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Abstract
Non-negative matrix factorization and its extensions were applied to various areas (i.e., dimensionality reduction, clustering,
etc.). When the original data are corrupted by outliers and noise, most of non-negative matrix factorization methods cannot
achieve robust factorization and learn a subspace with binary codes. This paper puts forward a robust semi-supervised non-
negative matrix factorization method for binary subspace learning, called RSNMF, for image clustering. For better clustering
performance on the dataset contaminated by outliers and noise, we propose a weighted constraint on the noise matrix and
impose manifold learning into non-negative matrix factorization. Moreover, we utilize the discrete hashing learning method
to constrain the learned subspace, which can achieve a binary subspace from the original data. Experimental results validate
the robustness and effectiveness of RSNMF in binary subspace learning and image clustering on the face dataset corrupted
by Salt and Pepper noise and Contiguous Occlusion.

Keywords Noise · Binary subspace learning · Graph regularization · Dimensionality reduction · Non-negative matrix
factorization
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Introduction

Theprocessing andapplicationof theoriginal high-dimensional
data are very challenging. To address this problem, many
data dimensionality reduction methods were applied to solve
image retrieval image indexing [1,2] and image classification
[3]. To achieve a satisfactory subspace from dimensionality
reduction, most of the studies mainly consider how to dis-
cover an effective low-dimensional representation from the
original data. A common scheme is to dig out the geometrical
structure information of the original data, which can lead to
a more discriminative representation.

In the past decades, several dimensionality reduction tech-
niques were presented such as principal components analysis
(PCA) [4] and non-negative matrix factorization (NMF)
[5], which can learn an effective subspace for classification
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and clustering. NMF decomposes an original non-negative
matrix into twonon-negativematrices, such that their product
approximates to the original data matrix. The non-negative
property is consistent with the humans perception, which is
more meaningful in image representation. Due to the satis-
factory performance of NMF, some extensions [6–19] were
proposed and utilized to improve the clustering effect.

Traditional NMF is an unsupervised method and cannot
be designed for clustering specially. To achieve the better
clustering effect, some constraints (i.e., label propagation,
manifold learning, pairwise constraint, etc.) were considered
to constrain the subspace, which can learn a more effec-
tive parts-based representation. When the original data are
heavily corrupted, NMF fails to achieve clustering. This is
because its loss function is more sensitive to outliers and
noise. Therefore, some researchers [6–12] proposed some
other loss functions to try better matrix factorization. Gao
et al. [9] presented a capped norm as the loss function and
an outlier threshold to reduce outliers. However, there is no
theory to adjust the threshold. Recently, Guan et al. [12] pro-
posed the Truncated Cauchy loss (CauchyNMF) as the loss
function and the three-sigma-rule to filter outliers. Although
CauchyNMF learns a better subspace from the original data
space contaminated by outliers and noise than other NMF
methods, it leads to an unsatisfactory subspace when the out-
liers cannot follow the Gaussian distribution.

After dimensionality reduction by non-negative matrix
factorization, the parts-based representation composed of
real numbers will take much more time in clustering.
Recently, data-dependent hashing methods [20–28] were put
forward to learn the latent features of training data and
achieved effective binary codes from different hash func-
tions. It is obvious that a subspace composed of binary
codes (−1 and 1 or 0 and 1) can reduce the clustering time.
However, the traditional NMF cannot learn a parts-based rep-
resentation composed of binary codes.

In this paper, based on data-dependent hashing methods,
non-negative matrix factorization, and manifold learning, a
novel dimensionality reduction method is presented to learn
a subspace composed of binary codes from the original data
space. Our achievements are as follows:

• A robust non-negative matrix factorization framework
was proposed to remove outliers in the subspace. More-
over, the learned subspace composed of binary codes
obeys the geometrical assumption of the original data.

• Our problem can be formulated as a mixed integer
optimization problem. We transform it into several sub-
problems and elegantly solve these subproblems.

