Hierarchical Clustering in General Metric Spaces using Approximate
Nearest Neighbors

Benjamin Moseley
Carnegie Mellon University

Abstract

Hierarchical clustering is a widely used data
analysis method, but suffers from scalability
issues, requiring quadratic time in general
metric spaces.

In this work, we demonstrate how approx-
imate nearest neighbor (ANN) queries can
be used to improve the running time of the
popular single-linkage and average-linkage
methods. Our proposed algorithms are the
first subquadratic time algorithms for non-
Euclidean metrics. We complement our theo-
retical analysis with an empirical evaluation
showcasing our methods’ efficiency and accu-
racy.

1 Introduction

Hierarchical clustering is a popular unsupervised learn-
ing method used to cluster data when the precise num-
ber of clusters is not known apriori. Algorithms such
as single-linkage, average-linkage and complete-linkage
are common examples of methods for hierarchical clus-
tering, and, while they started out as heuristics, recent
work has shed light on the objectives these different
methods optimize (6} 8} 9}(14).

All of these procedures fall into the family of agglomer-
ative clustering algorithms. They start out with each
data point in its own singleton cluster, and then merge
two clusters at a time, using different objectives to
select which pair to merge. While extremely popular, a
notable downside of these methods is that they run in
time quadratic in the number of points: given a dataset
of n points, n — 1 merges are required, and finding the
optimal merge is itself a linear time operation.

Proceedings of the 24'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

Sergei Vassilvitskii
Google

Yuyan Wang
Carnegie Mellon University

For ¢; metrics, Abboud et al. (1) showed how to use
Approximate Nearest Neighbor (ANN) data structure
to improve the running time to be subquadratic for
average linkage. The ANN data structure, constructed
based on locality sensitive hashing (LSH), can be used
to quickly find points that are close to any given point.
In this work we generalize their approach and show how
to implement it in any space where a hashing function
like LSH exists so that an ANN data structure can be
constructed. Our key technical contribution is a new
way to use ANN data structures to compute average
similarity between a pair of clusters.

Many problems, however, are best captured by general
metric spaces for which ANN schemes do not exist.
Consider, for instance, the shortest path metric on a
road graph. A general road network does not have
a good ANN and therefore there is no fast average-
linkage algorithm known. To overcome this we could
use the latitude and longitude as the Euclidean location
of points and use /5 distance to be a prozy for the road
network distance. Then we have a space where LSH
and an ANN data structure exists and we can leverage
our algorithm. This has issues though because while
the road distance and proxy are often close, natural
obstacles like mountains and rivers may cause two
points that are in close proximity in the Euclidean
space are far apart according to the road metric.

This phenomenon is common. In several instances we
have a well-behaved prory metric that approximately
preserves distances for majority of pairs. For instance,
the distances between points after applying dimension
reduction like Johnson-Lindenstrauss (10) or metric
embedding (12). Using these techniques, most pairwise
distances are approximately preserved, but a few of the
pairs have high error.

This paper investigate how one can use such proxies
to improve running times of hierarchical clustering in
general metric spaces. One can, of course, directly
use them in place of the true metric to compute a
hierarchical clustering in linear time. This approach
has two drawbacks. First it leads to poor solutions as
small errors can propagate and lead to a very different

Hierarchical Clustering in General Metric Spaces using Approximate Nearest Neighbors

solution. Second, it is brittle and offers no trade-off
between the quality of the solution and the running
time. In contrast, we show how to use proxy metrics,
ANN data structures, and the original metric in a way
that allows us to keep the subquadratic running time
and only pay a small cost in the accuracy of the final
clustering. Our methods are applicable to any general
metric for which such a proxy exists.

Related Work Hierarchical clustering encompasses
a collection of methods that give laminar decomposi-
tions of the data. It received renewed attention with
a breakthrough result by (9) who developed a cost
function for the problem; this was later extended by (8)
and (14), who gave theoretical justifications for the
average-linkage algorithm. This work was further im-
proved by (2) and (6) who gave tighter analyses and
approximation ratios.

The focus of our work is on improving the running time
of hierarchical clustering algorithms in general metric
spaces. Our main tool will be that of locality sensitive
hashing (LSH), first introduced by (13), that has had
many developments, see for instance (3). However, as
(7) showed formally, not all metric spaces support such
Approximate Nearest Neighbor (ANN) data structures.

For hierarchical clustering specifically, (1) recently gave
a way to use locality sensitive hashing to speed up
average linkage algorithms. Critically, however, the
methods in (8) only work for ¢; spaces. We extend
them to use arbitrary ANN data structures by identify-
ing invariant properties that make speed improvements
possible.

