
WaLo: Security Primitive Generator for RT-Level
Logic Locking and Watermarking

Jun Kuai∗, Jiaji He†, Haocheng Ma∗, Yiqiang Zhao∗,Yumin Hou‡ and Yier Jin‡
∗School of Microelectronics, Tianjin University
†Institute of Microelectronics, Tsinghua University

‡Department of Electrical and Computer Engineering, University of Florida
kuaijun@tju.edu.cn, jiaji he@mail.tsinghua.edu.cn, hc ma@tju.edu.cn, yq zhao@tju.edu.cn, hou.yumin@ufl.edu,

yier.jin@ece.ufl.edu

Abstract—Various hardware security solutions have been de-
veloped recently to help counter hardware level attacks such
as hardware Trojan, integrated circuit (IC) counterfeiting and
intellectual property (IP) clone/piracy. However, existing solutions
often provide specific types of protections. While these solutions
achieve great success in preventing even advanced hardware
attacks, the compatibility of among these hardware security
methods are rarely discussed. The inconsistency hampers with
the development of a comprehensive solution for hardware IC
and IP from various attacks. In this paper, we develop a
security primitive generator to help solve the compatibility issue
among different protection techniques. Specifically, we focus
on two modern IC/IP protection methods, logic locking and
watermarking. A combined locking and watermarking technique
is developed based on enhanced finite state machines (FSMs). The
security primitive generator will take user-specified constraints
and automatically generate an FSM module to perform both logic
locking and watermarking. The generated FSM can be integrated
into any designs for protection. Our experimental results show
that the generator can facilitate circuit protection and provide the
flexibility for users to achieve a better tradeoff between security
levels and design overheads.

I. INTRODUCTION

The high cost of maintaining advanced foundries and the
globalization of the semiconductor industry divide the front-
end fabless design houses and back-end fabrication and testing
companies. This trend also breeds the integrated circuit (IC)
security threats such as IC counterfeiting, intellectual property
(IP) theft, and IC overproduction [1]. To address these chal-
lenges, various design-for-trust (DfTr) solutions [2], [3] have
been developed, e.g., logic locking, design obfuscation, wa-
termarking, camouflaging, hardware root-of-trust, etc. While
these solutions are proved effective in countering existing
security concerns, new attacks emerge, almost simultaneously
with the defense solutions. Taking the logic locking as an
example [4], along with a series of novel locking/obfuscation
techniques, there exist deobfuscation methods including sat-
isfiability checking (SAT) based attack [5], logic cone anal-
ysis based attack [6], hill-climbing attack [7], approximate
attacks [8], etc. One key issue that fuels this arms race is the
single-purpose of these developed countermeasures. That is,
existing hardware security solutions often focus on one specific
protection scheme against one potential attack. Attackers only
need to break one-level of defense in order to compromise

the whole design. To overcome such limitations, the concept
of defense-in-depth has been proposed recently. Instead of
using one single-purpose protection, multiple solutions will
be combined for more resilient security schemes. However,
the compatibility among existing methods are rarely consid-
ered. The inconsistency hampers with the development of a
comprehensive solution for circuit protections.

In this paper, we are developing a security primitive gen-
erator to help solve the compatibility issue among different
protection techniques. Specifically, we focus on two modern
IC/IP protection methods, logic locking and watermarking. A
combined locking and watermarking technique is developed
based on finite state machines (FSMs). The security primitive
generator will take user-specified constraints and automatically
generate an FSM module to perform both logic locking
and watermarking with a optimized overhead and security
compared to two independent security schemes. The generated
FSM can be integrated into any designs for protection.

In the proposed locking-watermark-combined security prim-
itive generation framework, watermark’s state is reused by the
locking scheme, resulting in a longer unlocking path. Further,
the existing FSM-based locking scheme is also enhanced
by the insertion of pseudo-FSMs, unlocking chain-network,
blackhole-FSMs and transitions among them. The developed
locking scheme is resilient to brute-force attacks and other
more advanced attacks, i.e., FSM recovery through netlist re-
verse engineering [9], [10]. To automate the process, we devel-
oped a generator, named WaLo: Security Primitive Generator
for RT-Level Logic Locking and Watermarking. Compared to
gate-level security solutions, the proposed method can fully
leverage the commercial EDA toolchain.

