decision-making in development.
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4. Materials and Methods

4.1. Predicting Zelda binding sites

Zelda binding sites in the hunchback promoter were identified as hep-

tamers scoring 3 or higher using a Zelda alignment matrix (Harrison et al.,

2011) and the Advanced PASTER entry form online (http://stormo.wustl.635

edu/consensus/cgi-bin/Server/Interface/patser.cgi) (Hertz et al., 1990;

Hertz and Stormo, 1999). PATSER was run with setting “Seq. Alphabet and

Normalization” as “a:t 3 g:c 2” to provide the approximate background frequen-

cies as annotated in the Berkeley Drosophila Genome Project (BDGP)/Celera

Release 1. Reverse complementary sequences were also scored.640

4.2. Fly Strains

Bicoid nuclear concentration was imaged in embryos from line yw; his2av-

mrfp1;bicoidE1,egfp-bicoid (Gregor et al., 2007b). Similarly, Zelda nuclear con-

centration was determined by imaging embryos from line sfgfp-zelda;+;his-irfp.

The sfgfp-zelda transgene was obtained from Hamm et al. (2017) and the his-645

iRFP transgene is courtesy of Kenneth Irvine and Yuanwang Pan.
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Transcription from the hunchback promoter was measured by imaging em-

bryos resulting from crossing female virgins yw;HistoneRFP;MCP-NoNLS(2)

with male yw;P2P-MS2-LacZ/cyo;+ (Garcia et al., 2013).

In order to image transcription in embryos lacking maternally de-650

posited Zelda protein, we crossed mother flies whose germline was

w, his2av-mrfp1,zelda(294),FRT19A;+;MCP-egfp(4F)/+ obtained through

germline clones (see below) with fathers carrying the yw;P2P-MS2-LacZ/cyo;+

reporter. The zelda(294) transgene is courtesy of Christine Rushlow (Liang

et al., 2008). The MCP-egfp(4F) transgene expresses approximately double the655

amount of MCP than the MCP-egfp(2) (Garcia et al., 2013), ensuring similar

levels of MCP in the embryo in all experiments.

Imaging Bicoid nuclear concentration in embryos lacking maternally de-

posited Zelda protein was accomplished by replacing the MCP-egfp(4F)

transgene described in the previous paragraph with the bicoidE1,egfp-660

bicoid transgene used for imaging nuclear Bicoid in a wildtype back-

ground. We crossed mother flies whose germline was w, his2av-

mrfp1,zelda(294),FRT19A;+;bicoidE1,egfp-bicoid/+ obtained through germline

clones (see below) with yw fathers.

4.3. Zelda germline clones665

In order to generate mother flies containing a germline homozy-

gous null for zelda, we first crossed virgin females of w,his2av-

mrfp1,zelda(294),FRT19A/FM7,y,B;+;MCP-egfp(4F)/TM3,ser (or w, his2av-

mrfp1,zelda(294),FRT19A;+;bicoidE1,egfp-bicoid/+ to image nuclear Bicoid)

with males of ovoD,hs-FLP,FRT19A;+;+ (Liang et al., 2008). The resulting670

heterozygotic offspring were heat-shocked in order to create maternal germline

clones as described in Liang et al. (2008). The resulting female virgins were

crossed with male yw;P2P-MS2-LacZ/cyo;+ (Garcia et al., 2013) to image tran-

scription or male yw to image nuclear Bicoid concentration.

Male offspring are null for zygotic zelda. Female offspring are heterozygotic675

for functional zelda, but zygotic zelda is not transcribed until nuclear cycle 14
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(Liang et al., 2008), which occurs after the analysis in this work. All embryos

lacking maternally deposited Zelda showed aberrant morphology in nuclear size

and shape (data not shown), as previously reported (Liang et al., 2008; Staudt

et al., 2006).680

4.4. Sample preparation and data collection

Sample preparation followed procedures described in Bothma et al. (2014),

Garcia and Gregor (2018), and Lammers et al. (2019).

Embryos were collected and mounted in halocarbon oil 27 between a semiper-

meable membrane (Lumox film, Starstedt, Germany) and a coverslip. Data col-685

lection was performed using a Leica SP8 scanning confocal microscope (Leica

Microsystems, Biberach, Germany). Imaging settings for the MS2 experiments

were the same as in Lammers et al. (2019), except the Hybrid Detector (HyD)

for the His-RFP signal used a spectral window of 556-715 nm. The settings for

the Bicoid-GFP measurements were the same, except for the following. The690

power setting for the 488 nm line was 10 µW. The confocal stack was only 10

slices in this case, rather than 21, resulting in a spacing of 1.11 µm between

planes. The images were acquired at a time resolution of 30 s, using an image

resolution of 512 x 128 pixels.

The settings for the Zelda-sfGFP measurements were the same as the Bicoid-695

GFP measurements, except different laser lines were used for the different fluo-

rophores. The sf-GFP excitation line was set at 485 nm, using a power setting

of 10 µW. The His-iRFP excitation line was set at 670 nm. The HyD for the

His-iRFP signal was set at a 680-800 nm spectral window. All specimens were

imaged over the duration of nuclear cycle 13.700

4.5. Image analysis

Images were analyzed using custom-written software following the protocol

in Garcia et al. (2013). Briefly, this procedure involved segmenting individual

nuclei using the histone signal as a nulear mask, segmenting each transcription
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spot based on its fluorescence, and calculating the intensity of each MCP-GFP705

transcriptional spot inside a nucleus as a function of time.

Additionally, the nuclear protein fluorescences of the Bicoid-GFP and Zelda-

sfGFP fly lines were calculated as follows. Using the histone-labeled nuclear

mask for each individual nucleus, the fluorescence signal within the mask was

extracted in xyz, as well as through time. For each timepoint, the xy signal was710

averaged to give an average nuclear fluorescence as a function of z and time.

This signal was then maximum projected in z, resulting in an average nuclear

concentration as a function of time, per single nucleus. These single nucleus

concentrations were then averaged over anterior-posterior position to create the

protein concentrations reported in the main text.715

4.6. Data Analysis

All fits in the main text were performed by minimizing the least-squares error

between the data and the model predictions. Unless stated otherwise, error bars

reflect standard error of the mean over multiple embryo measurements. See

Appendix section 2.1 for more details on how this was carried out for model720

predictions.

References

Ackers, G.K., Johnson, A.D., Shea, M.A., 1982. Quantitative model for gene

regulation by lambda phage repressor. Proc Natl Acad Sci U S A 79, 1129–33.

Adams, C.C., Workman, J.L., 1995. Binding of disparate transcriptional acti-725

vators to nucleosomal DNA is inherently cooperative. Molecular and Cellular

Biology 15, 1405–1421. doi:10.1128/mcb.15.3.1405.

Ahsendorf, T., Wong, F., Eils, R., Gunawardena, J., 2014. A framework for

modelling gene regulation which accommodates non-equilibrium mechanisms.

BMC Biol 12, 102. doi:10.1186/s12915-014-0102-4.730

36

http://dx.doi.org/10.1128/mcb.15.3.1405
http://dx.doi.org/10.1186/s12915-014-0102-4


Bai, L., Ondracka, A., Cross, F.R., 2011. Multiple sequence-specific factors

generate the nucleosome-depleted region on cln2 promoter. Mol Cell 42, 465–

76. doi:10.1016/j.molcel.2011.03.028.

Bakk, A., Metzler, R., Sneppen, K., 2004. Sensitivity of or in phage lambda.

Biophys J 86, 58–66.735

Berg, H.C., Purcell, E.M., 1977. Physics of chemoreception. Biophys J 20, 193–

219. doi:S0006-3495(77)85544-6[pii]10.1016/S0006-3495(77)85544-6.

Berrocal, A., Lammers, N.C., Garcia, H.G., Eisen, M.B., 2018. Kinetic sculpting

of the seven stripes of the drosophila even-skipped gene. bioRxiv doi:10.1101/

335901.740

Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S.M., Singer, R.H., Long,

R.M., 1998. Localization of ash1 mrna particles in living yeast. Mol Cell 2,

437–45. doi:S1097-2765(00)80143-4[pii].

Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J.,

Kuhlman, T., Phillips, R., 2005a. Transcriptional regulation by the numbers:745

applications. Curr Opin Genet Dev 15, 125–35.

Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J.,

Phillips, R., 2005b. Transcriptional regulation by the numbers: models. Curr

Opin Genet Dev 15, 116–24.

Blythe, S.A., Wieschaus, E.F., 2016. Establishment and maintenance of her-750

itable chromatin structure during early drosophila embryogenesis. Elife 5.

doi:10.7554/eLife.20148.

Bolouri, H., Davidson, E.H., 2003. Transcriptional regulatory cascades in de-

velopment: initial rates, not steady state, determine network kinetics. Proc

Natl Acad Sci U S A 100, 9371–6. doi:10.1073/pnas.1533293100.755

Bothma, J.P., Garcia, H.G., Esposito, E., Schlissel, G., Gregor, T., Levine,

M., 2014. Dynamic regulation of eve stripe 2 expression reveals transcrip-

37

http://dx.doi.org/10.1016/j.molcel.2011.03.028
http://dx.doi.org/S0006-3495(77)85544-6 [pii] 10.1016/S0006-3495(77)85544-6
http://dx.doi.org/10.1101/335901
http://dx.doi.org/10.1101/335901
http://dx.doi.org/10.1101/335901
http://dx.doi.org/S1097-2765(00)80143-4 [pii]
http://dx.doi.org/10.7554/eLife.20148
http://dx.doi.org/10.1073/pnas.1533293100


tional bursts in living drosophila embryos. Proc Natl Acad Sci U S A 111,

1059810603. doi:10.1073/pnas.1410022111.

Bothma, J.P., Garcia, H.G., Ng, S., Perry, M.W., Gregor, T., Levine, M., 2015.760

Enhancer additivity and non-additivity are determined by enhancer strength

in the drosophila embryo. Elife 4. doi:10.7554/eLife.07956.

Brewster, R.C., Jones, D.L., Phillips, R., 2012. Tuning Promoter Strength

through RNA Polymerase Binding Site Design in Escherichia coli. PLoS

Computational Biology 8. doi:10.1371/journal.pcbi.1002811.765

Brewster, R.C., Weinert, F.M., Garcia, H.G., Song, D., Rydenfelt, M., Phillips,

R., 2014. The transcription factor titration effect dictates level of gene ex-

pression. Cell 156, 1312–23. doi:10.1016/j.cell.2014.02.022.

Buchler, N.E., Gerland, U., Hwa, T., 2003. On schemes of combinatorial tran-

scription logic. Proc Natl Acad Sci U S A 100, 5136–41.770

Chen, H., Xu, Z., Mei, C., Yu, D., Small, S., 2012. A system of repressor

gradients spatially organizes the boundaries of bicoid-dependent target genes.

Cell 149, 618–29. doi:10.1016/j.cell.2012.03.018.

Chure, G., Razo-Mejia, M., Belliveau, N.M., Einav, T., Kaczmarek, Z.A.,

Barnes, S.L., Lewis, M., Phillips, R., 2019. Predictive shifts in free energy775

couple mutations to their phenotypic consequences. Proc Natl Acad Sci U S

A 116, 18275–18284. doi:10.1073/pnas.1907869116.