Our Contributions In this work we give new algo-
rithms for improving the running time of hierarchical
clustering algorithms.

e We show how to use Approximate Nearest Neigh-
bor (ANN) data structures to speed up running
times of single-linkage and average-linkage algo-
rithms.

e In general metric spaces, when ANN data struc-
tures are not available, we show how to use proxy
metrics to trade-off accuracy with running time.

e We demonstrate such a trade-off empirically, and
show how to find hierarchical clusterings within a
few percent of optimal in near linear running time.

2 Preliminaries

Agglomerative hierarchical clustering . Let S
be a set of points equipped with a distance function
d:S xS+~ RT. Agglomerative hierarchical clustering
algorithms start by initializing every point to be a
singleton cluster, and iteratively pick two clusters with

smallest dissimilarity to merge into a new cluster, until
there is only one cluster left.

Different definitions of dissimilarity lead to different
clustering algorithms. The average linkage algorithm
defines the dissimilarity to be the average distance
between all pairs of points across the two clusters. The
single linkage algorithm defines it as smallest distance
among all pairs of points.

Let avg(A, B) = ﬁ > acapep d(a,b) be the aver-
age linkage distance between two clusters A and
B. The average linkage distance function is a met-
ric, it satisfies the triangle inequality, avg(A, B) <
avg(A, C) +avg(B, C) for any three clusters A, B,C C
S (See Lemma 3.1 in (1)). We will also use the fact
the minimum average linkage distance is monotoni-
cally non-decreasing with merging: avg(A4,BUC) >
min{avg(A4, B),avg(A,C)} for all A,B,C C S. The
same property holds for the single linkage.

The single linkage algorithm is equivalent to Kruskal
algorithm for computing the Minimum Spanning Tree
(MST) on the complete graph where edge weights cor-
respond to the distance between points. We will also
be interested in the approximate version of Kruskal
algorithm, which selects any edge at each step whose
distance is within a factor c of the smallest edge between
different components. This version always returns a
tree of weight at most ¢ times optimal (5).

Approximate Nearest Neighbors. A key building
block of our techniques will be the approximate nearest
neighbor (ANN) data structure. We recall here key
facts about Locality Sensitive Hashing (LSH) (13), see
also the survey by Andoni & Indyk (3).

The data structure relies on an existence of a family of
hash functions H with each h € H a function from S
to Z, that map nearby points to the same hash value.

We recall the formal definition from (11). Let Bgs(q,r)
denote the set of points in .S that has distance at most
r from point ¢ € S.

Definition 1 ((r,~r, p1,p2)-sensitiveness). For any
target distance r, point set S and any query point ¢ € S,
given a constant factor v (v > 1), the hash function h

is (r,yr, p1, p2)-sensitive, if for p; > pa:

* Vv € Bs(q,7), Prlh(q) = h(v)] = p1
e Vv ¢ Bgs(q,vr), Prih(q) = h(v)] < p2

Families H satisfying these constraints are known to
exist for £, norm distances in Euclidean space for p €
(0,2] (11), and are known not to exist for some metric
spaces (7).

Using a family of such functions H we can construct
a data structure for approximate nearest neighbor

Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang

queries.

As we mentioned, such a family of functions H might
not exist for a general distance function d : S x .S — R
we are considering. However, assume we have a proxy
metric d’ : S x S — RT that approximates d by a
factor of 8 > 1. Up to scaling, we assume that for any

pair of points (z,y) € S x S, % < ‘g((;’g)) < 1. If there
exists an ANN data structure for d’, using d’ as a proxy
for d and applying a (r,~'r,p1, p2)-sensitive function
on d' gives a (r, Bv'r, p1, p2)-sensitive function for d.
Then, we can combine the proxy metric d’ and its LSH
function to construct a data structure that works for
d.

Definition 2. For any set of points P C S, Qp(q,7) is
a valid (r,~)-Near-Neighbor (NN) query, if it satisfies
these conditions:

e If Bp(q,7) =0, then Qp(q,7) returns 0.

e If Bp(q,7) # 0, then Qp(q,7) gives a point p #
q € P, such that d(p,q) <~y -r.

We call the point found by an approximate NN-query
a neighbor.

(13) and (11) described the way to build a data struc-
ture D(S,r,v) that allows one to answer (r,7)-NN
queries on any subset P using (r,~r, p1, p2)-sensitive
hashes. Importantly, the queries run in time sublinear

in |S].

We let n = |S| and H(n) denote the time needed to
construct a hash function. By the scheme described
in (II), D(S,r,v) is constructed by concatenating
O(logn) hashes and repeating for O(n”logn) times.
Thus the construction time for D(S,r,) is bounded

by O(nlog? nH(n)), where p = igﬁg;; € (0,1).

Moreover, assuming it takes constant time to insert,
delete or access an arbitrary point in any bucket, the
query time of Qp(g,7) is T'(n,v) = O(n”logn), while
the insert/delete time is D(n,~) = O(n”log®n). We
note that for a fixed p;, po decreases as y grows, hence
making p a function of ~.

3 Warm-up: Using ANNs to
Approximate Single Linkage

In this section, we give a brief description of how an
ANN data structure can be used to implement single
linkage clustering.