The overall contributions of our paper are listed as follows.

• We propose a design-agnostic solution for automatic se-
curity primitive generation. The generated security prim-
itive supports both watermarking and logic locking.

• Different from netlist and layout level solutions, we pro-
vide RTL solutions which can be seamlessly embedded
into the existing design flow.

• Security analysis shows that the developed scheme can
achieve exponential security levels against watermark
extraction, SAT-based deobfuscation attacks and even the
latest FSM reconstruction attacks.978-1-7281-8952-9/20/$31.00 ©2020 IEEE

II. RELATED WORK

A. Watermarking
Watermarking techniques have been widely used to protect

the rights of the IP owners through authentication. The authors
in [11] insert signatures in unused LUTs and create func-
tional differences between instances to protect FPGA design.
However, it is difficult to automate the watermarking process.
The side-channel-based watermarking relies on side-channel
information to embed the watermark. The authors in [12] add
power pattern generators to circuit and use them to create
power consumption differences which serve as the watermark.
Similarly, the authors in [13] embed watermark by creating
specific electromagnetic (EM) information.

The FSM-based watermarking approach tries to embed the
watermark to FSM’s transitions and then apply a special
excitation sequence for verification. Approaches in [14], [15]
manipulate the State Transition Graph (STG) of the original
design to create a watermark. Cui et al. [16] proposed a novel
FSM watermarking scheme by making the authorship infor-
mation a non-redundant property of the FSM at the behavioral
level. This technique makes the watermark randomly dispersed
and concealed in the existing FSM transitions. The authors
in [17] tried to use both existing and unused FSM transitions
to insert the information encrypted by AES and MD5.

B. Logic Locking and Obfuscation
Various logic locking and obfuscation approaches have been

proposed, aiming to obfuscate the high-level information of the
design. These existing solutions can be roughly divided into
combinational locking and FSM-based sequential locking. The
authors in [18] proposed key-controlled reconfigurable logic
blocks to obfuscate all paths from inputs to outputs. Then
in [19], the authors proposed an approach of AND/OR gates
insertion to hide signals with low controllability. Combina-
tional logic locking schemes were initially found vulnerable
to Boolean SAT attacks [20], [21]. New schemes are then
proposed to resist SAT attacks by increasing the minimum
number of differential input patterns (DIPs) required to find a
correct key, e.g., using “point-functions” or comparator logic
to decrease the effectiveness of each DIP [22], [23].

FSM-based locking techniques are more resilient to SAT-
style attacks. For example, the HARPOON scheme [24] tries
to augment an FSM with a series of states that form a
preceding locking mode. Only with knowledge of correct
excitation sequence, users can access the circuit’s normal
functional states. The authors in [25] proposed dynamic-state-
deflection to prevent the unauthorized overwriting of the FSM
state memory register. But FSM-based locking techniques
suffer from FSM reverse engineering attacks and the unlocking
sequence may be recovered [9], [10]. Another limitation is that
all locking schemes apply in gate-level netlist. There lack RTL
solutions for watermarking and logic locking.

III. THREAT MODEL

We follow a similar threat model to previous logic locking
and watermarking schemes [16], [26]. The adversary may not
access the protected RTL code. Instead, the adversary have

Algorithm 1: Generation of the watermark-FSM
Input: copyright-information CI , configuration-file CF .
Output: watermark-FSM WaFSM .

1 create WaFSM as empty graph
G(N,E,V)=G(Nextstate,Excitation,Output)

2 aeskey ← GetKey(CF)
3 signature← HashFunction(AES(CI, aeskey))
4 expandratio← GetExpandRatio(CF)
5 while signature is not empty do
6 tempslice← CopyF irstSlice(signature)
7 signature← RemoveF irstSlice(signature)
8 G(N,E, V)← G(N ∪ randomstate, E ∪

randomexcitation,O ∪ tempslice)

the access to the flattened gate-level netlist of design either
within an untrusted foundry or through reverse engineering to
a fabricated chip [27]. This netlist may not contain high level
design information such as hierarchies of design, the design’s
synthesis constraint, nets and instances’ names. Further, we
assume that some adversaries may have the access to a
working “oracle” chip, i.e., an unlocked and functional chip.

