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Abstract

We consider the problem of evaluating certain types of
functional aggregation queries on relational data sub-
ject to additive inequalities. Such aggregation queries,
with a smallish number of additive inequalities, arise
naturally/commonly in many applications, particularly
in learning applications. We give a relatively complete
categorization of the computational complexity of such
problems. We first show that the problem is NP-hard,
even in the case of one additive inequality. Thus we
turn to approximating the query. Our main result is an
e�cient algorithm for approximating, with arbitrarily
small relative error, many natural aggregation queries
with one additive inequality. We give examples of natu-
ral queries that can be e�ciently solved using this algo-
rithm. In contrast, we show that the situation with two
additive inequalities is quite di↵erent, by showing that
it is NP-hard to evaluate simple aggregation queries,
with two additive inequalities, with any bounded rela-
tive error.

1 Introduction

Kaggle surveys [1] show that the majority of learning
tasks faced by data scientists involve relational data.
Most commonly, the relational data is stored in tables
in a relational database. So these data scientists want
to compute something like

Data Science Query = Stan-
dard Learning Task(Relational Tables
T1, . . . Tm)

However, almost all standard algorithms for standard
learning problems assume that the input consists of

⇤Supported in part by NSF grants CCF-1409130, CCF-
1617653, and CCF-1844939.

†Supported in part by NSF grants CCF-1725543, 1733873,
1845146, a Google Research Award, a Bosch junior faculty chair
and an Infor faculty award.

‡Supported in part by NSF grants CCF-1421508, CCF-
1535755, CCF-1907673, CCF-2036077 and an IBM Faculty
Award.

points in Euclidean space [9], and thus are not designed
to operate directly on relational data. The current
standard practice for a data scientist, confronted with
a learning task on relational data, is:

1. Firstly, convert any non-numeric categorical data
to numeric data. As there are standard methods to
accomplish this [9], and as we do not innovate with
respect to this process, we will assume that all data
is a priori numerical, so we need not consider this
step.

2. Secondly, issue a feature extraction query to extract
the data from the relational database by joining
(inner join) together the tables to materialize a
design matrix J = T1 on · · · on Tm with say N
rows and d columns/features. Each row of this
design matrix is then interpreted as a point in d-
dimensional Euclidean space.

3. Finally this design matrix J is imported into a
standard learning algorithm to train the model.

Thus conceptually, standard practice transforms a data
science query to a query of the following form:

Data Science Query = Stan-
dard Learning Algorithm(Design Matrix
J = T1 on · · · on Tm)

where the joins are evaluated first, and the learning
algorithm is then applied to the result. Note that if each
table has n rows, the design matrix J can have as many
as nm entries. Thus, independent of the learning task,
this standard practice necessarily has exponential worst-
case time and space complexity as the design matrix can
be exponentially larger than the underlying relational
tables. Thus, a natural research question is what we
call the relational learning question:

Relational Learning Question: What
standard learning problems admit relational
algorithms, which informally are algorithms
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that are e�cient when the data is in relational
form?

Note that a relational algorithm can not a↵ord to
explicitly join the relational tables.

In this paper, we consider the relational learning
question in the context of the problem of evaluating
Functional Aggregate Queries (FAQ’s) subject to addi-
tive constraints, which we call FAQ-AI queries. Such
queries/problems, with a smallish number of inequali-
ties, arise naturally as subproblems in many standard
learning algorithms. Before formally defining an FAQ-
AI query, let us start with some examples. The first
collection of examples are related to the classic Support
Vector Machines problem (SVM), in which points are
classified based on the side of a hyperplane that the
point lies on [9, 22]. Each of the following examples
can be reduced to FAQ-AI queries with one additive
inequality, which we call FAQ-AI(1) queries:

• Counting the number of points correctly (or incor-
rectly) classified by a hyperplane.

• Finding the minimum distance of a correctly clas-
sified point to the boundary of a given hyperplane.

• Computing the gradient of the SVM objective
function at a particular point.

And now we give some examples of problems related to
the classic k-means clustering problem [22], in which the
goal is to find locations for k centers so as to minimize
the aggregate 2-norm squared distance from each point
to its closest center. Each of the following examples can
be reduced to FAQ-AI queries with k � 1 inequalities:

• Evaluating the k-means objective value for a par-
ticular collection of k centers.

• Computing the new centers in one iteration of the
commonly used Lloyd’s algorithm.

• Computing the furthest point in each cluster from
the center of that cluster.

All of these problems are readily solvable in nearly linear
time in the size of the input if the input was the design
matrix. Our goal is to determine whether relational
algorithms exist for such FAQ-AI problems when the
input is in relational form.

One immediate di�culty that we run into is that
if the tables have a su�ciently complicated structure,
almost all natural problems/questions about the design
matrix are NP-hard if the data is in relational form. For
example, it is NP-hard to even determine whether or not
the design matrix is empty (see for example [13, 20]).
Thus, as we want to focus on the complexity of the

functional aggregate query and the additive inequalities,
we conceptually want to abstract out the complexity of
the tables. The simplest way to accomplish this is to
primarily focus on instances where the structure of the
tables is simple, with the most natural candidate for
“simplicity” being that the join is acyclic (see Definition
2.1). Acyclic joins are the norm in practice and are
a commonly considered special case in the database
literature. For example, there are e�cient algorithms to
compute the size of the design matrix for acyclic joins.

Formally defining what a “relational” algorithm is
problematic, as for each natural candidate definition
there are plausible scenarios in which that candidate
definition is not the “right” definition. But for the pur-
poses of this paper, it is su�cient to think of a “rela-
tional” algorithm as one whose runtime is polynomially
bounded in n, m and d if the join is acyclic.

1.1 Informal Statement of Results Here we infor-
mally state the results. The formal theorem statements
are given in their respective sections.

Recall that FAQ-AI(1) is a FAQ-AI query with one
additive inequality. We start by showing Theorem 3.2
in Section 3 that the FAQ-AI(1) problem is #P -hard,
even for the problem of counting the number of rows in
the design matrix for a cross product join. Thus a rela-
tional algorithm for FAQ-AI(1) queries is extraordinar-
ily unlikely as it would imply P = #P , and therefore,
P = NP .

Thus, we turn to approximately computing FAQ-
AI(1) queries. An ideal result would be what we call
a Relational Approximation Scheme (RAS), which is a
collection {A✏} of relational algorithms, one for each real
✏ > 0, such that each A✏ is outputs a solution that has
relative approximation error at most ✏. Unfortunately,
for FAQ-AI(2) we show that this problem does not
admit a bounded approximation unless P = NP using
a relational algorithm. See Theorem 3.1.

Our main result is a RAS for FAQ-AI(1) queries
that have certain natural properties. This is shown in
Theorems 5.1 and 6.1. The formal definitions are cum-
bersome and we believe it would be more illuminating to
list problems for which our techniques will give a RAS.
We explain how to apply our results to get these results,
as well as give some examples of problems for which our
results are not applicable, in Section 7.

• Counting the number of points on one side of a
hyperplane.

• Counting the number of points within a hyper-
sphere of radius r centered at a point y.

• Counting the number of points in an axis-parallel
ellipsoid.
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• Sum of 1-norm distances from a point y of points
on one side of a hyperplane.

• Sum of 2-norm squared of points in an axis-parallel
ellipsoid.

• Number of nonzero entries of points on one side of
a hyperplane.

• Finding the minimum 1-norm of any point in a
hypersphere H of radius r centered at a point y.