Both (13) and (4) proposed algorithms that use (r,~)-
Near-Neighbor to compute an Approximate Minimum
Spanning Tree. Here we provide a modified version
that is more in line with our average-linkage algorithm
described in the next section.

The goal is to implement the approximate variant of
Kruskal’s algorithm. Initially the tree T" is empty. The
algorithm iteratively selects an edge e and adds to to T'
if (1) T U{e} does not form a cycle and (2) it is within
a factor of (1 + €) of the cheapest such edge.

We now re-interpret this approach in the language of sin-
gle linkage. Initially all points are clusters. In each step,
clusters C; and C; are merged if min,ec, pec, d(a,b)
is at most (1 + €) miny j mingec, pec, d(a,b).

Let S be the set of input points. Without loss of gener-
ality, assume the smallest interpoint distance is 1 and
the aspect ratio is A = max,, yes d(u, v). We want to
find a pair of clusters to merge. We fix some § > 0, and
proceed by merging all clusters with distance at most
& between them. When no more merges are possible,
we increment 6 by a (1 + €) factor and repeat. Sup-
pose we have a partition of S into different components
(clusters) C = {C4,...,Cy}. We will find edges with
weights at most 70 between components and merge
components that share such an edge. It is easy to see
that this results in a (1 + €)y-approximation of the
MST.

How then to use the ANN data structure to find clusters
to merge? For a threshold ¢, construct a data structure
D = D(S,4,7). Pick any component C; € C, remove
the points in C; from D, and add all points in C; to
a query list. Query the first point in the list, p, using
the current D. If the query returns a neighbor ¢, let
C; be the component containing g. Add edge (p, ¢) to
the tree T'. Then add all points in C; to the query list
and remove C; from D. Repeat until the query returns
an empty set for p, then use next point in the query
list and repeat. If the query list becomes empty but
there are components that haven’t been queried before,
pick an arbitrary component and do repeat the process
again. The querying stops when D becomes empty.

The definition of the data structures immediately yields
the following theorem; we defer the proof to the Sup-
plementary Material.

Theorem 3. With high probability, the algorithm re-
turns a (1 + €)y-approzimate minimum spanning tree
or singe-linkage tree, and has O(%log Alog® n?H (n))
running time.

4 Average Linkage

We now expand our method to show how to use ANNs
to construct a provably approximate average-linkage al-
gorithm. Using ANNs the algorithm iteratively merges
clusters with approximately smallest average distance.
Naively computing the distance between two clusters re-
quires comparing the total distance of all pairs of points
in the two clusters; we wish to avoid this quadratic

Hierarchical Clustering in General Metric Spaces using Approximate Nearest Neighbors

dependence.

Similar to the single linkage case, the average linkage
algorithm will consider a geometric series of thresholds
§ of the form (1 + €)* for k € [[log A]]. For any fixed
4, the algorithm merges clusters within y(1 4+ O(e))d
of each other.

Algorithmic Structure We now detail how to use
ANNSs to find clusters with average linkage distance
~7(1 4+ O(€))é or smaller.

Let C be the current set of clusters. We represent every
cluster in C by a point in the cluster that is close to the
cluster center. (If points were in Euclidean space, we
would use the centroid of the cluster.) Let ¢(C;) be the
point in C; we use to represent this cluster, we define
this formally in the next section. We will maintain a
data structure of the points ¢(C;) for C; € C. This
data structure allows for queries of the form Q(¢(C;),r)
for a r close to . The query finds all pairs C;, C; such
that d(¢(C;), ¢(C;)) < r. Intuitively, the mapping ¢
is chosen such that for any two clusters, the distance
between the mapped points preserves their average
distance up to some constant factor.

Unfortunately, it is hard to select a ¢ such that
d(¢(C;), 0(C;)) approximate d(C;, C;) for any pair of
clusters C, C;. For example, consider two clusters with
overlapping centers, but points are close to the center

in one of them, and far away from the center in another.

To make up for the information loss, for every cluster
C € C, we maintain two values: one is ¢(C) and the
other is o(C) = ﬁZveCi d(v,d(C;)). Intuitively
c(C) represents the "deviation" of points in C' from
the center ¢(C'). Given any two clusters C;, C; € C, we
use the d(¢(C;), ¢(C;)) and o(C) to approximate the
average distance avg(C;, C;).

At a high level, the following properties should hold for
@(-) and o(+). These properties will allow us to identify
clusters whose average linkage distance is small enough
to merge them. (Formally, we will need slight variations
on these, see the paragraph on Construction of Center
and Deviation for exact details.)

L d(¢(Cy), ¢(C5)) = o(Ci) = o(Cj) < avg(Ci, C5) <
d($(Ci), ¢(C5)) + a(Ci) + a(C5).
2. 0(Cy),0(C;) < c-avg(C;, C;) for a constant c.