The adversary’s goal is to identify the design’s watermark
and locking key. In this way, the adversary can remove or
maliciously change the inserted watermarks so that an IP
piracy attack becomes possible. With the unlocking key, the
adversary can perform IP clone for unauthorized redistribution
or overproduction of valuable IPs.

IV. RTL LOCKING AND WATERMARKING
A. Framework Overview

In this section, we will introduce the details of the proposed
WaLo framework for RTL protection. Figure 1 shows the
overall working procedure of the WaLo framework where the
locking and watermarking schemes are integrated into one
FSM-based security primitive. The whole process is automated
and the generated security primitive can be inserted into
any designs for circuit protection (with little modifications to
the original design such as wire connections to the security
primitive). Provided with a user-specified configuration, as
shown in Figure 1, WaLo will create a watermarked FSM
first which is referred to as watermark-FSM in the paper.
Then it will generate pseudo-FSMs and blackhole groups for
FSM-based locking. These types of FSMs are merged by a
chain network, establishing the superiority of overhead and
security compared to two independent security schemes. As
we will demonstrate later, the generated security primitive for
watermarking and logic locking is resilient to various attacks
including brute-force attacks, SAT-based attacks and FSM
reverse engineering attacks. The generated security primitives
can also behave watermarking and logic locking indepen-
dently, i.e., the watermarking verification process will not leak
information about circuit unlocking, and vice versa.

B. Watermark-FSM Generation
WaLo will fist create the FSM for watermarking. The basic

procedure of the FSM generation process for watermarking is
shown in Algorithm 1. To obfuscate the semantic information,
a cryptographic algorithm, e.g., AES cipher, is used to encrypt

Fig. 1. The working procedure of the proposed WaLo security primitive generator.

Fig. 2. The generated security primitive structure for watermarking and logic locking.

the user-defined copyright information. An optional hash func-
tion can be used to help compress the signature. The hashed
digest (or the encrypted ciphertext) is used as the watermark
signature for insertion.

After that, WaLo applies randomized expansion and map-
ping based on the provided signature, which result in infor-
mation redundancy and disordering, respectively. To reduce
the overhead, the WaLo will create the watermark-FSM with
minimum size, SizeFSM in Equation (1).

SizeFSM =
Lengthsig

Widthout × 2Widthin
(1)

where the Widthin, Widthout and Lengthsig denote widths
of FSM’s input, output and the signature length, respectively.

C. Locking FSM and Chain Network Generation
The pseudo-FSM is an FSM that mimics the behavior of

a normal functional FSM, which we refer to as the original-
FSM in the paper. For example, there often exist bidirectional
transition paths between arbitrary two states. By creating
a group of pseudo-FSMs, we can increase the degree of
obfuscation against FSM identification attacks. In the case that
the design under protection is already available, we will extract
the functional FSM to serve as a reference for pseudo-FSMs.
In WaLo, we leverage the traversal-path-FSM generation ap-
proach to create pseudo-FSMs [28]. The unidirectional state
chain is initialized and two intermediate states are selected at
random. To ensure the path traversability, transitions loops are
built by connecting the head and tail states with these two
intermediate states. Another protection mechanism is called
blackhole. It denotes a group of FSM states with no exits.
Through creating a group of blackholes, the attack may not
access the original-FSM by random input sequences.

WaLo then initializes the chain network which behaves
as multiple unidirectional state chains. The watermark-FSM,
pseudo-FSMs and blackhole groups are interconnected using
the chain network. The constructed chain network starts with
the watermark-FSM and terminates at either the original-
FSM or any of the pseudo-FSM. In this way, WaLo merges
watermarking and logic locking schemes.

For each state inside the watermark-FSM, WaLo calculates
the length of its transition path. Those states with the longest
transition length are selected as the beginning points. Note
that the states of the watermark-FSM are reused as part of the
locking FSM, a practice that helps reduce the overhead and
increase the traverse space against brute-force attacks. Fur-
ther, the watermarking verification process can be performed
without disclosing the unlocking sequences. The blackhole
group is then added into idle transitions of each chain state
rather than watermark-FSM states. This step aims to achieve a
high probability that FSM operations will be suspended if an
incorrect unlocking sequence is provided. Adding blackhole
states only to the chain network makes sure most transitions
to blackhole are from states in the unlocking path, resulting to
a lower overhead. Further, the unidirectional state chains are
interconnected with each other for network structure. Through
this, the attack complexity increases exponentially against
accessibility analysis.