• Finding the point on the specified side of a hyper-
plane H that has the maximum 2-norm distance
from a point y.

To illustrate the results consider the first example
above of counting points on one side of the hyperplane.
This is a FAQ-AI(1) query. Intuitively, being on one
side of a hyperplane can be represented as one additive
constraint. For this problem, we can approximately
count the number within (1 + ✏) factor for arbitrary
✏ > 0 in time polynomial in the size of the tables input,
parameterized by n, m and d, when the join is acyclic.
If the join is not acyclic, then we can decompose the
query to make it acyclic. This is the standard approach
in the area and the running time depends polynomially
on the size of the decomposition, a.k.a. the fractional
hyper-treewidth (see Appendix C).

To summarize, we give a relatively complete char-
acterization of FAQ-AI queries. FAQ-AI(1) problem
is NP-Hard and admits a relational approximation
scheme. Further, a FAQ-AI(k) for k � 2 is inapprox-
imable.

T1

f1 f2
1 1
2 1
3 2
4 3
5 4

T2

f2 f3
1 1
1 2
2 3
5 4
5 5

J = T1 on T2

f1 f2 f3
1 1 1
1 1 2
2 1 1
2 1 2
3 2 3

Figure 1: A specific instance in which m = 2 and n = 5.
In particular, this shows T1, T2, the design matrix J ,
and the resulting layered directed graph G.

1.2 Overview of the Algorithmic Techniques
and Contributions To help the reader understand
our contributions without going through the formal
definitions of the setup, including FAQ’s, we first discuss
the following very special case of the problem considered
– it is special in both (i) table structure (how columns of
the tables are correlated) and (ii) query type (the query
outcome).

For (i), consider path joins which is a simple type
of joins that can be modeled as a directed acyclic graph
(DAG). A path join J = T1 on · · · on Tm, consists
of m input tables where each input table Ti has two
columns/features fi and fi+1. Then the join can be
modeled as a layered DAG G in which there is one layer
for each column and one vertex v in layer i for each entry
value that appears in the fi column in either table Ti�1

or table Ti.
Further, in G, there is a directed edge between a

vertex v in layer i and a vertex u in layer i + 1 if and
only if (v, u) is a row in table Ti. Then there is a one-
to-one correspondence between full paths in G, which
are paths from layer 1 to layer d, and rows in the design
matrix (the outcome of the join). Each node v in G is
associated with weight wv which is an entry of a table
where v appears. For simplicity think of the weights as
being non-negative. For illustration of a path join and
its analogy with DAGs, see Figure 1.

For (ii), consider the problem of counting the num-
ber of points in the design matrix on one side of a hyper-
plane, which we will call the Inequality Row Counting
problem. This is equivalent to following problem as-
suming the above path join. You are given a value B
and the goal is to count the distinct paths P in G from
layer 1 to d such that

P
v2P wv  B.

One can think of this as finding paths such that the
summation of the node weights on the paths can fit into
a knapsack of size B. This problem is a generalization
of the knapsack counting problem. In the knapsack
counting problem, one is given a knapsack of size B and
n items of weight k1, k2, . . . kn. The goal is to count the
number of feasible packings of the knapsack. To see this
is a special case of problem, we can create a graph with
n layers. Layer i corresponds to item i. The nodes have
weight 0 and ki. Every node in layer i each has edges
to both nodes in layer i+ 1. A path now from the first
to last layer describes a set of items. Going through the
node of weight 0 in layer i corresponds to not choosing
item i and going through the node of weight ki is as if
the item is chosen. It is easy to see now that counting
the paths which total weight is less than B is precisely
the solution to counting knapsack.

FAQ-AI(1) queries are generally closely related to
the knapsack counting problem and techniques known
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for this problem will prove useful. It is known how to
approximate this problem to a 1 + ✏ factor. This is
done by writing a dynamic program. Order the items
1, 2, . . . n. The dynamic program is D(i, N). This stores
the minimum total weight needed to obtain at least N
feasible distinct knapsack packings from items 1, . . . , i.
Of course N could be exponential, and the idea is to ap-
proximate the dynamic program by only counting the
number of solutions for the form (1 + ✏)j for integer
j. To solve Inequality Row Counting on a path join, we
have to be more careful than when solving the knapsack
counting. This is because the multi-layered DAG can be
more complicated and therefore more refined subprob-
lems should be considered. Further, this leads to accu-
mulation of the approximation error of the subproblem
objectives and we have to be more careful when apply-
ing the multiplication and summation operations in a
sequence.

While adapting the key idea for knapsack counting
problem to Inequality Row Counting for a path join
requires non-trivial work, our main contribution is in
introducing an algorithmic technique we call a dynamic
programming semiring. Eventually, we want to join
tables that are correlated in a more complicated way
than the simple path join. Luckily there is a so-called
Inside-Out algorithm for Sum-Product queries that can
be used to process semiring type queries for arbitrary
tables. Unfortunately, it is not obvious if we can find
semiring structure in dynamic programming. In our
dynamic programming semiring, the base elements can
be thought of as arrays, and the summation and product
operations in FAQ are designed so that the SumProd
query computes a desired dynamic program. This
conceptual contribution allows us to use the Inside-Out
algorithm for joining arbitrary tables and for various
queries. Further, to keep the computation compact, we
extend the operations to be approximate while paying
close attention to the order in which they are applied
for approximation guarantees.

Given the widespread utility of dynamic program-
ming as a algorithm design technique, it seems to us
likely that dynamic programming semirings will be use-
ful in designing relational algorithms for other problems.

1.3 Organization of the Paper In Section 2 we
give a formal definition of FAQ-AI. We also discuss
the Inside-Out algorithm for SumProd queries over
acyclic joins, as our algorithms will use the Inside-
Out algorithm. We also formally define approximate
operators to control the approximation quality. In
Section 3 we give hardness results for FAQ-AI queries,
which motivate us to study Approximate FAQ-AI(1).
In Section 4, we explain how to obtain a RAS for a

special type of FAQ-AI(1) query, an Inequality Row
Counting Query, that counts the number of rows in the
design matrix that satisfy a given additive inequality.
This can be used to illustrate our algorithmic ideas.
Then, in Sections 5 and 6 we show how to extend our
algorithmic ideas to obtain RAS for two types of FAQ-
AI(1) queries, namely SumSum and SumProd, which
will be defined later. Finally, in Section 7 we show how
some applications fit into our approximate FAQ-AI(1)
framework.

1.4 Related Results The Inside-Out algorithm [6]
can evaluate a SumProd query in time O(md2nh log n),
where h is the fractional hypertree width [14] of the
query (assuming unit time per semiring operation).
Note that h = 1 for the acyclic joins, and thus
Inside-Out is a polynomial time algorithm for acyclic
joins. One can reduce SumSum queries to m SumProd
queries [2], and thus they can be solved in time
O(m2d2nh log n). Conceptually the Inside-Out algo-
rithm is a generalization of Dijkstra’s shortest path algo-
rithm. We explain Inside-Out in more detail in Section
2.2. The Inside-Out algorithm builds on many earlier
papers, including [8, 12, 16, 14].

FAQ-AI queries were introduced in [2]. [2]
gave an algorithm with worst-case time complexity
O(md2nm/2 log n). So this is better than the standard
practice of forming the design matrix, which has worst-
case time complexity ⌦(dnm). Conceptually the im-
provement over standard practice arises because the al-
gorithm in [2] avoids the last join.

