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Abstract—The entropy of a quantum system is a measure of its
randomness and is useful in quantifying entanglement. We study
the problem of measuring the von Neumann and Rényi entropies
of an unknown mixed quantum state given access to independent
copies of the state. For Rényi entropy of integral order exceeding
one, we determine the order-optimal copy complexity and show
that it is strictly lower than the number of copies required to
learn the underlying state. The main technical innovation is a
concentration result for certain polynomials that arise in the
Kerov algebra of Young diagrams, which is proven using the
cycle structure of compositions of certain types of permutations.
For von Neumann entropy and Rényi entropy of non-integral
orders, we provide upper and lower bounds on the sample
complexity of the Empirical Young Diagram (EYD) algorithm,
which is the analogue of the empirical plug-in estimator in
classical estimation.

I. INTRODUCTION AND RESULTS

We consider how to estimate the mixedness or noisiness of

a quantum state given independent copies of the state. Mixed

quantum states can arise in practice in various ways: classical

stochasticity can be intentionally introduced when the state

is originally prepared; pure states can become mixed by a

quantum measurement; and the states of the subsystems of

bipartite states can be mixed even when the overall bipartite

state is pure, which forms the basis for purification.

In the third case, the level of mixedness of the subsystems

indicates the level of entanglement in the pure, bipartite sys-

tem. The possibility of entanglement of two separated systems

is arguably the most curious, and the most powerful, way in

which quantum systems differ from classical ones. Indeed,

entanglement has been fruitfully exploited as a resource in a

number of quantum information processing protocols [1]–[5].

The subsystems of a pure bipartite state are pure if and only if

the bipartite state itself is unentangled, and likewise they are

maximally mixed if and only if the bipartite state is maximally

entangled. Thus the mixedness of the subsystems’ states can

be used as a measure of entanglement of the bipartite system.

Mixedness can be measured in multiple ways. We shall

use the von Neumann and (the family of) Rényi entropies,

which correspond to the classical Shannon and (the family

of) Rényi entropies of the eigenvalues of the density operator

of the state, respectively. A density matrix (or operator) ρ is

a complex positive semidefinite matrix with unit trace; thus

its eigenvalues are nonnegative and sum to one. The von

Neumann entropy of a density matrix ρ is

S(ρ)
def
= −tr(ρ log ρ).

For α > 0, α 6= 1, the Rényi entropy of order α of ρ is

Sα(ρ)
def
=

1

1− α
log tr(ρα).

Quantum entropy can be justified operationally as a measure of

compressibility [6]–[8], and as noted earlier, entanglement [9].

In principle, both the von Neumann and Rényi entropies

for a quantum state ρ can be computed if the state is

known. We consider how to estimate these quantities for

an unknown state given independent copies of the state, to

which arbitrary quantum measurements followed by arbitrary

classical computation can be applied. This problem arises

when characterizing a completely unknown system and when

one seeks to experimentally verify that a system is behaving

as desired. Since generating independent copies of a state can

be quite costly in the quantum setting [10], [11], it is desirable

to minimize the number of independent copies of the state that

are required to estimate the von Neumann and Rényi entropies

to a desired precision and confidence. We thus adopt this copy

complexity as our figure-of-merit.

Using standard results in quantum state estimation, we

reduce our problem to one that is fully classical. We first

describe this classical problem, which is potentially of interest

in its own right.1

A. Quantum-Free Formulation

Let p be a distribution over [d]
def
= {1, . . . ,d}. A property

f(p) is a mapping of distributions to real numbers. A property

f is said to be symmetric (or label-invariant) if it is a function

of only the multiset of probability values, and not the ordering.

Classical symmetric property estimation. We are given

independent samples Xn def
= X1, . . . , Xn from an unknown

distribution p, and the goal is to estimate a symmetric property

f(p) up to an additive ε error, with probability at least 2/3.

Quantum state property estimation. The problem of esti-

mating von Neumann and Rényi entropies of a quantum state

with eigenvalues η can be shown to be equivalent to estimating

a symmetric property f(η). However, instead of being given

independent samples X1, . . . , Xn from the distribution η as

in the classical case, we are given access to a function

λ(Xn) = λ1 ≥ λ2 ≥ . . . of Xn. Here λ1,λ2, . . . are integers

satisfying the following property.

