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In Savage’s classic decision-theoretic framework [[12]], actions are formally defined as functions from
states to outcomes. But where do the state space and outcome space come from? Expanding on
recent work by Blume, Easley, and Halpern [3], we consider a language-based framework in which
actions are identified with (conditional) descriptions in a simple underlying language, while states
and outcomes (along with probabilities and utilities) are constructed as part of a representation theo-
rem. Our work expands the role of language from that in [3]] by using it not only for the conditions
that determine which actions are taken, but also the effects. More precisely, we take the set of actions
to be built from those of the form do(¢), for formulas ¢ in the underlying language. This presents
a problem: how do we interpret the result of do(¢) when ¢ is underspecified (i.e., compatible with
multiple states)? We answer this using tools familiar from the semantics of counterfactuals [13]:
roughly speaking, do(¢) maps each state to the “closest” ¢@-state. This notion of “closest” is also
something we construct as part of the representation theorem; in effect, then, we prove that (under
appropriate assumptions) the agent is acting as if each underspecified action is first made definite
and then evaluated (i.e., by maximizing expected utility). Of course, actions in the real world are
often not presented in a fully precise manner, yet agents reason about and form preferences among
them all the same. Our work brings the abstract tools of decision theory into closer contact with such
real-world scenarios.

1 Motivation

In Savage’s classic decision-theoretic framework [12] actions are formally defined as functions from
states to outcomes. States are conceptualized as encoding the possible uncertainty the decision-maker
may have about the world, while outcomes correspond intuitively to the payoff-relevant ways things
might turn out. Thus, an action ¢ can be viewed as a kind of long list: for each way the world might be
(i.e., each state s), a specifies what will happen—namely, the outcome o(s)—in case action ¢ is actually
performed in state s.

One might ask: where do the state space and outcome space come from? Is it reasonable to model an
agent using a mathematical apparatus they presumably have no access to? Questions like these tap into
a long tradition of challenging the idealizations involved in models like Savage’s (see, e.g., [1, 12,4, 15,16,
7,18, 19, 10, [14]). One response might be that we are not trying to duplicate the decision-making process
going on “in the agent’s head”, but rather to represent it, mathematically—to show that under certain
conditions it can be tracked with a certain type of formalism (in this case, as a form of expected utility
maximization).

Although this reply might assuage some worries about the use of abstract mathematical frameworks
for reasoning about decision making in general, it remains problematic that actions—the objects over
which agents are supposed to “reveal” their preferences, through concrete, binary choices—cannot them-
selves be described except by reference to the background state and outcome spaces, which might not
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2 Language-based Decisions

be the states and outcomes that the agent is actually thinking of. In such models, although outcomes are
what agents are supposed to ultimately care about, actions are the means by which they bring outcomes
about. This makes an agent’s preferences regarding actions arguably the closest point of contact that
these models have to the empirical, observable reality of choosing between alternatives. Indeed, this
interpretation of actions is what underlies many of the intuitions brought to bear to justify the various
axioms of decision making that Savage postulates and relies upon to prove his celebrated representation
theorem.

The concern with where the states and outcomes are coming from motivated Blume, Easley, and
Halpern [3]] (henceforth BEH) to consider a model where acts and language are taken to be primary
in a sense that we explain shortly, while the state and outcome space are constructed as part of the
representation rather than specified exogenously. In more detail, BEH assumed that acts were programs
in a simple programming language formed by closing off a set of primitive programs using if ...then
...else ..., so that if a and b are programs and ¢ is a test (intuitively, a formula in a propositional
language), then if ¢ then a else b is a program. Thus, rather than conditioning actions on events (i.e.,
subsets of a state space), they are conditioned on descriptions of events, namely, tests. This approach
allows BEH to not only circumvent a fixed, exogenous specification of the state space and outcome space
(instead, they are constructed as part of a representation theorem, and programs are identified with maps
from from these states to outcomes), but also (as they illustrate with several examples) makes it possible
to capture a variety of framing effects, which basically derive from a mismatch between how the modeler
conceives of the world and how the agent does, as manifested in different ways that descriptions of events
might map onto actual events.