Di↵erent flavors of queries with inequalities were
also studied [15, 17, 5]. Relational algorithms for
linear/polynomial regression are considered in [21, 3,
4, 18, 19]. An algorithm for k-means on relational data
is given in [11].

2 Preliminaries

This section introduces the formal definitions of FAQ-
AI and useful known algorithms for this and related
problems.

2.1 FAQ-AI The input to FAQ-AI problem consists
of three components:

• A collection of relational tables T1, . . . Tm with real-
valued entries. Let J = T1 on T2 on · · · on Tm be the
design matrix that arises from the inner join of the
tables. Let n be an upper bound on the number of
rows in any table Ti, let N be the number of rows
in J , and let d be the number of columns/features
in J .

• An FAQ queryQ(J) that is either a SumProd query
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or a SumSum query. We define a SumSum query
to be a query of the form:

Q(J) =
M

x2J

dM

i=1

Fi(xi)

where (R,�, I0) is a commutative monoid over the
arbitrary set R with identity I0. We define a
SumProd query to be a query of the form:

Q(J) =
M

x2J

dO

i=1

Fi(xi)

where (R,�,⌦, I0, I1) is a commutative semiring
over the arbitrary set R with additive identity I0
and multiplicative identity I1. In each case, x is
a row in the design matrix J , xi is the entry in
column/feature i of x, and each Fi is an arbitrary
(easy to compute) function with range R.

• A collection L = {(G1, L1), . . . (Gb, Lb)} of ad-
ditive inequalities, where Gi is a collection
{gi,1, gi,2, . . . gi,d} of d (easy to compute) functions
that map the column domains to the reals, and each
Li is a real number. A row x 2 J satisfies the ad-
ditive inequalities in L if for all i 2 [1, b], it is the

case that
Pd

j=1 gi,j(xj)  Li.

FAQ-AI(b) is a special case of FAQ-AI when the cardi-
nality of L is at most b.

The output for the FAQ-AI problem is the result
of the query on the subset of the design matrix that
satisfies the additive inequalities. That is, the output
for the FAQ-AI instance with a SumSum query is:

Q(L(J)) =
M

x2L(J)

dM

i=1

Fi(xi)(2.1)

And the output for the FAQ-AI instance with a
SumProd query is:

Q(L(J)) =
M

x2L(J)

dO

i=1

Fi(xi)(2.2)

Here L(J) is the set of x 2 J that satisfy the additive
inequalities in L. To aid the reader in appreciating these
definitions, we now illustrate how some of the SVM
related problems in the introduction can be reduced to
FAQ-AI(1).

Counting the number of negatively labeled
points correctly classified by a linear separator:
Here each row x of the design matrix J conceptually
consists of a point in Rd�1, whose coordinates are

specified by the first d� 1 columns in J , and a label in
{1,�1} in column d. Let the linear separator be defined
by � 2 Rd�1. A negatively labeled point x is correctly
classified if

Pd�1
i=1 �ixi  0. The number of such points

can be counted using SumProd query with one additive
inequality as follows: � is addition, ⌦ is multiplication,
Fi(xi) = 1 for all i 2 [d�1], Fd(xd) = 1 if xd = �1, and
Fd(xd) = 0 otherwise, g1,j(xj) = �jxj for j 2 [d � 1],
g1,d(xd) = 0, and L1 = 0.

Finding the minimum distance to the lin-
ear separator of a correctly classified negatively
labeled point: This distance can be computed using
a SumProd query with one additive inequality as fol-
lows: � is the binary minimum operator, ⌦ is addition,
Fi(xi) = �ixi for all i 2 [d� 1], Fd(xd) = 1 if xd = �1,
and Fd(xd) = 0 otherwise, g1,j(xj) = �jxj for j 2 [d�1],
g1,d(xd) = 0, and L1 = 0.

2.2 The Inside-Out Algorithm for Acyclic
Queries We give an overview of the well-known algo-
rithm for FAQ, which is FAQ-AI(0), i.e., FAQ with no
additive constraints. Here, we assume that the join is
acyclic; otherwise we can decompose the join to make
it acyclic (see Appendix C).

After giving some preliminary definitions, we ex-
plain how to obtain a hypertree decomposition of
an acyclic join, and then explain the Inside-Out al-
gorithm from [6] for evaluating a SumProd query
Q(J) = �x2J ⌦

d
i=1 Fi(xi) over a commutative semir-

ing (R,�,⌦, I0, I1) for acyclic join J = T1 on · · · on Tm.
We choose a specific implementation of the algorithm
that is suitable for our purpose. A call of Inside-Out
may optionally include a root table Tr.

Let Ci denote the set of columns in Ti and let
C =

S
i Ci. Furthermore, given a set of columns Ci

and a tuple x, let ⇧Ci(x) be the projection of x onto Ci

which is a tuple that has the values of x in columns Ci.

Definition 2.1. A join query J = T1 on · · · on Tm is
acyclic if there exists a tree G = (V,E) such that:

• The set of vertices are V = {v1, . . . , vm} which has
one vertex associated with each input table Ti, and

• for every column c 2 C, the set of vertices {vi|c 2
Ci} is a connected component of G.

Note that the tree G used in Definition 2.1 is a hypertree
decomposition of the join J [20, 6]. The definition of
the hypertree decomposition for general joins (cyclic or
acyclic) can be found in Appendix C.

Algorithm to Compute Hypertree Decompo-
sition:

1. Initialize graphG = (V, ;) where V = {v1, . . . , vm}.
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2. Repeat the following steps until |T | = 1:

(a) Find Ti and Tj in T such that every column
of Ti is either not in any other table of T or
is in Tj . If there exists no Ti and Tj with this
property, then the query is cyclic.

(b) Remove Ti from T and add the edge (vi, vj)
to G.

We are now ready to describe the inside-out algo-
rithm.

Inside-out Algorithm:

1. Compute the hypertree decomposition G = (V,E)
of J .

2. Assign each column c in J to an arbitrary table
Ti such that c 2 Ci. Let Ai denote the columns
assigned to Ti in this step.

3. For each table Ti, add a new column/feature Qi.
For all the tuples x 2 Ti, initialize the value of
column Qi in row x to Qx

i =
N

j2Ai
Fj(xj). Note

that if Ai = ; then Qx
i = I1.

4. Repeat until G has only one vertex

(a) Pick an arbitrary edge (vi, vj) in G such that
vi is a leaf and i 6= r.

(b) Let Cij = Ci \ Cj be the shared columns
between Ti and Tj .

(c) Construct a temporary table Tij that has the
columns Cij [ {Qij}.

(d) If Cij = ;, then table Tij only has the
column/feature Qij and one row, and its lone
entry is set to �x2TiQ

x
i . Otherwise, iterate

through the y such that there exists an x 2
Ti for which ⇧Ci(x) = y, and add the row
(y,Qy

ij) to table Tij where:

i. Qy
ij is set to the sum, over all rows x 2 Ti

such that Cij(x) = y, of Qx
i .

(e) For all the tuples (x,Qx
j ) 2 Tj , let y =

⇧Cij (x), and update Qx
j by

Qx
j  Qx

j ⌦Qy
ij .

If (y,Qy
ij) /2 Tij , set Qx

j = I0.

(f) Remove vertex vi and edge (vi, vj) from G.

5. At the end, when there is one vertex vr left in G,
return the value

M

(x,Qx
r )2Tr

Qx
r

When we use the Inside-Out algorithm in context of
an approximation algorithm is important that the sum
computed in step 4(d)i is computed using a balanced
binary tree, so that if k items are being summed, the
depth of the expression tree is at most dlog ke.