• For any k ≥ 1,
∑k

i=1 λi is equal to the largest possible

sum of the lengths of k disjoint non-decreasing subse-

quences of Xn.

1The full version of this paper is available online [12].
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Equivalently, we may view the observations as the output of

the Robinson–Schensted–Knuth (RSK) algorithm applied to

the sequence Xn, instead of being Xn itself. The reader is

referred to [13] for more details on the procedure. The copy

complexity of estimating quantum entropy turns out to be

equivalent to the problem of estimating classical entropy when

given access to λ(Xn). A simple data processing implication

of the form η → Xn → λ(Xn) shows that the complexity

of estimating quantum state property is at least as hard as

estimating the same property in the classical setting.

B. Our Results

We consider the following framework.

Π(f, d, ε): Given a property f , and access to indepen-

dent copies of a d-dimensional mixed state ρ (e.g. output

of some quantum experiment), how many copies are

needed to estimate f(ρ) to within ±ε?2

The copy complexity, denoted by C(f, d, ε), is the mini-

mum number of copies required for an algorithm that solves

Π(f, d, ε).
We study the copy complexity of estimating the entropy

of a mixed state of dimension d. We will use the standard

asymptotic notations, and are interested in characterizing the

dependence of C(S, d, ε), and C(Sα, d, ε), as a function of d
and ε. We assume the parameter α to be a constant, and focus

on only the growth rate as a function of d and ε.

We will now discuss our results, which are summarized in

Table I and Table II. For comparison purposes, it is useful to

recall the copy complexity of quantum tomography, in which

the goal is to learn the entire density matrix ρ. This problem

has been studied in various works using various distance

measures; and up to poly-logarithmic factors, for the standard

distance measures, the copy complexity depends quadratically

on the dimension d. Namely, it is Õ(d2). Similar to the

sample complexity of estimating Rényi entropies of classical

distributions from samples, our bounds are also dependent on

whether α is less than one, and whether it is an integer.

1) Rényi Entropy, Integral α > 1: We obtain our most

optimistic and conclusive results in this case.

Theorem 1. For α ∈ N\{1},

C(Sα, d, ε) = Θ

(

max

{

d1−1/α

ε2
,
d2−2/α

ε2/α

})

,

where the hidden constants depend only on α.

We note that the lower bounds here hold for all estimators,

not just for the estimators used in the upper bound. Further-

more, these bounds are sub-quadratic in d, namely we can

estimate the Rényi entropy of integral orders even before we

have enough copies to perform full tomography. The upper

bounds are established by analyzing certain polynomials from

representation theory that are related to the central characters

2We seek success with probability at least 2/3, which can be boosted to
1− δ by repeating the algorithm O(log(1/δ)) times and taking the median.

of the symmetric group. The main contribution is to analyze

the variance of these estimators, for which we draw upon

various results from Kerov’s algebra. For the lower bound, we

design the spectrums of two mixed states such that their Rényi

entropy differ by at least ε, but such that they require a large

copy complexity to distinguish between them. For this we use

various properties of Schur polynomials and other properties

of integer partitions [14], [15].

Remark 1. The first term in the complexity expression in

Theorem 1 dominates when ε < 1/
√
d, and is identical to the

sample complexity of estimating Rényi entropy in the classical

setting.

For estimating Sα(ρ) for α ≤ 1 and non-integral α > 1, we

analyze the Empirical Young Diagram (EYD) algorithm [16],

[17] . The EYD algorithm is similar to using a plug-in estimate

of the empirical distribution to estimate properties in classical

distribution property estimation.

2) Rényi Entropy, α < 1: We show that C(Sα, d, ε) =
O(d2/α/ε2/α). Since α < 1, this growth is more than

quadratic, namely the EYD algorithm requires more copies

than is required for tomography. We complement this by show-

ing that in fact the EYD algorithm requires Ω(d1+1/α/ε1/α)
copies, showing that the super-quadratic dependence on d is

inherent to the EYD algorithm.