• Extensive experiments prove that our method can learn
a subspace composed of binary codes from the dataset
corrupted by Salt and Pepper noise and Contiguous
Occlusion. Moreover, the clustering performance from

the subspace can demonstrate that our method can
achieve the better clustering effect than other dimension-
ality reduction methods.

Related works

Non-negativematrix factorization and its extensions

Supposed that any image can be represented by a vector
xi ∈ Rm and the matrix V = [x1, . . . , xn] denotes an origi-
nal image space composed of n images. NMF can be utilized
to discover two low-dimensional matrices W ∈ Rm×r and
H ∈ Rr×n , such that their product can best approximate to
V , where r is a factorization rank and r << min{m, n}. Gen-
erally, NMF can be mathematically formulated as follows:

min
W ,H

Loss(V ,WH)

s.t. W ≥ 0, H ≥ 0, (1)

where the function Loss is to measure the error between
V and WH . The usual loss function can be L1 norm, L2,1

norm, or the Frobenius norm. Guan et al. [12] put forward
a Truncated Cauchy loss to reduce outliers (CauchyNMF),
which can be written by the following form:

min
W≥0,H≥0

F(W , H) =
m∑

i=1

n∑

j=1

g

(
(V − WH)i j

γ

)
, (2)

where g(x) =
{
ln(1 + x), 0 ≤ x ≤ σ

ln(1 + σ), x > σ.
The scale parame-

terσ can be computed by three-sigma-rule, and the truncation
parameter γ can be achieved by the Nagy algorithm [12].
Most of NMF variants utilize various loss function to han-
dle outliers, but these approaches cannot remove outliers in
the subspace. To address this problem, a novel robust NMF
framework was put forward as follows:

min
W ,H ,E

Loss(M,WH , E) + λ�(E,W , H)

s.t. W ≥ 0, H ≥ 0,
(3)

where M is the original data matrix contaminated by out-
liers, E is an error matrix, λ is a hyper-parameter, and � is
the constraint term. Based on problem (3), Zhang et al. [11]
proposed the following robust NMF problem:

min
W ,H ,E

‖ M − WH − E ‖2F +λ ‖ E ‖M
s.t. W ≥ 0, H ≥ 0,

(4)

where ‖ E ‖M= ∑
i j |ei j |.
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Data-dependent hashingmethods

Assumed that an image sample is expressed by the vector
v ∈ Rm and the original data space is showed by the matrix
V = [vi , · · · , vn] ∈ Rm×n . Data-dependent hashing meth-
ods expect to find a binary code matrix B ∈ {−1, 1}L×n ,
which can maintain the semantic similarities of the data
space. Usually, each column of B is L-bit codes for each
v, where L << m.

To make full use of the label information of the original
data, Shen et al. [25] put forwarded a supervised discrete
hashing framework, which can generate binary codes with
satisfactory linear classification. Supposed that an original
data matrix V = [v1, . . . , vn] ∈ Rm×n , a label matrix Y ∈
{0, 1}c×n , a binary code matrix B ∈ {0, 1}L×n , W ∈ RL×c,
and P ∈ Rm×L . SDH are able to sum up by:

min
W ,B,P

‖ Y − WT B ‖2F +λ ‖ W ‖2F
+ μ ‖ B − PTφ(V ) ‖2F

s.t. B ∈ {0, 1}L×n,

(5)

where φ(·) is the RBF kernel mapping, μ and λ are penalty
parameters. For the purpose of solving problem (5), we can
optimize the following three subproblems:

min
W

‖ Y − WT B ‖2F +λ ‖ W ‖2F (6)

and

min
W ,B,P

‖ Y − WT B ‖2F +μ ‖ B − PTφ(V ) ‖2F
s.t. B ∈ {0, 1}L×n

(7)

and

‖ B − PTφ(V ) ‖2F , (8)

until the stop condition is satisfied. Thus,we are able to obtain
the local optimal solution of problem (5).