One way to think about step 4 of the algorithm is
that it is updating the Qj values to what they would
be if what good old CLRS [10] calls a relaxation in the
description of the Bellman-Ford shortest path algorithm
was applied to every edge in a particular bipartite graph
Gi,j . In Gi,j one side of the vertices are the rows in
Ti, and the other side are the rows in Tj , and there
a directed edge (x, y) from a vertex/row in Ti to a
vertex/row in Tj if they have equal projections onto
Ci,j – they have the same values in columns Ci,j . The
length P y

j of edge (x, y) is the original value of Qy
j before

the execution of step 4. A relaxation step on a directed
edge (x, y) is then Qy

j = (P y
j ⌦Q

x
i )�Q

y
j . So the result of

step 4 of Inside-Out is the same as relaxing every edge
in Gi,j . However, Inside-Out doesn’t explicitly relax
every edge; instead, Inside-Out exploits the structure
of Gi,j , by grouping together rows in Ti that have the
same projection onto Ci,j , to be more e�cient.

2.3 Approximate Operators Since we will mostly
approximately answer FAQ-AI queries, we need to
carefully control the errors accumulated over the query
processing. Thus, we define approximate operators as
follows.

Definition 2.2.

• An operator � has bounded error if it is the case
that when x/(1 + �1)  x0

 (1 + �1)x and y/(1 +
�2)  y0  (1+�2)y then (x�y)/((1+�1)(1+�2)) 
x0
� y0  (1 + �1)(1 + �2)(x� y).

• An operator introduces no error if it is the case that
when x/(1 + �1)  x0

 (1 + �1)x and y/(1 + �2) 
y0  (1 + �2)y then (x � y)/(1 + max(�1, �2)) 
x0
� y0  (1 + max(�1, �2))(x� y).

• An operator � is repeatable if for any two non-
negative integers k and j and any non-negative real
� such that k/(1 + �)  j  (1 + �)k, it is the case

that for every x 2 R, (
Jk x)/(1 + �) 

Jj x 

(1 + �)
Jk x.

• An operator � is monotone if it is either monotone
increasing or monotone decreasing. The operator
� is monotone increasing if x � y � max(x, y).
The operator � is monotone decreasing if x � y 
min(x, y).
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3 Hardness Results

We first show that our main problem cannot be solved
even approximately with two or more additive con-
straints.

Theorem 3.1. For all c � 1, it is NP-hard to c-
approximate the number of rows in the design matrix
(even for a cross product join) that satisfy two (linear)
additive inequalities. So it is NP -hard to c-approximate
FAQ-AI(2).

Proof. We reduce from the Partition problem, where the
input is a collection W = {w1, w2, ..., wm} of positive
integers, and the question is whether one can partition
W into two parts with equal aggregate sums. From
this instance we create m tables, T1, T2, . . . , Tm, where
each Ti has a single columns and has two rows with
entries wi and �wi. Let J be the cross product of these
tables. Note that J has exactly 2m rows and each row
x 2 J contains either wi or �wi for every i, which can
be naturally interpreted as a partitioning that places
each item i in one part or the other, depending on
the sign of wi. The two (linear) additive inequalities
are (1, 1, . . . , 1) · x � 0 and (�1,�1, . . . ,�1) · x � 0.
Then the solution to the Row Counting SumProd query
subject to these two constraints is the number of ways
to partition W into two parts of equal aggregate sum.

Unfortunately, the problem is still not solvable in
polynomial time even with only one additive constriant.

Theorem 3.2. The problem of evaluating a FAQ-AI(1)
query is #P -Hard.

Proof. We prove the #-hardness by a reduction from
the #P -hard Knapsack Counting problem. An instance
for Knapsack consists of a collection W = {w1, . . . , wd}

of nonnegative integer weights, and a nonnegative in-
teger weight C. The output should be the number of
subsets of W with aggregate weight at most C.

We construct the instance of FAQ-AI as follows. We
creating d tables. Each table Ti has one column and two
rows, with entries 0 and wi. Then J = T1 on T2 on · · · on
Td is the cross product join of the tables. We define � to
be the d dimensional vector with 1’s in all dimensions,
and the additive inequality to � · x  C. Then note
that there is then a natural bijection between the rows
in J that satisfy this inequality the subsets of W with
aggregate weight at most C.

In light of these hardness results, our goal is to
develop approximation schemes for FAQ-AI(1).

4 Algorithm for Inequality Row Counting

The Inequality Row Counting problem is a special case
of SumProd FAQ-AI(1) in which the SumProd query

Q(L(J)) =
P

x2J

Qd
i=1 1 counts the number of rows

in the design matrix that satisfy the constraints L,
which consists of one additive constraint

P
i gi(xi)  L,

over a join J = T1 on T2 on · · · on Tm. We first
present our approximate algorithm for the Inequality
Row Counting because it illustrates many of the key
ideas that are extendable to SumSum FAQ-AI(1) and
SumProd FAQ-AI(1). In subsection 4.1, we design a
SumProd query over a dynamic programming semiring
that computes Q(L(J)) exactly in exponential time.
Then in subsection 4.2 we explain how to apply standard
sketching techniques to obtain a RAS.

4.1 An Exact Algorithm We first define a commu-
tative semiring (S,t,u, E0, E1) as follows:

• The elements of the base set S are finite multi-sets
of real numbers. Let #A(e) denote the frequency
of the real value e in the multi-set A and let it be
0 if e is not in A. Thus one can also think of A as
a set of pairs of the form (e,#A(e)).

• The additive identity E0 is the empty set ;.

• The addition operator t is the union of the two
multi-sets; that is A = B t C if and only if for all
real values e, #A(e) = #B(e) + #C(e).

• The multiplicative identity is E1 = {0}.

• The multiplication operator u contains the pairwise
sums from the two input multi-sets; that is, A =
B u C if and only if for all real values e, #A(e) =P

i2R(#B(e�i)·#C(i)). Note that this summation
is well-defined because there is a finite number of
values for i such that B(e�i) and C(i) are non-zero.

Lemma 4.1. (S,t,u, E0, E1) is a commutative semir-
ing.

Lemma 4.2. The SumProd query bQ(J) = tx2J u
d
i=1

Fi(xi), where Fi(xi) = {gi(xi)}, evaluates to the multi-
set {

P
i gi(xi) | x 2 J} the aggregate of the gi functions

over the rows of J .

Proof. Based on the definition of u we have,

u
d
i=1Fi(xi) = u

d
i=1{gi(xi)} =

(
dX

i=1

gi(xi)

)
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Then we can conclude:

tx2J u
d
i=1 Fi(xi) = tx2J

(
dX

i=1

gi(xi)

)

=

(
dX

i=1

gi(xi) | x 2 J

)

Thus the inequality row count is the number of
elements in the multiset returned by bQ(J) that are at
most L.

4.2 Applying Sketching For a multiset A, let
4A(t) denote the number of elements in A that are
less than or equal to t. Then the ✏-sketch S✏(A) of a
multiset A is a multiset formed in the following man-
ner: For each integer k 2 [1, blog1+✏ |A|c] there are
b(1+ ✏)kc�b(1+ ✏)k�1

c copies of the b(1+ ✏)kc smallest
element xk 2 A; that is, xk = 4A(b(1 + ✏)kc). Note
that |S✏(A)| may be less that |A| as the maximum value
of k is blog1+✏ |A|c. We will show in Lemma 4.3 that
sketching preserves 4A(t) within (1 + ✏) factor.