Coulon, A., Chow, C.C., Singer, R.H., Larson, D.R., 2013. Eukaryotic transcrip-

tional dynamics: from single molecules to cell populations. Nat Rev Genet

14, 572–84. doi:10.1038/nrg3484.780

Cui, L., Murchland, I., Shearwin, K.E., Dodd, I.B., 2013. Enhancer-like long-

range transcriptional activation by lambda ci-mediated dna looping. Proc

Natl Acad Sci U S A 110, 2922–7. doi:10.1073/pnas.1221322110.

38

http://dx.doi.org/10.1073/pnas.1410022111
http://dx.doi.org/10.7554/eLife.07956
http://dx.doi.org/10.1371/journal.pcbi.1002811
http://dx.doi.org/10.1016/j.cell.2014.02.022
http://dx.doi.org/10.1016/j.cell.2012.03.018
http://dx.doi.org/10.1073/pnas.1907869116
http://dx.doi.org/10.1038/nrg3484
http://dx.doi.org/10.1073/pnas.1221322110


Culkin, J., de Bruin, L., Tompitak, M., Phillips, R., Schiessel, H., 2017. The

role of dna sequence in nucleosome breathing. Eur Phys J E Soft Matter 40,785

106. doi:10.1140/epje/i2017-11596-2.

Desponds, J., Tran, H., Ferraro, T., Lucas, T., Perez Romero, C., Guillou, A.,

Fradin, C., Coppey, M., Dostatni, N., Walczak, A.M., 2016. Precision of

readout at the hunchback gene: Analyzing short transcription time traces in

living fly embryos. PLoS Comput Biol 12, e1005256. doi:10.1371/journal.790

pcbi.1005256.

Driever, W., Nusslein-Volhard, C., 1988. A gradient of bicoid protein in

drosophila embryos. Cell 54, 83–93.

Driever, W., Nusslein-Volhard, C., 1989. The bicoid protein is a positive regu-

lator of hunchback transcription in the early drosophila embryo. Nature 337,795

138–43. doi:10.1038/337138a0.

Driever, W., Thoma, G., Nusslein-Volhard, C., 1989. Determination of spatial

domains of zygotic gene expression in the drosophila embryo by the affinity

of binding sites for the bicoid morphogen. Nature 340, 363–7. doi:10.1038/

340363a0.800

Dufourt, J., Trullo, A., Hunter, J., Fernandez, C., Lazaro, J., Dejean, M.,

Morales, L., Nait-Amer, S., Schulz, K.N., Harrison, M.M., Favard, C., Rad-

ulescu, O., Lagha, M., 2018. Temporal control of gene expression by the

pioneer factor zelda through transient interactions in hubs. Nat Commun 9,

5194. doi:10.1038/s41467-018-07613-z.805

Edgar, B.A., Odell, G.M., Schubiger, G., 1987. Cytoarchitecture and the pat-

terning of fushi tarazu expression in the drosophila blastoderm. Genes Dev

1, 1226–37.

Edgar, B.A., Schubiger, G., 1986. Parameters controlling transcriptional activa-

tion during early drosophila development. Cell 44, 871–7. doi:0092-8674(86)810

90009-7[pii].

39

http://dx.doi.org/10.1140/epje/i2017-11596-2
http://dx.doi.org/10.1371/journal.pcbi.1005256
http://dx.doi.org/10.1371/journal.pcbi.1005256
http://dx.doi.org/10.1371/journal.pcbi.1005256
http://dx.doi.org/10.1038/337138a0
http://dx.doi.org/10.1038/340363a0
http://dx.doi.org/10.1038/340363a0
http://dx.doi.org/10.1038/340363a0
http://dx.doi.org/10.1038/s41467-018-07613-z
http://dx.doi.org/0092-8674(86)90009-7 [pii]
http://dx.doi.org/0092-8674(86)90009-7 [pii]
http://dx.doi.org/0092-8674(86)90009-7 [pii]


Endy, D., 2005. Foundations for engineering biology. Nature 438, 449–53.

doi:nature04342[pii]10.1038/nature04342.

Estrada, J., Wong, F., DePace, A., Gunawardena, J., 2016. Information in-

tegration and energy expenditure in gene regulation. Cell 166, 234–44.815

doi:10.1016/j.cell.2016.06.012.

Fakhouri, W.D., Ay, A., Sayal, R., Dresch, J., Dayringer, E., Arnosti, D.N.,

2010. Deciphering a transcriptional regulatory code: modeling short-range re-

pression in the drosophila embryo. Mol Syst Biol 6, 341. doi:msb200997[pii]

10.1038/msb.2009.97.820

Foo, S.M., Sun, Y., Lim, B., Ziukaite, R., O’Brien, K., Nien, C.Y., Kirov,

N., Shvartsman, S.Y., Rushlow, C.A., 2014. Zelda potentiates morphogen

activity by increasing chromatin accessibility. Current Biology 24, 1341–1346.

doi:10.1016/j.cub.2014.04.032.
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Appendix

1. Equilibrium Models of Transcription

1.1. An overview of equilibrium thermodynamics models of transcription1105

In this section we give a brief overview of the theoretical concepts be-

hind equilibrium thermodynamics models of transcription. For a more detailed

overview, we refer the reader to Bintu et al. (2005b) and Bintu et al. (2005a).

These models invoke statistical mechanics in order to to calculate bulk proper-

ties of a system by enumerating the probability of each possible microstate of1110

the system. The probability of a given microstate is proportional to its Boltz-

mann weight e−βε, where ε is the energy of the microstate and β = (kBT )−1

with kB being the Boltzmann constant and T the absolute temperature of the

system (Garcia et al., 2007).

Specific examples of these microstates in the context of simple activation are

featured in Appendix fig. 1. As reviewed in Garcia et al. (2007), the Boltzmann

weight of each of these microstates can also be written in a thermodynamic

language that accounts for the concentration of the molecular species, their

dissociation constant to DNA, and a cooperativity term ω that accounts for the

protein-protein interactions between the activator and RNAP. To calculate the

probability of finding RNAP bound to the promoter pbound, we divide the sum

of the weights of the RNAP-bound states by the sum of all possible states

pbound =

[P ]
Kp

+ ω [P ]
Kp

[A]
Ka

1 + [P ]
Kp

+ [A]
Ka

+ ω [P ]
Kp

[A]
Ka

. (1)

Here, [P ] and [A] are the concentrations of RNAP and activator, respectively.1115

Kp and Ka are their corresponding dissociation constants, and ω indicates an

interaction between activator and RNAP: ω > 1 corresponds to cooperativity,

whereas 0 < ω < 1 corresponds to anti-cooperativity.

Using pbound, we write the subsequent rate of mRNA production by assuming

the occupancy hypothesis, which states that

dmRNA

dt
= Rpbound, (2)
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Appendix 1 figure 1: Equilibrium thermodynamic model of simple activation. A promoter

region with one binding site for an activator molecule has four possible microstates, each with

its corresponding statistical weight and rate of RNAP loading.

where R is an underlying rate of transcriptional initiation (usually interpreted

as the rate of loading RNAP from the promoter-bound state). In the case

of simple activation illustrated in Appendix fig. 1, the overall transcriptional

initiation rate is then given by

dmRNA

dt
= R

[P ]
Kp

+ ω [P ]
Kp

[A]
Ka

1 + [P ]
Kp

+ [A]
Ka

+ ω [P ]
Kp

[A]
Ka

. (3)

From Appendix eq. 1, one can derive the Hill equation that is frequently

used to model biophysical binding. In the limit of high cooperativity, ω [P ]
Kp
� 1

and ω [A]
Ka
� 1 such that

pbound =
ω [P ]
Kp

[A]
Ka

1 + ω [P ]
Kp

[A]
Ka

. (4)

If we then define a new binding constant K ′a =
KaKp

ω[P ] , we get the familiar Hill

equation of order 1 with a binding constant K ′a

pbound =

[A]
K′

a

1 + [A]
K′

a

(5)

In general, any Hill equation of order n can be derived from a more fundamental

equilibrium thermodynamic model of simple activation possessing n activator1120

binding sites in the appropriate limits of high cooperativity. Thus, any time a

Hill equation is invoked, equilibrium thermodynamics is implicitly used, bringing

with it all of the underlying assumptions described in Appendix section 6.5. This
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highlights the importance of rigorously grounding the assumptions made in any

model of transcription, to better discriminate between the effects of equilibrium1125

and non-equilibrium processes.

1.2. Thermodynamic MWC model

In the thermodynamic MWC model, we consider a system with six Bicoid

binding sites and ten Zelda binding sites. In addition, we allow for RNAP

binding to the promoter.1130

In our model, the DNA can be in either an accessible or an inaccessible state.

The difference in free energy between the two states is given by −∆εchrom,

where ∆εchrom is defined as

∆εchrom = εaccessible − εinaccessible. (6)

Here, εaccessible and εaccessible are the energies of the accessible and inaccessi-

ble states, respectively. A positive ∆εchrom signifies that the inaccessible state

is at a lower energy level, and therefore more probable, than the accessible state.

We assume that all binding sites for a given molecular species have the same

binding affinity, and that all accessible states exist at the same energy level com-1135

pared to the inaccessible state. Thus, the total number of states is determined

by the combinations of occupancy states of the three types of binding sites as

well as the presence of the inaccessible, unbound state. We choose to not allow

any transcription factor or RNAP binding when the DNA is inaccessible.

In this equilibrium model, the statistical weight of each accessible microstate1140

is given by the thermodynamic dissociation constants Kb, Kz, and Kp of Bi-

coid, Zelda, and RNAP respectively. The statistical weight for the inaccessible

state is e
∆εchrom. We allow for a protein-protein interaction term ωb between

nearest-neighbor Bicoid molecules, as well as a pairwise cooperativity ωbp be-

tween Bicoid and RNAP. However, we posit that Zelda does not interact directly1145

with either Bicoid or RNAP. For notational convenience, we express the statisti-

cal weights in terms of the non-dimensionalized concentrations of Bicoid, Zelda,

and RNAP, given by b, z and p, respectively, such that, for example, b ≡ [Bicoid]
Kb

.
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Appendix 1 figure 2: States, weights, and rate of RNAP loading diagram for the thermo-

dynamic MWC model, containing six Bicoid binding sites, ten Zelda binding sites, and a

promoter.

Appendix fig. 2 shows the states and statistical weights for this thermodynamic

MWC model, with all the associated parameters.1150

Incorporating all the microstates, we can calculate a statistical mechanical

partition function, the sum of all possible weights, which is given by

Z =e∆εchrom/kBT+ (7)

(1 + z)
10︸ ︷︷ ︸

Zelda binding

(
1 + b+ b2ωb + ...+ b6ω5

b + p+ pbωbp + ...+ pb6ω5
bω

6
bp

)︸ ︷︷ ︸
Bicoid and RNAP binding

.