Our work is perhaps best understood as an extension of their work in which the role of language
is even more central. Specifically, while BEH allowed arbitrary primitive programs, we take the prim-
itive programs to have the form do(¢), where ¢ is a formula. The do(¢) notation follows Pearl [11];
intuitively, do(¢@) means that the agent somehow makes ¢ true. Note that this action is somewhat un-
derspecified; it does not say what else becomes true as a result of ¢ being true; for example, if y is
independent of @, it does not tell us whether y or -y is true. In our representation theorem, we assume
that the agent has a way of specifying the effects of do(¢). In more detail, we take states in our state
space to be characterized by formulas in the language (this is similar to the canonical model used in
BEH’s representation theorem), and take the outcome space to be the same as the state space, so that a
program maps states to states. As part of the representation theorem, the agent must decide what state
do(¢@) maps each state @ to. We follow standard approaches to giving semantics to counterfactuals [13]]
by taking do(¢@) to map m to the “closest” state to @ (according to some measure of closeness) where ¢
is true. Of course, what counts as “closest” depends on the agent’s subjective view of the world, and is
constructed from their preferences over acts.

This approach allows us to model choices in a way that seems to us closer to how agents perceive and
reason about the options available to them. To illustrate, consider a policy-maker trying to decide whether
to raise the minimum wage to $15 or to leave it as is. In our framework, this amounts to comparing the
acts do(MW = $15) and do(true) (where do(true) amounts to doing nothing). Of course, different agents
may disagree about the side-effects of increasing the minimum wage (businesses may close, there may
be more automation so jobs may be lost, and so on). This amounts to saying that different agents will
interpret do(MW = $15) differently as a function from states to states, although all will agree that it
will result in a state where the minimum wage is $15 EI We can also express contingent policies in our

'We remark that in this paper we consider only the single-agent case, but we find the multi-agent case, and specifically the
effect of disagreements about what the closest state is, an exciting direction for future work.
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framework, for example, raising the minimum wage if the economy is healthy.

By making both the acts and the test conditions formulas, we can capture framing and coarseness
effects not only in the test conditions, but also in the choices. For example, we might imagine agents
reacting differently to statements like “we will require that every citizen is paid at least $15 dollars for
each hour they work™ versus “we will require every business owner to pay their employees at least $15
for each hour they work”, even if we can see that these are equivalent statements. Our framework would
allow this.

The rest of this paper is organized as follows. We present our approach as an extension of the work
of BEH. This has the benefit of allowing us to apply their representation theorem directly and focus our
efforts on the novel aspects of our extension. We begin in Section [2|by reviewing the relevant definitions
from BEH and augmenting them with the new ones we need to capture language-based, underspecified
effects of actions. Then in Section[3| we articulate the representation theorem we are aiming at, introduce
decision-theoretic axioms that allow us to achieve it—including axioms from BEH (Section [3.1) as well
as several new axioms (Section [3.2)—and finally prove the theorem (Section [3.3)). Section ] concludes
with a discussion of future work. Appendix |Alcollects proofs omitted from the main text.

2 Language, Actions, and Models

Our first step is to import the relevant definitions from BEH so as to present our extension of their
work in context. In order to emphasize the changes that we make and to streamline the presentation,
we alter some of their notation and terminology, and focus on the special case of their system without
randomization.

Let @ denote a finite set of primitive propositions, and £L = £(®) the propositional language consist-
ing of all Boolean combinations of these primitives. Although of course it is possible (and interesting)
to consider other languages, in this work we focus on languages of this form as the underlying language
of action—intuitively, the language in which both the conditions and the results of actions are specified.

A basic model (over L£(®)) is a tuple M = (Q,[-]]ss) where Q is a nonempty set of states and
[Jar : @ — 2% is a valuation function. The valuation is recursively extended to all formulas in £ in
the usual way. Intuitively, [@]s is the set of states where ¢ is true. Using [:]ss allows us to interpret
descriptions in the language £ (what BEH call “tests”) as events: ¢ is interpreted as the subset [@]];y € Q
of the state space Q. We sometimes drop the subscript when the model is clear from context, and write
o = ¢ for o € [[@]]. We say that @ is satisfiable in M if [[@]; # @ and that @ is valid in M if @]y = Q,
and write |= @ to indicate that ¢ is valid in all basic models. Finally, we define the theory of ® (in M) to be
the set of all formulas true at @, denoted Th(w) ={¢ : ® = ¢}, and write © = @' iff Th(®) = Th(®').

Up to now, everything we have defined has followed BEH exactly—their “primitive tests” are our
primitive propositions ®; their “tests” are our formulas £(®); their “test interpretations” are our valu-
ations [[-[. Next we define our version of their “primitive choices”. This is where our development
begins to diverge, since we take these to be actions of the form do(¢@); in other words, we specify primi-
tive choices using the same underlying language £ (®) that corresponds to tests, rather than treating them
as a brand new set of primitives.

