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Abstract—The entropy of a quantum system is a measure of its
randomness and is useful in quantifying entanglement. We study
the problem of measuring the von Neumann and Rényi entropies
of an unknown mixed quantum state given access to independent
copies of the state. For Rényi entropy of integral order exceeding
one, we determine the order-optimal copy complexity and show
that it is strictly lower than the number of copies required to
learn the underlying state. The main technical innovation is a
concentration result for certain polynomials that arise in the
Kerov algebra of Young diagrams, which is proven using the
cycle structure of compositions of certain types of permutations.
For von Neumann entropy and Rényi entropy of non-integral
orders, we provide upper and lower bounds on the sample
complexity of the Empirical Young Diagram (EYD) algorithm,
which is the analogue of the empirical plug-in estimator in
classical estimation.

1. INTRODUCTION AND RESULTS

We consider how to estimate the mixedness or noisiness of
a quantum state given independent copies of the state. Mixed
quantum states can arise in practice in various ways: classical
stochasticity can be intentionally introduced when the state
is originally prepared; pure states can become mixed by a
quantum measurement; and the states of the subsystems of
bipartite states can be mixed even when the overall bipartite
state is pure, which forms the basis for purification.

In the third case, the level of mixedness of the subsystems
indicates the level of entanglement in the pure, bipartite sys-
tem. The possibility of entanglement of two separated systems
is arguably the most curious, and the most powerful, way in
which quantum systems differ from classical ones. Indeed,
entanglement has been fruitfully exploited as a resource in a
number of quantum information processing protocols [1]—[5].
The subsystems of a pure bipartite state are pure if and only if
the bipartite state itself is unentangled, and likewise they are
maximally mixed if and only if the bipartite state is maximally
entangled. Thus the mixedness of the subsystems’ states can
be used as a measure of entanglement of the bipartite system.

Mixedness can be measured in multiple ways. We shall
use the von Neumann and (the family of) Rényi entropies,
which correspond to the classical Shannon and (the family
of) Rényi entropies of the eigenvalues of the density operator
of the state, respectively. A density matrix (or operator) p is
a complex positive semidefinite matrix with unit trace; thus
its eigenvalues are nonnegative and sum to one. The von
Neumann entropy of a density matrix p is

S(p) € —tr(plog p).
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For ao > 0, v # 1, the Rényi entropy of order « of p is

Salp) & 1 log (")
Quantum entropy can be justified operationally as a measure of
compressibility [6]-[8], and as noted earlier, entanglement [9].

In principle, both the von Neumann and Rényi entropies
for a quantum state p can be computed if the state is
known. We consider how to estimate these quantities for
an unknown state given independent copies of the state, to
which arbitrary quantum measurements followed by arbitrary
classical computation can be applied. This problem arises
when characterizing a completely unknown system and when
one seeks to experimentally verify that a system is behaving
as desired. Since generating independent copies of a state can
be quite costly in the quantum setting [10], [11], it is desirable
to minimize the number of independent copies of the state that
are required to estimate the von Neumann and Rényi entropies
to a desired precision and confidence. We thus adopt this copy
complexity as our figure-of-merit.

Using standard results in quantum state estimation, we
reduce our problem to one that is fully classical. We first
describe this classical problem, which is potentially of interest
in its own right.!

—

A. Quantum-Free Formulation

Let p be a distribution over [d] &f {1,...,d}. A property

f(p) is a mapping of distributions to real numbers. A property
f is said to be symmetric (or label-invariant) if it is a function
of only the multiset of probability values, and not the ordering.
Classical symmetric property estimation. We are given
independent samples X" & Xi,...,X, from an unknown
distribution p, and the goal is to estimate a symmetric property
f(p) up to an additive ¢ error, with probability at least 2/3.
Quantum state property estimation. The problem of esti-
mating von Neumann and Rényi entropies of a quantum state
with eigenvalues 7 can be shown to be equivalent to estimating
a symmetric property f(n). However, instead of being given
independent samples X7, ..., X, from the distribution n as
in the classical case, we are given access to a function
A(X™) = X1 > Ay > ... of X™. Here A1, Ag, ... are integers
satisfying the following property.
e Forany £k > 1, Zle A; is equal to the largest possible
sum of the lengths of & disjoint non-decreasing subse-
quences of X™.

