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A JUMP STOCHASTIC DIFFERENTIAL EQUATION APPROACH
FOR INFLUENCE PREDICTION ON HETEROGENOUS NETWORKS∗

YAOHUA ZANG† , GANG BAO‡ , XIAOJING YE§ , HONGYUAN ZHA¶, AND HAOMIN ZHOU‖

Abstract. We propose a novel problem formulation of continuous-time information propagation
on heterogeneous networks based on jump stochastic differential equations (JSDE). The structure of
the network and activation rates between nodes are naturally taken into account in the JSDE. This
new formulation allows for efficient and stable algorithms for a variety of challenging information
propagation problems, including estimations of individual activation probability and influence level, by
solving the JSDE numerically. In particular, we develop an efficient numerical algorithm for solving
the JSDE by incorporating variance reduction; and furthermore, we provide theoretical bounds for
its sample complexity. Numerical experiments on a variety of propagation networks show that the
proposed method is more accurate and efficient compared with the state-of-the-art methods, and more
importantly it can be applied to solve other critical information propagation problems to which existing
methods cannot be applied.

Keywords. Propagation network; stochastic differential equation with jump; heterogeneous net-
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1. Introduction
Information propagation on networks is a prevalent phenomenon in the real world [3,

19,20]. Examples of information propagation include news spreading on social media [8,
9,30], viral marketing [13,14,31], computer malware spread, and epidemic of contagious
diseases [1, 17, 20, 22]. More specifically, for instance, a piece of information (such as
news) can be retweeted by users (nodes) on the Twitter social network formed by their
followee-follower relationships. In this case, we call a node activated, become active, or
infected, if the user participates to tweet, and the followers of this user get activated if
they retweet his/her tweet later. By this, the activation process gradually progresses and
the tweet spreads out. Such information propagation behaves very similarly as epidemic
spread where a type of virus can infect an individual (human, animal, or plant) and
spreads to others upon their close contact.

To begin with, we describe the basic information propagation model on a network,
called diffusion network in [12]. Let G= (V,E) be a given network, i.e., directed graph,
where V={1,. ..,n} is the node set and E ⊂V×V is the edge set. We denote n=
|V| and m= |E|. In addition, we denote A :={αij>0 : (i,j)∈E}, where αij>0 is the
activation/infection rate of i on j. More precisely, once the node i becomes active
at time ti, the time that i needs to infect its healthy neighbor j, denoted by tij :=
tj− ti>0, follows the Exp(αij) distribution. Here by t∼Exp(α), we mean that the
probability density of t is f(t) =αe−αt for t>0. Now suppose i (called the source node)
is active at time 0, then it will start to activate its neighbors in V−i :={j : (i,j)∈E}
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simultaneously and independently, each at the corresponding rate given in {αij ∈A : j∈
V−i }. An activated neighbor node j will then start to activate its healthy neighbors
in V−j at the corresponding rates, and so on. Thus the information originated from
the node i can propagate to other nodes on the network. In a slight generalization to
include recovery scenario, an active/infected node i may also recover at some rate γi>0,
become inactive/healthy and prune to activation/infection again.

Given the aforementioned propagation model, we are interested in the fundamental
problem of influence prediction in this paper. More specifically, we want to compute the
influence, defined as the expected number of active nodes on the network, at any time
t>0 given that the propagation started from a known set of source nodes. Moreover,
we are also interested in the probability that a specific node i is active/infected at
time t. However, these seemingly simple problems turn out to be very challenging
computationally: the heterogeneous structure of the given network G and the variations
in activation rates in A (and recovery ratesR :={γi>0 : i∈V} if applicable) significantly
complicate the computation. For example, an analytic solution of influence prediction
is shown to require computation of a Markov chain whose state space is of size O(2n)
[12, 27], which quickly becomes computationally intractable as n increases.

The influence prediction problem can be significantly more complicated even with
slight modification to the basic propagation model above. For example, if the activation
time tij follows a non-exponential distribution, such as Weibull, Rayleigh, or power-law,
the propagation is no longer Markov and an analytic solution is not available. Another
example is that the activation processes are not independent: the rate of j being infected
is not simply the sum of αij ’s over its infected parents in V+

j :={i : (i,j)∈E}, but some
nonlinear function of them. In this case, even direct simulation of the propagation
becomes computationally prohibitive.

In this paper, we propose a novel approach to address the aforementioned compu-
tational problem of influence prediction. Our approach is based on a reformulation of
the information propagation on heterogeneous network into a system of jump stochastic
differential equations (JSDEs) [2, 21]. In contrast to existing methods, our formulation
provides a JSDE prospective of the interdependent activation processes between nodes
on heterogeneous networks, based on which we develop an efficient numerical algorithm
with variance reduction for influence prediction and individual node activation proba-
bility estimation with and without recovery. Our method is instantiated using the basic
propagation model with exponentially distributed activation times for demonstration
purpose, whereas enhancement to further extend our approach is also provided. More
importantly, we show that our approach can be applied to a variety of other critical
information propagation problems where some or all existing methods may fail to work.

The rest of this paper is organized as follows. First we review the literature on
information propagation on networks that are related to this work in Section 2. In Sec-
tion 3, we provide the details of the proposed JSDE reformulation. Then we develop a
numerical algorithm based on the new formulation to solve influence prediction problem
in Section 4. We present applications of the proposed method to more general propa-
gations in Section 5. We demonstrate the performance of the proposed algorithm, with
comparison to several state-of-the-arts methods, on a variety of networks in Section 6.
Section 7 concludes the paper.

2. Related work

The basic information propagation model with constant activation (infection) rates
is equivalent to the classical susceptible-infected (SI) model (or a variation, called
susceptible-infected-susceptible, or SIS, model where an infected node can recover and
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become prune to infection again) which has been extensively studied in the past decades
for statistically homogenous networks where individual nodes are indistinguishable. A
recent comprehensive survey can be found in [20]. In contrast, existing work on SI/SIS
for fixed and heterogeneous networks considered in this paper is very limited, mainly
due to the significant complications and computational challenges due to the prescribed
diversities of nodes and their interactions. In this case, a solution to exactly describe
the process requires a state space of size O(2n), where n is the size of the network, and
hence is computationally intractable in practice [12,27]. As an alternative, Monte-Carlo
(MC) simulation can be used to sample the activation time on each edge and then form
a sample cascade of events. This is repeated for many times to obtain an averaged
result that approximates the influence. However, this MC approach requires extensive
amount of samples to achieve satisfactory approximation accuracy, and hence is only
used to generate ground truth for reference during comparison in the literature [8, 12].