In response to this problem (6), we have:

W = (BBT + λ)−1BY T . (9)

In response to this problem (7), we make the following
assumptions:

• zT is the lth row of B and B ′ is the matrix of B not
including z.

• qT is the lth row ofWY +μPTφ(V ) and Q′ is thematrix
of Q not including q.

• vT is the lth row of W and W ′ is the matrix of W not
including v.

We can safely come to the conclusion that:

z = sign(q − B ′T W ′v). (10)

With regard to problem (8), the solution is:

P = (φ(V )φ(V )T )−1φ(V )BT . (11)

Consequently, it is easy to search the local optimal solution
of the problem (5) using (9), (10), and (11).

Problem formulation

When the original data are destroyed by outliers and noise,
existing NMFmethods have the following shortcomings: (1)
They are unable to learn an effective and powerful subspace
from the original data space. (2) The parts-based representa-
tion is unable to retain the geometrical structure information
of the original data. (3) These NMF methods are unable to
learn a subspace with binary codes.

For problem (4), Zhang et al. [11] assumed that the out-
liers of the error matrix E are very sparse. Yet, the abnormal
position of the original data is ignored. Supposed that we
become aware of some outlier locations. For an image space
M ∈ Rm×n , aweighted graph Smarks the location of outliers
by the following equation:

Si j =
{
0, ifMi j is an outlier,

1, otherwise.
(12)

Hence, we rewrite the constraint on E as follows:

‖ E ⊗ S ‖2F . (13)

Toobtain the geometric information in subspace,manifold
regularization can be used to establish the relation between
the original data space and the subspace. Therefore, a com-
mon usedmethod calledmanifold learning [29] is as follows:

tr(H(D −U )HT ), (14)

where tr is the trace of a matrix,Ujl = e− ‖x j−xl ‖2
σ and Dii =∑

j Wi j .
In summary, combining (13), (14), and (4) results in our

robust semi-supervised non-negative matrix factorization for
binary subspace learning (RSNMF). Given a non-negative
data matrix V ∈ Rm×n and a factorization r , one hopes
to achieve a code matrix B ∈ {−1,+1}r×n from V . Our
proposed robust semi-supervised non-negative matrix fac-
torization (RSNMF) can be utilized to learn binary codes for
clustering. There are three properties as follows:
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• The learned subspace can remove outliers and noise sim-
ilar to (4).

• The subspace composed of binary codes can be learned
from the data space similar to (5). (5) is a supervised
problem; therefore, we delete the first two terms of (5) to
be an unsupervised problem.

• The low-dimensional space composed of binary codes
should remain similarity or dissimilarity of the original
data space similar to (14).

Combining (4), (5), and (14), our problem can be formulated
as follows:

min
W ,H ,E,B,P

F(W , H , E, B, P)

=‖ M − WH − E ‖2F +λ ‖ E ⊗ S ‖2F
+ γ tr(H(D −U )HT )

+ γ tr(B(D −U )BT ) + α ‖B − PH‖2F
s.t. W ≥ 0, H ≥ 0, B ∈ {−1, 1}.

(15)

where λ, γ , and α are hyper-parameters.

Optimization scheme

Problem (15) is a non-convex optimization problem. Thus,
it is unable to search the global optimal solution. A generic
framework for solvingproblem (15) is the “block-coordinate-
descent” method (BCD) [30], in which one block variables
are solved in order under relevant constraints and the remain-
ing variables remain fixed. Thus, problem (15) can be
converted into several convex problems and solve them in
turn until convergence. For (15), we have five block vari-
ables W , H , B, P , and E . Thus, BCD is able to optimize
the five matrices in turn. Supposed that the kth solution of
problem (15) has been realized. The k + 1th solution can be
searched by:

Ek+1 = argminE ‖ M − WkHk − E ‖2F
+ λ ‖ E ⊗ S ‖2F (16)

and

Wk+1 = argminW ‖ M − WHk − Ek+1 ‖2F
s.t. W ≥ 0 (17)

and

Hk+1

= argminH ‖ M − Wk+1H − Ek+1 ‖2F
+ α ‖B − PH‖2F + γ tr(H(D −U )HT )

s.t. H ≥ 0,

(18)

and

Pk+1 = argminP ‖ Bk+1 − PHk+1 ‖2F (19)

and

Bk+1

= argminB(α ‖ Bk+1 − Pk+1Hk+1 ‖2F
+ γ tr(B(D −U )BT ))

s.t. B ∈ {−1, 1}r×n .

