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Abstract
In this paper, a weak adversarial network approach is developed to numerically
solve a class of inverse problems, including electrical impedance tomography
and dynamic electrical impedance tomography problems. The weak formula-
tion of the partial differential equation for the given inverse problem is lever-
aged, where the solution and the test function are parameterized as deep neural
networks. Then, the weak formulation and the boundary conditions induce a
minimax problemof a saddle function of the network parameters. As the param-
eters are alternatively updated, the network gradually approximates the solution
of the inverse problem. Theoretical justifications are provided on the conver-
gence of the proposed algorithm. The proposedmethod is completelymesh-free
without any spatial discretization, and is particularly suitable for problems with
high dimensionality and low regularity on solutions. Numerical experiments
on a variety of test inverse problems demonstrate the promising accuracy and
efficiency of this approach.
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1. Introduction

Inverse problems (IP) are ubiquitous in a vast number of scientific disciplines, including geo-
physics [50], signal processing and imaging [7], computer vision [41], remote sensing and
control [57], statistics [35], and machine learning [23]. Let Ω be an open and bounded set in
R
d, then an IP defined on Ω can be presented in a general form as:

A[u, γ] = 0, in Ω (1a)

B[u, γ] = 0, on ∂Ω (1b)

whereA[u, γ] specifies a differential equation, in which u is the solution and γ the coefficient in
the inverse medium problem or the source function in the inverse source problem. EquationA
can be an ordinary differential equation, or a partial differential equation (PDE), or an integro-
differential equation, that (u, γ) needs to satisfy (almost) everywhere inside the region Ω. The
boundary value (and initial value if applicable) is given by B[u, γ] on ∂Ω. Depending on spe-
cific applications, partial information of u and/or γ may be available in the interior of Ω. Then
IP (1) is to find (u, γ) that satisfies both (1a) and (1b).

To instantiate our approach, we mostly use the classical inverse conductivity problem in
electrical impedance tomography (EIT) [11, 37] as an example to present our main idea and
the derivations in this paper. However, our methodology can be readily applied to other classes
of IPs with modifications. An example of dynamicEIT problemwill be shown in section 4. The
goal of EIT is to determine the electrical conductivity distribution γ(x) of an unknownmedium
defined on Ω based on the potential u, the current −γ∂�nu measurements, and the knowledge
of γ (and hence ∂�nu) on/near the boundary ∂Ω of the domain Ω:

−∇ · (γ∇u)− f = 0, in Ω (2a)

u− ub = 0, γ − γb = 0, ∂�nu− un = 0, on ∂Ω (2b)

where ub is the measured voltage, γb is the conductivity near the surface of the object and
un � ∇u ·�n with �n being the outer normal of ∂Ω. Note that our approach is not to estimate
the Dirichlet-to-Neumann (DtN) map associated with the conductivity function as in classical
methods specific to the EIT problem [12, 21, 40]. Instead, our goal is to directly solve a general
class of IPs (1) numerically using the given data, with the EIT problem (2) as a prototype
example without exploiting its special structure (e.g., the DtN map). To make our presentation
concise and focused, we only consider IPs with A[u, γ] characterized by PDEs in (1a), and
assume that the given IP is well-defined and admits at least one (weak) solution.

Our approach is to train deep neural networks that can represent the solution (u, γ) of a
given IP, with substantial improvement over classical numerical methods especially for prob-
lems with high dimensionality. More specifically, we leverage the weak formulation of the
PDE (1a) and convert the IP into an operator norm minimization problem of u and γ. Then
we parameterize both u, the unknown coefficient γ, and the test function ϕ as deep neural
networks uθ, γθ, and ϕη respectively, with network parameters (θ, η), and form a minimax
problem of a saddle function of the parameters (θ, η). Finally, we apply the stochastic gradient
descent (SGD) method to alternately update the network parameters so that (uθ, γθ) gradu-
ally approximates the solution of the IP. The parameterization of (u, γ) using deep neural
networks requires no discretization of the spatial and temporal domain, and hence is com-
pletely mesh free. This is a promising alternative compared to the classical finite difference
method (FDM) and finite element methods which suffer the issue of the so-called curse of
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dimensionality, a term first used in [6]. Moreover, our approach combines the training of
the weak solution (primal network) (u, γ) and the test function (adversarial network) ϕ gov-
erned by the weak formulation of the PDE, which requires less regularity of the solution
(u, γ) and can be more advantageous in many real-world applications when the solution has
singularities.

The remainder of this paper is organized as follows. We first review the recent work on
deep learning based solutions to forward and IP in section 2. In section 3, we provide the
detailed derivation of our method and a series of theoretical results to support the validity of the
proposed approach. We discuss several implementation techniques that can improve practical
performance and conduct a series of numerical experiments to demonstrate the effectiveness
of the proposed approach in section 4. Section 5 concludes this paper with some general
remarks.

2. Related work

The past few years have witnessed an emerging trend of using deep learning based methods
to solve forward and IP. These methods can be roughly classified into two categories. The
first category includes methods that approximate the solution of a given problem based on
supervised learning approaches. These methods require a large number of input–output pairs
through numerical simulation and experiments to train the desired networks. In this category,
deep neural networks are used to generate approximate intermediate results frommeasurement
data for further refinement [20, 45, 48, 53, 54, 58], applied to improve the solution of classical
numerical methods in the post-processing phase [5, 26, 27, 29, 33, 38, 46, 56], or approximate
the mapping from given parameters of an IP to its solution but require spatial discretization
and cannot be applied to high-dimensional problems [2, 32, 43].

The second category features unsupervised learning methods that directly solve the for-
ward or IP based on the problem formulation rather than additional training data, which can
be more advantageous than those in the first category in practice. For example, feed-forward
neural networks are used to parameterize the coefficient functions and trained by minimiz-
ing the performance function in [13]. In [39], a neural network architecture called SwitchNet
is proposed to solve the inverse scattering problem through the mapping between the scat-
terers and the scattered field. In [18], a deep learning approach specific to 2D and 3D EIT
problems is developed to represent the DtN map by a compact neural network architecture.
The backward stochastic differential equation (BSDE) corresponding to the PDE in a forward
problem is parameterized in part by neural networks, such that the solution of the PDE can
be obtained by integrating the BSDE for a target point in the domain [9, 16, 28]. In [17], the
solution of a forward problem is parameterized as a deep neural network, which is trained
by minimizing the loss function composed of the energy functional associated with the PDE
and a penalty term on the boundary value condition. Another mesh-free framework, called
physics-informed neural networks (PINN), for solving both the forward and IP using deep
neural networks based on the strong formulation of PDEs is proposed in [51], where a con-
stant coefficient function is considered for the IP part. Specifically, PINN parameterizes the
unknowns of a given PDE using deep neural networks, which are trained by minimizing the
loss function formed as the least squares of the violation of the PDE at sampled points in
the domain and boundary conditions. Some empirical study of PINN is also conducted in [14].
Solutions to IPs based on PINNwith data given in problem domain are also considered in [34],
and refinement of solutions using adaptively sampled collocation points is proposed in [4]. In
[59], the weak formulation of the PDE is leveraged as the objective function, where the solu-
tion of the PDE and the test function are both parameterized as deep neural networks trying to
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minimize and maximize the objective function, respectively. In [36], a similar variational form
is used where the test function is fixed basis instead of neural networks to be learned. In [47],
three neural networks, one for low-fidelity data and the other two for the linear and nonlinear
functions for high-fidelity data, are used by following the PINN approach. The PINN with a
multi-fidelity network structure is also proposed for stochastic PDE cases, where polynomial
chaotic expansions are used to express the solutions, i.e., as a linear combination of random
basis with coefficient functions to be learned [10]. In [8], the solution of an IP is parame-
terized by deep neural network and learned by minimizing a cost function that enforces the
conditions of IP and additional regularization, where solutions to the PDE are required during
the training.

Recently, meta-learning based approaches for forward problems are also considered [10,
19, 44]. In [19], the mapping from the coefficient of a differential operator to the pseudo-
differential operator (e.g., the Green function) is learned by leveraging the compressed form
of the wavelet transform. In [44], a deep operator network consisting of a branch network and
a trunk network is introduced. The network encodes the input function evaluated at a finite
number of locations (branch-net) and the locations for the output function (trunk-net) and, the
output function is given by the inner product of the two plus a bias. Learning network width
and depth parameters are also considered using Bayesian optimization in [10].

Our approach to the IP follows our earlier work [59] for forward problems, which differs
from the aforementioned existing methods in the use of the weak formulation of PDEs. The
weak formulation is a powerful approach for solving PDEs as it requires less regularity and
allows for necessary singularities of the solutions, which is an important feature appreciated in
many real-world applications such as imaging and abnormality detections. From the theoreti-
cal point of view, our method employs neural network parameterizations of both the solution
(as the primal network) and the test function (as the adversarial network), and performs an
adversarial training in a way that the test function critics on the solution network where the
PDE is violated, and the solution network corrects itself at those spots until the PDE is satis-
fied (almost) everywhere in the domain. However, as IP are often ill-posed and more difficult
to solve than forward problems in general, we mostly focus on the IP (2) in EIT in this work.
Some experimental results on similar problems are also presented in section 4.

The adversarial training in the present work has a similar flavor as the one used in generative
adversarial network [24], where a generator network is aimed at mapping generic random sam-
ples (such as those from a givenmultivariate Gaussian) to ones following the same distribution
as the training samples, and a discriminator network is to distinguish these samples produced
by the generator network from the true samples. The generator and adversarial networks act
as the two players in a zero-sum game, and are alternately updated by gradient descent and
ascent on the objective function respectively to reach an equilibrium. In particular, a notable
variant of GAN, calledWasserstein GAN [3], also has a min–max structure of a primal network
(generator) and adversarial network (dual function of optimal transport due to the Wasserstein
distance between generated and sample distributions) as our formulation. However, WGAN
requires its dual function in the max problem to be 1-Lipschitz, which is very difficult to real-
ize numerically and has generated a series of followup work to overcome the issue [25, 49],
spectral normalization for generative adversarial networks. In contrast, the structure of weak
solution versus test function in our work arises naturally from the weak formulation in the
PDE theory, which enjoys numerous theoretical justifications and computational benefits for
solving IPs for PDEs without imposing restrictive constraint on the adversarial network (test
function), as we show in the present work.