One of the major approaches to approximately quantify influence or infection proba-
bility for the basic propagation model with constant infection/recovery rates is based on
mean-field theory. In [26, 27], mean-field approximation is applied to reduce the O(2n)
linear system describing the Markov SIS process to an n-intertwined model, which is
a system of n nonlinear ordinary differential equations. This method adopts a first-
order moment closure that ignores dependencies between infection states of neighbor
nodes, and hence its solution gives an upper bound of infection probability for each
node. Mean-field approximation is then also applied to more complicated cases includ-
ing multi-layer network [23], weighted network [32], and hypergraph [1]. The mean-field
approach is also applied to the competing bi-virus model in [15]. In [22], an additional
“alert” state of nodes is considered, such that individuals with infected neighbors may
enter an alert state and become less prune to infection. In [4], a second-order mean-
field approximation is employed which improves the estimate of epidemic threshold over
first-order mean-field at the cost of significantly more computation complexity. In [29],
the authors propose an accuracy criterion of mean-field approximation using the co-
variance between infection states of adjacent nodes. However, it is computationally
intractable to estimate this error due to its exponentially large size. In [5], a discrete
Fokker-Planck equation based on aggregated activation states is proposed which yields
fast and accurate computation of influence without the presence of recovery. Discussions
on limitations of mean-field are also provided in [10]. In [28], the authors showed that
the basic propagation model with exponentially-distributed infection time can be unre-
alistic in real-world applications and the Markov property that mean-field approaches
are based on may not hold.

In recent years, there is a significant increase of interests in information propaga-
tion in network and data science due to its prevalent applications in social networking
and cyber security. Most literature in this field focuses on discrete-time information
propagations where infections can occur only at discrete time points. In contrast,
continuous-time information propagation studied in the literature closely mimics the
SI/SIS model but is also much more challenging computationally as mentioned above.
In [12], an analytic solution is derived based on the observation that infection time is
the length of the stochastic shortest path from the source nodes to the node. This
method establishes Markov chains for each node and can estimate individual infection
probability, however, the complexity still grows at order O(2n) for general networks
and hence is not scalable. In [7, 8], the authors propose a novel sampling technique to
estimate the coverage function in information propagation, and developed efficient al-
gorithms to approximate influence even for large networks. In [24], the authors derived
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bounds of influence and characterized phase transition using the spectral radii of the
Laplace Hazard matrix. Learnability of influence function, which is the core of influence
prediction in these methods, is considered in [18].

3. JSDE formulation of information propagation
In this section, we propose a novel formulation for the information propagation on

network using jump stochastic differential equations. This new formulation has an exact
and concise mathematical interpretation of the complex random propagation process.
Moreover, we provide an efficient numerical algorithm to solve the influence prediction
problem based on this formulation.

For ease of presentation, we first focus on the basic propagation model where the
activation times follow independent exponential distributions as described in Section 1.
That is, the time tij for a just-activated node i to activate/infect its inactive/healthy
neighbor j follows the Exp(αij) distribution. In the presence of recovery, a just-activated
node i can also recover and become inactive at rate γi, i.e., the time needed for recovery
follows the Exp(γi) distribution. We assume all these activation/infection and recovery
times are independent.

To represent the propagation process as a system of JSDEs, we first denote the
stochastic process Xi(t) as the time-evolving activation state of the node i at time
t. Namely, Xi(t) = 1 if node i is active/infected at time t, and Xi(t) = 0 otherwise.
Therefore, each Xi(t) is a right-continuous function of time t with left limit. We denote
Xi(t

−) := limτ→t−Xi(τ) the left limit of X at t. For each edge (i,j)∈E associated with
activation rate αij , we introduce an auxiliary temporal point process Nij(t)∼PP(αij).
Here, by N(t)∼PP(α) we meant that N(t) is the time-homogeneous Poisson process
with intensity α, namely, limδ→0+(1/δ) ·E[N(t+δ)−N(t)] =α for all t. In other words,
N(t) can be thought of as a counting process whose value is 0 at time t= 0 and increases
(jumps) by 1 at each time τ1,τ2,. .. , where {τk+1−τk :k≥0} are i.i.d. Exp(α) random
variables (τ0 = 0 by convention). Hence N(t) =k if τk≤ t<τk+1. In the presence of
recovery, we also introduce Ri(t)∼PP(γi) for each i∈V . Note that {Nij(t),Ri(t) : i∈
V,(i,j)∈E} is a finite set of Poisson processes, and hence two or more of them jumping
at the same time has probability 0.

Now the key observation is that we can think Nij(t) as of i “sending an activation
signal” to j at times τ1,τ2,. .. . Therefore, dNij(t) = 1 if t= τk for some k or otherwise
dNij(t) = 0. We note that a node j becomes activated by i at t successfully if and
only if Xi(t

−) = 1, Xj(t
−) = 0, and dNij(t) = 1. By this we have dXi(t) = 1, and Xi(t)

jumps from 0 to 1. Considering that there may be multiple parent nodes in V+
j sending

activation signals to j simultaneously, we can write the activation process of j as

dXj(t) = (1−Xj(t
−))
∑

i∈V+
j

Xi(t
−)dNij(t) (3.1)

for every j= 1,. ..,n. In the presence of recovery, we know an active node j becomes
deactivated/recovered if and only if Xj(t

−) = 1 and dRj(t) = 1. Therefore, we can add
this recovery term to (3.1) and obtain

dXj(t) =
[
(1−Xj(t

−))
∑

i∈V+
j

Xi(t
−)dNij(t)

]
−Xj(t

−)dRj(t) (3.2)

for j= 1,. ..,n. Compared to (3.1), the additional term −Xj(t
−)dRj(t) in (3.2) indicates

that Xj(t) can jump from 1 to 0 (dXj(t) =−1) if j recovers at time t.
To rewrite (3.2) in concise matrix form, we first introduce the following vectors