Using the binomial theorem

(a+ b)N =
N∑
n=0

(
N

n

)
anbN−n,
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Appendix eq. 7 can be expressed more compactly as

Z = e∆εchrom/kBT +
(

1 + z
)10(

1 + p+
∑
j=0,1

6∑
i=1

(
6

i

)
biωi−1

b pjωijbp

)
. (8)

From this partition function, we can calculate pbound, the probability of

being in an RNAP-bound state. This term is given by the sum of the statistical

weights of the RNAP-bound states divided by the partition function

pbound =
1

Z

((
1 + z

)10

p
(

1 +
6∑
i=1

(
6

i

)
biωi−1

b ωibp

))
. (9)

In this model, we once again assume that the transcription associated with each

microstate is zero unless RNAP is bound, in which case the associated rate is

R. Then, the overall transcriptional initiation rate is given by the product of

pbound and R

dmRNA

dt
= R

1

Z

((
1 + z

)10

p
(

1 +
6∑
i=1

(
6

i

)
biωi−1

b ωibp

))
. (10)

Note that since the MS2 technology only measures nascent transcripts, we can

ignore the effects of mRNA degradation and focus on transcriptional initiation.

1.3. Constraining model parameters

The transcription rate R of the RNAP-bound states can be experimentally

constrained by making use of the fact that the hunchback minimal reporter used

in this work produces a step-like pattern of transcription across the length of

the fly embryo (Fig. 4C, blue points). Since in the anterior end of the embryo,

the observed transcription appears to level out to a maximum value, we assume

that Bicoid binding is saturated in this anterior end of the embryo such that

pbound(b→∞) ≈ 1. (11)

In this limit, Appendix eq. 10 can be written as

dmRNA

dt
= Rmax ≈ R, (12)

where Rmax is the maximum possible transcription rate. Importantly, Rmax is

an experimentally observed quantity rather than a free parameter. As a result,1155
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the model parameter R is determined by experimentally measurable quantity

Rmax.

The value of p can also be constrained by measuring the transcription rate in

the embryo’s posterior, where we assume Bicoid concentration to be negligible.

Here, the observed transcription bottoms out to a minimum level Rmin (Fig. 4C,

blue points), which we can connect with the model’s theoretical minimum rate.

Specifically, in this limit, b approaches zero in Appendix eq. 10 such that all

Bicoid-dependent terms drop out, resulting in

dmRNA

dt
= Rmin ≈

1

Z

((
1 + z

)10

p

)
Rmax, (13)

where we have replaced R with Rmax as described above. Next, we can express

p in terms of the other parameters such that

p ≈
Rmin

(
e∆εchrom/kBT +

(
1 + z

)10
)

(
Rmax −Rmin

)(
1 + z

)10
. (14)

Thus, p is no longer a free parameter, but is instead constrained by the ex-

perimentally observed maximum and minimum rates of transcription Rmax and

Rmin, as well as our choices of Kz and ∆εchrom. In our analysis, Rmax and1160

Rmin are calculated by taking the mean RNAP loading rate across all embryos

from the anterior and posterior of the embryo respectively, extrapolated using

the trapezoidal fitting scheme described in Appendix section 2.3.

Finally, we expand this thermodynamic MWC model to also account for

suppression of transcription in the beginning of the nuclear cycle via mechanisms1165

such as mitotic repression (Appendix section 3). To make this possible, we

include a trigger time term tMitRep, before which we posit that no readout of

Bicoid or Zelda by hunchback is possible and the rate of RNAP loading is fixed

at 0. For times t > tMitRep, the system behaves according to Appendix eq. 10.

Thus, given the constraints stemming from direct measurements of Rmax and1170

Rmin, the model has six free parameters: ∆εchrom, ωb, ωbp, Kb, Kz, and tMitRep.
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The final calculated transcription rate is then integrated in time to produce a

predicted MS2 fluorescence as a function of time (Appendix section 2.2).

For subsequent parameter exploration of this model (Appendix section 5.1),

constraints were placed on the parameters to ensure sensible results. Each1175

parameter was constrained to be strictly positive such that:

• ∆εchrom > 0

• Kb > 0

• Kz > 0

• ωb > 01180

• ωbp > 0

• 0 < tMitRep < 10.

where an upper limit of 10 min was placed on the mitotic repression term

to ensure efficient parameter exploration. This was justified because none of

the observed transcriptional onset times in the data were larger than this value1185

(Fig. 4D).

2. Input-Output measurements, predictions, and characterization

2.1. Input measurement methodology

Input transcription-factor measurements were carried out separately in in-

dividual embryos containing a eGFP-Bicoid transgene in a bicoid null mutant1190

background (Gregor et al., 2007b) or a Zelda-sfGFP CRISPR-mediated homol-

ogous recombination at the endogenous zelda locus (Hamm et al., 2017). Over

the course of nuclear cycle 13, the fluorescence inside each nucleus was extracted

(details given in Section 4.5), resulting in a measurement of the nuclear con-

centration of each transcription factor over time. Six eGFP-Bicoid and three1195

Zelda-sfGFP embryos were imaged.
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Representative fluorescence traces of eGFP-Bicoid for a single embryo indi-

cate that the magnitude of eGFP-Bicoid fluorescence decreases for nuclei located

toward the posterior of the embryo (Appendix fig. 3A). Further, the nuclear flu-

orescence of eGFP-Bicoid at 8 min into nuclear cycle 13 (Appendix fig. 3B)1200

exhibited the known exponential decay of Bicoid, with a mean decay length of

23.5% ± 0.6% of the total embryo length, consistent with but slightly different

than previous measurements that suggested a mean decay length of 19.1%±0.8%

(Liu et al., 2013). This discrepancy could stem, for example, from minor dif-

ferences in acquisition from the laser-scanning two-photon microscope used in1205

Liu et al. (2013) versus the laser-scanning confocal microscope used here, such

as differences in axial resolution (due both to different choices of objectives and

the inherent differences in axial resolution of one-photon and two-photon fluo-

rescence excitation processes). Nevertheless, the difference was minute enough

that we felt confident in our eGFP-Bicoid measurements.1210

Intra-embryo variability in eGFP-Bicoid nuclear fluorescence, defined by the

standard deviation across nuclei within a single embryo divided by the mean,

was in the range of 10-30%, as was the inter-embryo variability, defined by

the standard deviation of the mean amongst nuclei, across different embryos

(Appendix fig. 3C, blue and black, respectively). Six separate eGFP-Bicoid1215

embryos were measured.

Similarly, representative fluorescence time traces of Zelda-sfGFP for a sin-

gle embryo are shown in Appendix fig. 3D. Unlike the eGFP-Bicoid profile, the

Zelda-sfGFP nuclear fluorescence was approximately uniform across embryo po-

sition (Appendix fig. 3E), consistent with previous fixed-tissue measurements1220

(Staudt et al., 2006; Liang et al., 2008). Intra-embryo variability in Zelda-

sfGFP nuclear fluorescence was very low (less than 10%), whereas inter-embryo

variability was relatively higher, up to 20% (Appendix fig. 3F, red and black,

respectively). Three separate Zelda-sfGFP embryos were measured.

Due to the consistency of Zelda-sfGFP nuclear fluorescence, we assumed1225

the Zelda profile to be spatially uniform in our analysis, and thus created a

mean Zelda-sfGFP measurement for each individual embryo by averaging all
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mean nuclear fluorescence traces in space across the anterior-posterior axis of

the embryo (Appendix fig. 3D, inset). This mean measurement was used as

an input in the theoretical models. However, we still retained inter-embryo1230

variability in Zelda, as described below.

To combine multiple embryo datasets as inputs to the models explored

throughout this work, the fluorescence traces corresponding to each dataset

were aligned at the start of nuclear cycle 13, defined as the start of anaphase.

Because each embryo may have possessed slightly different nuclear cycle lengths1235

and/or experimental sampling rates (due to the manual realignment of the z-

stack to keep nuclei in focus), the individual datasets were not combined in order

to create average Bicoid and Zelda profiles across embryos. Instead, a simula-

tion and model prediction were performed for each combination of measured

input Bicoid and Zelda datasets, essentially an in silico experiment covering a1240

portion of the full embryo length. In all, outputs at each embryo position were

predicted in at least three separate simulations. Subsequent analyses used the

mean and standard error of the mean of these amalgamated simulations. With

six GFP-Bicoid datasets and three Zelda-GFP datasets, there were 18 unique

combinations of input embryo datasets; for a single set of parameters used in a1245

particular model, each derived metric (e.g. ton) was calculated using predicted

outputs from each of the 18 possible input combinations. This procedure pro-

vided full embryo coverage and resulted in a distribution of the derived metric

for that particular set of parameters. From this distribution, the mean and

standard error of the mean were calculated, leading to the lines and shading in1250

plots such as Appendix fig. 6.

2.2. MS2 fluorescence simulation protocol

To calculate a predicted MS2 fluorescence trace from measured Bicoid

and Zelda inputs for a given theoretical model, we utilized a simple model

of transcription initiation, elongation, and termination. First, the dynamic1255

transcription-factor concentrations were used as inputs to each of the theoret-

ical models outlined throughout the paper. These models generated a rate of
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Appendix 1 figure 3: Measurements of input transcription-factor concentration dynamics . (A)

Nuclear eGFP-Bicoid concentration as a function of time into nuclear cycle 13 across various

positions along the anterior-posterior axis of a single embryo. (B) eGFP-Bicoid concentration

at 8 min into nuclear cycle 13 as a function of position along the embryo averaged over all

measured embryos (n=6). The fit of the concentration profile to an exponential function

(dashed line) results in a decay length of 23% ± 0.6% embryo length. (C) Intra- and inter-

embryo variability in eGFP-Bicoid nuclear fluorescence along the anterior-posterior axis. (D)

Zelda-sfGFP concentration as a function of time into nuclear cycle 13 across various anterior-

posterior positions of a single embryo. (D, inset) Zelda-sfGFP concentration averaged over the

data shown in D. (E) Zelda-sfGFP concentration at 8 min into nuclear cycle 13 as a function

of position along the anterior-posterior axis of the embryo averaged over all measured embryos

(n=3). Note that anterior of 40% and posterior of 77.5% only a single embryo was measured;

no error bars were calculated. (F) Intra- and inter-embryo variability in Zelda-sfGFP nuclear

fluorescence along the anterior-posterior axis. (B,E, error bars represent standard error of the

mean nuclear fluorescence, measured across embryos; C,F, error bars represent standard error

of the mean intra-embryo variability, measured across embryos.)
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RNAP loading as a function of time and space across the embryo over the course

of nuclear cycle 13.

For each position along the anterior-posterior axis, the predicted rate of

RNAP loading was integrated over time to generate a predicted MS2 fluores-

cence trace. Given the known reporter construct length L of 5.2 kb (Garcia

et al., 2013), we assume that RNAP molecules are loaded onto the start of

the gene at a rate R(t) predicted by the particular model under consideration

(Appendix fig. 4; see Appendix sections 1.2, 6.1, 7.1, and 8.1 for model details).

Each RNAP molecule traverses the gene at a constant velocity v of 1.54 kb/min,

as measured experimentally by Garcia et al. (2013). With these numbers, we

calculate an elongation time

telon =
L

v
. (15)

Finally, we assume that upon reaching the end of the reporter gene, the RNAP1260

molecules terminate and disappear instantly such that they no longer contribute

to spot fluorescence.