We now describe how we find which pairs of clusters
can be merged and which ones we should not consider
merging. For any cluster C;, we use the deviation
term o(C;) as a filter. Observe that if o(C;) > ¢d,

then avg(C;, C;) > 0 for any C; by the above property.

This implies that no C; with o(C;) > ¢d needs to be
considered for merging with any other cluster.

We thus remove all such clusters from consideration.
Since the deviation terms for all remaining clusters
are small, property one will allow the algorithm to
merge any pair of clusters where d(¢(C;), #(C;)) is
small compared to 0. To that end, as stated before we
build a nearest neighbor data structure based on the
points ¢(C;) for all remaining clusters.

There is one problem remaining. After a merge the new
cluster needs to be considered for subsequent merges.
The question is how to adapt the data structure effi-
ciently such that the query is still valid? There are two
steps involved: 1) finding a representative point for the
new cluster and measuring deviation, and 2) deleting
the old clusters and inserting the new cluster into the
data structure.

For both, we will develop a fast algorithm that con-
structs a randomized approximation to ¢ and o.

Construction of Center and Deviation For each
cluster C' in C we show how to construct ¢(C) and o(C).
The purpose of this section is to establish that these
quantities exist for every cluster such that they have
the requisite properties. Algorithmically, this section
will allow us to discover any cluster C' to discard based
on o(C). For the kept clusters we will put their ¢(C')’s
into the data structure, then use ANN queries to decide
which pairs to merge.

If |C| < L, set ¢(C) = argmin, . avg(C,p) for some
constant 0 < € < 1 to be set later. This takes O(% |C’\)
time to determine. Now, consider C' such that |C | >1
To begin, we calculate (gf)(C’),a(C’)) as follows. Sample
m points uniformly from C to get a sample C’. Find
the point v € C” such that }° - d(v,p) is minimized.
Set ¢(C) equal to v. Then set o(C) = avg(C, ¢(C)) =
avg(C,v).

We now aim to show the properties regarding ¢ and o.
The proof can be found in Section@of the Supplemen-
tary material.

Lemma 4. If m = @(log n) with high probability,
o(C) = avg(e(C),C) < (1 + 1= e) minyeg avg(p, C) <
2(1 + €) minyeg avg(p, C) for e < 0.5.

The prior lemma immediately gives the following corol-
lary.

Corollary 5. For any cluster C; with high probability
if 0(C;) > 2(1 4+ €)0 then given any other cluster Cj,
avg(C;, Cj) > § for e < 0.5.

The corollary ensures that if o(C;) > 2(1 + €)d then
w.h.p. C; has average linkage distance greater than
6 from every cluster in C. Thus, C; need not be con-
sidered for a merge. Moreover, since average linkage
distance increases as clusters get merged, we never need
to consider C; for this 4.

Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang

The following lemma is a direct application of triangle
inequality of average distances.

Lemma 6. For any two clusters C; and Cj,
d(¢(Ci), #(Cy)) — a(Ci) — o(Cy) < avg(Cy,Cy) <
d(¢(Ci), 9(Cy)) + o (Ci) + o (Cy).

The following run time lemma bounds the running time
of the construction of ¢ and ¢.

Lemma 7. For a cluster C, calculating (¢(C), o (C))
takes O(1|C|logn).

Proof. Tt takes O(1|C|logn) time to sample Xlogn
points, and O(|C| log n) time to measure the average
distance from C to every one of them, picking the
center and calculating deviation. O

Formal Algorithm We present the formal algo-
rithm which follows the intuition given in the previous
section and the developed definitions of ¢ and o.

See Algorithm for the pseudocode. As stated, the
algorithm considers § of geometrically increasing values.
Fix § = (1+€)k~1 and C to be the current set of clusters.
Initially § = 1 and C has a cluster for each individual

point. Let Py be the set of centers of clusters with small
deviation: P, = {¢(C) | C €C,0(C) <2(1+¢€)d}.

The set Py, contains centers of clusters in C for which
there may exist another cluster within average distance
0. We maintain a data structure that supports (r,~y)-
NN queries on Py, for a chosen r = O(9), denoted by
Dy. While Py, is not empty, we pick a point ¢(C;) from
it and use it as a query in Dy, to find a nearest neighbor.
If there is no such point, ¢(C;) is discarded from Py and

. Otherwise, if the data structures returns another
pomt ¢(Cj), we merge C; and Cj, adopting the merging
procedure proposed by (I). This new point is added
to P, and Dy.

For efficiency, the pair (¢(-),o(+)) is not recalculated
at every merge. Rather, an update happens after a
merge only if the cluster size grows significantly. We
maintain a quantity s(C') which denotes the size of
cluster C the last time (¢(C),o(C)) was recalculated.
When we merge C; and C; into a new cluster C, if
|C| > (1 +n)max{s(C;),s(C;)} for some fixed 7, the
center and deviation (¢(C), o(C)) are recalculated, and
s(C) is updated. Otherwise we use the center and
deviation of the cluster with bigger s(-) value. See
Algorithm [2]for details about merging.