(unless otherwise noted, all vectors are column vectors):

X(t) = (X1(t),. ..,Xn(t))>∈Rn (3.3)
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N·j(t) = (Nk1j(t),Nk2j(t),. ..,Nk|V+
j
|
j(t))

>∈R|V
+
j | (3.4)

N(t) = (N·1(t)>,. ..,N·n(t)>)>∈Rm (3.5)

R(t) = (R1(t),. ..,Rn(t))>∈Rn (3.6)

J(t) = (R(t)>,N(t)>)>∈Rn+m (3.7)

where k1<k2<... are the parent nodes of j in V+
j . Furthermore, ∀X= (X1,. ..,Xn)>∈

Rn, we define matrix functions c0(X),c1(X),c(X) as

c0(X) = diag(X1,. ..,Xn)∈Rn×n (3.8)

c1(X) = diag(b1(X)>,. ..,bn(X)>)∈Rn×m (3.9)

c(X) = [−c0(X),c1(X)]∈Rn×(n+m) (3.10)

where bj(X) = ((1−Xj)Xk1 ,. ..,(1−Xj)Xk
|V+
j
|
)>∈R|V

+
j |. Note that c0(X) in (3.8) is a

diagonal matrix, and c1(X) in (3.9) is a block-diagonal matrix with row vectors bj(X)>

as the (j,j)-block.
Using the vector and matrix notations above, we can rewrite (3.2) concisely as

follows:

dX(t) =c(X(t−))dJ(t) . (3.11)

The initial X(0) = (X1(0),. ..,Xn(0))> is determined such that Xi(0) = 1 if i is a source
node and 0 otherwise. Note that, without recovery, the system (3.11) reduces to

dX(t) =c1(X(t−))dN (t), (3.12)

which is equivalent to (3.1).
We remark that the system of n coupled JSDEs, (3.11), or equivalently (3.2), repre-

sents the basic propagation model exactly. Since the stochastic process Xi(t) is binary-
valued, we know that the probability of a node i being active at time t is xi(t) :=E[Xi(t)].
Moreover, the influence, defined by the expected number of active nodes at time t, is
µ(t) :=E[1>X(t)] =E[

∑
iXi(t)] =

∑
ixi(t). Therefore, the system (3.11) and its solu-

tion X(t) play the central role of our algorithmic development for influence prediction
below.

4. Algorithm and complexity
As showed above, the basic information propagation process can be formulated as

the system of JSDEs (3.2). To obtain individual activation probability xi(t) and influ-
ence µ(t), we need to solve the JSDE system (3.2) numerically to estimate E[Xi(t)] and
E[1>X(t)], respectively. In the literature, numerical approximations to the solution
of a JSDE can be generally categorized in two types: strong approximation and weak
approximation. Strong approximation is used to estimate the solution X(t) pathwise.
Weak approximation, on the other hand, is used to compute the expectations of (func-
tions of) X(t), such as E[Xi(t)] and E[1>X(t)]. Therefore, we use weak approximations
in this paper as it suffices for our influence prediction problems.

In what follows, we first introduce the (weak) Euler and Taylor schemes with stan-
dard time discretization for solving (3.11) in Section 4.1. Then we employ a variance
reduction technique and present our algorithm in Section 4.2. In Section 4.3, we estab-
lish the relation between approximation error and sampling complexity of the proposed
algorithm.
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4.1. Euler and Taylor schemes. We consider the solution of the system (3.11)
over time interval [0,T ] for some prescribed time horizon T . For ease of presentation,
we partition [0,T ] into K(h) :=T/h equal segments using discretization points tk =kh
for k= 0,1,. ..,K(h), where without loss of generality we assume the step size h∈ (0,1).
Now we want to compute Xh(t) which approximate X(t) at all tk for k= 0,1,. ..,K(h).
For notation simplicity, we often denote Xh

k :=Xh(tk) in the derivation below.

Definition 4.1 (Weak order). An approximation Xh is said to converge to X at weak

order β>0 if for any g∈C2β+2
P (Rn+m;R), there exists a constant Cg,T >0 independent

of h such that

|E[g(Xh(T ))]−E[g(X(T ))]|≤Cg,Thβ . (4.1)

for all h>0 sufficiently small. Here CβP (Rn;R) denotes the space of β times continuously
differentiable functions Rn→R with partial derivatives with polynomial growth.

Note that the weak order β of convergence for a discretization scheme has important
practical consequences for simulation efficiency.

To generate Xh that approximates the solution X in (3.11), a basic algorithm is
the Euler scheme:

Xh
k+1 =Xh

k +c(tk,X
h
k )∆Jk, (4.2)

where we also included t in function c so that the method can generalize to cases
where c is time-dependent. In (4.2), the increment ∆Jk =J(tk+1)−J(tk) is a vector of
independent Poisson random numbers. More precisely, ∆Jk = (∆R>k ,∆N

>
k )>∈Rn+m

where the components of ∆Rk and ∆Nk are generated from Poisson distributions with
{γih} and {αijh} as parameters, respectively. The Euler scheme (4.2) is known to be
convergent at weak order β= 1 [21].

By adding more terms in the Wagner-Platen expansion [21], we can obtain numerical
schemes with a higher order of convergence. For example, the Taylor scheme with
convergence of weak order β= 2 is given by{

Xh
k+.5 =Xh

k +ck∆Jk

Xh
k+1 =Xh

k +ck∆Jk+(1/2) ·(ck+.5−ck)∆Jk(∆Jk−1)
(4.3)

where ck :=c(tk,X
h
k ), ck+.5 :=c(tk,X

h
k+.5), and the subtraction and multiplication in

∆Jk(∆Jk−1) are executed component-wise to obtain a vector in Rm+n.
Higher-order Taylor schemes can also be obtained by adding more Wagner-Platen

terms to (4.3). We refer interested readers to [21]. In this paper, we only use the Euler
scheme (4.2) with β= 1, and sometimes the Taylor scheme (4.3) with β= 2, since they
are accurate and cost-effective for our influence prediction problem.