Formally, given a finite set of formulas F' C £, the set of actions (over F'), denoted by A, is defined
recursively as follows: for each ¢ € F, do(@) is an action (called a primitive action), and for all y € £
and o, B € A, if y then « else f3 is an action. Following BEH, we take F to be finite (who take the set of
primitive choices to be finite). It is also convenient because it allows us to exclude logical inconsistencies
from F, obviating the need to interpret actions like do(false). For the propositional languages under
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consideration in this paper, up to logical equivalence, there are only finitely many formulas in any case.
Naturally, we also wish to interpret our actions in a way that respects their connection to the under-
lying language. This is the topic we turn to next.

2.1 Selection models

In a given basic model M, we want do(¢@) to correspond to a function whose range is contained in [[@] u,
the set of ¢@-states. Thus, we restrict our attention to basic models in which each ¢ € F is satisfiable—in
this case we say that M is F-rich. But this is not enough: as discussed, do(¢) is underspecified; it
does not in general determine a unique function. In order to interpret such actions and compare them
to others, we must in some sense “fill in” the missing details. We formalize this with the concept of a
selection model (for F), which is a basic model M = (Q, [[-]a) together with a selection function (for
M) c:Qx F — Qsatisfying c(o, ¢) € [@]u-

Selection functions were introduced by Stalnaker [13]] as a mechanism to interpret counterfactual
conditionals. Following this tradition, we think of ¢(®, @) as representing the “closest” state to @ where
@ is true. There are many other properties one might insist ¢ have, aside from ¢(®, @) € [[@] (which is
called success). For example, one may require that if ® € [[@]], then ¢(®, @) = @ (i.e., if @ is true in @,
then the closest state to @ where @ is true is @ itself); this property is called centering.

In this paper we will also consider a relatively strong condition on ¢, namely, that it is derived
from a parametrized family of well-orders?] on the state space, one for each state: < :={<q: ® € Q}.
Intuitively, w; <, m, says “; is at least as close to @ as @, is”. We say that a selection function c is
induced by < if ¢(w, @) always outputs the <,-minimal element of [¢]]. We call < centered if, for
each o € Q, the <,-minimal element of  is @ (in which case it is also easy to see that the induced
selection function satisfies centering). Finally, we say that < is language-based if the relations < on
the quotient Q /= given by

[01] g [] iff @ < @

Can we drop this moreover/

are well-defined well-orders, and . Note that in this case
o = @' implies ¢(@, ) = c(@’, (p) Intuitively, if < is language-based then what counts as the closest
state essentially depends only on the formulas that are true at a state. We cannot have two states @; and
@, that agree on all formulas (so that @; = @,) and a third state w3 that does not agree with @; and @, on
all formulas such that @5 is between @; and @, in terms of distance from some state @ (i.e., we cannot
have @) <g 03 <p ).

The purpose of the selection function in our models is to take an underspecified transition from states
to states and “resolve the ambiguity”. Specifically, given a transition that starts in state @ and ends up
in a ¢-state, the selection function ¢ can then by applied to specify the exact ¢-state, namely c(w, @),
where it actually ends up. In this way, given a basic, F-rich model M, each action of the form do(¢@) can
be interpreted in any selection model (M, c) based on M as a function [do(@)]y . : Q — Q defined by:

[do(@)lm.c(®) = (@, @).

2 A binary relation < on a set is called a linear order if it is complete, transitive, and antisymmetric (i.e., x <y and y < x
implies x = y). A well-order is a linear order in which every nonempty subset has a least element.

3Here’s why: since c(®, @) is the <,-minimal element of [[¢]], it must also be that [c(®, )] is the <,-minimal element of
{[@"] : @" = ¢}. Similarly, [c(@’, @)] is the <z -minimal element of {[®”] : ®" = @}. Since <, =<, these must coincide,
so we have [c(®, @)] = [c(@', 9)].
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Of course, we can extend this interpretation to all actions in Af in the obvious way (and exactly as BEH
do):

[y (@) if o € [y]

[if v then « else By (@) = {[[ﬁ]]Mc(w) if o ¢ [[y].

3 Representation

We begin as usual with a binary relation > on Ap, where o = f says that « is “at least as good as” f3.
Following standard conventions, we define o =~ 3 as an abbreviation for a > 8 and 8 % o, and @ ~ f3
for a > B and B = a, representing “strict preference” and “indifference”, respectively. We also assume
that > is complete, that is, all elements are comparable, so that for all acts o and B, either o = 3 or
B > a. Although BEH consider incomplete relations, we focus here on the simpler case of complete
relations in order to streamline the presentation and highlight the novel components of our model.