Theorem 2. The empirical estimator of Sα(ρ) outputs a

±ε estimate with O
(

(d/ε)
2/α
)

copies. Moreover, the EYD

algorithm requires at least Ω(d1+1/α/ε1/α) copies to estimate

Sα(ρ) to ±ε.

In comparison, in the classical setting the tight exponent of

d in the sample complexity for α < 1 is 1/α.

3) von Neumann entropy (α = 1): Again using the EYD

algorithm, we show that C(S, d, ε) = O(d2/ε2). We formulate

an optimization problem whose solutions are an upper bound

on the bias of the empirical estimate, and we bound the

variance by proving that the estimator has a small bounded

difference constant.

Theorem 3. For von Neumann entropy (α = 1), using the

empirical entropy estimate:

C(S, d, ε) = O

(

d2

ε2
+

log2(1/ε)

ε2

)

.

Moreover, there is a constant ε0, such that for ε < ε0,

the empirical estimate of entropy requires at least Ω(d2/ε)
samples to estimate von Neumann entropy.

This complexity is still similar to that of full quantum

tomography.

4) Rényi Entropy, Non integral α > 1: Again using the

EYD algorithm, in Theorem 4, we show that C(Sα, d, ε) =
O(d2/ε2). We also provide a lower bound of Ω(d2/ε) for the

EYD estimator:

Theorem 4. For α > 1, the empirical estimator of Sα(ρ)

outputs a ±ε estimate with O
(

d2

ε2

)

copies of ρ with probability
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out to be symmetric in x1, . . . , xd. We shall also consider

polynomials obtained from power sums. Given α ∈ R≥0 and

a distribution η on [d], define Mα (η)
def
=
∑d

i=1 η
α
i . Given

λ ⊢ r, we define the power sum polynomial by Mλ (η)
def
=

∏ℓ(λ)
i=1 Mλi

(η) . We remark that when η is the distribution of

the eigenvalues of ρ, obtaining additive estimates of Sα(ρ) is

equivalent to obtaining multiplicative estimates for Mα (η).
Schur polynomials and power-sum polynomials are related

through a change of basis. There exists a function χ·(·) :
Λ2
n 7→ R such that [31, Theorem 7.17.3]

Mµ(·) =
∑

λ

χλ(µ)sλ(·). (2)

The quantity χλ(µ) is difficult to compute in general [32],

although we shall only be interested in particular µ, as follows.

Let dim(λ) denote the number of standard Young tableaus

over alphabet [n] with shape λ. For λ ⊢ n and µ ⊢ r define

p#µ (λ)
def
=

{

nr · χλ(µ∪1n−r)
dim(λ) if n ≥ r,

0 otherwise.

where nr is the falling power, i.e., nr = n · (n − 1) · (n −
2) · (n − (r − 1)) and µ ∪ 1n−r denotes the partition of [n]
consisting of µ followed by n−r ones. These polynomials are

very useful since they will give unbiased estimates of Mα (η),
and can be used to estimate Sα(ρ).

1) Weak Schur Sampling (WSS): Weak Schur Sampling is

a measurement that takes n independent copies of a mixed

state ρ (denoted ρ⊗n), and outputs a λ ⊢ n (see [19, Section

4.2.2], [20, Chapter 3]). The output distribution over partitions

is called the Schur-Weyl distribution, denoted SWη , and the

probability of λ ⊢ n is given by

SWη(λ) = dim(λ) · sλ(η). (3)

We are interested in Weak Schur Sampling due to the

following powerful result [33]–[36] (See [19, Section 4.2.2]

for details).

Lemma 1. Weak Schur sampling is optimal for estimating

unitarily invariant properties.

The p#µ (λ) polynomial defined in the last section is useful

to us due to the following lemma, which states that the

(normalized) polynomial p#(r)(λ) is an unbiased estimator of

the rth moment of η. The lemma follows from the definitions

and results already mentioned, and is implicit in [37], and

explicit in [20, Proposition 3.8.3].

Lemma 2. Fix a distribution, η, and a natural number, r. If

λ is randomly generated according to the distribution in (3)

then E

[

p#(r)(λ)
]

= nrMr (η) .