It is also worth noting that, for mark-independent pure JSDEs such as (3.11),
jump-adapted time discretization can directly simulate jump times for non-uniform
time discretization. More precisely, in jump-adapted discretization, we first simulate
a trajectory 0 = τ0<τ1< ·· ·≤T of the Poisson process J(t), and apply it to the JSDE

(3.11) so that the next sample X̂(τk+1) can be computed directly given X̂(τk). For

t∈ [τk,τk+1) the approximation X̂(t) remains as constant X̂(τk). One advantage of
such jump-adapted Euler scheme is that it does not generate discretization error, and it
is particularly efficient for low-intensity jump processes. In this work, we will incorporate
the jump-adapted discretization into the regular uniform discretization of the Euler and
Taylor schemes in our algorithm.
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4.2. Variance reduction. The numerical solution Xh obtained by the Euler
(4.2) or Taylor (4.3) schemes is one sample approximation of the stochastic process X
defined in (3.11). To estimate E[g(Xh(T ))] in the applications of influence prediction
and individual activation probability, we can employ (4.2) or (4.3) for L times to ob-
tain {Xh,l : 1≤ l≤L}, and use their sample mean to approximate E[g(Xh(T ))]. More
specifically, for the prescribed time horizon T , the sample mean uT (h,L) is defined by

uT (h,L) = (1/L) ·
∑L

l=1
g(Xh,l(T )) (4.4)

which depends on both the discretization step size h and the number of sample trajec-
tories L. This sample mean uT (h,L) is our approximation to E[g(Xh(T )].

As we will show later, the mean square error of the approximation uT (h,L) depends
on its variance (1/L) ·var(g(Xh,l(T ))). To reduce this approximation error in practice,
we employ a variance reduction technique introduced in [16] in our sampling algorithm.
More specifically, in each sampled propagation (also called sampling trajectory), we
generate a pair of antithetical samples Z+ and Z− from each Poisson random variable
of mean γiT and αijT for i∈V and (i,j)∈E , respectively. Then we sample Z+ and
Z− points independently and uniformly on [0,T ] respectively. Thus each set of points
forms a trajectory of the Poisson process, which can be used in the Euler scheme (4.2)
or the Taylor scheme (4.3) to obtain a sample of solution Xh

K =Xh(tK) =Xh(T ) to
(3.11). The antithetical property of Z± reduces the variance of Xh(t) in practice. The
algorithm is summarized in Algorithm 1. For ease of presentation, we assume that the
sample size L is even, and the step size h is chosen such that T/h is an integer.

Algorithm 1 Sample approximation uT (h,L) of influence µg,T =E[g(X(T ))]

Input: G= (V ,E), {αij ,γi : i∈V ,(i,j)∈E}, and T . Set h, L.
Set K=L/h and tk := [kh,(k+1)h) for k= 0,. ..,K−1. Set s= 0.
for l= 1,2,. ..,L/2 do
for each i∈V do

Set F to the cumulative distribution of Poisson(γiT );
Draw U ∼Uniform(0,1), and set Z+ =F−1(1−U) and Z−=F−1(U);

Sample Z+ and Z− points, τ lγi :={τ lz : 1≤ z≤Z+} and τ
(L/2)+l
γi :={τL/2+lz : 1≤

z≤Z−} respectively, each on [0,T ] uniformly;
Set (∆R`

k)i= |τ `γi ∩tk| for k= 0,. ..,K−1 and `= l,(L/2)+ l;
end for
for each (i,j)∈E do

Set F to the cumulative distribution of Poisson(αijT );
Draw U ∼Uniform(0,1), and set Z+ =F−1(1−U) and Z−=F−1(U);

Sample Z+ and Z− points, τ lαij :={τ lz : 1≤ z≤Z+} and τ
(L/2)+l
αij :={τL/2+lz : 1≤

z≤Z−} respectively, each on [0,T ] uniformly;
Set (∆N `

k)ij = |τ `αij ∩tk| for k= 0,. ..,K−1 and `= l,(L/2)+ l;
end for
Solve (4.2) or (4.3) for Xh,`

K using {∆R`
k,∆N

`
k :k} for `= l,(L/2)+ l;

s←s+g(Xh,l
K )+g(X

h,(L/2)+l
K );

end for
Output: uT (h,L) = s/L.
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4.3. Sample complexity analysis. To establish the relation between approx-
imation accuracy and cost, we provide a comprehensive analysis of computation and
sampling complexity for our JSDE-based influence prediction method. In particular,
for any fixed time horizon T >0 and influence evaluation function g, we will derive up-
per bound of the root mean squared error (RMSE), denoted by eT (h,L), of the sample
approximation uT (h,L) to µg,T :=E[g(X(T ))]. The RMSE eT (h,T ) is defined by

eT (h,L) =
{
E
[
|uT (h,L)−µg,T |2

]}1/2

. (4.5)

Without loss of generalization, we again assume that h∈ (0,1) and T/h is an integer.
In addition, our complexity analysis requires the following conditions.

Assumption 4.1. The stochastic process X(t) and the influence evaluation function
g satisfy:

(1) The function g satisfies polynomial growth. Namely, ∃ C>0 and positive integer
s>0 such that g(x)≤C(1+‖x‖s) for all x∈Rn.

(2) The influence g(X(t)) has bounded second moment, i.e., E[g2(X(T ))]<∞.
Now we are ready to present the first result that links the RMSE to the step size h

and the number of sampling trajectories L in the approximation uT (h,L).