In contrast tomany existing deep learningmethods that require a large amount of demonstra-
tion data (e.g., coefficient/boundary value and solution pairs) for training, our method follows
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an unsupervised learning strategy and only needs the formulation of the PDE and boundary
conditions in the given IP. In [55], an unsupervised learning study reveals that generic con-
volutional neural networks automatically bias toward smooth signals and can produce results
similar to some sophisticated reconstructions in image denoising without any training data.
This phenomenon, known as deep image prior (DIP), is further exploited in [15, 30]. The most
notable difference between DIP and the present work is that, our method is completely mesh-
free and does not require any spatial discretization, which is suitable for high-dimensional
problems. In DIP and its followup works, on the other hand, the reconstruction network is
applied to discretized 2D or 3D images. Moreover, our goal is to use the representation power
of deep networks to parameterize the solution of an IP in continuous space, whereas the main
interests in DIP are on its intriguing automatic regularization properties.

3. Weak adversarial network for IP

The proposed weak adversarial network approach for IPs is inspired by the weak formulation
of PDEs. To obtain the weak formulation of the PDE in (1a), we multiply both sides of (1a) by
an arbitrary test function ϕ ∈ H1

0(Ω) (the Hilbert space of functions with bounded first-order
weak derivatives and compactly supported in Ω) and integrate over Ω:

〈A[u, γ],ϕ〉 :=
∫
Ω

A[u, γ](x)ϕ(x)dx = 0. (3)

One of the main advantages of weak formulation (3) is that we can subsequently apply integra-
tion by parts to transfer certain gradient operator(s) in A[u, γ] to ϕ, such that the requirement
on the regularity of u (and γ if applicable) can be reduced. For example, in the case of inverse
conductivity problem (2), the integration by parts and the fact that ϕ = 0 on ∂Ω together yield

〈A[u, γ],ϕ〉 =
∫
Ω

(γ∇u · ∇ϕ− f ϕ) dx = 0, (4)

where γ∇u is not necessarily differentiable as in (2) in the classical sense anymore (we use∇
to denote the gradient operatorwith respect to x, and∇θ as the gradient with respect to θ and so
on in this paper). We call (u, γ) ∈ H1(Ω)× L2(Ω) a weak solution (or generalized solution) of
the IP (1) if (u, γ) satisfies the boundary condition (1b) and (3) for all ϕ ∈ H1

0(Ω). Here L
2(Ω)

is the Lebesgue space of square integrable functions on Ω, and H1(Ω) ⊂ L2(Ω) is the Hilbert
space of functions with bounded first-order weak derivatives. Note that any classical (strong)
solution of (1) is also a weak solution. In this work, we seek for weak solutions of IP (1) so
that we may be able to provide an answer to the problem even if it does not admit a solution
in the classical sense.

Following the work [59], we consider the weak formulation of the PDEA[u, γ] = 0 in (1).
To cope with the unknown solution u and parameter γ of the PDE in an IP, we parameterize
both u and γ as deep neural networks, and considerA[u, γ] : H1

0(Ω)→ R as a linear functional
such that A[u, γ](ϕ) := 〈A[u, γ],ϕ〉 as defined in (3). We define the norm of A[u, γ] induced
by the H1 norm as

‖A[u, γ]‖op := sup
ϕ∈H1

0 ,ϕ
=0

〈A[u, γ],ϕ〉
‖ϕ‖H1

, (5)

where theH1-normofϕ is given by ‖ϕ‖2
H1(Ω)

=
∫
Ω(|ϕ(x)|2+ |∇ϕ(x)|2)dx. Therefore, (u,γ) is a

weak solution of (1) if and only if ‖A[u, γ]‖op = 0 andB[u, γ] = 0 on ∂Ω. As ‖A[u, γ]‖op � 0,
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we know that a weak solution (u, γ) to (1) thus solves the following problem in observation
of (5):

minimize
u,γ

‖A[u, γ]‖2op = minimize
u,γ

sup
ϕ∈H1

0 ,ϕ
=0

|〈A[u, γ],ϕ〉|2
‖ϕ‖2

H1

, (6)

among all (u, γ) ∈ H1(Ω)× L2(Ω), and attains minimal value 0. This result is summarized in
the following theorem, and the proof is provided in appendix A.1.

Theorem 1. Suppose that (u∗, γ∗) satisfies the boundary condition B[u∗, γ∗] = 0, then
(u∗, γ∗) is a weak solution of (1) if and only if ‖A[u∗, γ∗]‖op = 0.

Theorem 1 implies that, to find the weak solution of (1), we can instead seek for the optimal
solution (u∗, γ∗) that satisfies B[u∗, γ∗] = 0 and meanwhile minimizes (6) by achieving min-
imum operator norm value ‖A[u∗, γ∗]‖op = 0 due to the nonnegativity of the operator norm.
In other words, (u∗, γ∗) is a weak solution of the problem (1) if and only if both ‖A[u∗, γ∗]‖op
and ‖B[u∗, γ∗]‖L2(∂Ω) vanish. Therefore, we can solve (u

∗, γ∗) from the followingminimization
problem which is equivalent to (1):

minimize
u,γ

I(u, γ) = ‖A[u, γ]‖2op + β‖B[u, γ]‖2L2(∂Ω), (7)

and β > 0 is a weight parameter that balances the two terms in the objective function I(u, γ).
Note that both terms of the objective function in (7) are nonnegative and vanish simultaneously
only at a weak solution (u∗, γ∗) of (1).

A promising alternative to classical numerical methods for high-dimensional PDEs is the
use of deep neural networks since they do not require domain discretization and are completely
mesh free. Deep neural networks are compositions of multiple simple functions (called lay-
ers) so that they can approximate rather complicated functions. Consider a simple multi-layer
neural network uθ as follows:

uθ(x) = w�
K lK−1 ◦ · · · ◦ l0(x)+ bK , (8)

where the kth layer lk :Rdk → R
dk+1 is given by lk(z) = σk(Wkz+ bk) with weight

Wk ∈ R
dk+1×dk and bias bk ∈ R

dk+1 for k = 0, 1, . . . ,K− 1, and the network parameters of
all layers are collectively denoted by θ as follows,

θ := (wK , bK ,WK−1, bK−1, . . . ,W0, b0). (9)

Throughout, all vectors in this paper are column vectors by default. In (8), x ∈ Ω is the input
of the network, d0 = d is the problem dimension of (1) (also known as the size of input layer),
wK ∈ R

dK and bK ∈ R are parameters in the lastKth layer (also called the output layer). Typical
choices of the nonlinear activation function σk include sigmoid function σ(z) = (1+ e−z)−1,
hyperbolic tangent (tanh) function σ(z) = (ez − e−z)/(ez + e−z), and rectified linear unit func-
tion σ(z) = max(0, z), which are applied componentwisely. The training of deep neural net-
works refers to the process of optimizing θ using available data or constraints such that the
function uθ can approximate the (unknown) target function. More details about deep neural
networks can be found in [23].

Despite of the simple structures like (8), deep neural networks are capable to approximate
rather complicated continuous function (and its derivatives if needed) uniformly on a compact
support Ω̄. This significant result is known as the universal approximation theorem [31]. The
expressive power of neural networks ensured by the universal approximation theorem suggests
a promising mesh-free parameterization of the weak solution (u, γ) of (1). In what follows,
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we select sufficiently deep neural network structures of form (8) for both u and γ. Specific
structures, i.e., layer number K and sizes {d1, . . . , dK−1}, used in our numerical experiments
will be provided in section 4. Note that u and γ are two separate networks, but we use a single
letter θ to denote their network parameters rather than θu and θγ to simplify notations. That
is, we parameterize (u, γ) as deep neural networks (uθ, γθ), and attempt to find the parameter
θ such that (uθ, γθ) solves (7). To this end, the test function ϕ in the weak formulation (3) is
also parameterized as a deep neural network ϕη in a similar form of (8) and (9) with parameter
denoted by η. With the parameterized (uθ, γθ) and ϕη , we follow the inner product notation in
(3) and define

E(θ, η) := |〈A[uθ, γθ],ϕη〉|2. (10)

Instead of normalizing E(θ, η) by ‖ϕη‖2H1
as in the original definition of (squared) operator

norm (5), we approximate (up to a constant scaling of) the squared operator norm in (5) by the
following max-type function of θ:

Lint(θ) := max
|η|2�2B

E(θ, η) (11)

where B > 0 is a prescribed bound to constrain the magnitude of network parameter η. Here
|η|2 =

∑
k(
∑

i j[Wk]2i j +
∑

i[bk]
2
i ), and [M]i j ∈ R stands for the (i, j)th entry of a matrix M,

and [v]i ∈ R the ith component of a vector v. It is worth noting that the bound constraint on
the 
2-norm of η in (11) is similar to the weight clipping (equivalent to bound on 
∞-norm)
method used in WGAN [3]. However, they serve different purposes: the constraint in (11)
is introduced so that the integrals, such as (4), are bounded (the actual value of this bound
can be arbitrary). In this case, the stochastic gradients obtained by the Monte-Carlo (MC)
approximations in our numerical implementation have bounded variance, which is needed
in the proof of theorem 4 below. On the other hand, the weight clipping in WGAN is to
ensure the dual function realized by the neural network is in the class of 1-Lipschitz functions
F := { f : Ω→ R : | f (x)− f (y)| � |x − y|, ∀ x, y ∈ Ω}. As noted in [3], weight clipping is a
simple but not appropriate way to implement the 1-Lipschitz constraint, and hence there is a
series of followup work to tackle this issue, such as [25, 49].