(20)

It is easy to get the solution of problems (4) and (4) as follows:

ei j ← mi j − (WH)i j

1 + λsi j
. (21)

wil ← wil
(MHT )il − (EHT )il

(WHHT )il
. (22)

For (18), we can utilize Nesterov’s optimal method [31] to
solve it. To save space, we do not introduce this algorithm.
For problem (19), we have the optimal solution:

P = BHT (HHT )
−1 (23)

or

PT = (HHT )
−1

HBT , P = (PT )T . (24)

Using a function RRC in [25], Eq. (24) can be realized .
Therefore, the solution of (19) can be realized by:

P = RRC(HT , BT , 0)

P = PT .
(25)

For problem (20), using the discrete cyclic coordinated
descent method, we can achieve its local optimal solution.
First, problem (20) can be converted into the following form:

F(B) = (α ‖B − PH‖2F + βtr(BKCBT )), (26)

where K = D − U and C ∈ Rn×n is an identity matrix.
Second, some assumptions are made as follows:

• z is the kth column of B and B ′ is the matrix of B exclud-
ing z. Thus, B = [z B ′].

• c is the kth column ofC andC ′ is the matrix ofC exclud-
ing c. Thus, C = [c C ′].

• kT is the kth rowof K and K ′ is thematrix of K excluding

k. Thus, K =
[
kT

K ′
]

• Q = PH . q is the kth column of Q and Q′ is the matrix
of B excluding q. Thus, Q = [q Q′].
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Thirdly, B can be learned column by column. The first term
of problem (26) is rewritten as follows:

‖ B − PH ‖2F
=‖ z − q ‖2F + ‖ B ′ − Q′ ‖2F
= tr((z − q)T (z − q)) + const

= tr(zT z − zT q − qT z + qT q) + const

= −2tr(qT z) + const.

(27)

Similar to the second term of problem (26), we are able to
conclude that:

tr(BKCBT )

= tr((zkT + B ′K ′)(czT + C ′B ′T ))

= tr(zkT czT + zkTC ′B ′T + B ′K ′czT

+ B ′K ′C ′B ′T )

= tr(zkTC ′B ′T ) + tr(B ′K ′czT ) + const

= 2tr(kTC ′B ′T z) + const.

(28)

Therefore, problem (20) can be rewritten by:

min
z

βtr(kTC ′B ′T z) − αtr(qT z)

s.t. z ∈ {−1, 1}r .
(29)

This problem brings about the following optimal solution:

z = sign(αq − βB ′C ′T k). (30)

Obviously, each z can be calculated from the pre-learned B ′
in advance. Hence, we can implement B before each z is
updated. In [25], it is recommended (30) be used to learn the
binary code matrix B in t times, where t = 5.

Algorithm 1 RSNMF
Input: V ∈ Rm×n+ ,W ∈ Rm×r+ , H ∈ Rr×n+ , E ∈ Rm×n+ , i ter , B ∈

{−1,+1}r×n, P ∈ Rr×r , λ, γ, α

Output: B
Initialize D and U (14)
for k=0 to i ter do

ei j ← mi j−(WH)i j
1+λsi j

wil ← wil
(MHT )il−(EHT )il

(WHHT )il
Computing H by [31]
Computing P by (25)
Computing B by (30)

end for

Experimental results

Experiment setup

We compare our proposed method (RSNMF) with NMF
[5], RNMF_L1 [9], PCA [4], and CauchyNMF [12] on
the clustering performances of two datasets (i.e., ORL and
YALE) contaminated by Salt and Pepper noise and Contigu-
ous Occlusion.