Lemma 4.3. For all t 2 R, we have (1 � ✏)4A(t) 
4S✏(A)(t)  4A(t).

Then our algorithm runs the Inside-Out algorithm,
with the operation t replaced by an operation �,
defined by A�B = S↵(AtB), and with the operation
u replaced by an operation �, defined by A � B =
S↵(A u B), where ↵ = ⇥( ✏

m2 log(n) ). That is, the
operations � and � are the sketched versions of t and
u. That is, Inside-Out is run on the query Q̃(J) =
�x2J �

d
i=1 Fi(xi), where Fi(xi) = {gi(xi)}.

Because � and � do not necessarily form a semir-
ing, Inside-Outside may not return Q̃(J). However,
Lemma 4.4 bounds the error introduced by each applica-
tion of� and �. This makes it possible in Theorem 4.1
to bound the error of Inside-Out’s output.

Lemma 4.4. Let A0 = S�(A), B0 = S�(B), C = AtB,
C 0 = A0

t B0, D = A u B, and D0 = A0
u B0. For all

t 2 R, we have:

1. (1�max(�, �))4C(t)  4C 0(t)  4C(t)

2. (1� � � �)4D(t)  4D0(t)  4D(t)

Theorem 4.1. Our algorithm achieves an (1 + ✏)-
approximation to the Row Count Inequality query
Q(L(J)) in time O( 1

✏2 (m
3 log2(n))2(d2mnh log(n))).

Proof. We first consider the approximation ratio.
Inside-Out on the query Q̃(J) performs the same semir-
ing operations as does on the query bQ(J), but it addi-
tionally applies the ↵-Sketching operation over each par-
tial results, meaning the algorithm applies ↵-Sketching
after steps 4d,4e, and 5. Lets look at each iteration of
applying steps 4d and 4e. Each value produced in the
steps 4d and 5 is the result of applying � over at most
nm di↵erent values (for acyclic queries it is at most n).
Using Lemma 4.4 and the fact that the algorithm ap-
plies � first on each pair and then recursively on each
pair of the results, the total accumulated error produced
by each execution of steps 4d and 5 is m log(n)↵. Then,
since the steps 4d and 4e will be applied once for each
table, and 4e accumulates the errors produced for all the
tables, the result of the query will be (m2 log(n)+m)↵-
Sketch of bQ(J).

We now turn to bounding the running time of
our algorithm. The time complexity of Inside-Out
is O(md2nh log n) when the summation and product
operators take a constant time [6]. Since each multi-
set in a partial result has at most mn members in it,
an ↵-sketch of the partial results will have at most
O(m logn

↵ ) values, and we compute each of � and �

in time O

✓⇣
m logn

↵

⌘2◆
. Therefore our algorithm runs

in time O( 1
✏2 (m

3 log2(n))2(d2mnh log(n))).

5 SumSum FAQ-AI(1)

In this subsection we prove Theorem 5.1, that there is
a RAS for SumSum FAQ-AI(1) queries covered by the
theorem.

Theorem 5.1. There is a RAS to compute a (1 ± ✏)
approximation of a SumSum FAQ-AI(1) query over a
commutative monoid (R,�, I0) if:

• The domain R is a subset of reals R.

• The operators � can be computed in polynomial
time.

• � introduces no error.

• � is repeatable.

Our algorithm for SumSum queries uses our ap-
proximation algorithm for Inequality Row Counting.
Consider the SumSum Q(L(J)) = �x2L(J) �

d
i=1 Fi(xi),

where L consists of one additive constraint
P

i gi(xi) 
L, over a join J = T1 on T2 on · · · on Tm.

SumSum Algorithm: For each table Tj , we run
our Inside-Out on the Inequality Row Counting query
Q̃(J), with the root table being Tj , and let T̃j be
the resulting table just before step 5 of Inside-Out is
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executed. From the resulting tables, one can compute,
for every column i 2 [d] and for each possible value of xi

for x 2 J , a (1+ ✏)-approximation U(xi) to the number
of rows in the design matrix that contain value xi in
column i, by aggregating over the row counts in any
table T̃j that contains column i. Then one can evaluate
Q(L(J)) by

dM

i=1

M

xi2D(i)

U(xi)M

j=1

Fi(xi)

where D(i) is the domain of column i.
Note that � operator is assumed to be repeatable,

meaning if we have a (1 ± ✏) approximation of U(xi)

then the approximation error of
LU(xi)

j=1 Fi(xi) is also
(1± ✏). Therefore, our SumSum algorithm is a (1 + ✏)-
approximation algorithm because the only error intro-
duced is by our Inequality Row Counting algorithm.
The running time is O( 1

✏2 (m
3 log2(n))2(d2m2nh log(n)))

because we run m Inequality Row Counting algorithm
m times.

6 SumProd FAQ-AI(1)

In this section we prove Theorem 6.1, that there is a
RAS for SumProd FAQ-AI(1) queries covered by the
theorem.

Theorem 6.1. There is a RAS to compute a SumProd
FAQ-AI(1) query over a commutative semiring
(R,�,⌦, I0, I1) if:

• The domain R is R+
[ {I0} [ {I1}.

• I0, I1 2 R+
[ {+1} [ {�1}

• The operators � and ⌦ can be computed in polyno-
mial time.

• � introduces no error.

• ⌦ has bounded error.

• � is monotone. An operator � is monotone if it is
either monotone increasing or monotone decreas-
ing.

• The log of the aspect ratio of the query is polyno-
mially bounded. The aspect ratio is the ratio of the
maximum, over every possible submatrix of the de-
sign matrix, of the value of the query on that sub-
matrix, to the minimum, over every possible sub-
matrix of the design matrix, of the value of the
query on that submatrix.

Our RAS for such queries generalizes our RAS for
Inequality Row Counting. Consider the SumProd query
Q(L(J)) = �x2L(J) ⌦

d
i=1 Fi(xi). where L consists of

the single additive constraint
Pd

i=1 gi(xi)  L. We
again first give an exact algorithm that can viewed
as a reduction to a SumProd query over a dynamic
programming semiring, and then apply sketching.

6.1 An Exact Algorithm We first define a struc-
tured commutative semiring (S,t,u, E0, E1) derived
from the (R,�,⌦, I0, I1) as follows:

• The base set S are finite subsets A of R⇥(R�{I0})
with the property that (e, v) 2 A and (e, u) 2 A
implies v = u; so there is only one tuple in A of
the form (e, ⇤). One can can interpret the value
of v in a tuple (e, v) 2 A as a (perhaps fractional)
multiplicity of e.

• The additive identity E0 is the empty set ;.

• The multiplicative identity E1 is {(0, I1)}.

• For all e 2 R, define #A(e) to be v if (e, v) 2 A
and I0 otherwise.

• The addition operator t is defined by A t B = C
if and only if for all e 2 R, it is the case that
#C(e) = #A(e)�#B(e).

• The multiplication operator u is defined by AuB =
C if and only if for all e 2 R, it is the case that
#C(e) =

L
i2R #A(e� i)⌦#B(i).

Lemma 6.1. If (R,�,⌦, I0, I1), is a commutative
semiring then (S,t,u, E0, E1) is a commutative semir-
ing.

For each column i 2 [d], we define the function Fi

to be {(gi(xi), Fi(xi))} if Fi(xi) 6= I0 and the empty set
otherwise. Our algorithm for computing Q(L(J)) runs
the Inside-Out algorithm on the SumProd query:

bQ = tx2J u
d
i=1 Fi(xi)

and returns
L

eL # bQ(e).