IThe full version of this paper is available online [12].
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Equivalently, we may view the observations as the output of
the Robinson—Schensted—Knuth (RSK) algorithm applied to
the sequence X", instead of being X" itself. The reader is
referred to [13] for more details on the procedure. The copy
complexity of estimating quantum entropy turns out to be
equivalent to the problem of estimating classical entropy when
given access to A(X™). A simple data processing implication
of the form n — X" — X(X™) shows that the complexity
of estimating quantum state property is at least as hard as
estimating the same property in the classical setting.

B. Our Results

We consider the following framework.

TI(f,d,e): Given a property f, and access to indepen-
dent copies of a d-dimensional mixed state p (e.g. output
of some quantum experiment), how many copies are
needed to estimate f(p) to within 4?2

The copy complexity, denoted by C(f,d,e), is the mini-
mum number of copies required for an algorithm that solves
II(f,d, ).

We study the copy complexity of estimating the entropy
of a mixed state of dimension d. We will use the standard
asymptotic notations, and are interested in characterizing the
dependence of C(S,d,¢), and C(S,,d,¢), as a function of d
and €. We assume the parameter « to be a constant, and focus
on only the growth rate as a function of d and e.

We will now discuss our results, which are summarized in
Table I and Table II. For comparison purposes, it is useful to
recall the copy complexity of quantum tomography, in which
the goal is to learn the entire density matrix p. This problem
has been studied in various works using various distance
measures; and up to poly-logarithmic factors, for the standard
distance measures, the copy complexity depends quadratically
on the dimension d. Namely, it is O(d?). Similar to the
sample complexity of estimating Rényi entropies of classical
distributions from samples, our bounds are also dependent on
whether « is less than one, and whether it is an integer.

1) Rényi Entropy, Integral o > 1: We obtain our most
optimistic and conclusive results in this case.

Theorem 1. For o € N\{1},

dlfl/a d272/a
C(Sa,d,g) = 6(111&}({627 52/@}>7

where the hidden constants depend only on «.

We note that the lower bounds here hold for all estimators,
not just for the estimators used in the upper bound. Further-
more, these bounds are sub-quadratic in d, namely we can
estimate the Rényi entropy of integral orders even before we
have enough copies to perform full tomography. The upper
bounds are established by analyzing certain polynomials from
representation theory that are related to the central characters

2We seek success with probability at least 2/3, which can be boosted to
1 — 4 by repeating the algorithm O(log(1/4)) times and taking the median.

of the symmetric group. The main contribution is to analyze
the variance of these estimators, for which we draw upon
various results from Kerov’s algebra. For the lower bound, we
design the spectrums of two mixed states such that their Rényi
entropy differ by at least £, but such that they require a large
copy complexity to distinguish between them. For this we use
various properties of Schur polynomials and other properties
of integer partitions [14], [15].

Remark 1. The first term in the complexity expression in
Theorem 1 dominates when ¢ < 1/ V/d, and is identical to the
sample complexity of estimating Rényi entropy in the classical
setting.

For estimating S,,(p) for @ < 1 and non-integral o > 1, we
analyze the Empirical Young Diagram (EYD) algorithm [16],
[17] . The EYD algorithm is similar to using a plug-in estimate
of the empirical distribution to estimate properties in classical
distribution property estimation.

2) Rényi Entropy, a <1: We show that C(S,,d,e) =
O(d*«/e?/®). Since a < 1, this growth is more than
quadratic, namely the EYD algorithm requires more copies
than is required for tomography. We complement this by show-
ing that in fact the EYD algorithm requires Q(d'+1/@ /el/«)
copies, showing that the super-quadratic dependence on d is
inherent to the EYD algorithm.

