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Abstract—Significant amounts of data are currently being
stored and managed on third-party servers. It is impractical for
many small scale enterprises to own their private datacenters,
hence renting third-party servers is a viable solution for such
businesses. But the increasing number of malicious attacks, both
internal and external, as well as buggy software on third-party
servers is causing clients to loose their trust in these external in-
frastructures. While small enterprises cannot avoid using external
infrastructures, they need the right set of protocols to manage
their data on untrusted infrastructures. In this paper, we propose
TFCommit, a novel atomic commitment protocol that executes
transactions on data stored across multiple untrusted servers.
To our knowledge, TFCommit is the first atomic commitment
protocol to execute transactions in an untrusted environment
without using expensive Byzantine replication. Using TFCommit,
we propose an auditable data management system, Fides, residing
completely on untrustworthy infrastructure. As an auditable
system, Fides guarantees the detection of potentially malicious
failures occurring on untrusted servers using tamper-resistant
logs with the support of cryptographic techniques. The experi-
mental evaluation demonstrates the scalability of our approach
and the relatively low overhead of executing transactions on
untrusted infrastructure.

Index Terms—Databases, Security, Malicious failures, Audits,
Fault detection, ACID guarantees
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I. INTRODUCTION

A fundamental problem in distributed data management is to
ensure the atomic and correct execution of transactions. Any
transaction that updates data stored across multiple servers
needs to be executed atomically, i.e., either all the operations
of the transaction are executed or none of them are executed.
This problem has been solved using commitment protocols,
such as Two Phase Commit (2PC) [14]. Traditionally, the
infrastructure, and hence the servers storing the data, were
considered trustworthy. A standard assumption was that if a
server failed, it would simply crash; and unless a server failed,
it executed the designated protocol correctly.

The recent advent of cloud computing and the rise of
blockchain systems are dramatically changing the trust as-
sumptions about the underlying infrastructure. In a cloud envi-
ronment, clients store their data on third-party servers, located
on one or more data centers, and they execute transactions on
the data. The servers hosted in the data centers are vulnerable
to external attacks or software bugs that can potentially expose
a client’s critical data to a malign agent (e.g., credit details
exposed in Equifax data breach [2]). Further, a server may
intentionally decide not to follow the protocol execution, either
to improve its performance or for any other self-interest (e.g.,

next big cyber threat is speculated to be intentional data
manipulation [1]).

The increasing popularity of blockchain is also exposing
the challenges of storing data on non-trustworthy infrastruc-
tures. Applications such as supply chain management [19]
execute transactions on data repositories maintained by mul-
tiple administrative domains that mutually distrust each other.
Blockchains resort to expensive protocols (mining or byzantine
replication) to tolerate malicious failures since for many appli-
cations, both the underlying infrastructure and the participating
entities are untrusted.

In most existing databases, the prevalent approach to tolerate
malicious failures is by replicating either the whole database
or the transaction manager [4], [12], [13], [31], [35]. Practical
Byzantine Fault Tolerance (PBFT) [7] by Castro and Liskov
has become the predominant replication protocol used in
designing data management systems residing on untrusted or
byzantine infrastructure. These systems provide fault-tolerance
in that the system makes progress in spite of byzantine failures;
the replication masks these failures and ensures that non-faulty
processes always observe correct and reliable information.
Fault tolerance is guaranteed only if at most one third of the
replicas are faulty [6].

In a relatively open and heterogeneous environment, know-
ing the number of faulty servers — let alone placing a bound on
them — is unrealistic. In such settings, an alternate approach
to tolerate malicious failures is fault-detection which can
be achieved using auditability. Fault detection imposes no
bound on the number of faulty servers — any server can fail
maliciously but the failures are always detected as they are
not masked from the correct servers; detection requires only
one server to be correct at any given time. To guarantee
fault detection through audits, tamper-proof logs have been
proposed and widely used in systems such as PeerReview [15]
and CATS [33].