Furthermore, we define the loss function associated with the boundary condition (1b) by

Lbdry(θ) := ‖B[uθ, γθ]‖2L2(∂Ω) =

∫
∂Ω

|B[uθ, γθ](x)|2 dS(x). (12)

For instance, if the boundary condition of (u, γ) is given in (2b) with known bound-
ary value (ub, γb, un), then Lbdry(θ) =

∫
∂Ω|uθ(x)− ub(x)|2 + |γθ(x)− γb(x)|2 + |∂�n(x)u(x)−

un(x)|2 dS(x). Finally, we define the total loss function L(θ), and solve the following
minimization problem of its optimal θ∗:

minimize
θ

L(θ), whereL(θ) :=Lint(θ)+ βLbdry(θ), (13)

where we also constrain on the magnitude of the parameter θ such that |θ|2 � 2B for the
same B to simplify notation. Note that here both θ and η are finite dimensional vectors, and
Lint(θ), Lbdry(θ),E(θ, η) ∈ R+, hence it is possible to apply numerical optimization algorithms
to find the minimizer of L(θ).

A standard approach to solving a minimization problem like (13) is the projected gradient
descent method which performs the following iteration:

θ ← Π(θ − τ∇θL(θ)), (14)
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where Π(θ) = min(
√
2B, |θ|) · (θ/|θ|) is the projection of θ to the ball centered at origin with

radius
√
2B, and τ > 0 is the step size. As we can see, the main computation of (14) is on the

gradient∇θL(θ) = ∇θLint(θ)+ β∇θLbdry(θ). The computationof∇θLbdry(θ) is straightforward
as shown later. The loss Lint(θ), however, is defined as a maximization problem (11), and we
need to write its gradient as a function of θ first. To this end, we have the following lemma to
compute the gradient∇θLint(θ), and the proof is provided in appendix A.2.

Lemma 2. Suppose Lint(θ) is defined in (11). Then the gradient∇θLint(θ) at any θ is given
by∇θLint(θ) = ∂θE(θ, η(θ)), where η(θ) is a solution of max|η|2�2B E(θ, η) for the specified θ.

Remark 3.1. Lemma 2 suggests that, to obtain ∇θLint(θ) at any given θ, we can first take
the partial derivative of E with respect to θ with η untouched, and then evaluate the partial
derivative using θ and any solution η(θ) of the maximization problem (11).

The exact gradients of Lint(θ) and Lbdry(θ) require integrations of functions parameterized
by deep neural networks over Ω and ∂Ω in continuous space, which are computationally
intractable in practice. Therefore, we use MC approximations of these integrals. To this end,
we need the following result on the approximation of integrals using samples, and the proof is
provided in appendix A.3.

Lemma 3. Suppose Ω ⊂ R
d is bounded, and ρ is a probability density defined on Ω

such that ρ(x) > 0 for all x ∈ Ω. Given a function ψ ∈ L2(Ω), denote Ψ =
∫
Ω ψ(x)dx. Let

x(1), . . . , x(N ) be N independent samples drawn from ρ. Consider the following estimator Ψ̂ of
Ψ:

Ψ̂ =
1
N

N∑
i=1

ψ(x(i))
ρ(x(i))

. (15)

Then the first and second moments of Ψ̂ are given by

E[Ψ̂] = Ψ and E[Ψ̂2] =
N − 1
N

Ψ2 +
1
N

∫
Ω

ψ(x)2

ρ(x)
dx. (16)

Hence the variance of Ψ̂ is N−1 · (
∫
Ω(ψ

2/ρ)dx − (
∫
Ωψ dx)2). In particular, with the uniform

distribution ρ(x) = 1/|Ω|, the variance of Ψ̂ = (|Ω|/N) ·
∑

iψ(x
(i)) is N−1 · (|Ω|

∫
Ωψ

2 dx −
(
∫
Ωψ dx)2).

Remark 3.2. We have several remarks regarding lemma 3:

• The estimator Ψ̂ of the integral Ψ is unbiased.
• The variance of Ψ̂ shown above decreases at the rate ofO(1/N) in the numberN of sample
collocation points. By Hölder’s inequality and that ρ is a probability density, we know

∣∣∣∣
∫
Ω

ψ dx

∣∣∣∣ �
∫
Ω

|ψ|dx =
∫
Ω

|ψ|
√
ρ

√
ρ dx �

(∫
Ω

|ψ|2
ρ

dx

)1/2(∫
Ω

ρ dx

)1/2

=

(∫
Ω

|ψ|2
ρ

dx

)1/2

,

which also verifies that V(Ψ̂) � 0. More importantly, the equalities hold if ψ does not
change sign and ρ ∝ |ψ|. Therefore, we can set ρ as close to |ψ| (up to a normalizing
constant) as possible to reduce the variance, but meanwhile ensure ρ is easy to sample
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from and evaluate as required in (15). This is closely related to the concept of importance
sampling.

• The result (15) and (16) in lemma 3 can be easily extend to the case with unbounded
domain Ω, provided that ψ/

√
ρ ∈ L2(Ω).

Lemma 3 provides a feasible way to approximate the gradient of L(θ) for (14). For instance,
to compute ∇θLbdry(θ), we can take gradient of (12) with respect to θ, sample Nb collocation
points {x(i)b : 1 � i � Nb} on the boundary ∂Ω and approximate ∇θLbdry(θ) by summation of
function evaluations at the sample points. If we take B[u, γ] = (u− ub, γ − γb, ∂�nu− un) and
uniformly sample x(i)b , the estimate becomes

∇θLbdry(θ) = 2
∫
∂Ω

((uθ − ub)∇θuθ + (γθ − γb)∇θγθ

+ (∂�nuθ − un)∇θ∇u ·�n) dS(x)

≈ 2|∂Ω|
Nb

Nb∑
i=1

(
(uθ(x

(i)
b )− ub(x

(i)
b ))∇θuθ(x

(i)
b )

+ (γθ(x
(i)
b )− γb(x

(i)
b ))∇θγθ(x

(i)
b )

+ (∂�nuθ(x
(i)
b )− ub(x

(i)
b ))∇θ∇uθx(i)b ·�nx(i)b

)
. (17)

Similarly, we can compute the stochastic gradient of ∇θLint(θ). In the case of taking
A[u, γ] = ∇ · (γ∇u)− f in Ω with f given, and uniformly sampling Nr collocation points
{x(i)r : 1 � i � Nr} inside the region Ω,∇θLint(θ) can be estimated by

∇θLint(θ) = 2I(θ)
∫
Ω

(
∇θγθ(∇uθ · ∇ϕη(θ))+ γθ(∇θ∇uθ · ∇ϕη(θ))

)
dS(x)

≈ 2|Ω|̂I(θ)
Nr

Nr∑
i=1

(
∇θγθ(x(i)r )(∇uθ(x(i)r )∇ϕη(θ)(x(i)r ))

+ γθ(x(i)r )(∇θ∇uθ(x(i)r )∇ϕη(θ)(x(i)r ))
)

(18)

where I(θ) and its estimator Î(θ) are given by

I(θ) =
∫
Ω

γθ(∇uθ · ∇ϕη(θ))dx, Î(θ) =
|Ω|
2

Nr∑
i=1

γθ(x(i)r )(∇uθ(x(i)r ) · ∇ϕη(θ)(x(i)r )),

and η(θ) is a solution of the maximization problem (11) according to lemma 2. All integrals
in the gradients can be approximated in a similar way. These approximated gradients are in
fact stochastic gradients, which are unbiased and have bounded variances due to the bound-
edness of the network parameters. With these approximations, (14) reduces to the stochastic
projected gradient descent method, which ensures convergence to a local stationary point of
(13) with proper choice of step sizes. Since (13) is constrained, the gradient mapping, defined
by G(θ) := τ−1[θ −Π(θ − τ∇θL(θ))], is used as the convergence criterion of θ [22, 42, 52].
Note that the definition of gradient mapping takes the normalization of step size τ into consid-
eration. Moreover, without the projectionΠ, the gradient mapping reduces to G(θ) = ∇θL(θ),
whose magnitude is an evaluation criterion for local stationary points (i.e., |∇θL(θ)| = 0) for

9
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Algorithm 1. IP solver by weak adversarial network (IWAN).

Input: the domain Ω and data for the IP (1).
Initialize: (uθ, γθ), ϕη .
for j = 1, . . . , J: do

Sample Xr = {x(i)r : 1 � i � Nr} ⊂ Ω and Xb = {x(i)b : 1 � i � Nb} ⊂ ∂Ω.
η ← SGD(−∇ηE(θ, η),Xr , η, τη , Jη).
θ ← SGD(∂θE(θ, η)+ β∇θLbdry(θ), (Xr ,Xb), θ, τθ, 1).

end for
Output: (uθ , γθ).

unconstrained case. This result is stated in the following theorem, and the proof is given in
appendix A.4.

Theorem 4. For any ε > 0, let {θj} be a sequence of the network parameter in (uθ, γθ)
generated by the gradient descent algorithm (14) with integrals in ∇θL(θ) approximated by
sample averages as in (15) with sample complexities Nr,Nb = O(ε−1) in each iteration, then
min1� j�J E[|G(θ j)|2] � ε after J = O(ε−1) iterations.

Remark 3.3. Theorem 4 establishes the convergence and iteration complexity of (14) to the
so-called ε-solution of the problem. The result is based on the expected magnitude of the gra-
dient mapping, which is a standard convergence criterion in nonconvex constrained stochastic
optimization. However, this only ensures approximation to a stationary point (not necessarily a
local or global minimizer) on expectation. In theory, one can apply additional global optimiza-
tion techniques to (7) in order to find a global minimizer (possibly only with high probability
at best) with substantially higher computational cost. However, we will not exploit this issue
further in this work.