Theorem 2. The empirical estimator of S.(p) outputs a
+c estimate with O((d/s)Q/a)

algorithm requires at least Q(d'+1/ /e'/*) copies to estimate
Sa(p) to *e.

copies. Moreover, the EYD

In comparison, in the classical setting the tight exponent of
d in the sample complexity for aw < 1 is 1/cv.

3) von Neumann entropy (o = 1): Again using the EYD
algorithm, we show that C(S, d, e) = O(d?/e?). We formulate
an optimization problem whose solutions are an upper bound
on the bias of the empirical estimate, and we bound the
variance by proving that the estimator has a small bounded
difference constant.

Theorem 3. For von Neumann entropy (o = 1), using the
empirical entropy estimate:

C(S,d,c) = 0(d2+ W)

g2 g2
Moreover, there is a constant €y, such that for € < e,

the empirical estimate of entropy requires at least Q(d?/e)
samples to estimate von Neumann entropy.

This complexity is still similar to that of full quantum
tomography.

4) Rényi Entropy, Non integral o« > 1: Again using the
EYD algorithm, in Theorem 4, we show that C(S,,d,c) =
O(d?/€%). We also provide a lower bound of §2(d?/¢) for the
EYD estimator:

Theorem 4. For o > 1, the empirical estimator of S, (p)
outputs a +e estimate with O (g—j) copies of p with probability
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TABLE I

COPY COMPLEXITY OF Sy (p) FOR INTEGRAL « > 1.

« Upper Bound Lower Bound
a>1 O(d?/€?) Q(d?/¢)
a<1 | O@d?>/e2/a) | Qditl/ejel/e)
a=1 O(d?/£?) Q(d?/e)

TABLE II

COPY COMPLEXITY OF EMPIRICAL ESTIMATORS.

at least 2/3. Also, there is a constant g, such that for € < g,
the empirical estimate of entropy requires )(d? /¢) samples to
estimate any Rényi entropy of order greater than one.

In addition to these results, we improve the error probability
of the lower bounds on the convergence of EYD algorithm
to the true spectrum. In particular, for the uniform distribu-
tion [18] shows that unless the number of copies is at least
Q(d?/£?), the EYD has a total variation distance of at least
€ with probability at least 0.01. We show that in fact unless
the number of copies is at least £2(d?/c?) the trace distance
is at least £ with probability at least 1 — exp(c - d) for some
constant c.

C. Related Work

Our work is related to symmetric distribution property
estimation in the classical setting, property estimation of
classical distributions using quantum queries, and the property
estimation of quantum states (as in the set-up of this paper).
We briefly mention some closely related works. The survey
by Montanaro and de Wolf [19] and the thesis by Wright [20]
are recommended for a fuller account of the literature.

The copy complexity of quantum tomography (where the
goal is to learn the entire density matrix p) is quadratic in
d, and the complexity for tomography in various distance
measures have been studied in [21]-[23].

Testing whether p has a particular unitarily invariant prop-
erty of interest was studied in [18] for a number of properties.
They show that for testing whether p is maximally mixed,
namely whether all elements of 7 are 1/d, requires ©(d/e?)
copies. They also studied the problem of testing the rank of
p, and also provide bounds on the performance of the EYD
algorithm for estimating the spectrum. Recently, [24] obtained
tight bounds on the copy complexity of testing whether an
unknown density matrix is equal to a known density matrix.
The optimal measurement schemes for some of these problems
can be quite involved. Testing properties under simpler local
measurements was studied recently in [25].

In a personal communication, Bavarian, Mehraban, and
Wright [26] claim an algorithm with copy complexity O(d?/¢)

()

Fig. 1. English Young diagram for the partition A = (6,4, 3,3, 1).

for the von Neumann entropy estimation, which is an ¢ factor
improvement over our bound.

Testing and estimating distribution properties using quantum
queries has been considered by various authors. Problems of
testing properties such as uniformity, identity, closeness under
the regular quantum query model, and conditional quantum
query models have been studied in [27]-[29]. Recently Li and
Wu [30] studied the quantum query complexity of estimating
entropy of discrete distributions.