In Sectionin the Supplementary Material we show
the following.

Theorem 8. Algorithm has the following guarantees:

e Let n =S| and A be the aspect ratio in S. The
run time is O(Ln? log? n)(log A)H (n).

Algorithm 1 Main Algorithm

1: procedure FASTAVERAGELINKAGE(S, 7, €)
2 C+—{{p}Ipes} > Make leaf clusters.

32 o({p}) < po({p}) < 0, s({p}) - 1forpe S
> Initialize center and deviation.

4: for k=1,2,...,log;, A do

5: 4 (14 ekt

6: P, < {¢(C) for C € C:0(C) <2(1+¢€)d}

> Filter the clusters.

7: r < 5(1+¢€)d

8: D <—’D(P]§,T,’Y>

9 while Dy, is not empty do
10: Get an arbitrary ¢(C;) from Pj.
11: Delete ¢(C;) from Dy and Pj. >

Maintain the data structure.

12: while Qp, (¢(C;),r) # 0 do
13: (b(c) A ka:((Cz)’r)
14: §<—(1+e)(+4)
15: 1+£
16: MERGE(C;, Cj, Dy, Py, n)
17: Return the resulting tree.

Algorithm 2 Merge Algorithm

1: procedure MERGE(C;, C}, Dy, Py, n)

2: if |C;]+1C;| > (1+n) max{s(C;), s(C;)} then

3: Update (¢(Cl U Cj), (T(CZ @] CJ)) > Update
only when cluster size increases by a factor.

4: S(CZ' U Cj) — ‘CZ‘ + |CJ|

5: else

6: if S(O,L') > S(Cj) then

7 (0(C;UC;),0(C;UCY)) + (6(Cy), 0 (Cy))

8: S(Cl U CJ) < S(Cz)

9: else

10: (0(Ci U Cj),o(C; U Cy)) «
(0(C5),0(C5))

11: s(C; U Cj) + s(Cy)

12: Delete ¢(C};) from Dy, and Py, insert ¢(C; UCj)

into Dy, and Pk only if o(C; UCj) < 2(1 +€)d.

o With high probability, the algorithm has an approx-
imation ratio of (5y + 4)(1 + O(e))) for average
linkage and completes the hierarchical clustering
tree.

5 Experiments

This section demonstrates the empirical effectiveness
of our algorithms for both single linkage and average
linkage clustering.

Recall that one of our motivations was that ANNs may
not exist for general metrics, but often times there are
well-behaved proxy metrics available; this is the setting
we explore in this Section.

Hierarchical Clustering in General Metric Spaces using Approximate Nearest Neighbors

39.00
38.75 4
38.50 4
41.01 32

38.25 1

38.001 @

latitude
IS
S
@
latitude

37.75 4

37.50 4

37.25 1

37.00

latitude
& s o
& R &

&
]

—74.4 742 -74.0 -73.8 -736
longtitude

—123.00-122.75-122.50-122.25-122.00-121.75-121.50-121.25-121.00
longtitude

S
&

—-925 -90.0 -87.5 -850 -825 -80.0 775 -75.0
lonatitude

Figure 1: Subsamples for New York, Bay Area and Great Lakes

Table 1: Comparing the performance of different average linkage methods, New York

Sample Size | 169 330 414 493 615 888 1141 1855
Aprx Ratio, mean, Proxy-AL | 1.923 1.513 1.939 1.545 1.854 2.083 2.450 1.746
Aprx Ratio, mean, Proxy-Hash-AL | 1.402 1.503 1.479 1.640 1.656 1.636 1.784 1.780
Aprx Ratio, 90%, Proxy-AL | 3.705 2.096 3.678 1.813 2.865 3.913 3.240 2.372
Aprx Ratio, 90%, Proxy-Hash-AL | 1.925 1.975 1.973 2.268 2.234 2.188 2.452 2.407
Aprx Ratio, max, Proxy-AL | 21.391 13.930 28.233 20.042 54.844 44.783 228.615 42.991
Aprx Ratio, max, Proxy-Hash-AL | 2.871 2.677 3.046 3.332 2.932 3.389 3.762 3.902
Global Obj, Proxy-AL | 0.999 0.989 0.999 0.998 0.999 0.994 0.963 1.001
Global Obj, Proxy-Hash-AL | 1.004 0.970 0.985 0.975 0.999 0.987 0.966 0.971
Our single linkage and average linkage implementations Data Set Nodes Edges
are named Proxy-Hash-SL and Proxy-Hash-AL, respec- New York 264,346 366,923
tively. The goals of this section are to establish the Bay Area 321,270 400,086

following:

e Show that both Proxy-Hash-SL and Proxy-Hash-
AL have strictly sub-quadratic running times.

e Show that using single/average linkage directly
on the proxy metrics results in poor quality, yet
Proxy-Hash-SL and Proxy-Hash-ALhave strong
performance. This will show that they new al-
gorithms are able leverage the proxy metrics to
achieve scalability, while overcoming the shortcom-
ings of using the proxy metrics directly.

e Demonstrate that using Proxy-Hash-SL and Proxy-
Hash-AL, we can find solutions with only a small
loss in quality compared with the solution found
by using single/average linkage on the real metric.