Now we summarize the steps of our algorithm for solving IPs using weak adversarial net-
works. To simplify the presentation, we introduce the following notation to indicate the SGD
procedure for finding a minimizer of a loss function L(θ):

θ∗ ← SGD(G(θ),X, θ0, τ , J), (19)

which means the output θ∗ is the result θJ after we execute the (projected) SGD scheme with
step size τ below for j = 0, . . . , J − 1 with initial θ0:

θ j+1 ← Π(θ j − τĜ(θ j;X)). (20)

Here X = {x(i) : 1 � i � N} is the set of N sampled collocation points, G(θ) :=∇θL(θ) is
the gradient of the loss function L(θ) to be minimized, and Ĝ(θ;X) stands for the stochas-
tic approximation of G(θ) at any given θ, where the integrals are estimated as in (15) using
the sampled collocation points X. Therefore, each iteration of our algorithm consists of two
steps. In step 1, we fix θ and solve the maximization problem with objective function E(θ, η)
defined in (11) by applying stochastic gradient ascent for Jη steps to obtain an approxi-
mate maximizer η; in step 2, we fix this η, and update θ by one SGD step using gradient
∇θL(θ) = ∂θE(θ, η)+ β∇θLbdry(θ). Then we go to step 1 to start the next iteration. Hence, our
objective function is E(θ, η)+ βLbdry(θ), for which we seek for the optimal point (θ∗, η∗) via a
min–max optimization minθ maxηE(θ, η)+ βLbdry(θ). This procedure is referred to IP solver
using weak adversarial network (IWAN) and summarized in algorithm 1. The parameter values
in our numerical implementations are presented in section 4.

10
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4. Numerical experiments

4.1. Implementation details

In this subsection, we discuss several implementation details and modifications regarding
algorithm 1. First, to avoid spending excessive time in solving the inner maximization problem
maxη E(θ, η) in (11) with a fixed θ, we only apply a few iterations Jη to compute η. Then we
switch to update θ for one iteration. See the two SGD steps in algorithm 1. This can improve
overall efficiency and avoid spending excessive time on the inner maximization problem of
η, especially when θ is still far from optimal yet. In fact, we can employ two separate test
functions ϕη and ϕ̄η (we again use the same η for notation simplicity). In each iteration j, we
alternately update (uθ,ϕη, γθ, ϕ̄η) in order, each with one or a few SGD steps (20). We will
specify the numbers of steps for these networks for our experiments below.

During the derivations in section 3, we require bounded network parameters θ and η, where
the bound B can be arbitrarily large, to ensure finite variances of the integral estimators using
samples so that the SGD is guaranteed to converge. An alternative way to handle the bound-
edness constraints is to add |θ|2 and |η|2 as regularization terms to the objective function in
(7). One can also use the operator norm (5) with denominator replaced by ‖ϕ‖22 :=

∫
Ω|ϕ|2 dx

(approximated by MC similarly as in (15)), which is also adopted in our implementation. This
replacement does not cause issue in numerical implementation since the test functionϕη is real-
ized by a network with fixed width/depth and bounded parameters, and hence is guaranteed to
be in H1.

A test function ϕη is required to vanish on ∂Ω in the weak formulation (3). One simple
technique to ensure this is to precompute a function ϕ0 ∈ C(Ω) such that ϕ0(x) = 0 if x ∈ ∂Ω
and ϕ0(x) > 0 if x ∈ Ω (e.g., a distance function to ∂Ω would work). Then we seek for a
parameterized networkϕ′

η with no constraint on its arbitrary boundary, and set the test function
ϕη to ϕ0ϕ

′
η which still takes zero value on ∂Ω.

We implemented our algorithmusing TensorFlow [1] (Python version 3.7), a state-of-the-art
deep learning package that can efficiently employ GPUs for parallel computing. The gradients
with respect to network parameters (θ and η) and input (x) are computed by the TensorFlow
builtin auto-differentiation module. During training, we can also substitute the standard SGD
optimizer by many of its variants, such as AdaGrad, RMSProp, Adam, Nadam etc. In our
experiments, we use AdaGrad supplied by the TensorFlow package, which appears to provide
better performance than other optimizers in most of our tests. All other parameters, such as
the network structures (numbers of layers and neurons), step sizes (also known as the learning
rates), number of iterations, will be specified in section 4.

4.2. Experiment setup

In this section, we conduct a set of numerical experiments to show the practical perfor-
mance of algorithm 1 in solving IP. To quantitatively evaluate the accuracy of an approximate
solution γ, we use the relative error (in the L2 sense) of γ to the ground truth γ∗, defined
by ‖γ − γ∗‖2/‖γ∗‖2, where ‖γ‖22 :=

∫
Ω|γ(x)|2 dx. In practice, we compute ‖γ‖22 = (|Ω|/N) ·∑N

i=1 |γ(x(i))|2 by evaluating γ on a fixed set ofN mesh grid points {x(i) ∈ Ω : 1 � i � N} inΩ.
More specifically, we used a regular mesh grid of size 100× 100 for (x1, x2), and sam-
pled one point x for each of these grid points, i.e., for each grid point (x1, x2), randomly
draw values of the other coordinates within the domain Ω such that N = 104. These points
were sampled in advance and then used for all comparison algorithms to compute their test
relative error. Note that these points are different from those sampled for training in these
methods.
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Table 1. Problem settings for tests 1–4 in subsection 4.3, where γ∗ denotes the true conductivity, u∗ denotes the true potential, and f is
the source function.

Problem γ∗ u∗ f

Test 1 2(exp(−|x − c1|2Σ1
)+ exp(−|x − c2|2Σ2

)) cos(|x|2) 8
∑2

i, j=1 [Σ j]ii(xi − [c j]i)xi sin(|x|2) exp(−|x − c j|2Σ j
)

where Σ1 = diag(1.25, 5, 0, 0, 0), + γ∗(2d sin(|x|2)+ 4|x|2cos(|x|2))
Σ2 = diag(5, 1.8, 0, 0, 0), where [Σ]i j and [c] j stand for the (i, j)th
c1 = (−0.5, 0.5, 0, 0, 0), entry of the matrix Σ and jth component of

c2 = (0.5,−0.5, 0, 0, 0), and |x|2Σ := x�Σx the vector c, respectively

Test 2 0.5+ 1.5/(1+ δ(x)) |x|2 6(x−c)�Σx
λ(1/δ(x)+2+δ(x)) − 2dγ∗

& Test 3 where δ(x) = exp((|x − c|2Σ − 0.62)/0.02)
with Σ = diag(0.81, 2, 0.09, . . . , 0.09)

and c = (0.1, 0.3, 0, . . . , 0)

Test 4(1) 0.5+ 3.5/(1+ δ1(x))+ 1.5/(1+ δ2(x)) |x|2 14(x−c1)�Σ1x
λ(1/δ1(x)+2+δ1(x))

+ 6(x−c2)�Σ2x
λ(1/δ2(x)+2+δ2(x))

where δ1(x) = exp((|x − c1|2Σ1
− 0.42)/0.02) −2dγ∗

and δ2(x) = exp((|x − c2|2Σ2
− 0.42)/0.02)

with Σ1 = diag(0.81, 2, 0.09, 0.09, 0.09),
Σ2 = diag(2, 0.81, 0.09, 0.09, 0.09),

and c1 = (−0.5,−0.5, 0, 0, 0),
c2 = (0.5, 0.5, 0, 0, 0)

Test 4(2) 0.5+ 1.5/(1+ δ1(x))+ 1.5/(1+ δ2(x)+ δ3(x)) |x|2 6(x−c)TΣx
λ(1/δ1(x)+2+δ1(x))

+ 3(|x1+0.5|δ2(x)+|x2|δ3(x))
λ(1+δ2(x)+δ3(x))2

where δ1(x) = exp((|x − c|2Σ2
− 0.42)/0.02) −2dγ∗

δ2(x) = exp((|x1 + 0.5| − 0.15)/0.02)
and δ3(x) = exp((|x2| − 0.6)/0.02)

with c = (0.55, 0, 0, 0, 0) and Σ = diag(1, 4, 0, 0, 0)

Test 4(3) 0.5+
∑3

j=1 1.5/(1+ δ j1(x)+ δ j2(x)) |x|2 3
∑3

j=1
|x1−c j(1)|δ j1(x)+|x2−c j(2)|δ j2(x)

λ(1+δ j1(x)+δ j2(x))2

where δ j1(x) = exp((|x1 − c j(1)| − r j(1))/0.02), −2dγ∗

δ j2(x) = exp((|x2 − c j(2)| − r j(2))/0.02),
for j = 1, 2, 3 with c1 = (−0.5, 0),
c2 = (−0.1, 0.6), c3 = (−0.1,−0.6)

and r1 = (0.15, 0.8), r2 = r3 = (0.55, 0.2)

12
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Figure 1. Test 1 result on (2) with smooth γ∗ and problem dimension d = 5.

In all of our experiments, we parameterize each of (uθ,ϕη , γθ, ϕ̄η) as a nine-layer fully con-
nected neural network with 20 neurons per layer as in (8) unless otherwise noted. We set σk
to tanh for k = 1, 2, softplus for k = 4, 6, 8, sinc for k = 3, 5, 7 in uθ, and tanh for
k = 1, 2, 4, 6, elu for k = 3, 5, and sigmoid for k = 7, 8 in γθ. We use elu in the output
layer of γθ. In parallel, we set σk to tanh for k = 1, 2 and sinc for k � 3 in ϕη and ϕ̄η .
Unless otherwise noted, we apply one SGD update with step size τ θ = 0.01 to both of uθ and
γθ (each of them performs the θ update in algorithm 1), and two (Jη = 2) SGD updates with
step size τη = 0.008 to both of ϕη and ϕ̄η (each of them performs the η update in algorithm 1),
following the order of uθ,ϕη , γθ, ϕ̄η in every iteration j of algorithm 1. We set the weight
β = 10 000 for the boundary loss function Lbdry(θ) in (7), but also set a weight β

′ to Lint(θ) and
specify its value in the experiment.Other parameterswill also be specified below.All the exper-
iments are implemented, trained, and tested in the TensorFlow framework [1] on a machine
equipped with Intel 2.3 GHz CPU and an Nvidia Tesla P100 GPU and 16 GB of graphics card
memory.