ORL contains a set of the frontal face images, and these
images were established from 1992 to 1994 by Cambridge
University. There are 40 various persons, and each person
includes 10 images. Each imagewere taken at different facial
expressions, times, and so on. The format of each image is
PGM with the size of 92 × 122 pixels. We scale down each
image to 32× 32 pixels. YALE was constructed by the Cen-
ter for Computational Vision and Control of Yale University.
There are 165 images of 15 persons, and each person contains
11 pictures. Each image was taken by different facial expres-
sions or configurations with the size of 100 × 100 pixels.
Some example images from ORL and YALE are presented
in Fig. 1.

To verify the clustering ability on the corrupted data, we
propose two corruptions including Salt and Pepper noise and
Contiguous Occlusion. Salt and Pepper noise is utilized to
change a portion of pixel values to be 0–255. The corrupted
percentage of pixels is from 0.05 to 0.8 with the step size

(a) Some sample images from ORL

(b) Some sample images from YALE

Fig. 1 Sample images from ORL and YALE
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0.05. Contiguous Occlusion randomly corrupts a block of
each image and the pixels of the block is filled with 255.
The corrupted block size is proposed to be 1 to 24 with the
step size 2. Supposed that r = 32, alpha = 0.1, γ = 1e−5,
λ = 100, and i ter = 200. We propose Accuracy (AC) and
Normalized Mutual Information (NMI) [32] to validate the
clustering effect of each algorithm.

Salt and Pepper noise

Figure 2 presents the clustering performance on ORL and
YALE when the two datasets are contaminated by Salt and
Pepper noise. From these figures, we observe that:

• For ORL, the best AC andNMI obtained byCauchyNMF
are 0.65 and 0.8, respectively. For YALE, the best AC

and NMI achieved by CauchyNMF are 0.48 and 0.52,
respectively.

• RSNMF and CauchyNMF have the better ACs and NMIs
than other methods. CauchyNMF performs better than
RSNMF in the beginning; however, it becomes worse
when the corrupted percentage varies.

• For the smaller corrupted percentage, all methods can not
only learn a satisfactory subspace, but also achieve excel-
lent clustering results. When ORL is heavily corrupted
(i.e., the corrupted percentage greater than 0.4), only
RSNMF remains the satisfactory clustering
results.
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(a) Clustering ACs on ORL
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(b) Clustering NMIs on ORL
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(c) Clustering ACs on YALE
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(d) Clustering NMIs on YALE

Fig. 2 Clustering ACs and NMIs on ORL and YALE when the corrupted percentage varies from 0.05 to 0.8 with the step size 0.05
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(d) Clustering NMIs on YALE

Fig. 3 Clustering ACs and NMIs on ORL and YALE when the corrupted block size varies from 1 to 24 with the step size 2

Contiguous occlusion

Figure 3 presents the clustering performance on ORL and
YALE when the two datasets are contaminated by Contigu-
ous Occlusion. From these figures, there are some interesting
points as follows:

• NMF, PCA, and RNMF_L1 achieve satisfactory cluster-
ing results when the block size is very small.

• CauchyNMF achieves the best AC and NMI with the
smaller block size (i.e., the block size less than 6). As
the block size is greater than 10, CauchyNMF performs
worse rapidly.

• Although RSNMF performs not better than CauchyNMF
in the beginning, it remains stable clustering results as the
block size increases.

Conclusion

This paper presented a robust semi-supervised non-negative
matrix factorization for binary subspace learning (RSNMF)
to handle Salt and Pepper noise and Contiguous Occlusion.
The clustering performances demonstrate that our method
achieves the following advantages. First, RSNMF can learn a
more effective and discriminative parts-based representation
composed of binary codes from ORL and YALE corrupted
by Salt and Pepper noise and Contiguous Occlusion. Second,
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RSNMF is more robust to outliers than the existing dimen-
sionality reduction methods.
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