Implementation Details. We implemented the al-
gorithms in Section and with slight modifications.
While building the ANN data structure for querying,
we set the number of concatenations and repetitions
to be constant. The values of the constants are tuned
according to different data sets.

To improve show the trade-off between accuracy and
running time, while querying a point using the data
structure, we use LSH on the prozy distance to identify
the set of candidates that are nearest neighbors to the
query point, but then use the real distance to pick the
closest candidate. We only take a constant number of

Great Lakes | 2,758,119 3,442,829

Table 2: Dataset Details

neighbors from the point’s LSH bucket and pick the
one with smallest real distance from the query point. If
the true distance is below the threshold dj, we merge
the clusters.

Experiment 1: Road Maps. We use datasets from
The 9th DIMACS Implementation Challeng The
data files include the road networks of different cities.
The data is given in graph format where nodes represent
end points of roads, while edge weights represent the
road lengths. Each node’s latitude and longitude are
provided. We choose three areas to study: New York,
Bay Area, and the Great Lakes, see Table

Based on the road network, the distance between any
two points is the length of shortest path between them,
termed road distance. This is correlated but not equiva-
lent to the Euclidean distance calculated using lat/long
values. We remark that the true metric is a general
metric, and we will use the Euclidean metric as a proxy.

The original datasets have millions of points, so it
is impractical to find all pairwise shortest-path road
distances to compute the groundtruth average link-
age clustering. We perform the following subsampling

"http://users.diag.uniromal.it/challenge9/
download.shtml

Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang

Table 3: Ratio between total road distance of the tree and real MST, New York

Sample Size | 169 330 727 1166 1825 3765 6710 14428 28985
Proxy-SL | 1.760 1.304 1.554 1.784 1.412 1.805 1.753 1.883 1.511
Proxy-Hash-SL | 1.035 1.016 1.021 1.024 1.027 1.030 1.029 1.022 1.024

Table 4: Ratio between total real distance of the span-
ning tree and real MST, Seizure

Sample Size | 100 200 400 800 1600
Proxy-SL | 1.284 1.331 1.416 1.462 1.521
Proxy-Hash-SL. | 1.141 1.158 1.176 1.184 1.209

method: for each city, we draw a rectangle at a ran-
dom position on the map. Then we take the subgraph
induced by all points in this rectangle. If the subgraph
is not connected, we take the biggest connected com-
ponent. Figure |1 contains a map of all points for every
city, and the boxes represent 5 rectangles drawn for
some given lat/long lengths. This allows us to get
subsamples with many different sizes and study the
efficiency of our methods.

Experiment 2: Random Projections of High-
Dimensional Datasets. We consider FEuclidean
datasets in a large number of dimensions and use a
Johnson-Lindenstrauss (see, for instance, Dasgupta &
Gupta (10) dimension reduction technique to reduce
the number of dimensions. We consider the ¢ distance
between the original high-dimensional points as the real
distance, and the /> distance between the projected
data points as the proxy distance.

We use the seizure data set from UCI data repositor
The dataset has 179 dimensions and 11500 points, with
every point a recording of brain activity. We project
the data to 4 dimensions and take subsamples of size
[100, 200, 400, 800, 1600] from the original data set and
test Proxy-Hash-SL and Proxy-Hash-AL. For each of
the data sizes we take 5 subsamples, and take the
average of both performance and running time on these.

Performance Metrics. We use the following metrics
to measure the performance of hierarchical clustering
trees. For MST (single linkage), we use the objective
in the MST problem. This is the total weight of the
edges chosen in the spanning tree.

For average linkage, we use two metrics. Given a se-
quence of cluster merges, at every merge, using the real
distance, we calculate the ratio between the average
linkage of the merged clusters and the minimum av-
erage linkage. We call this metric the approximation
ratio. Assuming there are n points, a hierarchical clus-
tering tree gives n— 1 such ratios. For both datasets we
show the mean, 90%-percentile and the maximum of
all approximation ratios. For vanilla average linkage on

“https://archive.ics.uci.edu/ml/datasets/
Epileptic+Seizure+Recognition

the real distance, this ratio is always 1. If all n—1 ratios
are close to 1, the hierarchical clustering tree closely
resembles the tree produced by average linkage. The
other metric we use is the recently developed global
objective for hierarchical clustering tree introduced in
Cohen-Addad et al. (8).