4.3. Experimental results on inverse conductivity problems

Test 1: inverse conductivity problem with smooth γ. We first test our method on the
inverse conductivity problem (2) with a smooth conductivity distribution γ. In this test, we set
Ω = (−1, 1)d ⊂ R

d with problem dimension d = 5. The setup for the ground truth conduc-
tivity distribution γ∗, the ground truth potential u∗ and the source term f are provided in the
table 1 which is in the appendix B. We set Nr = 100 000 and Nb = 100d, β′ = 10, and run
algorithm 1 for 20 000 iterations. The true γ∗ and the point-wise error |γ∗ − γθ| (with relative
error 2.54%) are shown in figures 1(a) and (b) respectively. The progress of the relative error
of γθ versus iteration number is shown in figure 1(c) (all plots of relative error versus iteration
number in this section are shown using moving average with a window size 7). For the demon-
stration purpose, only the (x1, x2) cross sections that have main spatial variations are shown
(same for the other test results below).
Test 2: inverse conductivity problem with nearly piecewise constant γ. We consider (2)
with a less smooth, nearly piecewise constant conductivity γ. In this test, we setΩ = (−1, 1)d,
define Ω0 = {x ∈ Ω : |x − c|2Σ � 0.62} where Σ = diag(0.81, 2, 0.09, . . . , 0.09) and
c = (0.1, 0.3, 0, . . . , 0), and set γ∗ to 2 in Ω0 and 0.5 in Ωc

0. For ease of implementa-
tion, we slightly smooth the ground truth conductivity. One can find the setup of the smoothed
conductivity γ∗, the ground truth potential u∗, and the source term f in the table 1. Then we
solve the IP (2) with dimensionality d = 5, 10, 20. We set Nr = 20 000d and Nb = 100d, and
β′ = 10, 1, 0.005 for d = 5, 10, 20 respectively. In each case, we run algorithm 1 for 20 000
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Figure 2. Test 2 result on (2) with nearly piecewise constant γ∗ and problem dimension
d = 5, 10, 20 without measurement noise.

iterations, and obtain relative errors 1.16%, 1.43%, 2.29% for d = 5, 10, 20, respectively.
The recovery results are shown in figure 2. Figure 2(a) shows the ground truth γ∗ (left) and
the progress of relative errors versus iteration number for different d (right). The pointwise
absolute errors |γθ − γ∗| for these dimensions are shown in figure 2(a).
Test 3: inverse conductivity problemwith noisymeasurements.Under the same experiment
setting as test 2, we solve the IP (2) where the measurement data are perturbed by randomnoise
for the d = 5 case. Specifically,we scale everymeasurement data value by 1+ 5%e, 1+ 10%e,
1+ 20%e where e is drawn independently from the standard normal distribution every time,
followed by a truncation into interval [−100, 100]. We do not perturb f . The results are given
in figure 3 in parallel to the noiseless case above, where figure 3(a) shows the ground truth
conductivity γ∗ (left) and the progress of relative error of γθ versus iteration number (right).
The pointwise absolute error after 20 000 iterations |γθ − γ∗| with noise levels 5%, 10%, 20%
are shown in figure 3(b). We observe that the progress becomes more oscillatory due to the
randommeasurement noise in figure 3(a), and the final reconstruction error is larger for higher
noise level in figure 3(b) as expected.
Test 4: inverse conductivity problem with different features in γ. We consider several
cases with more challenging ground truth conductivity γ∗. The first case has γ∗ with
two disjoint modes. We define Ω = (−1, 1)5, and set Ω1 = {x : |x − c1|2Σ1

� 0.42} and
Ω2 = {x : |x − c2|2Σ2

� 0.42}, where c1 = (−0.5,−0.5, 0, 0, 0), c2 = (0.5, 0.5, 0, 0, 0),
Σ1 = diag(0.81, 2, 009, 0.09, 0.09), and Σ2 = diag(2, 0.81, 009, 0.09, 0.09). We set the con-
ductivity γ∗ to 4 in Ω1, 2 in Ω2, and 0.5 in (Ω1 ∪ Ω2)c. We also smooth γ∗ using a Gaussian
kernel. The setup of the ground truth conductivity γ∗, the ground truth potential u∗, and
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Figure 3. Test 3 result on (2) with nearly piecewise constant γ∗ and noisy data.

the source function f(x) are provided in the table 1 (see test 4(1)). We set Nr = 200, 000,
Nb = 100d, β ′ = 10, and run algorithm 1 for 20 000 iterations. Figure 4(a) shows the
ground truth γ∗ (left) and the recovered conductivity γθ with relative error 1.77% (right).
Figure 4(c) plots the progress of relative error of γθ versus iteration number. In the sec-
ond case, we follow the same setting but define Ω1 = {x : |x1 + 0.5| � 0.15, |x2| � 0.6}
(which has sharp corner) and Ω2 = {x : |x − c|2Σ � 0.42} where c = (0.55, 0, 0, 0, 0),
Σ = diag(1, 4, 0, 0, 0), and set γ∗ = 2 in Ω1 ∪ Ω2 and 0.5 in (Ω1 ∪ Ω2)c. We again smooth
γ∗ and provide the ground truth conductivity γ∗, the ground truth potential u∗, and the
source function f in the table 1 (see test 4(2)). We set β′ = 1 and again run algorithm
1 for 20 000 iterations. The recovered γθ (with relative error 1.15%) and the progress of
relative error are shown in figures 4(d) and (f) respectively. Lastly, we consider a non-
convex shaped γ, and show the recovered γθ (with relative error 1.57%) and the progress
of relative error in figures 4(g) and (i) respectively. We set the domain Ω = (−1, 1)5

and define Ω j = {x ∈ Ω :
∑2

i=1 |xi − c j(i)| � r j(i)}, j = 1, 2, 3, where c1 = (−0.5, 0),
c2 = (−0.1, 0.6), c3 = (−0.1,−0.6) and r1 = (0.15, 0.8), r2 = r3 = (0.55, 0.2).We set γ∗ = 4
in Ω0 = (Ω1 ∩Ω2) ∪ (Ω1 ∩ Ω3) and 2 in Ω1 ∪Ω2 ∪Ω3/Ω0 and 0.5 in (Ω1 ∪ Ω2 ∪ Ω3)c. Once
again, we sightly smooth the conductivity γ∗ and provide the setup of the ground truth
conductivity γ∗, the ground truth potential u∗ and the source function f in the table 1 (see test
4(3)).
Test 5: EIT problem.We consider an artificial 5D EIT problem (2) onΩ = (0, 1)5 but replace
(2b) with a different boundary condition given by γ∇u ·�n on ∂Ω, where �n is the outer nor-
mal vector at the boundary point. We define Γ1 = {x ∈ ∂Ω : x1 = 0, 1} and Γ2 = ∂Ω\Γ1.
We set ground truth conductivity γ∗(x) = π−1 exp{(d − 1)π2(x1 − x21)/2} and potential
u∗(x) = exp{(d − 1)π2(x21 − x1)/2} · Πd

i=2 sin(xi), and compute the corresponding boundary
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Figure 4. Test 4 results on (2) with problem dimension d = 5. (a)–(c) Two separate
modes in γ∗; (d)–(f) two separate modes (one has sharp corner) in γ∗; (g)–(i) nonconvex
shaped γ∗.

value as our input data. We set the source term f = 0 in (2a), Nr = 100 000, Nb = 100d,
β′ = 10, and run algorithm 1 for 20 000 iterations. The x1 cross section of the recovered γθ

(with relative error 0.56%) and the progress of relative error versus iteration number are shown
in figures 5(a) and (b), respectively.
Test 6: inverse thermal conductivity problem involving time. We consider an inverse
thermal conductivity problem of (1) with temporally varying u(x, t) as follows,

∂tu−∇ · (γ∇u)− f = 0, in ΩT = Ω× [0, T] (21a)

u− ui = 0, in Ω× {0} (21b)

∇u ·�n− un = 0, u− ub = 0, γ − γb = 0, on ∂Ω× [0, T] (21c)

whereΩ = (0, 1)5 ⊂ R
5 and the final time T = 1, γ is the thermal conductivity, u indicates the

temperature and f(x, t) is the source function which indicates the rate of heat generation per
unit volume, where �n is the unit outer normal vector of ∂Ω, ui(x) for x ∈ Ω is the given initial
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Figure 5. Test 5 result on artificial 5D EIT problem (2) with boundary condition on
γ∇u · �n.

value, and un(x, t), ub(x, t), γb(x, t) for (x, t) ∈ ∂Ω× [0, T] are given boundary values. In this
problem, we would like to recover the thermal conductivity γ(u) which is a function of the
temperature u in the standard setting, but we simply treat γ(x, t) := γ(u(x, t)) as a function of
(x, t) in our experiment here. We set the source function f(x, t) as follows,

f (x, t) = π2

(
k1 + k2s(t)

d∑
i=1

sin(πxi)− λ2

)
s(t)

d∑
i=1

sin(πxi)− k2π
2s2(t)

d∑
i=1

cos2(πxi)

where s(t) := exp(−3t/2)/5, the initial value ui = λ1
∑d

i=1 sin(πxi), the Neumann boundary
value of u as un(x, t) = πs(t)(cos(πx1), . . . , cos(πxd)) ·�n. We set the ground truth γ∗(x, t) =
k1 + k2u∗(x, t) where k1 = 1.5, k2 = 0.6, and u∗(x, t) = s(t)