The Empirical Young Diagram (EYD) algorithm is a quan-

tum analogue of the classical empirical/plug-in estimator,

which works as follows. Consider the weak Schur sampling

procedure explained in Section II-B1, which outputs λ ⊢
n. The EYD algorithm computes the empirical distribution,

which assigns probability λi/n to the symbol i, and outputs

the property f of a mixed state with eigenvalues equal to λi/n.

III. OUR TECHNIQUES

In this section, we provide a high-level overview of the

techniques used to prove our results.

A. Rényi Entropy for Integral α > 1

Estimating Rényi entropy is equivalent to obtaining esti-

mates of the power sum Mα (η)
def
=
∑

ηα
i . In the classical

setting, it turns out that for integral α > 1, there are simple

unbiased estimators of Mα (η). In the quantum setting, for

integral α, (appropriately scaled) p# polynomials over Young

tableaus obtained from Kerov’s algebras described earlier

are unbiased estimators (see Lemma 2). Our Rényi entropy

estimator is described in Algorithm 1.

Algorithm 1 Estimating Rényi entropy for integral α’s.

1: Input: n independent copies of the state ρ, and α ∈ N.

2: Run weak Schur sampling to obtain λ ⊢ n.

3: Let (α) be the partition of α with one part.

4: Compute p#(α)(λ) = nα · χλ
(α)∪1n−α

dim(λ) .

5: Output: 1
1−α log

(

p#
(α)

(λ)

nα

)

.

The estimator is known from existing results to be

unbiased. The challenge lies in bounding its variance

Var
(

p#(α)(λ)
)

= E

[

p#(α)(λ)
2
]

− E

[

p#(α)(λ)
]2

. It will suf-

fice to show that the variance expression above satisfies

Var
(

p#(α)(λ)
)

≤
(

εE
[

p#(α)(λ)
])2

, which will hold when

Cα ·nα
(

1 + nα−1M2α−1 (η)
)

≤ (εMα (η))
2
. Using inequal-

ities between power sums, it can be shown that when n is

more than the complexity of Theorem 1, the variance is indeed

small, proving the upper bound.

For the lower bound for integral α, the first term d1−1/α

ε2

follows from the classical lower bounds, and the fact that

estimation is easier in the classical setting than in the quantum

setting. To prove a lower bound equal to the second term, we

invoke the classical Le Cam’s method. In particular, for the

following two spectrums:

η =





1 + (εd)1/α

d
,
1− (εd)1/α

d−1

d
, . . . ,

1− (εd)1/α

d−1

d



, and

ν =

(

1

d
, . . . ,

1

d

)

we show that Sα(η) − Sα(ν) = Θ(ε), and

dTV (SWη, SWν) < 0.1, unless n = Ω(d2−2/α/ε2/α).
This proves that unless n is large enough, there is no

classifier that can test between the spectrums η and ν with

probability greater than 2/3, implying our lower bound.

Our upper bounds for von Neumann entropy and for non-

integral α use the EYD algorithm. Our upper bounds require

various bias and concentration results on the Young-tableaux.

Fortunately, in the recent works of O’Donnell and Wright,

a number of such bounds were proved. We build upon their
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results, and prove some additional results to show the copy

complexity bounds for the EYD algorithm.

To prove the lower bounds for the EYD algorithm, we

design eigenvalues such that unless the number of copies is

large enough, the EYD algorithm cannot concentrate around

the true entropy. For α ≥ 1, we use the uniform distribution

(maximally mixed state), and for α < 1, we design a

distribution that is uniform, except for one large eigenvalue.

One of our contributions pertains to the convergence of the

empirical Young diagram to the true distribution. A lower

bound of d2/ε2 was shown by [18]. However, their results

only holds with a constant probability (with probability 0.01

to be precise). We show the following sharp concentration.

There are constants ε0 > 0, c1, and c2 such that when ε ≤ ε0,

and n < c1d
2/ε2, and ρ is maximally mixed,

Pr

(

d
∑

i=1

∣

∣

∣

∣

λi

n
− 1

d

∣

∣

∣

∣

> ε

)

> 1− exp(−c2 · d).

Note that the right-hand side does not depend on n. We show

that unless the number of samples is more than d2/ε2, the

empirical Young diagram’s lower bound holds with probability

1− exp(−cd) for some constant c. This exponential concen-

tration result is of independent interest.
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