The MS2 fluorescence signal reports on the number of RNAP molecules ac-

tively occupying the gene at any given time and, under the assumptions outlined

above, is given by the integral

F (t) = α

∫ t

0

(
R(t′)−R(t′ − telon)

)
dt′, (16)

where F (t) is the predicted fluorescence value, R(t) is the RNAP loading rate

predicted by each specific model, R(t − telon) is the time-shifted loading rate

that accounts for RNAP molecules finishing transcription at the end of the gene,1265

and α is an arbitrary scaling factor to convert from absolute numbers of RNAP

molecules to arbitrary fluorescence units. The predicted value F (t) was scaled

by α to match the experimental data.

The final predicted MS2 signal was modified in a few additional ways. First,

any RNAP molecule that had not yet reached the position of the MS2 stem loops

had its fluorescence value set to zero (Appendix fig. 4, i), since only RNAP

molecules downstream of the MS2 stem loop sequence exhibit a fluorescent

signal. Second, RNAP molecules that were only partially done elongating the
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MS2 stem loops contributed a partial fluorescence intensity, given by the ratio

of the distance traversed through the stem loops to the total length of the stem

loops

Fpartial =
Lpartial
Lloops

,

where Fpartial is the partial fluorescence contributed by an RNAP molecule

within the stem loop sequence region, Lpartial is the distance within the stem1270

loop sequence traversed, and Lloops is the length of the stem loop sequence

(Appendix fig. 4, ii). For this reporter construct, the length of the stem loops

was approximately Lloops = 1.28 kb. RNAP molecules that had finished tran-

scribing the MS2 stem loops contributed the full amount of fluorescence (Ap-

pendix fig. 4, iii). Finally, to make this simulation compatible with the trape-1275

zoidal fitting scheme in Appendix section 2.3, we included a falling signal at

the end of the nuclear cycle, achieved by setting R(t) = 0 after 17 min into the

nuclear cycle and thus preventing new transcription initiation events.

Given the predicted MS2 fluorescence trace, the rate of RNAP loading and

ton were extracted with the fitting procedure used on the experimental data1280

(Appendix section 2.3).

2.3. Extracting initial RNAP loading rate and transcriptional onset time

To extract the initial rate of RNAP loading and the transcriptional onset

time ton used in the data analysis, we fit both the experimental and calculated

MS2 signals to a constant loading rate model, the trapezoidal model (Garcia1285

et al., 2013).

The trapezoidal model provides a heuristic fit of the main features of the

MS2 signal by assuming that the RNAP loading rate is either zero or some

constant value r (Appendix fig. 5A). At time ton, the loading rate switches from

zero to this constant value r, producing a linear rise in the MS2 signal. After1290

the elongation time telong, the loading of new RNAP molecules onto the gene

is balanced by the loss of RNAP molecules at the end of the gene, producing a

plateau in the MS2 signal. Finally, at the end of the nuclear cycle, transcription

ceases at toff and the RNAP loading rate switches back to zero, producing the
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L

Appendix 1 figure 4: MS2 fluorescence calculation protocol. RNAP molecules load onto the

reporter gene at a time-dependent rate R(t), after which they elongate at a constant velocity

v. Upon reaching the end of the gene after a length L has been transcribed, they are assumed

to terminate and disappear instantly, given by the time-shifted rate R(t − L
v

). The time-

dependent MS2 fluorescence is calculated by summing the contributions of RNAP molecules

that are located before, within, or after the MS2 stem loop sequence (i, ii, and iii, respectively).

falling edge of the MS2 signal and completing the trapezoidal shape. Because1295

we only consider the initial dynamics of transcription in the nuclear cycle in this

investigation, we do not explore the behavior of toff .

Appendix fig. 5B shows the results of fitting the mean MS2 fluorescence from

a narrow window within a single embryo to the trapezoidal model. With this

fit, we can extract the initial rate of RNAP loading (given by the initial slope)1300

as well as ton (given by the intercept of the fit onto the x-axis).

As a consistency check, the ton values extrapolated from the trapezoidal

fit of the data were compared with the experimental time points at which the

first MS2 spots were observed for both the wild-type and zelda− mutant exper-

iments (Appendix fig. 5C). Due to the detection limit of the microscope, this1305

latter method reports on the time at which a few RNAP molecules have already

begun transcribing the reporter gene, rather than a “true” transcriptional onset

time. Using the first frame of spot detection yields similar trends to the trape-

zoidal fits, except that the measured first frame times are systematically larger,

especially in the mutant data. Additionally, utilizing the first frame of detection1310
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to measure ton appears to be a noisier method, likely because the actual MS2

spots cannot be observed below a finite signal-detection limit, whereas the ex-

trapolated ton from the trapezoidal fit corresponds to a “true” onset time below

the signal-detection limit. For this reason, we decided to rely on the trapezoidal

fit to extract ton, rather than using the first frame of spot detection.1315

3. Mitotic repression is necessary to recapitulate Bicoid- and Zelda-

mediated regulation of hunchback using the thermodynamic MWC

model

As described in Section 2.3 of the main text, a mitotic repression window

was incorporated into the thermodynamic MWC model (Appendix section 1.2)1320

in order to explain the observed transcriptional onset times of hunchback. Here,

we justify and explain this theoretical modification in greater detail.

Appendix fig. 6A and B depicts the experimentally observed initial rates of

RNAP loading and ton across the length of the embryo (blue points) for the

wild-type background. After constraining the maximum and minimum theoret-1325

ically allowed rates of RNAP loading (Appendix section 1.3), we attempted to

simultaneously fit the thermodynamic MWC model to both the rate of RNAP

loading and ton.

The fit results demonstrate that while the thermodynamic MWC model can

recapitulate the measured step-like rate of RNAP loading at hunchback (Ap-1330

pendix fig. 6A, purple line), it fails to predict the ton throughout the embryo

(Appendix fig. 6B, purple line; see Appendix sections 2.2 and 2.3 for details

about experimental and theoretical calculations). This model yields values of

ton that are much smaller than those experimentally observed, a trend that

holds throughout the length of the embryo. This disagreement becomes more1335

evident when comparing the output transcriptional activity reported by the

measured MS2 fluorescence with the input concentrations of Bicoid and Zelda.

Specifically, the Bicoid and Zelda concentration measurements at 45% along the

embryo, shown for a single embryo in Appendix fig. 6C, are used in conjunction
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Appendix 1 figure 6: A thermodynamic MWC model including mitotic repression can recapit-

ulate hunchback regulation by Bicoid and Zelda. (A) Measured initial rates of RNAP loading

and (B) ton (blue points) across the length of the embryo, compared to fits to the thermo-

dynamic MWC model with and without accounting for mitotic repression (blue and purple

curves, respectively). (C) Nuclear concentration dynamics of Bicoid and Zelda with proposed

mitotic repression window (gray shading). (D) Predicted MS2 dynamics with no mitotic re-

pression term or a 3 min mitotic repression window compared to experimental measurements.

(A,B, solid lines indicate mean predictions of the model and shading represents standard er-

ror of the mean, while points indicate data and error bars represent the standard error of the

mean, across 11 embryos; C, D, data from single embryos at 45% of the embryo length with

error bars representing the standard error of the mean across nuclei, errors in model predic-

tions in D were negligible and are obscured by the prediction curve; fitted parameter values

for a 3 min mitotic repression window were ∆εchrom = 10 kBT , Kb = 34 AU , Kz = 500 AU ,

with different arbitrary fluorescent units for Bicoid and Zelda, ωb = 10, ωbp = 0.4, for a model

assuming six Bicoid binding sites.)
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with the previously mentioned best-fit model parameters to predict the output1340

MS2 signal at the same position. This prediction can then be directly compared

with experimental data (Appendix fig. 6D, purple line vs. black points, respec-

tively). Whereas the model predicts that transcription will commence around

1 min after anaphase due to the concurrent increase in the Bicoid and Zelda

concentrations, the observed MS2 signal begins to increase around 4 min after1345

anaphase (Appendix fig. 6D). As a result, the predicted transcriptional dynam-

ics in Appendix fig. 6D are systematically shifted in time with respect to the

observed data.

The observed disagreement in ton suggests that in this model, transcription

is prevented from starting at the time dictated solely by the increase of Bicoid1350

and Zelda concentrations. While we speculate that this effect could stem from

processes such as RNAP escape from the promoter, DNA replication at the start

of the cell cycle, and post-mitotic nucleosome clearance from the promoter, we

choose not to commit to a detailed molecular picture and instead ascribe this

transcriptional refractory period at the beginning of the nuclear cycle to mitotic1355

repression, the observation that the transcriptional machinery cannot operate

during mitosis (Shermoen and O’Farrell, 1991; Gottesfeld and Forbes, 1997;

Parsons and Tg, 1997; Garcia et al., 2013). To account for this phenomenon,

we revised our thermodynamic MWC model by stating that hunchback can only

read out the inputs and begin transcription after a specified mitotic repression1360

time window following the previous anaphase (Appendix section 1.3).

Since we expect mitotic repression to operate independently of position along

the length of the embryo (Shermoen and O’Farrell, 1991), we assumed that the

duration of mitotic repression was uniform throughout the embryo. After incor-

porating a uniform 3 min mitotic repression window into the thermodynamic1365

MWC model (Appendix fig. 6C and D, grey shaded region), the model suc-

cessfully recapitulates ton throughout the embryo (Appendix fig. 6B and D,

blue curves), while still explaining the observed rates of RNAP loading (Ap-

pendix fig. 6A, blue curve). Thus, once mitotic repression is accounted for, the

thermodynamic MWC model based on statistical mechanics can quantitatively1370
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recapitulate the regulation of hunchback transcription by Bicoid and Zelda.

4. The effect of the zelda− background on the Bicoid concentration

spatiotemporal profile

Our models rest on the assumption that the Bicoid gradient remains un-

altered regardless of whether these measurements are made in the wild-type1375

or zelda− backgrounds. To confirm this assumption, we measured eGFP-Bicoid

concentrations in a zelda− background. These flies were heterozygous for eGFP-

labeled Bicoid and for wild-type Bicoid, resulting in roughly 50% of total Bicoid

being labeled with eGFP. As shown in Appendix fig. 7A and B, the resultant

eGFP-Bicoid nuclear fluorescence levels in nuclear cycle 13 in the zelda− back-1380

ground (red) were roughly half the magnitude of the equivalent measurements

in the wild-type background (blue), a trend that held both in time and along

the embryo. After doubling the heterozygote eGFP-Bicoid nuclear fluorescence

measurements to rescale them (Appendix fig. 7B, black), the two eGFP-Bicoid

curves became similar, although the zelda− eGFP-Bicoid values were system-1385

atically lower than in the wild-type background. The normalized difference,

defined as the absolute value of the difference between the wild-type and zelda−

profiles at each position in the embryo divided by the value of the wild-type

profile at the position, averaged across all measured positions, was 15% ± 2%.

This value is within the range of the inter-embryo variability of eGFP Bicoid in1390

wild-type background embryos (Appendix fig. 3C). Measuring the decay length

of the eGFP-Bicoid profile in the zelda− background also yielded a slightly dif-

ferent result: 21%± 1% of the total embryo length, as opposed to 23.5%± 0.6%

in the wild-type background (dashed curves, see also Appendix fig. 3B).