∑d
i=1 sin(πxi), and use noisy

boundaryvaluemeasurementsub = (1+ σe)u∗ and γb = (1+ σe)γ∗, where e is independently
drawn for ub and γb and all x ∈ ∂Ω from the standard normal distribution followed by a trun-
cation to [−100, 100], and the noise levels are set to σ = 0%, 10%, 20%. We consider the case
with problem dimension d = 5, and set Nr = 100 000,Nb = 100d, β′ = 1 and β = 1 000. The
results are shown in figure 6, where figure 6(a) plots the sampled values of recovered (uθ, γθ) in
comparison with the ground truth relation γ∗ = k1 + k2u∗, and figure 6(b) shows the progress
of relative error of γθ versus iteration number for the three different noise levels. The recon-
structions of γθ are all faithful, while higher noise levels decreases the accuracy and make
convergence to true solution more challenging.
Test 7: comparison with PINN. We compare the proposed method with a state-of-the-art
method called PINNs [51]. PINN is also a deep-learning based method designed for solv-
ing forward problem as well as IP for PDEs. PINN is based on the strong form of the
PDEs, where the loss function in the minimization problem of PINN consists of the sum
of squared errors in the violation of the PDE and the boundary condition at points sam-
pled inside Ω and on ∂Ω, respectively. In contrast, our method is based on the weak form
of PDE which employs a test function and yields a min–max problem to better tackle sin-
gularities of the problem. We first compare the proposed method and the PINN method in
the problem in test 1. Note that PINN was only applied to inverse conductivity problem with
constant conductivity in [51], it is straightforward to extend this method to non-constant con-
ductivity by also parameterizing the conductivity γ as an additional deep neural network. In
this problem, we take Nr = 10 000,Nb = 100 ∗ d with d = 5. For the PINN method, we also
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Figure 6. Test 6 result on inverse thermal conductivity problem with dimension d = 5
and noise levels 0%, 10% and 20%. Ground truth relation between u∗ and γ∗ is
γ∗ = k1 + k2u∗ where k1 = 1.5 and k2 = 0.6.

parameterize u(x) as a nine-layer fully-connectednetworkwith 20 neurons in each hidden layer
and tanh as activation functions in all hidden layers. For γ, we parameterized it by using the
same network structure as that used for the proposed method in test 1. We let the weight of
the boundary term in the loss function is 1.0 and use the builtin Adam optimizer of Tensor-
Flow with learning rate 0.001 to update the network parameters in PINN. For fair comparison,
we also use the Adam optimizer with learning rate 0.001 for updating θ and η in the pro-
posed method. The results after 20 000 iterations of both methods are given in figure 7. In
figure 7(a), we can see the error of γ obtained by IWAN is much lower than that by PINN. This
can also be seen from figure 7(b), where the error decays very fast for the proposed IWAN.
We tried a variety of network structures and parameter settings of PINN and obtain similar
results.

We also compared the proposed method and PINN on the inverse conductivity problem in
test 2, where the ground truth conductivity γ∗ is less smooth and nearly piecewise constant.We
use the same parameter settings for both methods as above except for the network structure of
γ, which follows the one in test 2. The conductivity γ recovered by PINN and IWAN and the
progresses of their relative error versus computation time (in seconds) are given in figures 7(c)
and (d), respectively. From figure 7(d), it appears that PINN cannot get close to the ground
truth γ∗ within 20 000 iterations. Therefore, we rerun PINN for 100 000 iterations, and plot
the relative error versus computation time in figure 7(f), from which it seems that PINN still
cannot converge to the desired solution. However, the result obtained by PINN does satisfy
the PDE closely, as shown in figure 7(e): the difference between the two sides of PDE (left),
i.e., | − ∇(γ∇u)− f|, is much smaller than | f| (right), but PINN cannot capture the irregu-
larities and singularities of the solution since it is based on the strong form of the PDE. In
contrast, IWAN can overcome this issue and recover the weak solution properly.We also show
the objective function value of PINN and IWAN in figures 7(g) and (h), respectively. (Note
that the objective function L(θ, η) in IWAN is defined as E(θ, η)+ βLbdry(θ) for min–max
optimization, and the objective function of PINN is for minimization only and hence different
from IWAN).
Test 8: efficiency improvement using important sampling. As shown in lemma 3,
adaptive sampling may reduce the variance of the sample-based approximation of inte-
grals, which in turn can improve the convergence of SGD. To demonstrate this, we
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Figure 7. Test 7 on the comparison of IWAN and PINN on the recovery smooth ((a)
and (b)) and less smooth ((c)–(h)) conductivity γ∗. (a) Pointwise absolute error |γ − γ∗|
with γ obtained by PINN (left) and the proposed method IWAN (right) for smooth γ∗.
(b) Relative error versus time in seconds for smooth γ∗. (c) Pointwise absolute error
|γ − γ∗| with γ obtained by PINN (left) and the proposed method IWAN (right) for
less smooth, nearly piecewise constant γ∗. (d) Relative error versus time in seconds for
20 000 iterations for less smooth, nearly piecewise constant γ∗. (e) | f| (left) and the
map of | − ∇(γ∇u)− f| by the PINN (right) for the less smooth γ∗. (f) Relative error
versus time in seconds for 100 000 iterations for less smooth, nearly piecewise constant
γ∗. (g) Objective function value versus iteration number by PINN for nearly piecewise
constant γ∗. (h) Objective function value versus iteration number by the proposed IWAN
for nearly piecewise constant γ∗.
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Figure 8. Test 8 result on the difference of relative errors versus computation time
(s) using collocations points {x(i)r ∈ Ω : i ∈ [Nr]} sampled from uniform distribution
(orange) and adaptive multivariate normal distribution (blue).

consider the inverse conductivity problem on Ω = (−1, 1)d ⊂ R
d with problem dimen-

sion d = 5, ground truth conductivity distribution γ∗(x) = 2 exp(−|x − c|2Σ/2), where Σ =
diag(4.0, 100.0, 0, 0, 0), c1 = (−0.2, 0.2, 0, 0, 0).We set un(x) = −2 sin(|x|2)(x1, x2, . . . , xd) ·
�n, ub = cos(|x|2) on ∂Ω and f (x) = 8

∑2
i=1 Σii(xi − ci)xi sin(|x|2) exp(−|x − c|2Σ/2)+

2 exp(−|x − c|2Σ/2)∗ (2d sin(|x|2)+ 4|x|2 cos(|x|2)). For the parameter setup, we use the
same setup as that in test 7. Then we solve this IP using the proposed method IWAN with
points in the domain Ω sampled from the uniform distribution as above and also a multivari-
ate normal distribution respectively. Specifically, to obtain multivariate normal samples, we
first sample Nr points of (x1, x2) from the multivariate normal distribution with mean value
μ = (−0.2, 0.2) and inverse covariance matrix Σ = diag(1.0, 25.0) (points outside of Ω is dis-
carded), and then draw each of the remaining coordinates randomly from interval (−1, 1)
independently. The result was shown in the figure 8. The progress of relative error versus
computation time (in second) for 20 000 iterations is shown in figure 8, which shows that the
convergence using adaptive multivariate normal distribution is faster than that with uniform
distribution.

4.4. Empirical robustness analysis

We conduct a series of experiments to evaluate the robustness of algorithm 1 in terms of
network structure (number of layers and neurons) and the number of sampled collocation
points.
Test 9: network structure. In this experiment, we test the performance of algorithm 1 with
different network structures, i.e., the layer number (network depth) K and the per-layer neu-
ron number (network width) dk. We test different combinations of K and d′ (in each com-
bination we set dk = d′ for all k = 1, . . . ,K − 1). More specifically, we apply algorithm 1
to the inverse conductivity problem (2) in test 2 above with problem dimension d = 5 and
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Figure 9. (a) and (b) Test 9 result on relative error of recovered conductivity γθ and
the corresponding running time using various combinations of (K, d′), where K is the
layer number and d′ is the per-layer neuron number. (c) and (d) Test 10 result on relative
error of recovered conductivity γθ and the corresponding running time using various
combination of (Nr ,Nb), where Nr is the number of sampled collocation points inside
the region Ω and Nb is the number of those on the boundary ∂Ω.