Lemma 6.2. This algorithm correctly computes
Q(L(J)).

6.2 Applying Sketching For a set A 2 S define
4A(`) to be �e`#A(e). Note that 4A(`) will be
monotonically increasing if � is monotonically increas-
ing, and it will be monotonically decreasing if � is
monotonically decreasing.

Conceptually an ✏-sketch S✏(A) of an element A 2 S
rounds all multiplicities up to an integer power of (1+✏).
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Formally the ✏-sketch S✏(A) of A is the element A0 of S
satisfying

#A0(e) =

(L
Lk<eUk

#A(e) if 9k e = Uk

I0 otherwise

where
L0 = min{e 2 R|4A(e)  0}

and for k 6= 0

Lk = min{e 2 R| ⇢(1 + ✏)k�1
 4A(e)  ⇢(1 + ✏)k}

and where

U0 = max{e 2 R|4A(e)  0}

and for k 6= 0

Uk = max{e 2 R| ⇢(1 + ✏)k�1
 4A(e)  ⇢(1 + ✏)k}

where ⇢ = min{#A(e) | #e 2 R and #A(e) > 0}. For
the special case that #A(e)  0 for all e 2 R, we only
have L0 and U0. Note that the only elements of R that
can be zero or negative are I0 and I1; therefore, in this
special case, #A(e) for all the elements e is either I0 or
I1.

Lemma 6.3. For all A 2 S, for all e 2 R+, if A0 =
S✏(A) then

4A(e)/(1 + ✏)  4A0(e)  (1 + ✏)4A(e)

Then our algorithm runs the Inside-Out algorithm,
with the operation t replaced by an operation �,
defined by A�B = S↵(AtB), and with the operation
u replaced by an operation �, defined by A � B =
S↵(A u B), where ↵ = ✏

m2 log(n)+m . That is, the
operations � and � are the sketched versions of t and
u. Our algorithm returns 4A(L) = �eL#A(e).

Because � and � do not necessarily form a semir-
ing, Inside-Outside may not return �x2J �

m
i=1 Fi(xi).

However, Lemma 6.4 bounds the error introduced by
each application of � and �. This makes it possible in
Theorem 6.1 to bound the error of Inside-Out’s output.

Lemma 6.4. Let A0 = S�(A), B0 = S�(B), C = AtB,
C 0 = A0

tB0, D = AuB, and D0 = A0
uB0. Then, for

all e 2 R we have:

1. 4C(e)
1+max(�,�)  4C 0(e)  (1 + max(�, �))4C(e)

2. 4D(e)
(1+�)(1+�)  4D0(e)  (1 + �)(1 + �)4D(e)

Now we can prove the existence of an algorithm for
approximating SumProd FAQ-AI(1) queries.

Proof. [Proof of Theorem 6.1] We first consider the
approximation ratio. Inside-Out on the query Q̃(J)
performs the same semiring operations as it does on
the query bQ(J), but it additionally applies the ↵-
Sketching operation over each partial result, meaning
the algorithm applies ↵-Sketching after steps 4d,4e, and
5. Lets look at each iteration of applying steps 4d and
4e. Each value produced in the steps 4d and 5 is the
result of applying � over at most nm di↵erent values
(for acyclic queries it is at most n). Using Lemma 4.4
and the fact that the algorithm applies � first on each
pair and then recursively on each pair of the results,
the total accumulated error produced by each execution
of steps 4d and 5 is m log(n)↵. Then, since the steps
4d and 4e will be applied once for each table, and 4e
accumulates the errors produced for all the tables, the
result of the query will be (m2 log(n) + m)↵-Sketch of
bQ(J).

We now turn to bounding the running time of
our algorithm. The time complexity of Inside-Out
is O(md2nh log n) when the summation and product
operators take a constant time [6]. The size of each
partial result set A 2 S, after applying ↵-sketching, will
depend on the smallest positive value of 4A(e) and the
largest value of 4A(e). Let � and � be the minimum
and maximum positive real value of SumProd query
over all possible sub-matrices of the design matrix, the
smallest and largest value of4A(e) for all partial results
A would be � and � respectively; therefore, the size of
the partial results after applying ↵-Sketching is at most
O( log(�/�)↵ ). As a result, we compute each of� and � in

time O

✓⇣
log(�/�)

↵

⌘2◆
. Therefore our algorithm runs in

time O( 1
✏2 (m

2 log(n) log( �� ))
2(d2mnh log(n))) and the

claim follows by the assumption that the log of the
aspect ratio, log( �� ), is polynomially bounded.

7 Example Applications of Our General
Results

Inequality Row Counting: Some example prob-
lems fow which we can use our Inequality Row Counting
to obtain a RAS in a straightforward manner:

• Counting the number of points on one side of a
hyperplane, say the points x satisfy � · x  L.

• Counting the number of points within a hyper-
sphere of radius r centered at a point y. The addi-
tive constraint is

Pd
i=1(xi � yi)2  r2.

• Counting the number of points in an axis-parallel

ellispoid, say the points x such that
Pd

i=1
x2
i

↵2
i
for

some d dimensional vector ↵.
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SumSum FAQ-AI(1) Queries Some examples
of problems that can be reduced to SumSum FAQ-AI(1)
queries and an application of Theorem 5.1 gives a RAS:

• Sum of 1-norm distances from a point y of points
on one side of a hyperplane. The SumSum query
is
P

x2J

Pd
i=1 |xi � yi|. One can easily verify the

addition introduces no error and is repeatable.

• Sum of 2-norm squared of points in an axis-parallel
ellipsoid. The SumSum query is

P
x2J

Pd
i=1 x

2
i .

• Number of nonzero entries of points on one
side of a hyperplane. The SumSum query isP

x2J

Pd
i=1 xi 6=0.

SumProd FAQ-AI(1) Queries Some examples
of problems that can be reduced to SumProd FAQ-AI(1)
queries and an application of Theorem 6.1 gives a RAS:

• Finding the minimum 1-norm of any point in a
hypersphere H of radius r centered at a point
y. The SumProd query is minx2J

Pd
i=1 |xi|.

Note (R+
[ {0} [ {+1},min,+,+1, 0) is

a commutative semiring. The multiplication
operator in this semiring, which is addition,
has bounded error. The addition operator,
which is minimum, introduces no error and
is monotone. The aspect ratio is at most
(maxx2J

Pd
i=1 |xi|)/(minx2J mini2[d]|xi 6=0 |xi|),

and thus the log of the aspect ratio is polynomially
bounded.

• Finding the point on the specified side of a
hyperplane H that has the maximum 2-norm
distance from a point y. The SumProd query is
maxx2J

Pd
i=1(yi � xi)2. Note that this computes

the point with the maximum 2-norm squared
distance. One can not directly write a SumProd
query to compute the point with the 2-norm
distance; We need to appeal to the fact that the
closest point is the same under both distance
metrics. Note (R+

[ {0} [ {�1},max,+,�1, 0)
is a commutative semiring. The multiplication
operator in this semiring, which is addition,
has bounded error. The addition operator,
which is maximum, introduces no error and
is monotone. The aspect ratio is at most
(maxx2J

Pd
i=1 |xi|)/(minx2J mini2[d]|xi 6=0 |xi|),

and thus the log of the aspect ratio is polynomially
bounded.

Snake Eyes: Some examples of problems for which
our results apparently do not apply:

• Finding the minimum distance of any point on a
specified side of a specified hyperplane H to H.