A language-based SEU (Subjective Expected Utility) representation for a relation > on Ar is a
finite selection model (M, c) together with a probability measure 7 on Q and a utility function u: Q — R
such that, for all , B € Ap,

a=pe ) mo) ulalud(®)> Y, x(o) u((Blu(w). (1

weQ weQ

We note the key differences between the representation theorem BEH establish and what we are
aiming at. First, their result produces a separate outcome space and state space, whereas for us, these
spaces coincide. More importantly, their result treats “primitive choices” (namely, our actions do(¢),
for ¢ € F) as true primitives in the sense that each is assigned to an arbitrary function from states
to outcomes. By contrast, we want to respect the structure of an action like do(¢)—specifically, its
connection to the formula ¢—by requiring that do(¢) correspond to a map from Q to Q such that
o — c(w, @) for a suitable selection function c. One of the novel aspects of our proof consists in showing
how to determine the selection function from preferences on acts.

Since our framework can be viewed a specialization of the BEH framework (with our actions having
additional, language-based structure as described), rather than proving our representation theorem from
scratch, we can reuse much of their construction. Thus, we will present the same axioms (adapted to our
notation) that BEH present, and subsegently augment them with new principles that allow us to construct
the selection function.

3.1 Cancellation

BEH’s main axiom is a cancellation law. Explaining this requires a few preliminary definitions, begin-
ning with the notion of a multiset, which can be thought of as a set that allows for multiple instances of
each of its elements; two multisets are equal just in case they contain the same elements with the same
multiplicities. For example, the multiset {a,a,a,b,b} is different from the multiset {a,b,b,b,b}: both
multisets have five elements, but the mulitiplicity of a and b differ.

Given any subset X C @, let 9x = A\ ,cx p A\ \y¢x —g. Intuitively, @x is a “complete description” of
the truth values of all primitive propositions in the language £(®), namely the description that says for
each primitive proposition p that it is true iff it belongs to X. An atom is any formula of the form @y.
Since £(®) is a propositional language and we use classical semantics for propositional logic, for all
formulas ¢ € £(P) and atoms @y, the truth of @ is determined by @x: either = @x — @, or |= px — —¢.
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It is therefore not surprising that every action in & € Ap can be identified with a function fy : 2® — F,
defined recursively as follows:

Jaol)X) = @
faX) ifEQx =y

i en o else X - .
fit v then o etse g (X) f5(X) if = ox — .

BEH define atoms in the same way and use them to define functions from atoms to primitive choices just
as we did above (replace do(¢) by an arbitrary primitive choice)ﬂ

Now we can state the central cancellation law that enables us to apply the BEH representation theo-
rem:

(Canc) Letoy,...,0,pB1,..., By € Ar, and suppose that for each X C ® we have { fo, (X), ..., fo, X))} =
1/, (X),..., fp,(X)}. Then, if for all i < n we have o; = f;, it follows that 3, = 0.

Intuitively, this says that if we get the same collection of outcomes with o,...,q, as with B;,..., B,
(taking multiplicity into account) in each state, then we should view the collection {a,...,a,} and
{Bi,.... B} as equally good. Thus, if ¢ is at least as good as f3; for i = 1,...,n — 1, then, to balance
things out, 3, should be at least as good as a;,.

As pointed out by BEH, Cancellation is a surprisingly powerful axiom. In particular, BEH show that
we can use (Canc) to derive many simpler (and more classical) principles of choice: that > is reflexive
and transitive, that independence holdsE] and that if o and 8 are equivalent in the sense that fo, = fg,
then o ~ . (However, it should be noted that Cancellation seems stronger than the conjunection of these
axioms.)

3.2 Selection axioms

To present the new axioms that will allow us to construct an appropriate selection function as part of
the representation theorem, it will be helpful to introduce some new notation. To begin, we write if
¢ then o as a shorthand for if ¢ then « else do(true). Intuitively, the action do(true) corresponds to
doing “nothing”, since true is true no matter what, so we might think of “otherwise nothing” as being
the default in case no explicit else... clause is given. Of course, for this to make sense we must have
true € F; we make this assumption henceforth.

Next we define an abbreviation for conditional preference, familiar from Savage’s classical devel-
opment [12]: write & > B as an abbreviation for (if ¢ then «) > (if ¢ then ﬁ)ﬁ When ¢ = ¢x, we
write o =x f for o =gy B, and we extend this notation to strict conditional preference and conditional
indifference in the obvious way.