Running Time. The bottleneck in all computations
is the time spent on computing true distances between
points. For the road map data set, every computation
involves finding the shortest path between a pair of
points; and for seizure, it is time consuming since the
original data is high-dimensional. To give an imple-
mentation and problem independent view into the per-
formance of our methods, we report the total number
of real distance computations made by Proxy-Hash-SL
and Proxy-Hash-AL.

Results. We first compare the performance of directly
using proxy distance with using Proxy-Hash-SL and
Proxy-Hash-AL. Namely, we first construct a hierar-
chical clustering tree by running MST /average linkage
on the dataset using proxy distance as the distance
metric. We use “Proxy-SL” and “Proxy-AL” to refer
to the results produced in this way in all tables and
figures. Then we construct another tree using our im-
plementation of Proxy-Hash-SL/Proxy-Hash-AL. Then
we compare the performance of these two hierarchi-
cal clustering trees using the proposed performance
metrics.

For road map dataset, Table compares the spanning
tree found by Proxy-SLand Proxy-Hash-SL. The entries
show the ratio of total weights of the spanning tree
to the real MST (lower is better). We report the
results for € = 0.2 in Proxy-Hash-SL. The results are
quantitatively similar on all three datasets, we only
show results for New York here, and postpone the other
two cities to the Supplementary Material.

Table compares the performance of hierarchical clus-
tering tree by running average linkage directly on the
proxy metric and Proxy-Hash-AL for road map in New
York. The first column shows the performance metric
we are using. Here “Aprx Ratio” refers to the approx-
imation ratio, where “mean”, “90%” and “max” refers
to the mean, 90%-percentile and maximum of all ap-
proximation ratios for the tree, respectively. Following
that, “Proxy-AL” or “Proxy-Hash-AL” specifies which
algorithm we are using for that line in the table.

Analysis. The new algorithms perform significantly

Hierarchical Clustering in General Metric Spaces using Approximate Nearest Neighbors

Table 5: Comparing the performance of different average linkage methods, Seizure

Sample Size | 100 200 400 800 1600

Aprx Ratio, mean, Proxy-AL | 1.723 1.955 2.141 2.651 3.159

Aprx Ratio, mean, Proxy-Hash-AL | 1.210 1.240 1.284 1.348 1.623

Aprx Ratio, 90%, Proxy-AL | 2.549 3.053 3.386 4.272 5.315

Aprx Ratio, 90%, Proxy-Hash-AL | 1.438 1.456 1.504 1.567 2.120
Aprx Ratio, max, Proxy-AL | 5.836 5.958 8.851 13.501 22.921

Aprx Ratio, max, Proxy-Hash-AL | 1.763 1.757 1.891 1.969 2.973

Global Obj, Proxy-AL | 0.993 0.991 0.993 0.986 0.990

Global Obj, Proxy-Hash-AL | 1.012 1.013 1.018 1.013 1.012

—— Proxy-Hash-AL
800001 - Fitted Line, y=cx~1.3

70000
2 60000
£ so000
8

& a0000
S 30000
* 20000

10000

o

Figure 2: Growth of distance computation,
Proxy-Hash-AL, New York

4000009 proxy-Hash-AL

-~ Fitted Line, y=cx"1.7
350000

£ 300000
?; 250000
£

£ 200000
£ 150000
% 100000

50000

0

Figure 3: Growth of distance computation,
Proxy-Hash-AL, Seizure

better than building a tree directly from the proxy
metric. Naively building the MST on the proxy metric
has poor performance, over 50% degradation in quality.
At the same time Proxy-Hash-SL gives much better
results, with only 1-3% loss at € = 0.1 to around 7-10%
at € = 0.5. This result is independent of the graph size,
but lower e values in Proxy-Hash-SL lead to higher
quality results. See the Supplementary Materials for
more discussion about the impact of sample size and ¢
on the performance of Proxy-Hash-SL. We note that
in general the performance is robust to small changes
in e.

The results extend to average linkage. In Tableand
note that both Proxy-AL and Proxy-Hash-AL perform
well for the global objective in Cohen-Addad et al. (8).
The degradation is negligible (about 1%) compared to
the real average linkage tree. However, the statistics
of approximation ratios show that on both datasets,
Proxy-Hash-AL often beats Proxy-AL on both data sets
in mean and 90% percentile of all approximation ratios.
On seizure, the advantage is more apparent than in

road maps. Especially, Proxy-Hash-AL has a significant
advantage overProxy-ALin worst-case approximation
ratios. This shows Proxy-Hash-AL makes decisions
which are similar to true average linkage. The quality of
its decision is stable and robust against large distortion
between the proxy and real distances.

Running Time Analysis. Next, we look at the speed
of our algorithms. The main bottleneck in all of the
approaches is the number of distance computations. For
the naive algorithm, we must compute distances for
all n2 pairs of nodes, resulting in a quadratic running
time.