So say the problem is to find a point x where
� · x � L and x · �. The natural SumProd query
is minx2J

Pd
i=1 xi�i. Note that some of the xi�i

terms maybe be negative, so this doesn’t fulfill
the condition that the domain has to be over the
positive reals. And this appears to be a non-trivial
issue basically because having good approximations
of s and t does not in general allow one to compute
a good approximation of s � t. We have been call
this the subtraction problem. Using a variation
of the proof of Theorem 3.1 one can show that
approximating this query to within an O(1) factor
is NP-hard.

• Sum of entries of the points lying on one side
of a hyperplane. The natural SumSum query isP

x2J

Pd
i=1 xi. Again as some of the xi terms may

be be negative, we run into the subtraction problem
again.

• Aggregate 2-norms of the rows in the design matrix.

The natural query is
P

x2J

⇣Pd
i=1 x

2
i

⌘1/2
, which is

neither a SumSum or a SumProd query.
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A Omitted Proofs from Section 4

A.1 Proof of Lemma 4.1

Proof. To prove the lemma, we prove the following
claims in the order in which they appear.

1. A tB = B tA

2. A t (B t C) = (A tB) t C

3. A t E0 = A

4. A uB = B uA

5. A u (B u C) = (A uB) u C

6. A u E0 = E0

7. A u E1 = A

8. A u (B t C) = (A uB) t (A u C)

First we show t is commutative and associative and
A tE0 = A. By definition of t, C = A tB if and only
if for all e 2 C we have #C(e) = #A(e)+#B(e). Since
summation is commutative and associative, t would be
commutative and associative as well. Also note that if
B = E0 = ; then #B(e) = 0 for all values of e and as a
result #C(e) = #A(e) which means C = A.

Now we can show that u is commutative and
associative. By definition of u, C = A u B if and only
if for all values of e, #C(e) =

P
i2R(#A(e� i) ·#B(i)),

since we are taking the summation over all values:

#C(e) =
X

i2R
(#A(e� i) ·#B(i))

=
X

i2R
(#A(i) ·#B(e� i))

The last line is due to the definition of B u A, which
means u is commutative.

To show claim (5), let D = A u (B u C) and
D0 = (A uB) u C:

#D(e) =
X

i2R
#A(e� i) ·

⇣X

j2R
#B(i� j) ·#C(j)

⌘

=
X

i,j2R
#A(e� i) ·#B(i� j) ·#C(j)

By setting i0 = e� j and j0 = e� i, we obtain:

#D(e) =
X

i0,j02R
#A(j0) ·#B(i0 � j0) ·#C(e� i0)

=
X

i02R

⇣X

j02R
#A(j0) ·#B(i0 � j0)

⌘
·#C(e� i0)

= #D0(e),

which means u is associative, as desired.
Now we prove A u E0 = E0 and A u E1 = A. The

claim (6) is easy to show since for all e, #E0(e) = 0 then
for all real values e

P
i2dist(A)(#A(i) ·#E0(e� i)) = 0;

therefore, A u E0 = E0. For claim (7), we haveP
i2dist(E1)

(#E1(i) ·#A(e � i)) = (#E1(0) ·#A(e)) =
#A(e); therefore, A u E1 = A.

At the end all we need to show is the distributive
law which means we need to show Au(BtC) = (AuB)t
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(AuC). LetD = Au(BtC) andD0 = (AuB)t(AuC).
We have,

#D(e)

=
X

i2R
#A(e� i) · (#B(i) + #C(i))

=
X

i2R
(#A(e� i) ·#B(i)) + (#A(e� i) ·#C(i))

=
X

i2R
(#A(e� i) ·#B(i)) +

X

j2R
(#A(e� j) ·#C(j))

= #D0(e)

A.2 Proof of Lemma 4.3

Proof. Let A0 = S✏(A). Note that since we are always
rounding the weights up, every item in A that is larger
than t will be larger in A0 as well. Therefore, 4A0(t) 
4A(t). We now show the lower bound. Recall that
in the sketch, every item in the sorted array A with an
index in the interval ((1+✏)i, (1+✏)i+1] (or equivalently
((1+✏)i, b(1+✏)i+1

c) will be rounded to A[b(1+✏)i+1
c].

Let i be the integer such that (1 + ✏)i < 4A(t) 
(1+ ✏)i+1, then the only items that are smaller or equal
to t in A and are rounded to have a weight greater than
t in A0 are the ones with index between (1 + ✏)i and
j = 4A(t). Therefore,

4A(t)�4A0(t) j � (1 + ✏)i  (1 + ✏)i+1
� (1 + ✏)i

=✏(1 + ✏)i  ✏4A(t),

which shows the lower bound of #4A(t) as claimed.

A.3 Proof of Lemma 4.4

Proof. By the definition of t, we know #C 0(t) =
#A0(t) + #B0(t); thus we have:

4C 0(t) =
X

⌧t

#C 0(⌧) =
X

⌧t

#A0(⌧) +
X

⌧t

#B0(⌧)

= 4A0(t) +4B0(t)

Similarly, we have 4C(t) = 4A(t) +4B(t). Then by
Lemma 4.3 we immediately have the first claim.

Let D00 = A u B0, Based on the definition of u we
have:

4D00(t) =
X

⌧t

#D00(t) =
X

⌧t

X

v2R
(#A(v) ·#B0(⌧ � v))

=
X

v2R

X

⌧t

(#A(v) ·#B0(⌧ � v))

=
X

v2R
(#A(v) ·4B0(t� v))

Therefore, using Lemma 4.3 we have: (1 � �)4D(t) 
4D00(t)  (1 + �)4D(t). We can similarly replace
A to A0 in D00 and get (1 � �)4D00(t)  4D0(t) 
(1 + �)4D00(t) which proves the second claim.

B Omitted Proofs from Section 6

B.1 Proof of Lemma 6.1

Proof. we prove the following claims respectively:

1. A tB = B tA

2. A t (B t C) = (A tB) t C

3. A t E0 = A

4. A uB = B uA

5. A u (B u C) = (A uB) u C

6. A u E0 = E0

7. A u E1 = A

8. A u (B t C) = (A uB) t (A u C)

Based on the definition, C = A t B if and only if
#C(e) = #A(e) �#B(e); since � is commutative and
associative, t will be commutative and associative as
well. Furthermore, #A(e) � #E0(e) = #A(e) � I0 =
#A(e); therefore, A t E0 = A.

Let C = A u B, using the commutative property
of ⌦ and change of variables, we can prove the fourth
claim:

#C(e) =
M

i2R
#A(e� i)⌦#B(i)

=
M

i2R
#B(i)⌦#A(e� i)

=
M

j2R
#B(e� j)⌦#A(j)

Similarly, using change of variables j0 = i � j and
i0 = j, and semiring properties of the ⌦ and �, we have:

M

i2R
#A(e� i)⌦ (

M

j2R
#B(i� j)⌦#C(j))

=
M

i2R

M

j2R
(#A(e� i)⌦#B(i� j))⌦#C(j)

=
M

i02R
(
M

j02R
#A(e� i0 � j0)⌦#B(j0))⌦#C(i0)

Therefore, A u (B u C) = (A uB) u C.
The claim A u E0 = E0 can be proved by the fact

that #E0(i) = I0 for all the elements and #A(e� i)⌦
I0 = I0. Also we have

L
i2R #A(e � i) ⌦ #E1(i) =
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#A(e) because, #E1(i) = I0 for all nonzero values of i
and it is I1 for e = 0; therefore, A u E1 = A.