WaLo builds the feedback path starting from the endpoints,
i.e., the pseudo-FSM and original-FSM, to the chain network.
The feedback paths expand the path traversability, invalidating
the minimum-blackhole attack (see Section IV-D).

D. Security Analysis
In this section, we will evaluate the security of the WaLo

scheme. Note that we assume that there are secure storage for

Algorithm 2: Security primitive generation using the
WaLo framework

Input: configuration-file CF , original-design OriD,
Watermark-FSM WaFsm.

Output: WaLo framework FSM WaLoFSM .
1 OriFSM ← ExtractFSM(origin-design)
2 (pseudo-num,black-num) ← GetGroupSet(CF)
3 (PseFSM,BlaFSM) ←

GenerateFsmGroup(pseudo-num,black-num)
4 repeat
5 create chain topology

G(preState,postState,Excitation,Output)
6 State1 ← one of farthest states to initial state in WaFSM
7 State2 ← GetState(PseFSM or OriFSM)
8 G ← G∪(State1,GetStartState(G),-,-)
9 G ← G∪(GetEndState(G),State2,-,-)

10 ChainFSM∪G(preS,postS,E,O)
11 until times reach pseudo-num+1;
12 repeat
13 ChainFSM ← ChainFSM∪

(GetState(ChainFSM),GetState(BlaFSM),-,-)
14 until Probability to Blackhole satisfaction;
15 repeat
16 ChainFSM ← ChainFSM∪

(GetState(ChainFSM),GetState(ChainFSM),-,-)
17 until Complexity satisfaction;
18 WaLoFSM ←

OriFSM∪ChainFSM∪PseFSM∪BlaFSM∪WaFsm
Function GenerateFsmGroup(pse-num,bla-num):

19 repeat
20 (statenum,transitionnum) ← GetPseudofsmSet(CF)
21 create chain topology G(preS,postS,E,O)
22 G ← G∪(GetState(G),GetStartState(G),-,-)
23 G ← G∪(GetEndState(G),GetState(G),-,-)
24 repeat
25 G ← G∪(GetState(G),GetState(G),-,-)
26 until Similarity satisfaction;
27 PseFSM ← PseFSM∪G(preS, postS,E,O)
28 until times reach pse-num;
29 repeat
30 create ring topology G(preS,postS,E,O) with 2 states
31 BlaFSM ← BlaFSM∪G(preS,postS,E,O)
32 until times reach bla-num;
33 return pseudofsmgroup PseFSM , blackholegroup

BlaFSM

unlocking keys so we will not discuss the key storage security.
According to our threat model, we consider three adver-

saries with different resources and capabilities. The Type I
Adversary treats a gate-level netlist as a blackbox and tries
to find the watermark or to unlock the design by applying
random input sequences. The Type II Adversary has the
ability to rebuild the entire FSM of watermarked and locked
design using advanced netlist reverse engineering tools [9].
By observing FSM’s states and transitions, the adversary tries
to identify original-FSM and extract the watermark. Note that
the previous two types of adversaries do not have access to
an “oracle” chip. The Type III Adversary will also use FSM
construction tools to rebuild the FSM. Further, the adversary
has an “oracle” chip which is unlocked and functional.
Brute-Force Attack (Type I Adversary). In this attack, the
adversary would apply random input sequences to explore

TABLE I
WALO-GENERATED SECURITY PRIMITIVE AREA OVERHEADS.

input
/output

chain
length

pseudo
FSMs

prob to
blackhole #state #trans #reg #gate

4 / 4 4 3 0.2 65 420 15 2155
6 / 6 4 3 0.2 40 601 17 1717
8 / 8 4 3 0.2 31 1022 19 2970