Table 2. Test 9 result on relative error of recovered conductivity γθ (top) and running
time (bottom) using various combinations of (K, d′) for problem dimension d = 5, where
K is the layer number and d′ is the per-layer neuron number.

d′ K = 5 K = 7 K = 9 K = 11

5 0.060 347 0.040 950 0.014 905 0.019 489
10 0.053 842 0.029 382 0.013 325 0.011 165
20 0.017 955 0.016 862 0.010 916 0.011 490
40 0.012 390 0.010 213 0.004 422 0.005 309

5 1391.76 (s) 1432.90 (s) 1438.87 (s) 1458.12 (s)
10 1435.78 (s) 1468.95 (s) 1520.67 (s) 1568.49 (s)
20 1447.66 (s) 1522.84 (s) 1596.83 (s) 1614.04 (s)
40 1539.93 (s) 1623.20 (s) 1717.53 (s) 1809.30 (s)

a total of 16 combinations (K, d′) with K = 5, 7, 9, 11 and d′ = 5, 10, 20, 40. For each com-
bination (K, d′), we run algorithm 1 for 20 000 iterations and plot the relative error of γθ in
figure 9(a) and the corresponding running time (in seconds) in figure 9(b). The exact val-
ues of errors and running times are present in table 2 in appendix C. Based on figure 9(a),
it seems that deeper (larger K) and/or wider (larger d′) neural networks yield lower recon-
struction error (but at the expense of higher per-iteration computational cost). For fixed layer
numberK = 9, we show the progress of relative error versus iteration numberwith varying per-
layer neuron number d′ in figure 10(a). Similarly, for fixed per-layer neuron number d′ = 10,
we also show the progress of relative error versus iteration number with varying layer num-
ber K in figure 10(b). These figures also suggest that larger K and d′ yield better accuracy,
although the per-iteration computational cost also increases and it may take more iterations to
converge.
Test 10: number of sampled collocation points. In section 3, we showed that the number
N of sampled collocation points affects the variance of the integral estimator, so that the
variance reduces at the order of O(1/N). In this experiment, we test the empirical effect of
the collocation point numbers Nr in the region Ω and Nb on the boundary ∂Ω in algorithm
1 for the same inverse conductivity problem (2) of dimension d = 5 in test 2 above. We
choose different combinations of (Nr,Nb) for Nr = 25K, 50K, 100K, 200K (K = 1000) and
Nb = (10× 2d, 20× 2d, 40× 2d, 80× 2d), and keep all other parameters in test 2 unchanged.
We run algorithm 1 for 20 000 iterations, and plot the final relative error of γθ in figure 9(a)
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Figure 10. Test 9 result on the effect of network structure. (a) Relative error of γθ versus
iteration number with fixed layer number K = 9 and varying per-layer neuron number
d′ = 5, 10, 20, 40; (b) relative error of γθ versus iteration number with fixed per-layer
neuron number d′ = 10 and varying layer number K = 5, 7, 9, 11.

Table 3. Test 10 result on relative error of recovered conductivity γθ (top) and running
time (bottom) with various combination of (Nr ,Nb) for problem dimension d = 5, where
Nr is the number of sampled collocation points inside the regionΩ and Nb is the number
of those on the boundary ∂Ω.

Nb Nr = 25K Nr = 50K Nr = 100K Nr = 200K

10× 2d 0.019 023 0.020 007 0.020 898 0.012 208
20× 2d 0.013 999 0.012 920 0.009 681 0.010 050
40× 2d 0.010 668 0.012 292 0.012 053 0.010 385
80× 2d 0.010 61 0.009 207 0.010 200 0.007 267

10× 2d 528.88 (s) 554.64 (s) 556.08 (s) 552.86 (s)
20× 2d 915.66 (s) 898.32 (s) 932.98 (s) 928.78 (s)
40× 2d 1597.66 (s) 1577.03 (s) 1556.92 (s) 1590.87 (s)
80× 2d 2798.17 (s) 2802.79 (s) 2795.28 (s) 2801.45 (s)

and the corresponding running time (in seconds) in figure 9(b). The exact values of errors
and running times are present in table 3 in appendix C. We also plot the progress of relative
error of γθ versus iteration number for fixed Nr = 25K and varying Nb in figure 11(a), and
that for fixed Nb = 20× 2d = 200 and varying Nr in figure 11(b). The results in figures 9(c)
and 11 show that larger amounts of collocation points can generally improve accuracy of the
reconstruction.
Test 11: relation between relative error, gradient value and sample points. We con-
duct an experiment to show the relation between the relative error, the expected value
of gradient mapping, and the numbers of collocation points Nr and Nb. In this experi-
ment, we use the Adam optimizer for uθ, γθ with learning rate τ θ = 0.001 and use the
Adagrad optimizer for ϕη with learning rate τη = 0.008 and Jη = 1. We keep other set-
tings unchanged as that used for case Nr = 25K and Nb = 20× 2d in test 10. Then, we
solve problem (2) of dimension d = 5 using the proposed algorithm with Nr = S× 25K
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Figure 11. Test 10 result on the different numbers of collocation points Nr and Nb.
(a) Relative error of γθ versus iteration number with fixed Nr = 25K and varying Nb;
(b) relative error of γθ versus iteration number with fixed Nb = 200 and varying Nr .

Figure 12. Test 11 result on the effect of collocation points. (a) Relative error of γθ
versus iteration number (left) and running time (right) with collocation point numbers
Nr = S × 25K and Nb = S × 200 with varying S; (b) the value of Gnorm versus 1/

√
S;

(c) relative error versus
√
S; (d) running time (in seconds) versus S.

and Nb = S × 200, where S takes value in {0.25, 0.5, 1.0, 2.0, 4.0}. After J = 20 000 itera-
tions, we evaluate Gnorm :=

√
min1� j�J E[|G(θ j)|2] (expectation is approximated by empir-

ical average of 5 runs), the relative error, and the running time for each value of S, and
plot their values versus S in figures 12(b)–(d), respectively. From figure 12(b), we can
see that Gnorm is approximately proportional to 1/

√
S. Figures 12(c) and (d) show that the

solution error generally decreases in S at the expense of longer computational time. For
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reference, the relative error versus iteration and running time with varying S are shown in
figure 12(a).

5. Concluding remarks

We have presented a weak adversarial network approach to solve a class of IP numerically.
We leverage the weak formulation of PDEs in the IP, and parameterize the unknown solution
as primal neural network and the test function as adversarial network. The weak formulation
and the boundary conditions yield a saddle function in the parameters of the primal network
and adversarial network, which only rely on the IP itself but not any other training data. These
parameters are alternately updated until convergence.We provide a series of theoretical justifi-
cations on the convergence of our proposed algorithm. Our method does not require any spatial
discretization, and can be applied to a large class of IP, especially those with high dimensional-
ity and less regularity on solutions. Numerical experiments have been conducted by applying
the proposed method to a variety of challenging IP. The results suggest promising accuracy
and efficiency of our approach.
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Appendix A. Proofs

A.1. Proof of theorem 1

For ease of presentation, our proof of theorem 1 here is based on the problem formulation (2).
However, it can be easily modified for the PDEs in many other IP.

Proof. For any fixed u ∈ H1(Ω) ∩ C(Ω̄) and γ ∈ C(Ω̄), the maximum of 〈A[u, γ],ϕ〉 is
achievable over Y := {ϕ ∈ H1

0(Ω) : ‖ϕ‖H1 = 1} since 〈A[u, γ], ·〉 is continuous and Y is
closed in H1

0(Ω). Define h(u, γ) = maxϕ∈Y〈A[u, γ],ϕ〉, then h(u, γ) = ‖A[u, γ]‖op due to the
definition of operator norm in (5). On the other hand, let X = {(u, γ) ∈ H1(Ω)× C(Ω) :
B[u, γ] = 0}, then it is clear that the minimum value 0 of h(u, γ) over X can be attained at
any of the weak solutions. Hence the minimax problem (6) is well-defined.

Now we show that (u∗, γ∗) satisfying B[u∗, γ∗] = 0 is the solution of the minimax problem
(6) if and only if it is a weak solution of the problem (1). Suppose (u∗, γ∗) is a weak solu-
tion of the problem (1), namely (u∗, γ∗) satisfies (3) for all ϕ ∈ Y , then 〈A[u∗, γ∗],ϕ〉 ≡ 0
for all ϕ ∈ Y . Therefore, ‖A[u∗, γ∗]‖op = 0, and (u∗, γ∗) is the solution of the minimax
problem (6). On the other hand, suppose a weak solution (û, γ̂) of (1) exists. Assume that
(u∗, γ∗) is a minimizer of the problem (6), i.e., (u∗, γ∗) = argmin(u,γ)∈H1×C h(u, γ), but not
a weak solution of the problem (1), then there exists ϕ∗ ∈ Y such that 〈A[u∗, γ∗],ϕ∗〉 > 0.
Therefore h(u∗, γ∗) = maxϕ∈Y |〈A[u∗, γ∗],ϕ〉| > 0. However, as we showed above, h(û, γ̂) = 0
since (û, γ̂) is a weak solution of (1), which contradicts to the assumption that (u∗, γ∗)
is the minimizer of (6). Hence (u∗, γ∗) must also be a weak solution of (1), i.e., (u∗, γ∗)
satisfies (3). �
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A.2. Proof of lemma 2

Proof. Due to the definition of Lint(θ) in (11) and the optimality of η(θ), we know that
Lint(θ) = E(θ, η(θ)). Therefore, we have

∇θLint(θ) = ∂θE(θ, η(θ))+ ∂ηE(θ, η(θ))∇θη(θ). (22)

Nowwe form the Lagrange functionL(θ, η,μ) = E(θ, η)+ μ( 12 |η|2 − B) for the maximization
problem max|η|2�2B E(θ, η). Then the Karush–Kuhn–Tucker condition of η(θ) is given by

∂ηL(θ, η(θ),μ) = ∂ηE(θ, η(θ))+ μ(θ)η(θ) = 0, (23a)

μ(θ)
(
(1/2) · |η(θ)|2 − B

)
= 0, (23b)

μ(θ) � 0, |η(θ)|2 � 2B. (23c)

The complementary slackness condition (23b) implies that

∇θμ(θ)
(
(1/2) · |η(θ)|2 − B

)
+ μ(θ)η(θ)∇θη(θ) = 0 (24)

If μ(θ) = 0, then we know ∂ηE(θ, η(θ)) = 0 due to (23a) and hence (22) reduces to
∇θLint(θ) = ∂θE(θ, η(θ)). If μ(θ) > 0, then |η(θ)|2 = 2B due to (23b), and hence (24) implies
μ(θ)η(θ)∇θη(θ) = 0. Thus multiplying (23a) by∇θη(θ) yields ∂ηE(θ, η(θ))∇θη(θ) = 0, from
which we can see (22) also reduces to ∇θLint(θ) = ∂θE(θ, η(θ)). �

A.3. Proof of lemma 3

Proof. The first moment, i.e., expectation of Ψ̂, can be computed as follows:

E[Ψ̂] = E[ψ/ρ] =
∫
Ω

ρ
ψ

ρ
dx =

∫
Ω

ψ dx = Ψ. (25)

To compute the second moment of Ψ̂, we first observe that the variance of Ψ̂ is

V(Ψ̂) = V

(
1
N

N∑
i=1

ψ(x(i))
ρ(x(i))

)
=

1
N
V

(
ψ

ρ

)
.