Our first axiom is related to the centering constraint for selection functions (i.e., that if ¢ is true at a
state, then that state automatically counts the “closest” @-state):

4Techncially, we are not mapping atoms to primitive acts, but since there is an obvious bijection X — @y beween sets of
primitive proposition and atoms, and an obvious bijection @ — do(¢) between elements of F and primitive acts, we really can
be thought of as doing just that.

SThat is, for all o, 8,7,Y € Ap and all ¢ € F,

(if @ then o else v > if ¢ then 3 else ) < (if ¢ then « else ¥ = if ¢ then 3 else 7).

6As BEH show, the cancellation law implies independence, so in fact we have o ¢ B iff for all y, if ¢ then o else y =
if ¢ then 3 else 7.
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(Cent) If =y — ¢, then (if y then do(@)) ~ do(true).

To build intuition it’s helpful to consider the special case where ¥ = ¢, in which case (Cent) just
says that doing @ precisely when ¢ is already the case (and otherwise doing nothing) is the same as doing
nothing. Here of course by “the same” what is really meant is that the agent is indifferent between those
two acts. Since we are trying to bootstrap properties of a selection function from the agent’s preferences,
all our principles will ultimately need to bottom out in statements about what the agent does or does
not have a preference between. The general statement of (Cent) simply expands this reasoning to cases
where the condition y entails the result of the action, ¢, and so again in this case do(¢) happens only in
cases where ¢ is already true.

Lemma 1. If (M, ¢) is a selection model, ¢ satisfies centering, and ): W — @, then

[if w then do(@)]y . = idg = [do(true)||um ..

Our second axiom is meant to capture the idea that sufficiently specific conditions resolve any ambi-
guity (expressible in the underlying language) about the effect of an action:

(SSC) If E @+ (o1 V---V@,), then VX C ®, Ji € {1,...,n} such that for all y satisfying = ¢; — v
and = y — @, we have do(y) ~x do(¢;).

This requires some unpacking. As above, it is illuminating to begin by considering the special case
where ¥ = @. Then = ¥ — ¢ holds trivially and = ¢; — v is true by assumption, so we can read (SSC)
intuitively as follows: If ¢ is ambiguous between a variety of (potentially) more precise statements
(namely, ¢i,...,®,), then for any sufficiently specific condition (i.e., any atom @y), there is at least one
precisification ¢; of ¢ such that, conditional on @x, doing ¢ is equivalent to doing ¢; (from the agent’s
perspective).

This, as well as the more general statement of (SSC), follows from the assumption that the selection
function c is induced by a language-based family of well-orders.

Lemma 2. [f (M,c) is a selection model where c is induced by the well-orders < ={<,: ® € Q}, <is
language-based, |= @ <> (@1 V -V @), and X C ®, then Ji € {1,...,n} such that for all y satisfying
=@ = yand =y — ¢ and all € [@x], we have [[do(y)]|m.c(@) = [do(@i)]|m ().

The next idea is crucial to the ultimate construction of our selection function. For each atom ¢y, we
will define a total preordelﬂ Cw on the set of atoms that will in turn be extended to a linear order and
used to specify the selection function. Formally, we define:

Ox Cw @y iff do(@x V @y) ~w do(@x ).

Loosely speaking, @x Cw ¢y says that in @y -states, the ambiguity inherent in doing @y V @y is resolved
in the agent’s mind in favour of doing @y this is why the agent is indifferent (conditional on @y ) between
doing @x V @y and just doing @yx. In this sense we think of @y as being at least as “close” to @y as @y is.
Note that the definition above requires F to contain all atoms as well as all pairwise disjunctions
of atoms. This richness in F' is what allows us to use the agent’s preferences on actions to define an
appropriate preorder. We make this assumption henceforth. It is an interesting question to what extent
the ensuing construction can be carried out without this assumption; we return to this point in Section 4}
Now we can state our third axiom, which simply says that this notion of closeness is transitive:

(Trans) Forall W X,Y,Z C &, if ox Ty ¢y and @y Ty @z, then ¢x Ty @7.

7A total preorder is a complete and transitive relation (so, unlike a linear order, it need not be antisymmetric).
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Lemma 3. (SSC) implies that each Ty, is complete.

Lemma 4. If (SSC) and (Trans) hold, then each Cy is a total preorder and can be extended to a well-
order <y on the set of atoms; if, in addition, (Cent) holds, then each <y can be defined so that @y is
the <w-minimal element.