10 / 10 4 3 0.2 32 3466 21 9896
4 / 4 6 3 0.2 74 469 15 2347
4 / 4 8 3 0.2 82 517 15 2528
4 / 4 10 3 0.2 92 567 15 2802
4 / 4 12 3 0.2 98 613 15 3043
4 / 4 4 3 0.3 66 433 15 2260
4 / 4 4 3 0.4 65 456 15 2317
4 / 4 4 3 0.5 67 470 15 2149

FSM states for watermark extraction or design unlocking.
Supported by the WaLo framework, the length of locking key
depends on the watermark and chain-network’s structures and
the width of FSM’s input. With the input width I, the number
of watermark-FSM’s state Ws, the number of transitions to
the furthest state in the watermark-FSM Wt, and the number
of every chain’s state Cs, the length of the unlocking path is
(Wt+Cs) for I-bit sequences. Note that our scheme support
multiple unlocking paths. With the total number of unlocking
paths being u, the probability to randomly achieve one correct
unlocking sequence is calculated as follows.

Pr =
u

2I·(Wt+Cs)
(2)

Further, due to the inserted blackhole states, the adversary
need to reset the design whenever the FSM is stuck at
blackholes. Since the adversary may not know the length of
unlocking sequence, the attack complexity is further increased
when all possible lengths are tested.

For watermark extraction, the watermark-FSM has a two-
way interconnected network topology. Therefore, the space
of FSM’s output is exponential to Ws and the number of
total transitions in the watermark-FSM. The original copyright
information is encrypted and hashed, so the adversary cannot
tell whether an extracted watermark is corrected or not.

Accessibility-Analysis Attack (Type II Adversary). A more
experienced adversary may use latest reverse engineering tools
to extract the FSM structure, e.g., rebuilding the design’s
FSM using structural analysis methods [9]. The adversary will
then try to find the original-FSM from the reconstructed FSM
(see Figure 2). In fact, one key limitation of previous FSM-
based locking solution, e.g., [24], is that the probability to
transit within locking states is low but the probability of state
transitions in the original-FSM is much higher. The adversary
can rely on this observation to differentiate locking states from
functional states and then recover the unlocking sequence [10].

The proposed WaLo framework tries to overcome this
limitation. Besides the chain network and blackholes, WaLo
also creates pseudo-FSMs with high internal accessibility, a
property similar to the original-FSM. Without knowing the
correct outputs, the adversary cannot differentiate the original-
FSM from pseudo-FSMs through the accessibility analysis.
Further, the use of a chain-network, instead of simple chains,

will further complicate the structural analysis. Assuming that
the number of chains is m, every chain has Cs states, and the
average number of transition to every state in chain is l, the
total number of chains, denoted as N, in the chain-network
can be calculated as follows.

N = m · (l)Cs (3)

Note that the large amount of chains only slightly impacts
the resistance to brute-force attacks because Pr×N is still a
very small number.
Minimum-Blackhole Attack (Type II Adversary). As we
discussed earlier, the original-FSM often has the property
of high path traversability and does not contain blackhole
states. In previous FSM-based locking schemes, the original-
FSM itself is a blackhole group, i.e., the FSM cannot switch
back to the locked mode after being unlocked. This design
consideration prevents the circuit being locked accidentally
but also make the original-FSM be identified easier from the
recovered FSM. The minimum-blackhole attack is to check
all blackhole-style FSMs and identify the original-FSM. The
attack complexity is linear to the total amount of the blackhole-
style FSMs (see Figure 3, bottom).

To counter this attack, WaLo breaks the assumption that the
original-FSM only has inbound transitions. By using undefined
transitions in the original-FSM, WaLo inserts transition paths
from the original-FSM states back to the chain network. We
argue that any normal computations with legal inputs will not
cause circuit locking accidentally.
Oracle-Guided Attack (Type III Adversary). In the case that
an adversary can reconstruct the whole FSM accurately and
have the access to an oracle circuit, an oracle-guided attack
can be performed. This will decrease the attack complexity of
Accessibility-Analysis and Minimum-Blackhole attacks from
exponential to linear. The adversary only needs to compare
the outputs of each candidate state with the oracle outputs to
differentiate original-FSM from pseudo-FSMs. Note that this
attack only applies to locking scheme but does not impact the
security of the watermarking scheme.