II. PRELIMINARIES
A. Unitarily Invariant Properties

A property f is a mapping from the set of density operators
to real numbers. Let U(d) be the set of all d x d unitary
matrices.

Definition 1. A property f(p) is called unitarily invariant if
FUpUT) = f(p) for all U € U(d).

Let n = {n,,...,m,} be the multiset the eigenvalues (also
called the spectrum) of p. Two density matrices p, and ¢ have
the same spectrum if and only if there is a unitary matrix U
such that o = UpUT. Therefore, unitarily invariant properties
are functions of only the spectrum of the density matrix.

B. Schur Polynomials and Power-Sum Polynomials

A partition A of n is a collection of non-negative integers
A1 > Ao > ... that sum to n. We write A - n and we write
A, for the set of all partitions of n. We denote the number
of positive integers in A by ¢(X), which we call its length. A
partition A can be depicted with an English Young diagram,
which consists of a row of A; boxes above a row of Ay boxes,
etc., as shown in Fig. 1. The partition associated with a Young
diagram is called its shape. A Young tableau over alphabet
[d] is a Young diagram in which each box has been filled
with an element of [d]. A Young tableau is semistandard if
it is strictly increasing top-to-bottom down each column and
nondecreasing left-to-right across each row. Given A - n and
d, the Schur polynomial is the polynomial in the variables
T1,T2,...,2q defined by

d
sa(@) = Y T[7,

T i=1

€]

where the sum is over the set of semistandard Young Tableaus
over alphabet [d] corresponding to the partition A and #(7', )
is the number of times ¢ appears in 7". Schur polynomials turn
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out to be symmetric in x1,...,x4. We shall also consider
polynomials obtained from power sums. Given o € R>( and
a distribution 1 on [d], define M, (n) = &of Zle n%. Given
A F r, we define the power sum polynomial by My (n) &t
Hf(:)i) My, () . We remark that when 7 is the distribution of
the eigenvalues of p, obtaining additive estimates of S, (p) is
equivalent to obtaining multiplicative estimates for M, (7).

Schur polynomials and power-sum polynomials are related
through a change of basis. There exists a function x.(-) :
A2 — R such that [31, Theorem 7.17.3]

ZXA

The quantity xa(w) is dlfﬁcult to compute in general [32],

although we shall only be interested in particular p, as follows.

Let dim(\) denote the number of standard Young tableaus

over alphabet [n] with shape A. For A+ n and p b r define
xa(pul™™")

T x if n >
pE) & ey B =T
0 otherwise.

2

)ENQE

where n” is the falling power, ie., n"“ =n-(n—1)-(n —
2)-(n—(r—1)) and pU1""" denotes the partition of [n]
consisting of p followed by n—r ones. These polynomials are
very useful since they will give unbiased estimates of M, (1),
and can be used to estimate S, (p).

1) Weak Schur Sampling (WSS): Weak Schur Sampling is
a measurement that takes n independent copies of a mixed
state p (denoted p®™), and outputs a X F n (see [19, Section
4.2.2], [20, Chapter 3]). The output distribution over partitions
is called the Schur-Weyl distribution, denoted SW,, and the
probability of A I n is given by

SWa(A) = dim(X) - sx (). 3)

We are interested in Weak Schur Sampling due to the
following powerful result [33]-[36] (See [19, Section 4.2.2]
for details).

Lemma 1. Weak Schur sampling is optimal for estimating
unitarily invariant properties.

The p# (X) polynomial defined in the last section is useful
to us due to the following lemma, which states that the
(normalized) polynomial pﬁ)()\) is an unbiased estimator of
the rth moment of 7. The lemma follows from the definitions
and results already mentioned, and is implicit in [37], and
explicit in [20, Proposition 3.8.3].