Having compared the spatial profile of Bicoid in both backgrounds, we then1395

contrasted the dynamics of nuclear Bicoid import. To quantify this analysis,

we calculated the time to reach 50% and 90% of the maximum eGFP-Bicoid

fluorescence signal for wild-type and zelda− embryos, at each position along the

anterior-posterior axis (Appendix fig. 7A, blue and red dashed lines). Because
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the raw fluorescence signals were noisy enough to confound this calculation,1400

we first smoothed the signals using a moving average filter of ten datapoints

(Appendix fig. 7A, lines).

Appendix fig. 7C and D show the times to reach 50% and 90% of maximum

fluorescence for the anterior positions in both embryo backgrounds, where tran-

scription was observed, respectively. In both backgrounds, the 50% and 90%1405

times are similar to within approximately 1 min, indicating that the dynamics

of nuclear eGFP-Bicoid at the start of nuclear cycle 13 are quantitatively com-

parable. Thus, we concluded that differences in transcription between the two

embryo backgrounds do not stem from differences in Bicoid dynamics.

In summary, the dynamics of nuclear Bicoid concentration are quantitatively1410

comparable in both wild-type and zelda− backgrounds, whereas the overall Bi-

coid concentration is slightly lower in the zelda− case. Nevertheless, these differ-

ences in concentration would have a negligible effect on our overall conclusions:

in the context of our models, an overall rescaling in the magnitude of the Bicoid

gradient between the wild-type and zelda− backgrounds can be compensated1415

by a corresponding rescaling in the dissociation constant of Bicoid, Kb. Be-

cause our systematic exploration of theoretical models considers many possible

parameter values (Appendix section 5.1), this rescaling has no effect on our con-

clusion that the equilibrium models are insufficient to explain the zelda− data.

As a result, and given that our statistics for the wild-type eGFP-Bicoid data1420

consisted of more embryos than the data for the zelda− background, we used

this wild-type data in our analyses as an input to both the wild-type and zelda−

model calculations.

5. State-space exploration of theoretical models

5.1. General methodology of state-space exploration1425

To help visualize the limits of our models, we collapsed our observations onto

a three-dimensional state space, following a method similar to that described

in Estrada et al. (2016). In this space, the x-axis was the average ton delay.
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Appendix 1 figure 7: Comparison of eGFP-Bicoid measurements in wild-type and zelda−

embryos. (A) Example mean nuclear eGFP-Bicoid concentrations for a single embryo at 30%

along the embryo’s length, for wild-type (blue) and zelda− (red) backgrounds. Datapoints

are raw values and lines are smoothed results. The raw fluorescence at 8 min into the nuclear

cycle, indicated by the black dashed line, is calculated to yield (B). The blue and red dashed

lines correspond to the times to reach 50% and 90% of the maximum fluorescence for the

smoothed wild-type and zelda− signals, respectively. (B) eGFP-Bicoid measurements in wild-

type (blue) and zelda− mutant embryos (red), along with rescaled mutant profiles (black).

Fits to an exponentially decaying function yield decay lengths in each background (blue and

black dashed curves). (C, D) Time to reach 50% and 90% of maximum nuclear eGFP-Bicoid

fluorescence for wild-type (blue) and zelda− (red) backgrounds. A total of n=3 embryos

were measured in the zelda− background, compared to n=6 for wild-type. All error bars are

standard error of mean across embryos.

This magnitude was computed by integrating the ton across 20% to 37.5% of

the embryo length, corresponding to the range in which both wild-type and1430

zelda− experiments exhibited transcription in at least 30% of observed nuclei

(Appendix figs. 8A and 5A), as defined in Equation 5. The offset in ton at 20%

embryo length (Eq. 4) was the y-axis in the state space. The z-axis was given by

the average initial rate of RNAP loading between 20% and 37.5% of the embryo

length (Appendix fig. 8B).1435

Combined, the average ton delay, ton offset, and average initial RNAP load-

ing rate provide a simplified description of our data as well as of our theoret-

ical predictions. Each theoretical model inhabits a finite region in this three-
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dimensional state space, which we can calculate by systematically varying model

parameters. Appendix fig. 8A and B show an example of how the three parame-1440

ters are calculated using the zelda− background data presented in Fig. 4C and D

(red points) in the main text.

Due to the large number of parameters in each model explored, the cor-

responding state-space boundaries were generated by efficient sampling of the

underlying high-dimensional parameter space. Although in actuality the state1445

space contained three dimensions, we illustrate the sampling process here with

a two-dimensional example, using only the offset and average delay in transcrip-

tional onset time, for ease of visualization (Appendix fig. 8C). The methodology

is similar to the one described in Estrada et al. (2016). Briefly, a starting set of

50 points was generated, each with a randomized set of initial parameters, the1450

specifics of which depended on the model being tested (Appendix fig. 8C, i).

The state space was sectioned into 100 slices along each orthogonal axis (Ap-

pendix fig. 8C, ii). The most extremal points in each slice were found, re-

sulting in two extremal values each for the ton offset and average ton delay

(Appendix fig. 8C, iii). For each of these points, a new set of five points1455

was generated using random parameters within a small neighborhood of the

seed points determined by the extremal points of the previous iteration (Ap-

pendix fig. 8C, iv). These new points were plotted; some of these points may

be more extreme than the previous set of points. Steps ii-iv were iterated, re-

sulting in a growing boundary over time (Appendix fig. 8C, v). This algorithm1460

was run in the full three-dimensional state space, where 100 three-dimensional

columns along the orthogonal xy-, yz-, and xz-planes were used instead of two-

dimensional slices.

Constraints imposed by the data were used to filter unrealistic results and

ensure rapid convergence of the algorithm. First, if the simulated average ton1465

delay was less than −0.5 min or greater than 2 min, the point was filtered out.

This removal was justified experimentally, since none of the observed average

ton delays were outside of this range (Fig. 5A). Second, if the simulated average

initial loading rate was smaller than 1 AU/min or greater than 4 AU/min, the
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point was also filtered out. This was also justified experimentally, since none1470

of the observed initial RNAP loading rates between 20% and 37.5% embryo

position lay outside this range (Fig. 4C). Points that fulfilled these constraints

were retained for the next iteration of the algorithm. This process was repeated

until the resulting space of points no longer grew appreciably, resulting in an

estimate of the size and shape of the state space for each of the models presented1475

in Appendix sections 1.2, 6.1, 7.1, and 8.1.

To determine whether the algorithm had indeed converged, the total volume

of each model’s region in state space was tracked with each iteration number.

If the algorithm worked well, then this volume would approach some maximum

value. Appendix fig. 8D shows the volume of the state space corresponding1480

to each model presented in this work (normalized by the volume at the final

iteration number) as a function of the iteration number. Each model converged

to a finite value, indicating that the parameter space occupied by the models

had been thoroughly explored.

5.2. State space exploration with the thermodynamic MWC model1485

Appendix fig. 9A and Video 7 show the resulting three-dimensional state

space for the thermodynamic MWC model (green), as well as all of the theoret-

ical models considered here. We plotted the wild-type and zelda− data on the

same state space, represented as small ellipsoids of uncertainty. Any successful

model must occupy a region that overlaps both the wild-type and zelda− data.1490

As shown in Appendix fig. 9A and Video 7, the state space correspond-

ing to the thermodynamic MWC model fails to overlap with the zelda− data.

To more clearly reveal this disagreement, this three-dimensional state space

was projected onto the xy-plane, the space incorporating the average ton de-

lay and ton offset information. To do this projection, we noticed that both1495

the wild-type and zelda− data only occupied average initial loading rate values

between 2.5 AU/min and 3.6 AU/min (Appendix fig. 9A and Video 7). As a

result, only points in that range of initial loading rates were retained for the

projection. The resulting two-dimensional representation of our exploration is
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shown in Appendix fig. 9B. Even in this simplified representation, the failure of1500

the thermodynamic MWC model (Appendix fig. 9B, green) is evident. There-

fore, we utilized this representation throughout the main text and Appendix

(Figs. 5C, 6B, and 7D, and Appendix figs. 13 and 14C).

6. Failures and assumptions of thermodynamic models of transcrip-

tion1505

6.1. Generalized thermodynamic model

The generalized thermodynamic model is an extension of the thermodynamic

MWC model presented in Appendix section 1.2. For extra generality, we assume

the presence of twelve Bicoid binding sites and one RNAP binding site, but do

not include the action of Zelda since the objective was to attempt to recapitulate1510

the zelda− mutant experimental data. We still allow for an inaccessible DNA

state.

In this generalized model, the weight of each microstate can be arbitrary,

rather than determined by underlying biophysical parameters. Since pbound only

depends on whether RNAP is bound, there is no need to distinguish between1515

different microstates that have the same number of Bicoid molecules bound:

the arbitrary coefficients allow separate microstates to effectively be combined

together into the same weight. Thus, each microstate corresponds only to the

overall number of bound molecules, regardless of binding site ordering. With

twelve Bicoid sites, in addition to the inaccessible state, there are 27 total mi-1520

crostates and 26 free parameters describing the weights of each state (with the

accessible, unbound microstate normalized to unity). Like with the thermo-

dynamic MWC model, we assume that transcription only occurs when RNAP

is bound, with the same constrained maximum rate of RNAP loading Rmax.

However, since the weights of each microstate are arbitrary, we no longer have1525

a variable p that can be constrained by Rmin like in Appendix eq. 14.

This generalized model is much more powerful than the thermodynamic

MWC model due to a lack of coupling between individual microstate weights.
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Appendix 1 figure 8: Description of state-space metrics and boundary-exploration algorithm.

(A) Representative average ton delay (black dashed line) and ton offset for the zelda− back-

ground data in Fig. 4D. (B) Average initial RNAP loading rate for the zelda− background data

in Fig. 4C. (C) Overview of the boundary-exploration algorithm for an example state space

containing two dimensions. (i) A set of 50 points with random input parameters generates

an initial state space of the investigated model. (ii) The space is sectioned into 10 horizontal

and 10 vertical slices. (iii) The extremal points of each slice are found. (iv) For each extremal

point, five new points are generated with input parameters in a small neighborhood around

the parameters of this extremal point. (v) The new space is plotted with these new points,

and steps (ii) - (iv) are repeated. (D) Normalized volume of state-space domain of each model

investigated in this work as a function of algorithm iteration number. All volumes approach

a steady value, indicating convergence.
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Appendix 1 figure 9: Exploration of state space. (A) Three-dimensional state-space explo-

ration, showing the extents of state space of the wild-type (blue) and zelda− (red) data as well

as of various models explored in the main text. See also Video 7 for an more comprehensive

representation of our results. (B) Two-dimensional state-space exploration, created by pro-

jecting the three-dimensional state space in (A) for average initial loading rate values between

2.5 and 3.6 AU/min onto the xy-plane corresponding to the average ton delay and ton offset.