To counter this attack, a simple solution is to increase
the number of pseudo-FSMs and add more transitions from
pseudo-FSMs and orignal-FSM to the chain network. Since
WaLo works at RTL, it is easy to achieve the tradeoff between
security and overhead. With a large number of registers, it
becomes difficult to analyze and rebuild the whole FSM.
Another method is to design pseudo-FSMs which has close
(but not the same) behaviors to the original-FSM. Note that
the solution requires the understanding of the original-FSM
and will be investigated in our future work.

V. EXPERIMENTAL RESULTS
To evaluate the overheads of the generated security prim-

itives, we use a standard ASIC design flow to synthesize
WaLo generated primitives under different configurations. The
overhead is measured by the number of combinational gates
and flip-flops, #gate and #reg in Table I, respectively. For
security analysis, we apply the REFSM tool described in [9] to

reverse engineer the whole FSM from the synthesized netlist.
We then analyze the resilience against the first three attacks
mentioned in Section IV-D.
A. Overhead Analysis

Based on different user configurations, WaLo generated a
series of security primitives with different complexities. All
security primitives provide watermarking and logic locking
protections to the target design. These configurations and
overheads are listed in Table I.

The primitive overhead is linearly proportional to WaLo’s
parameters except for the input and output widths since
possible transitions among states are exponentially linked to
input and output widths. To maximize the security with low
overhead, the designer may increase the length of the locking
chains and insert a few pseudo-FSMs with a similar size to the
original-FSM. In general, the designer should keep the width
of input and output relatively small. However, a width less
than 3 may impact the watermarking scheme security.
B. Security Evaluation

For the security analysis purpose, we choose a security
primitive generated with the following parameters, 4-bit input
and output, 2 pseudo-FSMs each with 5 states, locking chains
with 3 states, 2 blackholes, and 20% chance to transit into
blackhole state for every transition in the chain-network. The
generated FSM have around 50 states and 350 transitions (see
FSM-A in Figure 3).

Brute-Force Attack and Accessibility-Analysis Attack. For
the brute-force attack, the shortest path to unlock the design
has 9 transitions, i.e., there are 24×9 possible input sequences
and 96 unlocking paths. As a result, the maximum Pr, the
probability to randomly achieve one correct unlocking se-
quence, is 1.4×10−9. For the accessibility-analysis attack, the
average number of transitions to every state in chain network
is 2. So N, the total number of unlocking chains, is 24.

Note that by adding more states to the chain network, Pr
will decrease exponentially and N will increase exponentially.
For example, by adding 10 states to each of 3 chains and
increasing transitions to every state in chain network from 2
to 4, the Pr will decrease from 10−9 to 10−21, and N will
increase from 24 to 2× 108.

Minimum-Blackhole Attack. To evaluate the resistance to
the Minimum-Blackhole attack, we generate another security
primitive (see FSM-B in Figure 3) which shares a similar
structure but without transitions from the original-FSM and
pseudo-FSMs to the chain network. As shown in Figure 3, the
Minimum-Blackhole attack may find 3 minimum-blackholes
in FSM-B and one of them is the original-FSM. The adversary
can explore all 3 FSMs quickly to identify the original-
FSM. The adversary may only find a big minimum-blackhole
which includes the original-FSM, pseudo-FSMs, blackhole
states and the chain network. And due to the exponential
complexity of chain network, the time cost to analyze this FSM
is much higher than analyzing the FSM-B. Transitions from
the original-FSM and pseudo-FSMs to the chain-network will
improve the resilience against attacks. The overall overhead is

Fig. 3. Security analysis of minimum-blackhole attack.

linearly proportional to WaLo’s settings such as input/output
width, the count of pseudo-FSMs, etc. while the security level
increases exponentially.

VI. CONCLUSIONS
In this paper, we proposed and evaluated WaLo, an RTL se-

curity primitive generator combining Locking and watermark-
ing schemes. The automatically generated FSM-based security
primitive can be integrated into any designs for protection,
with high resilience to the brute-force attack and other more
powerful attacks relying on netlist reverse engineering.

ACKNOWLEDGEMENTS

This work is partially supported by the National Science
Foundation (NSF-1812071).

REFERENCES

[1] Y. Shen, A. Rezaei, and H. Zhou, “Sat-based bit-flipping attack on logic
encryptions,” in 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2018, pp. 629–632.