Given a family of well-orders {<y : W C ®} as defined in Lemma {4 let min<(W, @) denote the
unique X C @ such that @y is <y -minimal in {@y :|= @y — @}. So @y is the “closest” atom compatible
with @ to @w; intuitively, then, doing ¢ in a @y situation should essentially amount to doing @x. This is
precisely what the next lemma asserts.

Lemma 5. [f (SSC) and (Trans) hold, then do(Q) ~w do(Qyin_(w,))-

3.3 The representation theorem

Theorem 1. If > is a complete binary relation on Af satisfying (Canc), (Cent), (SSC), and (Trans),
then there is a language-based SEU representation >.

Proof. We begin by following the proof in [3, Theorem 2] to obtain a state-dependent representation
with state space 2% and outcome space F ﬂ More precisely, we consider the set of functions F = { fy, :
o € Ar} defined in Section which can be viewed as Savage acts in the classical sense [[12]. The
relation > on Ar induces a relation =* on F defined as follows:

foci*fﬁ@aiﬁ-

As discussed, (Canc) implies that o ~ o' whenever fy = fo/, so =* is well-defined; moreover, as BEH
show, (Canc) is strong enough to yield the desired state-dependent representation result for >*, namely,
that there exists a function u* : 2% x F — R such that, for all f,g € 7,

f=rge Y WX, f(X) = ) u'(X,8(X)).

Xe2® Xe2®

Up to now we have mirrored the proof given by BEH exactly, which has given us a utility function u*
but also an outcome space that we don’t want. Moreover, the utility function is state-dependent; it takes
as arguments both a state and an outcome. We want a utility function that depends only on states (which
for us are the same as outcomes). Thus, our task now is to transform this result into a selection model
that we can use to give a language-based SEU representation of > (including a utility function defined
only on states).

Set Q = 2% x 2%; 5o our state space is isomorphic to pairs of atoms. This is a technical maneuver
that allows us to “factor out” probabilities from the state-dependent utility function u* we already have.
Loosely speaking, given (X,Y) € Q, the first component X represents how things are, while the second
component Y represents how things were. This intuition should become clearer as we continue.

We define a basic model M = (Q, [[-] i) by specifying the valuation on Q as follows:

[Pl ={(X,Y) € Q : = ox — p}.

In other words, p is true at (X,Y) just in case @x entails p. Note that the valuation only depends on the
first component X of the state (X,Y).

8«State-dependent™ here means that the utility function constructed will depend not only on outcomes but on states as well.
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Next we specify a parametrized family of well-orders on Q that we can use to induce a selection
function. First define

(X7X,) EW,W’ (Yv Y/) iff Ox <w ¢r.

Again, we are ignoring the second component. This is clearly a well-order when restricted to the first
component of the state space, but not in general, since by definition we have (X,X’) Cy ' (¥,Y’) and
(Y,Y") Cww (X,X') whenever X =Y. However, as usual, we can extend these relations to well-orders
<w.w' on all of Q simply by choosing a linear order for each set of the form Qx = {(X,Y) : ¥ € 2%},
and in so doing we can insist that for each fixed X, the state (X, W) is <y y-minimal on the set Qx.

This is the first time we have paid attention to the second component of the state. Roughly speaking,
we are ensuring that the order <y - “remembers” the set W. More perspicuously, it is easy to see that
if c is the selection function induced by the family { <y : (W,W') € Q}, then for each (W,W’) € Q
and all ¢ € £, we have

[[do((p)]]M,C(Wv W/) = C((W7 W/)a q)) = (min§ (Wv q))’W) (2

That is, the closest ¢-state to (W, W’) encodes both the closest atom compatible with @ to @y (in the first
component) and the state W that we started from (in the second component).

Now we can define our utility function and probability measure. Let 7 be any probability measure
on Q satisfying m(Qy) > 0 for all X. Next, define u : Q — R by

%
u(X,w) = M, for some ¢ such that min< (W, @) = X.
(Qw) B

Of course, we need to check that u is well-defined, and we do so in Lemma [6] But first some intuition is
in order. Thinking back to the state-dependent utility function u*, a reasonable first gloss of the meaning
of u*(W, @) might be “the utility of doing ¢ in W”EI The point is that u* is specifying the utility value
not of an action in itself or the “result” of an action, but rather the result of an action if you started in a
certain state. This is all very informal, but the idea is just to provide some intuition for why, in defining
our utility function u from u*, we need to appeal to a rich enough notion of state that can “remember”
what the “previous” state was—intuitively, the state we were at before the action was performed.

Lemma 6. The function u is well-defined.