Note that the variance of ψ/ρ is

V

(
ψ

ρ

)
= E

[(
ψ

ρ

)2
]
−
(
E

[
ψ

ρ

])2

=

∫
Ω

ψ2

ρ
dx −

(∫
Ω

ψ dx

)2

=

∫
Ω

ψ2

ρ
dx −Ψ2

Hence the second moment of Ψ̂ is

E[Ψ̂2] = V(Ψ̂)+ E[Ψ̂]2 =
1
N

(∫
Ω

ψ2

ρ
dx −Ψ2

)
+Ψ2 =

N − 1
N

Ψ2 +
1
N

∫
Ω

ψ(x)2

ρ(x)
dx,

which completes the proof. �
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A.4. Proof of theorem 4

Proof. Due to the parameterization of (uθ, γθ) using finite-depth neural network (8) and
the compactness of Θ := {θ : |θ| �

√
2B}, we know ∂αuθ and γθ have Lipschitz continuous

gradient with respect to θ for all |α| � 1. As Ω is bounded and ∂αuθ, γθ ∈ C(Ω̄), there exists
M > 0 such that L(θ) hasM-Lipschitz continuous gradient∇θL(θ), since L(θ) is composed of
integrals of ∂αuθ and γθ over Ω.

Recall that the projected SGD step (14), started from initial θ1, generates the sequence {θ j}
as follows:

θ j+1 = Π(θ j − τGj) = argmin
θ∈Θ

(
G�
j θ +

1
2τ

|θ − θ j|2
)

(26)

where Gj denotes the stochastic gradient of L(θ) at θ j using Nr (Nb resp.) sample colloca-
tion points in Ω (on ∂Ω resp.) with Nr,Nb = O(N ). We let gj :=∇θL(θ j) denote the true (but
unknown) gradient of L at θ j, and define a companion sequence {θ̄ j} using g j as

θ̄ j+1 = Π(θ j − τg j) = argmin
θ∈Θ

(
g�j θ +

1
2τ

|θ − θ j|2
)
. (27)

Note that {θ̄ j} is not computed in practice (computation of θ̄ j is not possible as gj is unknown),
but only defined for convergence analysis here. Also note that Θ and Ω are bounded, and
hence all integrals of ∂αuθ and γθ are bounded, we knowGj is an unbiased estimate of g j with
bounded variance, denoted by σ2 > 0, according to lemma 3. Moreover, lemma 3 implies that
there exists E > 0 dependent on B, Ω, A, and B only (E is the bound of ‖A[uθ, γθ]‖2op and
‖B[uθ, γθ]‖2L2(∂Ω)

due to the boundedness of Θ and Ω) the integral such that E[|Gj − g j|2] �
σ2 � E/N as Nr,Nb = O(N ).

Now we are ready to verify the convergence of the projected SGD iterations (26). First, the
M-Lipschitz continuity of∇θL implies that

L(θ j+1) � L(θ j)+ g�j e j +
M
2
|e j|2, (28)

where we denote e j := θ j+1 − θ j for all j. Also due to the M-Lipschitz continuity of ∇θL, we
have

−L(θ̄ j+1) � −L(θ j)− g�j ē j +
M
2
|ē j|2, (29)

where we denote ē j := θ̄ j+1 − θ j. Note that G(θ j) = τ−1[θ j −Π(θ j − τg j)] = τ−1(θ j
− θ̄ j+1) = −τ−1ē j, whose magnitude is what we want to bound eventually. Furthermore, due
to the optimality of θ j+1 in (26) (which is convex in θ), we know that

0 �
(
Gj +

θ j+1 − θ j
τ

)�
(θ̄ j+1 − θ j+1) =

(
Gj +

e j
τ

)�
(ē j − e j). (30)

Adding (28)–(30) yields

L(θ j+1)− L(θ̄ j+1) � (g j − Gj)
�(e j − ē j)+

e�j (ē j − e j)

τ
+
M
2
|e j|2 +

M
2
|ē j|2. (31)
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Repeating (28)–(31) with θ j+1 and θ̄ j+1 replaced by θ̄ j+1 and θ j respectively, and using the
optimality of θ̄ j+1 in (27) with g j, we obtain

L(θ̄ j+1)− L(θ j) � −
(
1
τ
− M

2

)
|ē j|2. (32)

Adding (31) and (32) yields

L(θ j+1)− L(θ j) � (g j − Gj)
�(e j − ē j)+

e�j (ē j − e j)

τ
+
M
2
|e j|2 −

(
1
τ
−M

)
|ē j|2. (33)

Now due to Cauchy–Schwarz inequality, the definitions of θ j+1 and θ̄ j+1 in (26) and (27), and
that the projectionΠ onto the convex set Θ is a non-expansive operator (i.e., |Π(θ)−Π(θ̂)| �
|θ − θ̂| for any θ, θ̂), we can show that

(g j − Gj)�(e j − ē j) = (g j − Gj)�(θ j+1 − θ̄ j+1) = (g j − Gj)� (Π(θ j − τGj)−Π(θ j − τg j))

� |g j − Gj| |Π(θ j − τGj)−Π(θ j − τg j)| � τ |g j − Gj|2. (34)

Moreover, we have that

e�j (ē j − e j)

τ
=

1
2τ

(
|ē j|2 − |e j|2 − |e j − ē j|2

)
. (35)

Substituting (34) and (35) into (33), we obtain

L(θ j+1)− L(θ j) � τ |g j − Gj|2 −
(

1
2τ

−M

)
|ē j|2 −

(
1
2τ

− M
2

)
|e j|2 −

1
2τ

|e j − ē j|2. (36)

Taking expectation on both sides of (36) and discarding the last negative term, we obtain(
1
2
− τM

)
τE[|G(θ j)|2] =

(
1
2τ

−M

)
E[|ē j|2] � Lj − Lj+1 + τσ2

−
(

1
2τ

− M
2

)
E[|e j|2] (37)

where we used the fact E[|Gj − g j|2] � σ2 and the notation Lj :=E[L(θ j)]. Now taking sum
of (37) for j = 1, . . . , J, dividing both sides by ( 12 − τM)τJ, and setting τ = 1

4M (hence 1
2

− τM = 1
4 and

1
τ − M

2 = 7M
2 > 0), we know that

min
1� j�J

E[|G(θ j)|2] �
1
J

J∑
j=1

E[|G(θ j)|2] �
16M(L1 − LJ+1)

J
+ 4σ2

� 16M(L1 − L∗)
J

+
4E
N

� ε (38)

by choosing per-iteration sample complexity N and iteration number J as N = J = [16M(L1
− L∗)+ 4E]ε−1 = O(ε−1) where L∗ := minθ∈Θ L(θ) � 0 (and hence LJ+1 = E[L(θJ+1)] �
J∗). This completes the proof. �
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Figure 13. Test 2 on the comparison of IWAN and FDM to recover the conductivity
γ∗ with in 2D case. (a) Relative error versus iteration number obtained by FDM with
different λ. (b) Relative error versus iteration obtained by IWAN. (c) Pointwise absolute
error |γ − γ∗| with γ obtained by IWAN (left) and FDM (right). (d) | − ∇(γ∇u)− f|
by FDM. (e) Objective function value versus iteration number by FDM.

Appendix B. Problem setting

The functions and parameters used in our experiments are summarized in table 1.

Appendix C. Recorded errors and running times in tests 9 and 10

The recorded errors and running times for test 9 and Test 10 were present in tables 2 and 3,
respectively.

Appendix D. Comparison with classical numerical methods

To further evaluate the proposed method, we provide an example that compares IWAN and
a classical FDM on a 2D problem in test 2. We would like to acknowledge an anonymous
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reviewer for suggesting this valuable comparison. It is worth pointing out that the majority
of existing numerical methods, such as FDM, require the knowledge of DtN map for the EIT
problem. However, to be consistent with the settings used in the present work, we conduct the
comparison with FDM under the same setting of test 2, where a DtN map is not available but
only the boundary conditions of u and γ in (2) are given.

In FDM, we discretize the domain into 31× 31 mesh grids (about 900 unknowns for each
of u and γ). We also experiment with higher resolution but it does not improve solution qual-
ity; see later for more explanations.We approximate the partial derivatives in the PDE by finite
differences. As the problem is underdetermined,we use regularization and formulate as a min-
imization problem of (u, γ), where the objective function is the sum of two terms: the mean
square error of the PDE, and the TV regularization on γ. For comparison, we choose 4 hidden
layers with 15 neurons per-layer to parameterize uθ and γθ (each with < 800 unknowns). We
set the number of collocation points to Nr = 1 000 and Nb = 120 (similar to the discretization
resolution of FDM). For FDM, we test different regularization hyperparameter λ (the weight
of the TV term), and show the result in figure 13(a). We observe that FDM achieved the best
result when λ = 0.1, which is used to generate the other images in figure 13. The relative error
obtained by IWAN is shown in figure 13(b). Figure 13(c) shows the absolute error |γθ − γ|
obtained by IWAN and FDM (γθ is the recovered conductivity by IWAN or FDM, and γ is the
ground truth), respectively, which demonstrates that IWAN can faithfully recover γθ but FDM
cannot in the setting of test 2. Figure 13(e) shows the objective function value versus iteration
by FDM, which suggests that FDM has converged.We also show |− ∇(γ∇u)− f| obtained by
FDM in figure 13(d), which shows that the (u, γ) obtained by FDM indeed satisfies the PDE
approximately. In addition, we increase the domain discretization resolution up to 101× 101
for FDM, but did not observe any noticeable improvement, and hence we omitted the results
here.
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