Volumes (A) and areas (B) covered by the experimental data represent the standard error of

the mean.
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Whereas in the previous model the underlying parameters Kb and ωb caused

similar microstates to be related mathematically, now the statistical weights1530

for each microstate are completely independent. Physically, this scenario can

arise due to, for example, higher-order cooperativities or non-identical binding

energies between binding sites (Estrada et al., 2016).

The partition function in this generalized thermodynamic model is given by

the polynomial

Z = pinacc +
1∑
r=0

12∑
n=0

Pr,n[Bicoid]n, (17)

where pinacc is the weight of the inaccessible state and Pr,n is the weight of the

accessible state with r RNAP molecules bound and n Bicoid molecules bound.

The overall transcriptional initiation rate is now

dmRNA

dt
=

1

Z

( 12∑
n=0

P1,nR[Bicoid]n
)
, (18)

where P1,n is the statistical weight of each RNAP-bound state and R is the

corresponding rate of transcriptional initiation. Note that, as described above,1535

R is still equal to Rmax, the constraint described in Appendix section 1.3, but

we no longer use the Rmin constraint.

The resulting rate of transcriptional initiation is integrated over time to pro-

duce a simulated MS2 fluorescence trace using the same procedure as for the

models presented in Appendix sections 1.2, 7.1, and 8.1 (see Appendix sec-1540

tion 2.2 for details). As with the thermodynamic MWC model, we allow for a

mitotic repression time window to account for the lack of transcription early in

the nuclear cycle.

6.2. Generalized thermodynamic model state space exploration

Due to the high-dimensional parameter space of the generalized thermo-1545

dynamic model, constraints were necessary to efficiently explore this parameter

space (Appendix section 5.1). These constraints were placed on the values of the

individual microstate weights Pr,n, based on dimensional analysis and heuristic
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arguments. Specifically, each weight Pr,n is derived from a product of bind-

ing constants Kd for either Bicoid or RNAP, pairwise cooperativity parameters1550

ω, and higher-order cooperativity terms. For the purposes of these parameter

constraints, we only consider the Kds and ωs, and ignore constraints on higher-

order cooperativities. In principle, each Bicoid binding site possesses a unique

Kd and protein-protein interaction terms ω with other Bicoid molecules and/or

with RNAP. However, as described below, these biophysical parameters, once1555

non-dimensionalized, can be constrained to reasonable values by scaling rela-

tions through a simple bounding scheme.

For illustrative purposes, consider the microstate with RNAP and one Bicoid

molecule bound. Its weight depends on two independent binding constants p, b

and a cooperativity term between RNAP and Bicoid ωbp. First, we assume that

the p, b terms are non-dimensionalized, i.e. they take the form p = [RNAP ]/Kp

and b = [Bicoid]/Kb. Although the two individual p, b terms are in principle

different since RNAP and Bicoid have can different binding energies, we can be

generous about the constraints and assume that the non-dimensionalized forms

are both bounded below and above by 0 and 1000, respectively. This strategy

is justified by assuming that neither RNAP nor Bicoid exist in concentrations

three orders of magnitude above their dissociation constants, and do not exist

at negative concentrations (Estrada et al., 2016). Similarly, we can be generous

about any possible cooperativities and say that ωbp and ωb have a similar bound

between 0 and 1000, thus accounting for both positive and negative coopera-

tivities. For this state with RNAP and one Bicoid molecule bound, we can say

that

P1,1 = bpωbp (19)

which has bounds

0 < P1,1 < (1000)2(1000) = 109 (20)

and thus provide a bound for the possible values that the weight P1,1 can take.

In general, this process can be applied to enforce bounds on any microstate

weight Pr,n through constraining of the possible values of p, b, ωbp, and ωb. As a1560
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result, the weight of a microstate with more Bicoid bound (i.e. higher values of

n) will have a more generous dynamic range, due to the larger powers of b and

ωb. In this way, exploration of parameter space can be made more constrained

by restricting the possible values of the microstate weights Pr,n. In addition,

the mitotic repression term was constrained like in the thermodynamic MWC1565

model, where 0 < tMitRep < 10.

As a result of these constraints, the region occupied by the generalized ther-

modynamic model in the ton offset and average ton delay space does not entirely

include that of the thermodynamic MWC model, whose parameters were only

constrained to be positive values (Appendix section 1.3) Nevertheless, this model1570

still fails to capture the delays observed in the zelda− data (Appendix fig. 9B,

yellow).

6.3. Extended generalized thermodynamic model with transcription factor bind-

ing in the inaccessible state

The generalized thermodynamic model (Appendix section 6.1) encompasses1575

all possible thermodynamic models with up to twelve Bicoid binding sites that

can be bound in the accessible state. However, a potentially more general class

of models involves those where Bicoid can also bind to the inaccessible state.

For example, Bicoid action could conceivably result in some pioneering activity

by directly binding to chromatin in the inaccessible state and facilitating RNAP1580

binding and transcription. Here, we show that these models can be reformulated

into the generalized thermodynamic model presented above.

If we allow for Bicoid to bind to any of the twelve binding sites in the inac-

cessible states, then we introduce l new microstates with individual Boltzmann

weights Pl, one for each Bicoid-bound inaccessible state, in addition to the un-1585

bound inaccessible state with weight Pinacc. Nevertheless, as long as the ensuing

transcription rate of each Bicoid-bound inaccessible state is zero, then the net

effect of these additional inaccessible states could simply be described by a sin-

gle effective inaccessible state with Boltzmann weight P ′inacc = Pinacc +
∑
l Pl.

The resulting state space exploration (Section 2.4 and Fig. 5C, yellow), which1590
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explores the whole parameter space of reasonable values of Pinacc, would thus

also capture the behavior of this single effective inaccessible state. As a re-

sult, models that consider the binding of Bicoid to the inaccessible states are

contained within our generalized thermodynamics model.

6.4. Investigation of the failure of thermodynamic models1595

Here, we provide an intuitive explanation for why thermodynamic models

fail to recapitulate the delay in ton for zelda− embryos. The combination of the

occupancy hypothesis and the assumption of separation of times scales described

in Appendix section 6.5 imply that the rate of transcriptional initiation at any

moment in time is an instantaneous readout of the Bicoid concentration at that1600

time point. Thus, any thermodynamic model is memoryless. Intuitively, this

means that a thermodynamic model requires transcription to begin as soon as

the Bicoid concentration crosses a certain “threshold” since time delays between

input and output require some sense of memory. Examination of the dynamic

measurements of MS2 output in zelda− embryos reveals that no matter what1605

“threshold” concentration of Bicoid is assigned for the start of transcription,

the model cannot simultaneously describe two values of ton corresponding to

different positions along the anterior-posterior axis (Appendix fig. 10A and B).

Another self-consistency check of a thermodynamic model is to examine the

concentration of Bicoid at ton for various positions along the embryo. Due to1610

the memoryless nature of thermal equilibrium, a valid thermodynamic model

predicts that, at different positions along the embryo, ton will occur when

Bicoid reaches the same threshold value. For the zelda− data, however, the

level of Bicoid at each anterior-posterior position’s ton value actually decreases

with increasing ton, suggesting the failure of the thermodynamic model (Ap-1615

pendix fig. 10C). Thus, the strong position-dependent delay in ton for the zelda−

data cannot be explained by an instantaneous Bicoid readout mechanism.

More generally, the memoryless nature of thermodynamic models implies

that, given any input-output function that increases monotonically with Bicoid

and Zelda concentration, the ensuing onset time of transcription cannot be1620
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later than the time at which Bicoid or Zelda reach their maximal values. This

is a reflection of a generic feature of thermodynamic models, namely that only

instantaneous couplings in time can exist, and that time delays are impossible

(Coulon et al., 2013; Wong and Gunawardena, 2020). By inspecting the nuclear

concentrations of Bicoid and Zelda in Appendix fig. 3, we notice that times of1625

maximal nuclear concentration for both transcription factors all occur around

4.5 min. This time is much earlier than the delayed transcriptional onsets

exhibited in the zelda− data (Fig. 4D, red points), providing further evidence

for the unsuitability of thermodynamic models in describing the observed delay

in the transcriptional onset time along the anterior-posterior axis of the embryo.1630

6.5. Re-examining thermodynamic models of transcriptional regulation

Thermodynamic models based on equilibrium statistical mechanics can be

seen as limiting cases of more general kinetic models. For example, consider

simple activation, where an activator whose concentration is modulated in time

regulates transcription by binding to a single site (Appendix fig. 11). In this1635

generic model, the presence of activator can modulate the rates of activator and

RNAP binding and unbinding through the parameters α, β, γ, and δ.

In order to reduce kinetic models to thermodynamic models where the proba-

bilities of each state are dictated by Boltzmann weights such as those in Fig. 2A,

four conditions must be fulfilled. First, the rate of mRNA production must be

linearly related to the probability of finding RNAP bound to the promoter (Ap-

pendix fig. 11i). This occupancy hypothesis is necessary for Appendix eq. 2 to

hold. Second, the time scales of binding and unbinding of RNAP and tran-

scription factors must be much faster than the time scales of the concentration

dynamics of these proteins (Appendix fig. 11ii). Third, these time scales must

also be much faster than the rate of transcriptional initiation and mRNA pro-

duction (Appendix fig. 11iii). Under these conditions of separation of time

scales, the binding and unbinding of proteins quickly reaches steady state while

the overall concentrations of these molecular players are modulated (Segel and

Slemrod, 1989). Fourth, there must be no energy input into the system (Ap-
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Appendix 1 figure 10: Intuition for failure of equilibrium models. (A) Mean Bicoid concentra-

tions for two positions along the embryo (blue, red), with a “threshold” chosen to to attempt

to match the corresponding ton in (B). (B) MS2 fluorescence signal for the two positions shown

in (A) for the zelda− experiment. Note that no single threshold value of Bicoid can match

the timings in (A) with the transcriptional onset times in (B). (C) Mean Bicoid concentration

at ton as a function of position for the zelda− data.
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pendix fig. 11iv). This condition demands “detailed balance” (Vilar and Leibler,

2003; Ahsendorf et al., 2014; Hill, 1985): the product of state transition rates

in the clockwise direction over a closed loop is equal to the product going in the

counterclockwise direction, a constraint known as the cycle condition (Estrada

et al., 2016). In the case of Appendix fig. 11, this requirement implies that

kONP δkONA βkOFFP kOFFA = kOFFP kONA αkONP γkOFFA . (21)

If these four conditions are met, then the system is effectively in equilibrium

and the various binding states adopt probabilities that can be calculated using

equilibrium statistical mechanics.1640

7. Non-equilibrium MWC model

7.1. Non-equilibrium MWC model

The non-equilibrium MWC model is an extension of the thermodynamic

MWC model presented in Appendix section 1.2, where we now relax the as-

sumption of separation of time scales (Appendix fig. 11 ii and iii) and make it1645

possible to assume, for example, that the system responds instantaneously to

changes in activator concentration. Here, we explicitly simulate the full sys-

tem of ordinary differential equations (ODEs) that describe the dynamics of

the system out of steady state. Additionally, we allow for energy to be ex-

pended and thus do not enforce detailed balance through the cycle condition1650

(Appendix fig. 11iv). We still employ a mitotic repression window term, before

which no transcription is allowed.