The last thing we need to show is that the selection model (M, c) we have built, along with 7 and u,
gives us an expected utility representation of . So let a, 8 € Ar and suppose that & = 8. By definition
this is equivalent to fo =" f3, which by the state-dependent representation result is in turn equivalent to

Y W W)= Y (W, f5(W)). 3)

we2® we2®

Now observe that, for each W € 2%,

wW,fa(W)) = n(Qw)-u(minc(W, fo(W)),W) (by definition of u)
= (Qw) - u([do(fa(W))lmc(W,W"))  (from @)
= w(Qw) - u([a]m(W,W")) (by definition of fy and (M, ¢)).

9Though this isn’t quite right—it’s more like the product of that utility with the probability of W, which is why we have to
factor that probability out in defining our utility function.
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Note that in the above W’ can be any element of 2%, since it’s not taken into account in determining the
result of an action. That means we can rewrite the above as

(W, fa(W)) =), a(W,W)-u([ofar(W,W)).
w’e2®

Of course, an analogous equation holds for u*(W, fg(W)). Thus, (3) is equivalent to:
Y X 2W W) u((odue W, W)= Y}, w(W W) -u([Blw (W, W),

we2®w'e2® We2®w/e2®

which is exactly the right-hand side of (I]), completing the proof. O

4 Discussion

We have considered a framework in which both the conditions for and the results of an action are given
by simple descriptions in a fixed language. These descriptions may not be maximally specific, so the
results of actions can be underspecified and therefore “open to interpretation”. We have shown that,
in this context, agents whose preferences satisfy certain constraints can be represented as if they are
expected utility maximizers who interpret each underspecified action using a selection function identical
to that employed in standard semantics for counterfactual conditionals.

The representation theorem presented in this extended abstract might be viewed as a sort of “proof of
concept”’, namely, that such representation results are possible and even natural. This opens the door for
a variety of related results connecting different assumptions about the selection function to different con-
straints on the agent’s preferences. As we mentioned above, there are a number of standard assumptions
along these lines in the literature on counterfactuals.

The underlying language we chose to work with can also be altered. Perhaps most obviously, we
might consider allowing countably-many primitive propositions. In this case, we cannot straightfor-
wardly use atoms as the basis for the state space in the representation theorem, and in general we might
need to relax the notion of a “complete description” to something like a “sufficiently detailed descrip-
tion”. Going in the other direction, we might also considering dropping some of the richness constraints
we imposed. For instance, we assumed that F' contains all atoms (and all pairwise disjunctions of atoms).
Can this assumption be relaxed?

In our framework, because we use the same descriptions for both states and outcomes, we found it
convenient to identify the two. This in turn makes it straightforward to extend to a richer language of
acts, where we allow sequential actions, implemented directly by function composition. That is, we can
allow actions of the form do(¢);do(y) (“first do ¢, then do y”), or more generally, o; 3. Thus, the
(underspecified!) results of the first action are directly relevant to the conditions under which the second
action is executed, which may allow for entirely new and intriguing ways of encoding modeling features
via constraints on preferences.

Finally, generalizing this framework to multiple agents is of interest. Indeed, the original motivation
for this work is doubly relevant in multi-agent settings: two different decision-makers might conceive of
the same action in different ways, by associating it with different functions. For example, we should be
able to model two agents who agree about their values and have the same beliefs about the likelihoods of
uncertain events, but still have different preferences over actions—intuitively, because they interpret the
“default” way of implementing actions differently (in other words, they have the same utility function
and probability measure, but different selection functions).

In short, this area is ripe for further exploration, with many theoretical and practical applications.
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A Proofs
Lemma If (M, ¢) is a selection model, ¢ satisfies centering, and | =y — @, then

[if  then do(@)]u . = ido = [[do(true)]|m.c.

Proof. By definition, we have

[ then do(@)[ur () — {[[do«p)nM.,c(w) if o [y]

[do(true)]m (@) if o ¢ [y].

{c<w,<p> if o € [y]
c(w,true) if o ¢ [[y].

But since [y]] C [¢@] by assumption, in either case, centering applies and guarantees that
[if y then do(@)[|m..(®) = o. O

Lemma2} If (M,c) is a selection model where c is induced by the well-orders < ={<q,: ® € Q}, <is
language-based, |= @ <> (@1 V ---V @), and X C ®, then Ji € {1,...,n} such that for all y satisfying
= @i = yand =y — ¢ and all © € [@x], we have [[do(y)]lu.c(®) = [do(@i)]m.(@).