Theorem 4.1. Let uT (h,L) be the sample approximation to µg,T generated by Al-
gorithm 1 with a numerical JSDE scheme (4.2) or (4.3) of weak order β>0. Suppose
Assumption 4.1 holds for g and X(t). Then there exists a constant σ2

g,T dependent on
g and T but not on h and β, such that

eT (h,L)≤
(σ2

g,T

L
+C2

g,Th
2β
)1/2

. (4.6)

Proof. As g has polynomial growth, so does g2. Therefore we know there exists
C>0, independent of β, such that var(g(Xh(T ))), the variance of g(Xh(T )), has the
following bound:

var(g(Xh(T )))≤E[g2(Xh(T ))]≤E[g2(X(T )]+Chβ≤E[g2(X(T ))]+C=:σ2
g,T , (4.7)

where the second inequality is due to |E[g2(Xh(T ))]−E[g2(X(T ))]|≤Chβ for some C
independent of h by Theorem 12.3.4 in [21], and the last inequality is due to h∈ (0,1)
and β>0. Furthermore, the RMSE eT (h,L) of uT (h,L) defined in (4.5) satisfies

e2T (h,L) = E[|uT (h,L)−µg,T |2]

= E[|uT (h,L)−E[g(Xh(T ))]+E[g(Xh(T ))]−µg,T |2]

= E[|uT (h,L)−E[g(Xh(T ))]|2]+ |E[g(Xh(T ))]−µg,T |2

≤ E[|uT (h,L)−E[g(Xh(T ))]|2]+C2
g,Th

2β

= (1/L) ·var(g(Xh(T )))+C2
g,Th

2β

≤ (1/L) ·σ2
g,T +C2

g,Th
2β ,

where we used the fact E[uh,L(T )] =E[g(Xh(T ))] in the third equality, (4.1) in the first
inequality, and the fact that every Xh,l has the same distribution as Xh in the fifth
equality, and (4.7) in the last inequality. Taking square root on both sides yields (4.6).
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Corollary 4.1. Suppose the conditions in Theorem 4.1 hold. For any ε>0, the
RMSE satisfies eT (h,L)≤ ε if the step size h and the number of trajectories L are set
to

h=Tδg,T,βD
−1/β
g,T,β ε

1/β and L= δg,T,βD
2
g,T,βε

−2, (4.8)

where the constants δg,T,β and Dg,T,β only depend on g,T,β as follows,

δg,T,β =
( σ2

g,T

2βC2
g,TT

2β

)1/(2β)
and Dg,T,β =

( σ2
g,T

δg,T,β
+C2

g,TT
2βδ2βg,T,β

)1/2
. (4.9)

In particular, there is eT (h,L)≤ ε if the total sampling complexity is(∑
i,j
αij +

∑
i
γi

)
Tδg,T,βD

2
g,T,βε

−2 =O(ε−2) (4.10)

on expectation and the computation complexity is

O((m+n)(ε/Dg,T,β)−(2β+1)/β) =O(ε−(2β+1)/β). (4.11)

Proof. As the total computation complexity is linear in T/h and L, we denote
the cost B=LT/h. For any B, the minimum of the bound of eT (h,L) in (4.6) can
be obtained by solving minh,L{(σ2

g,T /L)+C2
g,Th

2β} subject to B=LT/h, which yields
solution

h=Tδg,T,βB
−1/(2β+1) and L= δg,T,βB

2β/(2β+1), (4.12)

where δg,T,β is defined in (4.9). In this case, the bound given in (4.6) can be written
as eT (h,L)≤Dg,T,βB

−β/(2β+1). In order to have eT (h,L)≤ ε, it suffices to have B=
(ε/Dg,T,β)−(2β+1)/β , which together with (4.12) yields (4.8).

In Algorithm 1, each trajectory of (4.2) or (4.3) needs to have (
∑
i,jαij +

∑
iγi)T

sampled points on expectation. Hence the total sampling complexity of L trajectories
is (
∑
i,jαij +

∑
iγi)TL, which together with L (4.8) yields (4.10). In addition, each

step of (4.2) or (4.3) is O(m+n), and hence the total computational complexity is
O((m+n)LT/h). Substituting h and L by the values in (4.8) yields (4.11). This
completes the proof.

5. JSDE for more general propagation problems
The basic propagation model with constant activation (and recovery) rates discussed

above is widely used in a variety of applications including news and disease spread etc.
However, in many real-world applications, the propagations are often time and/or state
dependent and the basic model with constant activations rates is not accurate. In these
cases, the vast existing methods relying on the constant rates in basic propagation
model are not suitable. On the other hand, our method based on JSDE can be readily
modified to handle these cases by making the coefficients and jump intensity time and
state dependent. In this section, we depict such generalization of our method to two
scenarios. For conciseness of the present paper, we will report more in-depth analysis
and numerical experiments of these cases in a forthcoming work.

5.1. Time varying activation rates. In some real-world applications, the
impact of i on j may be diminishing along time, which mimics the phenomenon that
older news/message makes less impact to a user’s action. In this case, the activation
rate αij(t) is time varying, for example, can be modeled as decaying such that tij =
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tj− ti∼Weibull(αij ,βij) for some βij>0 instead of Exp(αij). Here by t∼Weibull(α,β)

we mean that the probability density of t is f(t) =βαβtβ−1e−(αt)
β

for t>0. This yields

a time-varying activation rate αij(t) =βijα
βij
ij t

βij−1 of i on j where t is the time since
i got activated. Note that with βij = 1 there is tij∼Exp(αij) and αij(t)≡αij , which
reduces to the basic propagation model. Similar modifications can be made to the
recovery rate so that γi(t) is time varying.

Time-varying activation rates cause significant computational challenge for existing
methods, since the propagation is no longer Markov. Moreover, Monte Carlo sim-
ulation becomes difficult and computationally demanding due to the dependency of
propagation on its entire history. However, our approach can easily address this issue
by incorporating an additional variable into the JSDE system. More specifically, we
introduce an auxiliary variable Uj(t) for every node j, and establish a system of JSDEs
of {Uj(t),Xj(t) : j∈V ,t∈ [0,T ]}. For ease of presentation, we consider time-varying ac-
tivation rates but still assume constant recovery rates, since further generalization is
trivial.

We first observe that the key to incorporating the time dependence of activation
rates is to record the time elapsed since the last activation of every node j. This time
is denoted by Uj(t), and the coupled JSDE system of Uj(t) and Xj(t) is given below:

dXj(t) =
[
(1−Xj(t

−))
∑

i∈V+
j

Xi(t
−)dNij(t,Ui(t

−))
]
−Xj(t

−)dRj(t)

dUj(t) =Xj(t
−)dt−Uj(t−)dRj(t)

(5.1)

where Uj(t) is the time since last activation of j, and Uj(t) = 0 if j is currently inactive
at time t. To see this, we first observe that Xj(t) is binary-valued at 0 and 1 to indicate
the activation state of j at time t. Therefore, the instantaneous rate of Uj(t) is given
by Xj(t

−) and hence Uj(t) accumulates at rate 1 when j is active, whereas the value of
Uj(t) drops to 0 every time j recovers, i.e., Xj(t

−)dRj(t) = 1. In (5.1), the intensity of
the Poisson process Nij(t,Ui(t

−)) depends on Ui, the time since the last activation of
the parent node i. For example, if the activation time follows the Weibull distribution
with αij and βij as parameters, then we can obtain the intensity of Nij(t,Ui(t)) as

βijα
βij
ij (Ui(t))

βij−1. Derivations for other types of distributions are similar.

