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Abstract

Stroke is an overwhelming neurological disease with very limited treatment options. As blood-brain barrier (BBB)
integrity is well-implicated in the prevention of brain injury, its regulation may prove beneficial for stroke patients. BBB
cerebro-vascular endothelial cells primarily utilize mitochondria as their energy-producing source, and mitochondrial
function has revealed importance in outcomes for tissue post-stroke. In this review, bioenergetics in relation to BBB
permeability in stroke is discussed. Moreover, what causes mitochondrial dysfunction following stroke is explored.
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Introduction

Stroke is a debilitating disease that is presently the second leading
cause of death globally [1]. Out of the many strokes that occur
worldwide, ischemic stroke accounts for 85 percent [2]. Caused
when blood flow is obstructed in the cerebral blood vessel, ischemic
strokes lead to oxygen deprivation and ultimately neurological
deficits, incapacity, and possibly death [3-5]. However, symptoms
are specific to the location of the occlusion. Currently, the only FDA-
approved treatment for ischemic stroke is tissue plasminogen activator
(tPA). While this treatment is also used for pulmonary embolisms
and myocardial infarctions, tPA has a limited time-window of 4.5
hours after onset of stroke symptoms [6]. Due to its ability to cause
hemorrhagic transformation and damage to blood-brain barrier (BBB)
permeability, the use of mechanical thrombectomy for large vessels is
often the preferred method of treatment over tPA. This method has a
24hr window [7].

BBB permeability following a stroke

BBB permeability is well studied and implicated in a stroke. Made
of multiple cell types and tight junctions, its function is to separate
the central nervous system from peripheral circulation. When the
BBB opens, the brain is highly susceptible to the influx of solutes,
blood, immune cells, and ions that are associated with delayed brain
damage. Immediately following a stroke, the BBB undergoes reversible
permeability; however, after 2-3 days, the irreversible permeability
settles. We have demonstrated that following a stroke, the BBB opens
at both 6H and 72H [8]. As irreversible BBB permeability settles,
there is an increased risk of hemorrhagic transformation in patients
that received tPA [2]. An important factor for future stroke therapies
may be BBB permeability control which is partly controlled through
bioenergetics in the mitochondria. The mitochondria are the often
called the “power-house of the cell” and function for generation of
ATP in addition to cell signaling and apoptosis, control of the cell
cycle, and cell growth. Generation of ATP begins in the cytoplasm with
glycolysis where glucose is made into pyruvate and transported into the
mitochondria. Upon multiple oxidation steps, ATP is generated where
it is used for cellular processes [9,10].

The BBB and Bioenergetics

The mitochondria have important roles in our neurons and

cells in the BBB for homeostasis and maintenance. While our brain
makes up only 2% of our body mass, it uses 20% of the oxygen in our
bodies. Given its aerobic capacity, the mitochondria are needed for
energy production through the formation of ATP and maintenance
of ion gradients in the membrane. Because the cells in the brain are
metabolically active, it makes the brain sensitive to blood disruption
[11]. When blood flow is disturbed, the balance between glucose energy
and energy from cellular processes is disrupted as well. Mitochondrial
dysfunction has been recently implicated in stroke and in ischemia or
reperfusion neuronal damage [12]. When an ischemic stroke occurs,
bioenergetics of neurons fail [13,14]. Due to rapid energy depletion,
there is cellular infarction in neurons, astrocytes, endothelial cells, and
oligodendrocytes. Thus, bioenergetics are extremely important for
tissue outcome in stroke Figure 1. Acute infections have demonstrated
to contribute to compromised mitochondria leading to worsened stroke
outcomes. Around 30-40% of stroke patients are estimated to have
had some sort of infection [15]. Different studies have reported that
lipopolysaccharide (LPS) particularly as a result of infection induces
immune responses which leads to activation of the inflammatory
pathway and exacerbated brain damage in stroke models [16]. Along
with the BBB opening in stroke, body temperature is lowered, which
suggests the power-house is shutting down [9]. In a study conducted
by Doll et.al, LPS caused mitochondrial-dependent ischemic challenge
for BBB permeability and worsened stroke outcomes. In order to
determine how LPS compromised BBB integrity, 3 pharmacological
inhibitors of mitochondrial respiratory complexes were used on
cerebrovascular endothelial cell cultures. The three pharmacological
mitochondria inhibitors included rotenone, FCCP, and oligomycin.
Results revealed that rotenone caused BBB degeneration through
mitochondrial dysfunction in addition to increased infarct size.
Moreover, FCCP treatment 30 min before tMCAO increased infarct
volume in the cortex, striatum, and total hemisphere compared to
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Figure 1: Bioenergetics failure leads to adverse stroke outcomes. When a stroke occurs, mitochondria are rapidly compromised leading to decreased
production of ATP, increased reactive oxygen species (ROS) and decreased BBB permeability. Due to the compromised BBB integrity, solutes, ions, immune
cells, and other hazardous materials are able to free flow into the brain causing adverse stroke outcomes such as brain edema and neuronal death.

counterparts [17]. Challenge of TNF-a has also demonstrated to
compromise mitochondrial potential through release of cytochrome C
into the cytosol [18]. reactive oxygen species (ROS)are well implicated
in mitochondrial dysfunction in stroke models [19]. As ischemia/
reperfusion injury (IR) occurs, glucose and oxygen deprivation in the
mitochondria cause the production of harmful ROS and the release of
cytochrome C. ROS production overwhelms the cerebral antioxidant
defense methods, triggering the apoptotic pathway, and such ROS
production is harmful to BBB permeability[20].

Conclusion and Perspectives

As the mitochondria are well-implicated in stroke pathophysiology,
mitophagy proves to be important. Despite that mitochondria have
important functions in energy production and homeostasis, they cause
damage through the production of ROS and the initiation of apoptosis.
Mitochondrial autophagy is an important regulator in mitochondrial
control, as mitophagy removes dysfunctional mitochondrial in a
selective process. Modifications of mitochondria could be involved by
microRNAs, which is another potential therapeutic target for stroke. Such
as a recent study on miR-34a, particularly, is implicated in many diseases and
signaling processes like neural physiological processes and the p53 network.
In a study conducted by Hu et. al, primary cerebrovascular endothelial cells
showed increased levels of miR-34a after 1H tMCAO and at the time of BBB
opening. Further, miR-34a targeted cytochrome C, and BBB permeability
was significantly reduced in miR-34a knockout mice [21]. These findings
suggest miR-34a may be a promising stroke therapeutic. Given mitochondrial
dysfunction implications in stroke, this selective removal method could be an
important therapeutic in stroke; however, little is known on how mitophagy
and microRNA s relates to stroke BBB disruption. Moreover, studies should be
conducted on the BBB and bioenergetic protective role in stroke.
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