Lemma 2. Fix a distribution, m, and a natural number, r. If
A is randomly Tnerated according to the distribution in (3)

then E {p’ﬁ)()\) =ntM, (n).

The Empirical Young Diagram (EYD) algorithm is a quan-
tum analogue of the classical empirical/plug-in estimator,
which works as follows. Consider the weak Schur sampling
procedure explained in Section II-B1, which outputs A F
n. The EYD algorithm computes the empirical distribution,
which assigns probability A;/n to the symbol ¢, and outputs
the property f of a mixed state with eigenvalues equal to \; /n.

III. OUR TECHNIQUES

In this section, we provide a high-level overview of the
techniques used to prove our results.

A. Rényi Entropy for Integral o > 1

Estimating Rényi entropy is equlvalent to obtaining esti-
mates of the power sum M, &ef >-m%. In the classical
setting, it turns out that for 1ntegra1 o > 1, there are simple
unbiased estimators of M, (n). In the quantum setting, for
integral «, (appropriately scaled) p? polynomials over Young
tableaus obtained from Kerov’s algebras described earlier
are unbiased estimators (see Lemma 2). Our Rényi entropy
estimator is described in Algorithm 1.

Algorithm 1 Estimating Rényi entropy for integral a’s.
1: Input: n independent copies of the state p, and « € N.
2: Run weak Schur sampling to obtain A\ - n.
3: Let («) be the partition of K with one part.

Xy Lin—a
4: Compute p(a)(k) =n* (dl)mﬁ
p(a)( )

5: Output: = log

The estimator is known from existing results to be
unbiased. The challenge lies in bounding2 its variance
Var(pf)(A)) = ELp{*)(A)?} - [pf)(A)] It will suf-
fice to show that the variance expression above satisfies

Var (p(a)()\)) < (eIE {p(a)(A)D . which will hold when

Co -1 (140" Mag_1 (1)) < (€M, (n))*. Using inequal-
ities between power sums, it can be shown that when n is
more than the complexity of Theorem 1, the variance is indeed
small, proving the upper bound.

For the lower bound for integral «, the first term dl;;/a
follows from the classical lower bounds, and the fact that
estimation is easier in the classical setting than in the quantum
setting. To prove a lower bound equal to the second term, we
invoke the classical Le Cam’s method. In particular, for the
following two spectrums:

cd)/ @ cd)/ @
N e = = and
n_ d ) d )t d )
1 1
v=|-=,...,=
" ’d
we show that S,(n) — S,(v) = ©O(), and

dry (SW,, SW,) < 0.1, unless n = Q(d?>72/@/e%/*).
This proves that unless n is large enough, there is no
classifier that can test between the spectrums 77 and v with
probability greater than 2/3, implying our lower bound.

Our upper bounds for von Neumann entropy and for non-
integral « use the EYD algorithm. Our upper bounds require
various bias and concentration results on the Young-tableaux.
Fortunately, in the recent works of O’Donnell and Wright,
a number of such bounds were proved. We build upon their
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results, and prove some additional results to show the copy
complexity bounds for the EYD algorithm.

To prove the lower bounds for the EYD algorithm, we
design eigenvalues such that unless the number of copies is
large enough, the EYD algorithm cannot concentrate around
the true entropy. For o > 1, we use the uniform distribution
(maximally mixed state), and for @« < 1, we design a
distribution that is uniform, except for one large eigenvalue.

One of our contributions pertains to the convergence of the
empirical Young diagram to the true distribution. A lower
bound of d?/e? was shown by [18]. However, their results
only holds with a constant probability (with probability 0.01
to be precise). We show the following sharp concentration.
There are constants g > 0, ¢, and ¢y such that when ¢ < g¢,
and n < c1d?/e?, and p is maximally mixed,

A1
n—d‘>£ >1—exp(—cy-d).

Note that the right-hand side does not depend on n. We show
that unless the number of samples is more than d?/e2, the
empirical Young diagram’s lower bound holds with probability
1 — exp(—cd) for some constant c. This exponential concen-
tration result is of independent interest.
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