5.2. State-dependent propagation. In some applications, the rate αj(t) for
a node j to get activated at time t is not simply the sum of αij over its active parents.
Instead, αj can be a nonlinear function of these αij . For example, the rate for j to get
activated is αj(t) = min{aj ,

∑
iαijXi(t

−)} as a nonlinear function of activation states
of its parents. Namely, aj>0 is a personal threshold such that the rate αj is throttled
and more active parents will not further increase the rate αj . In this case, we can write
the processes Nij(t) to be state dependent, i.e., Nij(t) =Nij(t,X(t−)), with intensity
min{aj ,

∑
iαijXi(t

−)}. The JSDE solver can be employed in the same way.

6. Numerical experiments
To demonstrate the effectiveness of the proposed method, we conduct extensive

numerical experiments of influence prediction using various networks. More specifically,
we test the proposed method on influence prediction problems on artificially generated
networks for which ground truth influence can be obtained by large number of naive
Monte Carlo simulations. For comparison purpose, we also implemented two state-
of-the-art influence estimation methods and plot their results to show the improved
efficiency and flexibility of the proposed method.
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6.1. Experiment setup. To generate networks in our experiments, we used the
CONTEST package [25] which is freely available online to the public. The CONTEST
package can generate many types of networks given network size and specific parameters.
We conducted our numerical tests by using different types of networks, and found that
the influence prediction results are very similar. Therefore, for sake of conciseness,
we only show the results using three types of networks: Erdős-Rényi network, small-
world network, and scale-free (preferential attachment) network in this paper, as they
are typical networks and are widely used in real-world applications. Unless otherwise
noted, the source set of nodes are randomly selected, and fix it for all compared methods
in each test.

The ground truth influence of each test is obtained by simulating a large number
of propagations using Monte Carlo (MC) method and taking the sample mean. More
specifically, we generate 10,000 propagations for a given network and source set se-
lection, and obtain the empirical probability that node i is activate at time t, denoted
xi(t). The total influence is obtained by µ(t) =

∑
ixi(t). Therefore, µ(t) and xi(t) corre-

spond to influence evaluation functions g(x) = 1>x and gi(x) =xi respectively. In other
words, E[g(X(t))] =

∑n
i=1E[Xi(t)] is the expected number of active nodes at time t, and

E[gi(X(t))] =E[Xi(t)] is the probability that node i is active at time t. The estimated
values are denoted by µ̂(t) and x̂(t) respectively.

For comparison purpose, we also implemented two state-of-the-art methods to es-
timate influence on heterogeneous networks: the mean-field approximation (labeled as
Mean Field) with the first-order moment closure [27] and a sampling-based approxi-
mation method for continuous-time influence estimation (labeled as ConTinEst) [8].
Mean Field approximates xi(t) by solving the following deterministic system of n coupled
nonlinear differential equations numerically using e.g., 4th order Runge-Kutta method:

x′j(t) =
[
(1−xj(t))

∑
i∈V+

j

αijxi(t)
]
−γjxj(t), j= 1,. ..,n. (6.1)

The computational cost of Mean Field is very low since no stochasticity is involved.
It is also worth noting that (6.1) can be deduced by taking expectation on both
sides of the JSDE system (3.2), (incorrectly) ignoring all correlations between terms
in multiplications, and using the facts that E[dNij(t)] =αij dt, E[dRj(t)] =γj(t)dt and
E[Xi(t

−)] =xi(t). More specifically, the product E[Xi(t
−)Xj(t

−)] being replaced by
E[Xi(t

−)]E[Xj(t
−)] is due to the first-order moment closure as mentioned in [27] from

a different point of view, and hence the result of Mean Field is overestimating the true
influence. Unfortunately, the error caused by such moment-closure cannot be estimated
in general and hence it is unclear how to further improve the accuracy of Mean Field.
ConTinEst, on the other hand, is a recently developed approximation method based on
effective samplings. It employs the Least-Label-List technique presented in [6]. Con-
TinEst can be applied to information propagation with infection time distribution other
than exponential. However, as the influence is estimated based on coverage function,
ConTinEst cannot estimate probability of an individual’s activation state, nor the in-
fluence of propagations with recovery.

6.2. Experiments on synthetic data. In the first experiment, we test on the
influence prediction problem using the basic propagation model (i.e., activation rates)
without recovery scenario. We first generate three networks: ER, small-world, and
scale-free networks, each with n= 200 nodes. For Erdős-Rényi network, we randomly
generate m= [n log(n)/2] (where [a] denotes the integer closest to a∈R) edges and form
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Fig. 6.1. Influence prediction by compared methods on Erdős-Rényi network (top row), small-
world network (middle row), and scale-free network (bottom row), all of size n= 200, using the basic
propagation model without recovery. Left column: True total influence µ(t) =

∑
ixi(t) and influences

µ̂(t) =
∑

i x̂i(t) obtained by Mean Field, ConTinEst, and PropNet SDE. Middle column: relative er-
ror in influence |µ̂(t)−µ(t)|/µ(t). Right column: relative error in individual activation probability∑

i |x̂i(t)−xi(t)|/
∑

ixi(t) (influence ratio µ(t)/n is plotted in black dotted line for reference).

a directed graph. For small-world network, we start with a ring graph, and for each
node we create a new link with probability 0.2 and connect it to another node on
the network randomly chosen with uniform distribution. For scale-free (preferential
attachment) network, we add nodes one by one to the existing network, where each
new node has 2 links to the existing nodes, and the probability of linking to an existing
node is proportional to the degree of that node. For each network, we choose two
nodes at random to form the source set. Then we simulate 10,000 propagations using
Monte Carlo method and compute the empirical mean of influence as the true influence
(labeled as True). For ConTinEst method, we sample 1,000 trajectories and simulate
15 random labels in each trajectory. For the proposed JSDE method, i.e., Algorithm
1, we fix the time step size h= 0.01 and sample L= 1,000 trajectories. For the basic
propagation model without recovery, the result of the compared methods on these three
networks are shown in Figure 6.1.