We consider a generic model with n Bicoid binding sites, and again ignore

Zelda since we are only interested in recapitulating the zelda− mutant data. As

a result, this new model has n+ 1 total binding sites which, together with the1655

closed chromatin state, results in a total of 2n+1 + 1 = N microstates. In the

case of six Bicoid binding sites, this results in N = 129 total microstates. We

assign each microstate xi a label i and describe the transition rate from state j

to state i using kij , where i, j range from 0 to N − 1, inclusive.
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In matrix notation, we write the system of ODEs as

d ~X

dt
= K ~X, (22)

where ~X is a vector containing the fractional occupancy of each microstate xi1660

and K is a matrix containing all the transition rates kij . Normalizing such that

the sum of all the components in the vector ~X is unity, we now have a vector

representing the instantaneous probability of being in each microstate.

To relate the occupancies of the different states to the rate of transcriptional

initiation, we retain the occupancy hypothesis presented earlier: that pbound, the1665

probability of being in a microstate with a bound RNAP molecule, is linearly

related to the overall average transcriptional initiation rate that we determine

from experimentally measurements.

For this particular system, it is helpful to define an intuitive microstate

labeling system. Because the relevant physical processes are the binding and

unbinding of Bicoid and RNAP molecules, we can represent any microstate in

binary form, where the total number of digits is the total number of binding

sites n+ 1, and each digit represents an individual binding site. Our convention

is to assign the first digit to the promoter, and the subsequent ones to the Bicoid

sites. By assigning 0 to an unbound site and 1 to a bound site, we can rewrite

each unique microstate’s label i in binary form. For example, for a model with

six Bicoid sites, the label for the microstate with no RNAP bound and the first

two Bicoid sites occupied is represented with

i = bin(0110000) = 48. (23)

Here, bin() indicates taking the base 2 value of the binary label in the paren-

theses. The closed chromatin state is added manually and assigned to the last1670

position in our binary label, xN−1. This convention allows us to intuitively de-

fine each unique label for the system’s microstates and provides a way to map

the physical contents of a microstate with its associated label i.

In general, the overall transition matrix K can be very complex. However,

we benefit from the fact that the only non-zero transitions kij are the ones1675
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that correspond to physical processes: modifying the open/closed chromatin

state, and binding and unbinding of Bicoid or RNAP molecules. In this binary

notation, these constraints imply that the only nonzero transitions are the ones

that represent individual flips between 0 and 1, as well as between the open and

closed states 0 and N −1. The transition matrix K is then easier to write, since1680

it is clear from the binary representation which transitions must be nonzero.

Finally, diagonal elements kii are entirely constrained because they represent

probability loss from a particular state i, and must be equal to the negative of

the rest of the column i, such that the sum over each column in K is zero.

Given that the Bicoid concentration changes as a function of time and that1685

we assume first-order binding kinetics, whichever rates kij correspond to Bicoid

binding rates must be multiplied by this time-dependent nuclear concentra-

tion. In contrast, all off-rates are independent of Bicoid concentration. To

keep subsequent parameter exploration simple, we non-dimensionalized the Bi-

coid concentration by rescaling it by its approximate scale. This was achieved1690

by dividing all Bicoid concentrations by the average Bicoid concentration, cal-

culated by averaging the mean Bicoid nuclear fluorescence across all datasets,

anterior-posterior positions, and time points, yielding approximately 35 arbi-

trary fluorescence units. Thus, all of the transition rates kij in the model here

are expressed in units of inverse minutes.1695

To model transcription specifically, we assumed that at the beginning of the

nuclear cycle, the system is in the closed chromatin state: xi(t = 0) = 0 except

for the closed chromatin state xN−1(t = 0) = 1. We simulated the full trajectory

of all the microstates xi over time by solving the system of ODEs given in Eq. 22.

Finally, we calculated pbound by summing the xi’s that correspond to RNAP-1700

bound states, and then computed the subsequent transcriptional initiation rate

by multiplying pbound with the transcription rate R. Here, R is the same Rmax

as in Appendix sections 1.2 and 6.1 but again we do not constrain the model

using Rmin, just as in Appendix section 6.1.

Appendix fig. 12A shows an example of this model for a system with only

one Bicoid binding site and no closed chromatin state, for simplicity, resulting
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in a four-state network. The binary indexing labels (shown beneath each state

in light pink) can be converted into the base-10 labels (light teal) ranging from

0 to 3. The connection matrix for this system is

C =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 (24)

and the corresponding transition rate matrix K is

K =


k00 k01 k02 0

k10 k11 0 k13

k20 0 k22 k23

0 k31 k32 k33

 , (25)

where, in this example, k02 represents the transition rate from state j to state i.1705

The diagonal elements kii are equal to the negative of the sum of the elements

in the rest of the column in order to preserve conservation of probability. For

example, k00 = −(k10 + k20 + k30).

With all this information in hand, we solve for the occupancy of each of the

four states using the matrix ODE
dx0

dt

dx1

dt

dx2

dt

dx2

dt

 =


k00 k01 k02 0

k10 k11 0 k13

k20 0 k22 k23

0 k31 k32 k33




x0

x1

x2

x3

 . (26)

In this case, the occupancy hypothesis relates pbound to the overall transcription

rate, resulting in

dmRNA

dt
= Rpbound = R

x1 + x3

x0 + x1 + x2 + x3
. (27)

This model can produce time-dependent behavior not found in the ther-

modynamic models. Appendix fig. 12B contains an example of a hypothetical1710

input Bicoid activator concentration that switches instantaneously from zero to
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the transcriptional initiation rate responds instantaneously to the increase in activator input,

while the response is slower in the latter.
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a finite value. In the thermodynamic models, the predicted transcriptional initi-

ation rate also responds instantaneously (Appendix fig. 12B, top). In contrast,

for a suitable set of parameters, the non-equilibrium MWC model predicts a

slow response over time (Appendix fig. 12B, bottom).1715

To produce a simulated MS2 fluorescence trace, the resulting rate of mRNA

production is integrated over time using the same procedure (Appendix sec-

tion 2.2) as the models presented in Appendix sections 1.2, 6.1, and 8.1. As

with the thermodynamic MWC model, we allow for a time window of mitotic

repression to account for the lack of transcription early in the nuclear cycle.1720

Specifically, this was implemented by allowing the system to evolve over time,

but fixing transcription to zero (R = 0) until after the mitotic repression time

tMitRep. An alternative formulation of the model, in which the whole system is

frozen such that no transitions between states are allowed until after tMitRep, is

discussed below in Appendix section 7.3.1725

7.2. Non-equilibrium MWC model state space exploration

In the parameter exploration of this model (Appendix section 5.1), the

transition rates kij were constrained with minimum and maximum values of

kmin = 1 and kmax = 105 respectively, in units of inverse minutes. These bounds

were conservatively chosen using the following estimates. First, we estimate the

values of the possible unbinding rates koff . We assume that RNAP and Bicoid

obey the same unbinding kinetics. Estimates of in vivo single-molecule binding

kinetics inferred from Mir et al. (2018) indicate that the lifetime of Bicoid on

DNA is on the order of 3 s−1. Second, we estimate the values of the possible

on-rates kon using the classic Berg-Purcell equation for the case of a diffusion-

limited binding to a perfectly absorbing spherical receptor (Berg and Purcell,

1977). In this case, the on-rate of molecule binding is given by

kon = 4πDaco, (28)

where D is the diffusion coefficient of the molecule, a is the estimated size of

the spherical receptor, and c0 is the background concentration of the molecular
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species. Since here we are talking about transcription factor binding to a Bicoid

binding site, we assume a to be on the order of 5 nm. We assume that RNAP and

Bicoid obey the same diffusion characteristics, leading to a diffusion coefficient of

approximately 0.3 µm2s−1 (Gregor et al., 2007b). Finally, Bicoid is is present at

concentrations between 10 nM and 55 nM in the nucleus (Gregor et al., 2007a),

and we assume that nuclear RNAP concentrations exist within the same range.

Plugging these values into Appendix eq. 28 yields estimates for the maximum

and minimum on-rates:

kmaxon ∼ (4π)(0.3 µm2s−1)(1 µm)(55 nM)

∼ 0.5 s−1 ∼ 30 min−1.

and

kminon ∼ (4π)(0.3 µm2s−1)(1 µm)(10 nM)

∼ 0.05 s−1 ∼ 3 min−1.

Thus, our maximum and minimum transition rate bounds of kmin = 1 min−1

and kmax = 105 min−1 lie outside these estimated binding and unbinding rates.

The mitotic repression term was constrained like in the thermodynamic MWC

model, where 0 < tMitRep < 10.1730

One caveat of the state-space exploration approach is that the high dimen-

sionality of the non-equilibrium MWC model prevented us from calculating the

full state-space boundary using six Bicoid binding sites. Due to computational

costs, we were only able to accurately produce a state-space boundary for this

model (Appendix section 7.1) using five Bicoid binding sites. Running the ex-1735

ploration for a model with six Bicoid binding sites took over two weeks on our

own server, and the algorithm had not noticeably converged in the end.

The results of the state space exploration for the non-equilibrium MWC

model using five Bicoid binding sites resulted in larger average ton delays than

the thermodynamic models (Appendix sections 1.2 and 6.1). However, this1740

model, like those, failed to reproduce the delays observed in the zelda− data

(Appendix fig. 9B, cyan).
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Interestingly, the total areas covered by each non-equilibrium MWC model

did not monotonically increase with Bicoid binding site number (Fig. 6B). This

phenomenon where the state space of a model does not strictly increase with1745

binding site number has been previously observed (Estrada et al., 2016) and the

reason for this effect remains uncertain.

7.3. Alternative non-equilibrium MWC model with strong mitotic repression

In the main text, we entertained a non-equilibrium MWC model where mi-

totic repression blocks any productive transcription (R = 0) until the mitotic1750

repression window tMitRep has passed. Before this time, in this model, the

system can nevertheless transition through its different states over time.

In an alternate formulation of this non-equilibrium MWC model, we consider

a form of mitotic repression that we call strong mitotic repression. Here, the

system itself is frozen in the initial inaccessible state and not allowed to evolve1755

until after tMitRep. After tMitRep, the system evolves through time according

to the same rules as the original non-equilibrium MWC model.

Repeating the state space exploration for this model, for up to five Bicoid

binding sites, yielded similar conclusions. Namely, the model could not describe

the average delay and offset in transcriptional onset time in the absence of Zelda1760

(Appendix fig. 13). The intuition behind this is that, while this stronger form

of mitotic repression could potentially achieve longer delays, the crucial fea-

ture of the zelda− data is not merely a delayed transcription onset time, but

a position-dependent delay that increases towards the posterior of the embryo.

This stronger form of mitotic repression does not result in a mechanism capa-1765

ble of achieving such delay. In contrast, the final transcription factor-driven

model (Appendix section 8.1) does provide such a mechanism by coupling the

inaccessible-to-accessible transition to the position-dependent Bicoid gradient.
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Appendix 1 figure 13: State space exploration for non-equilibrium MWC model with strong

mitotic repression for up to five Bicoid binding sites.