Proof. Let o € [[@x] and choose i such that ¢(@, @) € [[¢;]. This is possible since we know ¢(®, @) € @]
and, by assumption, [@] = [[@1]]U...U[@,]. Since c(w, @) is the <,-minimal element of [¢]], it follows
that for any set 7 with ¢(®@,9) € T C [[¢]], c(®, @) is also the <,-minimal element of 7. In particular,
since c(w, @) € [@i]] C [w] C [@]. this implies that c(®, @) is the <,-minimal element of both [[¢;]] and
[w]. Thus, by definition, ¢(®, ¢;) = c(®, y), so

[do(y)lm.c(@) = c(@,¥) = c(@, ¢i) = [do(@i) [ m.c(®@)-

Since ® = @x and this completely determines the theory of @, we know that for any other @’ € [@x],
o' = 0,50 c(@,9) = c(w, ). This guarantees that ¢(@’, @) € [@;]]; in other words, the same choice of
i works for all states in [[@x]], which completes the proof. O

Lemma E]. (SSC) implies that each Ty is complete.

Proof. Fix any two atoms @x and @y. We apply (SSC) in the case where ¢ = @x V @y, ©1 = @x, 2 = @y,
and y = @. Then we know that given any W C @, either do(@) ~w do(@;) or do(@) ~w do(¢,), that is,
either do(@x V @y ) ~w do(@x) or do(@x V @y) ~w do(@y), which established completeness. O

Lemma[d} If (SSC) and (Trans) hold, then each Cy is a total preorder and can be extended to a well-
order <y on the set of atoms, if, in addition, (Cent) holds, then each <y can be defined so that @y is
the <w-minimal element.

Proof. The fact that Cyy is a total preorder follows immediately from (Trans) and Lemma[3] Moreover,
it is easy to see that any total preorder on a finite set can be extended to a well-order (by choosing an
arbitrary linear order for each subset of Cy -equivalent atoms). To see that this can be done in such a way
that @y is the <y -minimal element, it suffices to show that for every X C ®, we have @y Cy @x, or in
other words, do(@w V @x) ~w do(@w). The result now follows from two applications of (Cent). First
we apply it in the case where ¥ = @y and ¢ = @ V @x to obtain (if ¢y then do(Qw V @x)) ~ do(true);
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then we apply it in the case where Y = @ = @y to obtain (if @y then do(¢gw )) ~ do(true). Transitivity
of ~ therefore yields

(if ow then do(ow V @x)) ~ (if @w then do(ow)),
which by definition is equivalent to do(@w V @x) ~w do(@w). O

Lemma If (SSC) and (Trans) hold, then do(Q) ~w do(Qin_(w,¢))-

Proof. Let X = min<(W, @), and let @x,,..., px, enumerate all the atoms compatible with ¢. Then by
definition we know that X = X; for some j. We also clearly have |= ¢ <> (¢x, V---V @,), so we can
apply (SSC) (taking ¥ = @) to find an i such that do(@) ~w do(@x, ).

By definition of X, we know that @x <y @x,, which means do(@x \V @x,) ~w do(¢x). On the other
hand, since = @x, — (¢x V @x.) and = (@x V @x.) — @, (SSC) also tells us (taking Yy = @x V @y, this
time) that do(@x V @x,) ~w do(@x,). By transitivity of ~y we therefore have do(@x,) ~w do(@x), and
therefore do(@) ~w do(@x), as desired. O

Lemma(6 The function u is well-defined.

Proof. What we need to show that is that if min< (W, @) = X and also min<(W, @) = X, then u*(W, @) =
u*(W,¢'). By Lemmal[5] we know that do(@) ~w do(@x ), and also that do(@') ~w do(@x). Focusing on
the first of these two indifferences to begin with, by definition we have

if oy then do(¢) ~ if @y then do(¢x).

Setting o = if @w then do(¢) and B = if @ then do(@x), it follows that fi ~* fp (by definition of =*).
Thus, from the state-dependent representation result, we can deduce that

Y, W (Z,fa(2)) = ), u'(Z,f5(2)).

ze2® 7e2®

But it’s easy to see that whenever Z # W, fo(Z) = fg(Z), so we can cancel all those terms in the
equality above to arrive at u*(W, fo(W)) = u*(W, fg(W)). This yields u*(W, @) = u*(W,@x), since
clearly fo(W) = ¢ and fg(W) = ¢@x. Analogous reasoning starting from the fact that do(¢') ~w do(¢@x)
leads us to u* (W, @) = u* (W, @x ). Putting these together gives u*(W, @) = u*(W, ¢'), as desired. O
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