From Figure 6.1, we can see that the proposed method generates highly accurate
predictions as the estimated influence µ̂(t) and individual activation probability x̂i(t)
have smallest relative error to the true µ(t) and xi(t) respectively (shown in the middle
and right columns in Figure 6.1) in every test network. This is in sharp contrast to
Mean Field which yields much larger error than the proposed PropNet SDE. ConTinEst
also accurately estimated µ(t), however, it cannot estimate the individual activation
probability xi(t) as the proposed PropNet SDE.

The second experiment is set similarly as the first one, but we incorporate recovery
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Fig. 6.2. Influence prediction by compared methods on Erdős-Rényi network (top row), small-
world network (middle row), and scale-free network (bottom row), all of size n= 200, using the
basic propagation model with recovery. Left column: True total influence µ(t) =

∑
ixi(t) and in-

fluences µ̂(t) =
∑

i x̂i(t) obtained by Mean Field and PropNet SDE. Middle column: relative er-
ror in influence |µ̂(t)−µ(t)|/µ(t). Right column: relative error in individual activation probability∑

i |x̂i(t)−xi(t)|/
∑

ixi(t) (influence ratio µ(t)/n is plotted in black dotted line for reference).
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Fig. 6.3. Robustness test of compared methods on Erdős-Rényi network (top row), small-world
network (middle row), and scale-free network (bottom row). Column (a): the maximum absolute
error max0≤t≤T |µ̂(t)−µ(t)|/µ(t) versus different sizes of source set using the basic propagation model
without recovery; Column (b): the maximum absolute error versus different sizes of source set using
the basic propagation model with recovery; Column (c): the maximum absolute error versus different
density levels using the basic propagation model without recovery; Column (d): the maximum absolute
error versus different density levels using the basic propagation model with recovery.
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scenario such that an active node i can recover at a constant rate γi. In this test, the
recovery rates for each node are chosen uniformly from (0,0.4). Since ConTinEst cannot
handle the case with recoveries, we only compare Mean Field and PropNet SDE in this
test. The results are shown in Figure 6.2. We again observe that PropNet SDE has
significant improvement over Mean Field in terms of accuracy, since the relative errors
to µ(t) and xi(t) using PropNet SDE are much smaller than that using Mean Field.

In the third experiment, we evaluate the robustness of the compared methods when
the size of source set and network density vary. For the first part of this experiment, we
use the same three networks in the first and second experiments, and set five different
sizes of source set: n0 = 2,5,10,15,20. For each of the three networks and each of
the five different n0, we randomly select n0 nodes as the source set, and apply the
compared methods to estimate influence of the basic propagation without recovery on
the network and source set combination. Such test is repeated for 20 times for each of
the network and source set size combination, and the maximum absolute error, defined
by max0≤t≤T |µ̂(t)−µ(t)|, for all methods are shown in the first column of Figure 6.3(a).
In Figure 6.3(a), the standard deviation of ConTinEst and PropNet SDE are also shown
at each source size (Mean Field is deterministic and hence no variance). From Figure
6.3(a), we can see that PropNet SDE produces the lowest absolute error among the
compared methods, which indicates that it outperforms the others in terms of accuracy.
Figure 6.3(b) shows the result on the basic propagation model with recovery scenario,
where we again observe that PropNet SDE is much more accurate than Mean Field,
and ConTinEst is not capable to handle this situation.

In the second part of the third experiment, we generate the same three types of net-
works with different density levels (i.e., average node degree). For Erdős-Rényi network,
the number of edges is m= [n log(κn)/2] for κ= 2,3,4,5,6 respectively. For small-world
network, the starting network is a regular graph where each node is connected to its
respectively κ= 2,3,4,5,6 nearest neighbors and the probability of creating a short cut
of each node is set to 0.2. For scale-free network, the number of links that each newly
added node has is set to κ= 2,3,4,5,6 respectively. For each network type, we generate
a network using each of those density parameters κ and apply ConTinEst and PropNet
SDE for 20 times to obtain their means and standard deviations of maximum absolute
error. The results of the error versus the density parameter κ by the compared methods
are given in Figure 6.3 (c) for the case without recovery and (d) for the case with recov-
ery, respectively. From these plots, we can see that PropNet SDE consistently achieves
smaller error than other methods in both cases without and with recovery.

In the fourth experiment, we consider the propagation model where activation rates
are time-varying instead of constant. More specifically, tij , the time for node i to
activate j, follows the Rayleigh distribution (a specific type of Weibull distribution
with θ= 2). For ConTinEst, we generate 1,000 simulations where each one has 15
least labels. For PropNet SDE, we use step size h= 0.01 and L= 1,000. The results
without recovery scenario are shown in Figure 6.4. Mean Field relies on the Markov
property of constant activation rates and hence is not capable to handle this situation.
For ConTinEst and PropNet SDE, we show their estimated influence µ̂(t) and the
corresponding relative error |µ̂(t)−µ(t)|/µ(t) in the first and second columns of Figure
6.4, respectively. In particular, we observe that both methods are accurate in predicting
overall influence, whereas ConTinEst seems more accurate in the early stage, and the
proposed PropNet SDE tends to yield smaller error in middle to late stages of the
propagation. In addition, we also show the relative accumulated error in individual
activation probability,

∑
i |x̂i(t)−xi(t)|/

∑
ixi(t), of the proposed PropNet SDE method
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Fig. 6.4. Influence prediction by compared methods on Erdős-Rényi network (top row), small-
world network (middle row), and scale-free network (bottom row), all of size n= 200, using the prop-
agation model with Rayleigh distributed activation times without recovery. Left column: True total
influence µ(t) =

∑
ixi(t) and influences µ̂(t) =

∑
i x̂i(t) obtained by ConTinEst and PropNet SDE.