8. Transcription factor-driven model of chromatin accessibility

8.1. Transcription factor-driven model of chromatin accessibility1770

The transcription factor-driven model of chromatin accessibility is a slight

modification of the thermodynamic MWC model (Appendix section 1.2) that

replaces the MWC mechanism of chromatin transitions with a direct driving

action due to Bicoid and Zelda. Here, we retain the idea of inaccessible vs.

accessible states, but no longer demand that these states be in thermodynamic1775

equilibrium. Instead, the system begins in the inaccessible state and undergoes

a series of m identical, slow, and effectively irreversible transitions to the acces-

sible state. Once these transitions into the accessible state occur, the system

can rapidly and reversibly occupy all of its accessible microstates such that the

probability of the system being in any of these microstates is described by ther-1780

modynamic equilibrium. The accessible states are governed by the same rules

and parameters as the thermodynamic MWC model (Appendix section 1.2),

albeit without the ∆εchrom parameter since now the transition from the inac-

cessible to accessible state is unidirectional.
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We consider two possible contributions for these irreversible transitions: a

Bicoid-dependent pathway and a Zelda-dependent pathway (Appendix fig. 15A,

see Appendix section 8.2 for a discussion on this choice of parameterization). We

assume the transition rates to be first-order in Bicoid and Zelda, respectively,

such that

πb = cb[Bicoid] (29)

and

πz = cz[Zelda]. (30)

Here, πb is the Bicoid-dependent contribution to the transition rates and πz is

the corresponding Zelda-dependent contribution. There are two input parame-

ters cb and cz that give the relative speed of each transition rate contribution.

The overall rate π of each irreversible transition is given by the sum

π = πb + πz = cb[Bicoid] + cz[Zelda]. (31)

Because the accessible states are in thermodynamic equilibrium with each

other, we can effectively treat them as a single state and describe the entire

system with m+ 1 states, corresponding to the inaccessible, intermediate, and

accessible states. We label the inaccessible state with 0, the m− 1 intermediate

states with 1 through m − 1, and the final accessible state with m. Thus, we

describe the probability pi of the system being in the state i with the probability

vector ~P

~P =


p0

p1

...

pm

 . (32)

Calculating the overall RNAP loading rate then simply corresponds to rescaling

pbound with the overall probability pm(t) of being in the accessible state:

dmRNA

dt
= Rpbound pm, (33)

where R is the same maximum rate used in Appendix section 1.2. Note that

pm(t) is a time-dependent quantity that changes over time. To calculate pm(t),
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we solve the corresponding system of ODEs that describes the time evolution

of ~P
d~P

dt
= Π~P , (34)

where Π is the transition rate matrix describing the time evolution of the system.

Π, by definition, is a square matrix with dimension m + 1. Given the initial

condition that the system begins in the inaccessible state

~P =


1

0

...

0

 (35)

the system of ODEs can be solved to find the probability of being in the ac-

cessible state pm(t). For example, for m = 3 irreversible steps, Π takes the

form

Π =


−π 0 0 0

π −π 0 0

0 π −π 0

0 0 π 0

 , (36)

where π is given by Appendix eq. 31.1785

For simplicity, the time evolution of ~P was solved using MATLAB’s ode15s

solver.

With the probability pm(t) of the system being in the accessible state calcu-

lated, we now calculate the probability pbound of RNAP bound to the promoter

in the accessible states, which lie in thermodynamic equilibrium with each other.

Because we now only have accessible states, the partition function is

Z =
(

1 + z
)10(

1 + p+
∑
j=0,1

6∑
i=1

(
6

i

)
biωi−1

b pjωijbp

)
, (37)

where z, p, and b correspond to the non-dimensionalized concentrations of Zelda,

RNAP, and Bicoid, respectively, and ωb and ωbp are the cooperativities between

Bicoid molecules and between Bicoid and RNAP, respectively. Thus, the overall
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transcriptional initiation rate is given by

Rate =
R

Z

((
1 + z

)10

p
(

1 +
6∑
i=1

(
6

i

)
biωi−1

b ωibp

))
pm (38)

= R

(
p
(

1 +
∑6
i=1

(
6
i

)
biωi−1

b ωibp

))
(

1 + p+
∑
j=0,1

∑6
i=1

(
6
i

)
biωi−1

b pjωijbp

)pm.
Due to the lack of the inaccessible state in the partition function and because we

assume that Zelda does not directly interact with Bicoid or RNAP, now the pres-

ence of Zelda mathematically separates out so that only Bicoid influences tran-1790

scription. The calculation above is a standard equilibrium statistical mechanical

calculation, except that we have weighted the final result with pm(t), the proba-

bility of being in the accessible states. The resulting rate is integrated to produce

a simulated MS2 fluorescence trace using the same procedure (Appendix sec-

tion 2.2) as the models presented in Appendix sections 1.2, 6.1, and 7.1.1795

Interestingly, we found that a mitotic repression term was not necessary to

recapitulate the data, since the presence of intermediary states produced the

necessary delay to explain the experimentally observed ton values in the data

(Fig. 4D, points).

In order to sufficiently explain the data, we found that a minimum of m = 31800

irreversible steps was necessary. Appendix fig. 14A and B show the results

of fitting this model to the observed rates of RNAP loading and ton for the

wild-type and zelda− data, for increasing values of m (wild-type results not

shown, since all values of m easily explained the wild-type data). We see that

while lower values of m do a poor job of recapitulating the data, once we reach1805

m = 3 the model sufficiently predicts the experimental data within experimental

error. For values of m higher than 3, explanatory power increases marginally.

Considering the parameter exploration of this model (Appendix section 8.3)

highlights the necessity of having at least m = 3 steps.

8.2. Exploring alternatives to the additive transcription factor-driven transition1810

rate
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Appendix 1 figure 14: Testing the transcription factor-driven model of chromatin accessibility.

(A,B) Best-fit results of the transcription factor-driven model to the mutant zelda− data. (A)

initial RNAP loading rates, and (B) ton, for varying numbers m of transcriptionally silent

states. (C) Parameter exploration in average ton delay and ton offset state space for increasing

values of m.
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In Appendix section 8.1, we defined the transition rate between the tran-

scriptionally silent states in our transcription factor-driven model of chromatin

accessibility as

π = cb[Bicoid] + cz[Zelda]. (39)

Here, we assumed that Zelda and Bicoid operate independently and in par-

allel to catalyze the transitions from the inaccessible to accessible state (Ap-

pendix fig. 15A). Our choice in using two independent Zelda- and Bicoid-

mediated transitions was primarily motivated by the fact that, to our knowledge,1815

no direct interactions between Bicoid and Zelda have been reported to date.

However, this is not the only possible choice of model formulation. Here, we

discuss and rule out two alternative mechanisms of Zelda- and Bicoid-mediated

transitions from the inaccessible to accessible state.

As a first alternative, instead of an independent and additive mechanism,

we could imagine a scenario where Bicoid and Zelda act simultaneously (Ap-

pendix fig. 15B). Here, each stochastic transition is given by

π = c[Bicoid][Zelda] (40)

where c is some constant with units of [Bicoid]−1[Zelda]−1min−1.1820

In a second alternative, Bicoid and Zelda could act sequentially. Here, each

stochastic transition contains an intermediary state (Appendix fig. 15C). In this

case, the transition rate will be dependent on Bicoid and Zelda such that

π ∼ c1[Bicoid]c2[Zelda]

c2[Zelda] + c1[Bicoid]
, (41)

where c1 and c2 are constants with units of [Bicoid]−1min−1 and

[Zelda]−1min−1.

One critical experimental observation is that transcription occurs even in the

absence of Zelda, albeit at a delayed capacity. Since removing Zelda would set π

to zero in these alternative models, transcription would not occur at all, and so1825

both of the proposed alternative mechanisms can be ruled out. More generally,

the existence of transcription in the absence of Zelda requires that there must

exist some independence between Bicoid-and-Zelda-mediated transitions from
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Appendix 1 figure 15: Different potential schemes of Bicoid- and Zelda-mediated transition

into the accessible state, for a model with m = 1 transcriptionally silent state. (A) The model

used in the main text, where Bicoid and Zelda provide independent pathways for chromatin to

transition into the accessible state. (B) A scheme where Bicoid and Zelda act simultaneously

on the transition. (C) A scheme where Bicoid acts first, and then Zelda, on the same pathway.

the OFF to the ON state. Otherwise, no transition, and hence no transcription,

could occur in the absence of Zelda.1830

8.3. Transcription factor-driven model of chromatin accessibility state space ex-

ploration

In the parameter exploration of this model (Appendix section 5.1), the pa-

rameters were constrained as

• cb > 01835

• cz > 0.

The parameters shared with the thermodynamic MWC model retained the con-

straints described in Appendix section 1.3.

Appendix fig. 14C shows the state space explorations (see Appendix sec-

tion 5.1) of this transcription factor-driven model for increasing numbers of1840

intermediate steps m. Not until m = 3 does the model explain the both

the wild-type and zelda− data, indicating that m = 3 is the minimum num-

ber of irreversible steps necessary. In the state space exploration shown in

Fig. 7D and Appendix fig. 9, the number of irreversible steps was fixed at

m = 3.1845

Unlike the other models investigated (Appendix sections 1.2, 6.1, and 7.1),

the transcription factor-driven model of chromatin accessibility occupied a re-
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gion in state space that encompassed both the wild-type and zelda− data (Ap-

pendix fig. 9, purple).

9. Supplementary Videos1850

1. Video 1. Measurement of eGFP-Bicoid. Movie of eGFP-Bicoid fusion

in an embryo in nuclear cycle 13. Time is defined with respect to the previous

anaphase.

2. Video 2. Measurement of Zelda-sfGFP. Movie of Zelda-sfGFP fusion in

an embryo in nuclear cycle 13. Time is defined with respect to the previous1855

anaphase.

3. Video 3. Measurement of MS2 fluorescence in a wild-type back-

ground. Movie of MS2 fluorescent spots in a wild-type background embryo

in nuclear cycle 13. Time is defined with respect to the previous anaphase.

4. Video 4. Measurement of MS2 fluorescence in a zelda− background.1860

Movie of MS2 fluorescent spots in a zelda− background embryo in nuclear

cycle 13. Time is defined with respect to the previous anaphase.

5. Video 5. Transcriptionally active nuclei in a wild-type background.

Movie of MS2 fluorescent spots in a wild-type background embryo in nuclear

cycle 13, with transcriptionally active nuclei labeled with an overlay. Time1865

is defined with respect to the previous anaphase.

6. Video 6. Transcriptionally active nuclei in a zelda− background.

Movie of MS2 fluorescent spots in a zelda− background embryo in nuclear

cycle 13, with transcriptionally active nuclei labeled with an overlay. Time

is defined with respect to the previous anaphase.1870

7. Video 7. Exploration of three-dimensional space consisting of av-

erage initial RNAP loading rate and offset and average delay in

transcriptional onset time. The models explored in the main text in-

habit domains in this space, whereas the wild-type and zelda− data inhabit
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ellipsoids of uncertainty. Whereas the thermodynamic MWC, generalized1875

thermodynamic, and non-equilibrium MWC model with up to five Bicoid

binding sites cannot explain the zelda− data, the transcription factor-driven

model with three inaccessible states can adequately encompass both datasets.
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