Let D = A u (B t C), the last claim can be proved
by the following:

#D(e)

=
M

i2R
#A(e� i)⌦ (#B(i)�#C(i))

=
M

i2R

�
(#A(e� i)⌦#B(i))� (#A(e� i)⌦#C(i))

�

=
�M

i2R
(#A(e� i)⌦#B(i))

�

�
�M

i2R
(#A(e� i)⌦#C(i))

�

where the last line is the definition of (AuB)t (AuC).

B.2 Proof of Lemma 6.2

Proof. We can rewrite the generated FAQ as follow:

Q̂ = tx2J u
d
i=1 Fi(xi)

= tx2J u
d
i=1 {(gi(xi), Fi(xi))}

= tx2J

( 
dX

i=1

gi(xi),
dO

i=1

Fi(xi)

!)

Then the operator t returns a set of pairs (e, v) such
that for each value e, v = #Q̂(e) is the aggregation using

� operator over the rows of J where
Pd

i=1 gi(xi) = e.
More formally,

#Q̂(e) =
M

x2J,
P

i gi(xi)=e

 
dO

i=1

Fi(xi)

!

Therefore, the value returned by the algorithm is

M

eL

#Q̂(e) =
M

eL

M

x2J,
P

i gi(xi)=e

 
dO

i=1

Fi(xi)

!

=
M

x2L(J)

dO

i=1

Fi(xi)

B.3 Proof of Lemma 6.3

Proof. Since 4A(e) is monotone, the intervals [Lk, Uk]
do not have any overlap except over the points Lk and
Uk, and if the 4A(e) is monotonically increasing, then
Lk = Uk+1; and if 4A(e) is monotonically decreasing,
then Lk = Uk�1.

For any integer j we have:

4A(Uj) =
M

iUj

#A(i) =
M

kj

M

Lk<iUk

#A(i) =
M

kj

#A0(Uk)

=
M

iUj

#A0(i) = 4A0(Uj)

(B.1)

Now, first we assume 4A(e) is monotonically in-
creasing and prove the lemma. After that, we do the
same for the monotonically decreasing case. Given a
real value e, let k be the integer such that e 2 (Lk, Uk].
Then using the definition of Uk and Equality (B.1) we
have:

4A(e)/(1 + ✏)

 4A(Uk)/(1 + ✏) = 4A(Uk�1) = 4A0(Uk�1)

 4A0(e)  4A0(Uk) = 4A(Uk)

= (1 + ✏)4A(Uk�1)  (1 + ✏)4A(e)

Note that in the above inequalities, for the special case
of k = 0, we can use Lk instead of Uk�1. Similarly for
monotonically decreasing case we have:

4A(e)/(1 + ✏)

 4A(Uk�1)/(1 + ✏) = 4A(Uk) = 4A0(Uk)

 4A0(e)  4A0(Uk�1) = 4A(Uk�1)

= (1 + ✏)4A(Uk)  (1 + ✏)4A(e)

B.4 Proof of Lemma 6.4

Proof. The first claim follows from the assumption that
� does not introduce any error and it can be proved by
the following:

(4A(e)�4B(e))/(1 + max(�, �))

#C(e) = 4A0(e)�4B0(e)

(1 + max(�, �))(4A(e)�4B(e))

The second claim can be also proved similarly;
based on definition of u , we have

4D(e) =
M

je

M

i2R
(#A(j � i)⌦#B(i))

=
M

i2R

M

je

(#A(j � i)⌦#B(i))

=
M

i2R
(#B(i)⌦

M

je

#A(j � i))

=
M

i2R
(#B(i)⌦4A(e� i))
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Let D00 = A0
u B, then based on the approximation

guarantee of 4A0(e) and the error properties of ⌦ and
�, we have

4D(e)/(1 + �)  4D00(e)  (1 + �)4D(e)

Then the second claim follows by replacing B with B0

in D00 and repeat the above step.

C Background

We start by defining the joins.

Definition C.1. (Join) Let T1, . . . , Tm be a set of
tables and for each table Ti, let Ci denote the set of
columns in Ti. The join of T1, . . . , Tm denoted by
T1 on · · · on Tm is a table J with set of column C =

S
j Cj

such that a tuple/row x is in J if an only if its projection
onto Cj is in Tj for all j.

The structure of a join can be modeled as a hypergraph
in which each vertex vi of the hypergraph is associated
with column fi and each hyperedge Sj is associated with
a table Tj such that vi 2 Sj if and only if fi 2 Cj . In
what the following, we use n to denote the size of the
largest input table in the join query Q = T1 on · · · on Tm.
We also use J to denote the output and |J | to denote
its size. We use the join query Q and its hypergraph H

interchangeably.

C.1 Fractional edge cover number and output
size bounds

Definition C.2. (Fractional edge cover) Let
H = (V, E) be a hypergraph (of some query Q). Let
B ✓ V be any subset of vertices. A fractional edge
cover of B using edges in H is a feasible solution
~� = (�S)S2E to the following linear program:

min
X

S2E

�S

s.t.
X

S:v2S

�S � 1, 8v 2 B

�S � 0, 8S 2 E .

The optimal objective value of the above linear program
is called the fractional edge cover number of B in H and
is denoted by ⇢⇤

H
(B). When H is clear from the context,

we drop the subscript H and use ⇢⇤(B).
Given a join query Q, the fractional edge cover

number of Q is ⇢⇤
H
(V) where H = (V, E) is the hyper-

graph of Q.

C.2 Tree decompositions, acyclicity, and width
parameters

Definition C.3. (Tree decomposition) Let H =
(V, E) be a hypergraph. A tree decomposition of H is
a pair (T,�) where T = (V (T ), E(T )) is a tree and
� : V (T ) ! 2V assigns to each node of the tree T a
subset of vertices of H. The sets �(t), t 2 V (T ), are
called the bags of the tree decomposition. There are two
properties the bags must satisfy

(a) For any hyperedge F 2 E, there is a bag �(t),
t 2 V (T ), such that F ✓ �(t).

(b) For any vertex v 2 V, the set {t | t 2 V (T ), v 2
�(t)} is not empty and forms a connected subtree
of T .

Definition C.4. (acyclicity) A hypergraph H =
(V, E) is acyclic i↵ there exists a tree decomposition
(T,�) in which every bag �(t) is a hyperedge of H.

When H represents a join query, the tree T in the
above definition is also called the join tree of the query.
A query is acyclic if and only if its hypergraph is acyclic.

For non-acyclic queries, we often need a measure of
how “close” a query is to being acyclic. To that end, we
use width notions of a query.

Definition C.5. (g-width of a hypergraph [7])
Let H = (V, E) be a hypergraph, and g : 2V ! R+ be
a function that assigns a non-negative real number to
each subset of V. The g-width of a tree decomposition
(T,�) of H is maxt2V (T ) g(�(t)). The g-width of H is
the minimum g-width over all tree decompositions of H.
(Note that the g-width of a hypergraph is a Minimax
function.)

Definition C.6. (fractional hypertree width) Let s be
the following function: s(B) = |B| � 1, 8V ✓ V. Then
the treewidth of a hypergraph H, denoted by tw(H), is
exactly its s-width, and the fractional hypertree width
of a hypergraph H, denoted by fhtw(H), is the ⇢⇤-width
of H.

From the above definitions, fhtw(H) � 1 for any
hypergraph H. Moreover, fhtw(H) = 1 if and only if H
is acyclic.
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