Figure[2] and [3]show the growth of number of distance
computations as sample size grows. In both figures,
sample sizes (the x-axis) are plotted on a log-scale
for better visualization. For both data sets, we draw
another “benchmark” polynomial curve y = ¢ - ' to
show that the growth is strictly sub-quadratic. The
plots show that for road map and seizure, the p value
is bounded by 0.7 and 0.3, respectively. The gain
in running time might depend on the data set. The
running time plots for Proxy-Hash-SL and the road
maps in Bay Area and the Great Lakes can be found
in the supplementary materials.

6 Conclusion

In this work we presented algorithms that use approx-
imate nearest neighbor data structures to speed up
single and average linkage algorithms to run in sub-
quadratic time. In addition we showed how to ef-
fectively use proxy metrics to achieve a tradeoff be-
tween accuracy and running time when ANN data
structures are not available for general metrics. We
complemented our theoretical exploration with empiri-
cal results demonstrating the efficacy of our methods.

Many interesting questions remain, among them extend-
ing this analysis to complete linkage, or more generally
using proxy metrics in combination with approximate
nearest neighbor data structure to speed up other al-
gorithms.

Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang

7 Acknowledgements

B. Moseley and Y. Wang were supported in part by
a Google Research Award, an Infor Research Award,
a Carnegie Bosch Junior Faculty Chair and NSF
grants CCF-1824303, CCF-1845146, CCF-1733873 and
CMMI-1938909.

References

[1] Abboud, Amir, Cohen-Addad, Vincent, &
Houdrougé, Hussein. 2019. Subquadratic High-
Dimensional Hierarchical Clustering. Pages 11576-
11586 of: Advances in Neural Information Processing
Systems.

[2] Ahmadian, Sara, Chatziafratis, Vaggos, Epasto,
Alessandro, Lee, Euiwoong, Mahdian, Mohammad,
Makarychev, Konstantin, & Yaroslavtsev, Grigory.
2020. Bisect and Conquer: Hierarchical Clustering
via Max-Uncut Bisection. In: AISTATS.

[3] Andoni, Alexandr, & Indyk, Piotr. 2008. Near-
Optimal Hashing Algorithms for Approximate Near-
est Neighbor in High Dimensions. Commun. ACM,
51(1), 117-122.

[4] Borodin, Allan, Ostrovsky, Rafail, & Rabani, Yu-
val. 1999. Subquadratic approximation algorithms
for clustering problems in high dimensional spaces.
Pages 435—444 of: Proceedings of the thirty-first an-
nual ACM symposium on Theory of computing.

[5] Calinescu, Gruia, Chekuri, Chandra, PAjl, Martin,
& VondrAjk, Jan. 2011. Maximizing a Monotone Sub-
modular Function Subject to a Matroid Constraint.
SIAM Journal on Computing, 40(6), 1740-1766.

[6] Charikar, Moses, & Chatziafratis, Vaggos. 2017. Ap-

proximate Hierarchical Clustering via Sparsest Cut
and Spreading Metrics. Pages 841-854 of: SODA.

[7] Chierichetti, Flavio, Kumar, Ravi, & Mahdian, Mo-
hammad. 2014. The complexity of LSH feasibility.
Theor. Comput. Sci., 530, 89-101.

[8] Cohen-Addad, Vincent, Kanade, Varun, Mallmann-
Trenn, Frederik, & Mathieu, Claire. 2018. Hierarchi-
cal Clustering: Objective Functions and Algorithms.
Pages 378-397 of: SODA.

[9] Dasgupta, Sanjoy. 2016. A cost function for
similarity-based hierarchical clustering. Pages 118-
127 of: STOC.

[10] Dasgupta, Sanjoy, & Gupta, Anupam. 2003. An
elementary proof of a theorem of Johnson and Lin-
denstrauss. Random Struct. Algorithms, 22(1), 60—
65.

[11] Datar, Mayur, Immorlica, Nicole, Indyk, Piotr, &
Mirrokni, Vahab S. 2004. Locality-sensitive hash-

ing scheme based on p-stable distributions. Pages
253-262 of: Proceedings of the twentieth annual sym-

posium on Computational geometry.

[12] Indyk, Piotr, & Matousek, Jiri. 2004. Low-
Distortion Embeddings of Finite Metric Spaces.
Pages 177-196 of: in Handbook of Discrete and Com-
putational Geometry. CRC Press.

[13] Indyk, Piotr, & Motwani, Rajeev. 1998. Approxi-
mate nearest neighbors: towards removing the curse
of dimensionality. Pages 604-613 of: Proceedings of
the thirtieth annual ACM symposium on Theory of
computing.

[14] Moseley, Benjamin, & Wang, Joshua. 2017. Ap-
proximation Bounds for Hierarchical Clustering: Av-

erage Linkage, Bisecting K-means, and Local Search.
Pages 3094—-3103 of: NIPS.