[2] U. Guin, Z. Zhou, and A. Singh, “Robust design-for-security architecture
for enabling trust in ic manufacturing and test,” IEEE Transactions on
Very Large Scale Integration Systems, vol. PP, no. 99, pp. 1–13, 2018.

[3] R. Aitken, “Panel: Is design-for-security the new dft?” in VLSI Test
Symposium, 2015.

[4] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy
of integrated circuits,” in Proceedings of the conference on Design,
automation and test in Europe, 2008, pp. 1069–1074.

[5] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” 2015, pp. 137–143.

[6] W. L. Yu and N. A. Touba, “Improving logic obfuscation via logic cone
analysis,” in 16th Latin-American Test Symposium (LATS), 2015.

[7] S. M. Plaza and I. L. Markov, “Solving the third-shift problem in ic
piracy with test-aware logic locking,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 6, pp.
961–971, 2015.

[8] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of
approximation-resilient circuit locking,” in Proceedings of the IEEE
Symposium on Hardware Oriented Security and Trust (HOST). McLean,
VA, USA: IEEE, 2019, pp. 161–170.

[9] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-
level functionality reconstruction,” in Proceedings of the 21st Asia and
South Pacific Design Automation Conference (ASP-DAC). Macau,
China: IEEE, 2016, pp. 655–660.

[10] M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier,
and C. Paar, “On the difficulty of fsm-based hardware obfuscation,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 293–330, 2018.

[11] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Fpga fingerprinting
techniques for protecting intellectual property,” in Proceedings of the
IEEE Custom Integrated Circuits Conference, 1998, pp. 299–302.

[12] G. T. Becker, M. Kasper, A. Moradi, and C. Paar, “Side-channel based
watermarks for integrated circuits,” in IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), 2010, pp. 30–35.

[13] T. Kean, D. McLaren, and C. Marsh, “Verifying the authenticity of chip
designs with the designtag system,” in IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008, pp. 59–64.

[14] A. L. Oliveira, “Techniques for the creation of digital watermarks
in sequential circuit designs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 20, no. 9, pp. 1101–
1117, 2001.

[15] I. Torunoglu and E. Charbon, “Watermarking-based copyright protection
of sequential functions,” IEEE Journal of Solid-State Circuits, vol. 35,
no. 3, pp. 434–440, 2000.

[16] A. Cui, C. Chang, S. Tahar, and A. T. Abdel-Hamid, “A robust fsm
watermarking scheme for ip protection of sequential circuit design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 5, pp. 678–690, 2011.

[17] M. Meenakumari and G. Athisha, “A new approach to protect fpga based
sequential ip cores,” in 2014 International Conference on Electronics
and Communication Systems (ICECS). IEEE, 2014, pp. 1–5.

[18] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing ic piracy
using reconfigurable logic barriers,” IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 66–75, 2010.

[19] S. Dupuis and G. D. Natale, “A novel hardware logic encryption
technique for thwarting illegal overproduction and hardware trojans,”
in On-Line Testing Symposium, 2014, pp. 49–54.

[20] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in IEEE International Symposium on Hardware
Oriented Security and Trust, 2015, pp. 137–143.

[21] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proceedings of the
IEEE Symposium on Hardware Oriented Security and Trust (HOST).
McLean, VA, USA: IEEE, 2017, pp. 46–51.

[22] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “Sarlock:
Sat attack resistant logic locking,” in IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2016, pp. 236–241.

[23] Y. Xie and A. Srivastava, “Anti-sat: Mitigating sat attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199–207, 2018.

[24] R. S. Chakraborty and S. Bhunia, HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection, 2009.

[25] J. Dofe, Y. Zhang, and Q. Yu, “Dsd: A dynamic state-deflection method
for gate-level netlist obfuscation,” in 2016 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 565–570.

[26] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin,
“Ip protection and supply chain security through logic obfuscation:
A systematic overview,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 24, no. 6, pp. 65:1–65:36, 2019.

[27] Tech insights. [Online]. Available: https://www.techinsights.com
[28] Y. Alkabani and F. Koushanfar, “Active hardware metering for intellec-

tual property protection and security.” in USENIX security symposium,
2007, pp. 291–306.