Middle column: relative error in influence |µ̂(t)−µ(t)|/µ(t). Right column: relative error in individ-
ual activation probability

∑
i |x̂i(t)−xi(t)|/

∑
ixi(t) (influence ratio µ(t)/n is plotted in black dotted

line for reference).

in the right column of Figure 6.4. The influence ratio µ(t)/n is again plotted in black
dotted line for reference. As we can see, PropNet SDE attains very small relative
error which indicates that all xi(t) are estimated accurately. Note that ConTinEst is
not capable of computing such estimations. The results are shown in Figure 6.5. We
again observe accurate prediction of both total influence µ(t) and individual activation
probability in the middle and right columns of Figure 6.5.

The proposed PropNet SDE algorithm benefits from the variance reduction (VR)
technique, which significantly reduces the number of samplings to achieve the same level
of accuracy. To demonstrate the effectiveness of variance reduction, we run PropNet
SDE with standard sampling of Poisson numbers and VR (i.e., Algorithm 1) using
Erdős-Rényi network. The parameter setting of Erdős-Rényi network is the same as
above, but we run the algorithms with 5, 10, 20, 40, 80 and 100 sampled cascades
to track the prediction errors. We plot both prediction errors with 95% confidence
intervals in Figure 6.6. From the plots in Figure 6.6, we can see that PropNet SDE
with VR produces lower prediction error than that without VR for the same amount
of samplings. This suggests that VR is a simple and effective implementation in the
proposed PropNet SDE method to improve computational efficiency.We also show the
comparison of Monte-Carlo (MC), ConTinEst, and PropNet SDE with VR on the same
dataset in Figure 6.7, where the left and right panels show the prediction errors in
influence and individual activation probability respectively.
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Fig. 6.5. Influence prediction by compared methods on Erdős-Rényi network (top row), small-
world network (middle row), and scale-free network (bottom row), all of size n= 200, using the prop-
agation model with Rayleigh distributed activation times with recovery. Left column: True total influ-
ence µ(t) =

∑
ixi(t) and influences µ̂(t) =

∑
i x̂i(t) obtained by ConTinEst and PropNet SDE. Middle

column: relative error in influence |µ̂(t)−µ(t)|/µ(t). Right column: relative error in individual acti-
vation probability

∑
i |x̂i(t)−xi(t)|/

∑
ixi(t) (influence ratio µ(t)/n is plotted in black dotted line for

reference).
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Fig. 6.6. Comparison of prediction errors in influence (left) and individual activation probability
(right) versus the number of sampled cascades L using the PropNet SDE without and with variance
reduction (VR) for the Erdős-Rényi’s network in the first experiment.

6.3. Experiments on real data. We also test the proposed influence prediction
algorithm on the Weibo-Net-Tweet dataset1. The Weibo-Net-Tweet dataset contains 1.7
million users and 400 million edges (followee-follower relationships). This dataset also
contains 300,000 popular microblog diffusion episodes (propagation cascades) posted

1https://cn.aminer.org/data-sna#Weibo-Net-Tweet
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Fig. 6.7. Comparison of prediction errors in influence (left) and individual activation probability
(right) versus the number of sampled cascades L using Monte-Carlo simulations (MC), ConTinEst,
and PropNet SDE with variance reduction (VR) for the Erdős-Rényi’s network in the first experiment.
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Fig. 6.8. Average error of predicted influence |µ̂(t)−µ(t)| (left) and individual activation proba-
bility

∑
i |x̂i(t)−xi(t)| (right) versus time (in hours) on the Weibo-Net-Tweet dataset for the first 24

hours of propagations.
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Fig. 6.9. Estimation of individual activation probabilities at T = 24 hours using the proposed Pron-
Net SDE method (left) and the empirical activation probabilities exhibited by the testing data (right)
from source set S={2} on the Weibo-Net-Tweet dataset. Thicker ends of edges indicate receiving
sides. Nodes with <50% activation probabilities in both plots are removed for cleaner looks.

in 2012. Each diffusion episode consists of the original microblog and its retweets.
We select the most influential 434 users and retrieve all the propagation cascades that
contain at least 50 of these users. Then we randomly select 60% of these cascades,
and apply the NetRate algorithm [11] to learn the activation rate matrix A. With the
learned A, we apply the comparison algorithms to the source sets of the remaining 40%
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cascades to predict influence, and compute the error of the predicted influence to the
true influence in the first 24 hours exhibited by these cascades. The results are shown in
Figure 6.8. From these plots, we observe Mean Field generates significantly larger errors
than ConTinEst and PropNet SDE, where the latter two have comparable accuracy in
influence prediction, as shown in the left panel of Figure 6.8. In addition, PropNet SDE
also accurately predicted the activation probabilities of individual users as shown in the
right panel of Figure 6.8.

We also instantiate one prediction result of individual node activation probabilities
starting from a single source node with index 2 (actual user ID is concealed, same below)
using the proposed PropNet method. The result is shown in the left panel of Figure 6.9.
The color of a node shows the probability that the node is activated at T = 24 hours,
where the color bar is plotted on the side for reference. For comparison, we also extract
the empirical probabilities from the cascades in testing dataset, and show the result on
the right panel of Figure 6.9. For cleaner appearance, we removed all nodes that have
lower than 50% activation probability in both results. Using the prediction result of the
PropNet SDE, we can see that nodes indexed by 4, 7, 8, 18, 20, 23, 29 have relatively
high probabilities to be activated (retweet the post), in addition to the active direct
followers (e.g., nodes 6, 14, 15, 42) of node 2. On the other hand, some direct followers,
such as node 257, of node 2 do not often help to spread the post. These claims are
supported by the empirical results in the testing data, as shown on the right of Figure
6.9, and they are also backed up by the small quantitative prediction error we showed
in the right panel of Figure 6.8.

7. Conclusions

In this paper, we proposed to reformulate propagations on heterogeneous networks
using JSDE system. We also developed an efficient numerical scheme to solve the
JSDE system and predict influence. Using a series of numerical experiments on variety
of networks and propagation models, we show that our proposed method is accurate
and efficient in influence prediction when compared to the state-of-the-art methods.
Moreover, we showed that the proposed method can be readily modified and applied to
more general propagation models which cannot be handled by any existing methods.
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