Motivated by the need to develop a fault-detection based
data management system, we make two major propositions
in this paper. First, we develop a data management system,
Fides', consisting of untrusted servers that may suffer arbi-
trary failures in all the layers of a typical database, i.e., the
transaction execution layer, the distributed atomic commitment
layer, and the datastore layer. Second, we propose a novel
atomic commit protocol — TrustFree Commitment (TFCom-
mit) — an integral component of Fides that commits distributed
transactions across untrusted servers while providing auditable

I Fides is the Roman Goddess of trust and good faith.
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Fig. 1: Collective Signing.

guarantees. To our knowledge, TFCommit is the first to solve
the distributed atomic commitment problem in an untrusted
infrastructure without using expensive byzantine replication
protocols. Although we present Fides with TFCommit as an in-
tegral component, TFCommit can be disintegrated from Fides
and used in any other design of a trust-free data management.

With detection being the focus rather than tolerance of
malicious failures, Fides precisely identifies the point in the
execution history at which a fault occurred, as well as the
servers that acted malicious. These guarantees provide two
fold benefits: i) A malicious fault by a database server is
eventually detected and undeniably linked to the malicious
server, and ii) A benign server can always defend itself
against falsified accusations. By providing auditabiity, Fides
incentivises a server not to act maliciously. Furthermore, by
designing a stand-alone commit protocol, TFCommit, that
leverages cryptography, we take the first step towards develop-
ing a full-fledged data management system that fully resides in
untrusted infrastructures. We believe it is critical to start with
a strong and solid atomic commitment building block that can
be expanded to include fault tolerance and other components
of a transaction management hierarchy.

Section II provides the necessary background used in de-
veloping a trust-free data management system. Section III
discusses the architecture, system, and failure models of Fides.
Section IV describes the auditable transaction model in Fides
and also introduces TFCommit. Experimental evaluation of
TFCommit is presented in Section V, followed by related work
in Section VI. Section VII concludes the paper.

II. CRYPTOGRAPHIC PRELIMINARIES

Developing a data management system built on untrusted in-
frastructure relies heavily on many cryptographic tools. In this
section, we provide the necessary cryptographic techniques
used in developing Fides.

A. Collective Signing

Multisignature (multisig) is a form of digital signature that
allows more than one user to sign a single record. Multisigs,
such as Schnorr Multisignature [29], provide additional au-
thenticity and security compared with single user’s signature.
Collective Signing (CoSi) [30], an optimization of Schnorr
Multisigs, allows a leader to produce a record which then can
be publicly validated and signed by a group of witnesses. CoSi
requires two rounds of communication to produce a collective
signature (co-sign) with the size and verification cost of a
single signature. Figure 1 represents the four phases of CoSi
where L is the leader and 1,2, .., N are the witnesses:

Announcement: The leader announces the beginning of a
new round to all the witnesses and sends the record R to be
collectively signed.
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Commitment: Each witness, in response, picks a random
secret, which is used to compute the Schnorr commitment,
Tseh. The witness then sends the commitment to the leader.

Challenge: The leader aggregates all the commits, X =
> Zsen, and computes a Schnorr challenge, ch = hash(X|R).
The leader then broadcasts the challenge to all the witnesses.

Response: Each witness validates the record before com-
puting a Schnorr-response, 7.4, using the challenge and its
secret key. The leader collects and aggregates all the responses
to finally produce a Schnorr multisignature.

The collective signature provides a proof that the record
is produced by the leader and that all the witnesses signed
it only after a successful validation. Anyone with the public
keys of all the involved servers can verify the co-sign and the
verification cost is the same as verifying a single signature. An
invalid record will not produce enough responses to prove the
authenticity of the record. We refer to the original work [30]
for a detailed discussion of the protocol.

B. Merkle Hash Tree

(o] () [d]

Fig. 2: Merkle Hash Tree example.

A merkle hash tree (MHT) [24] is a binary tree with each
leaf node labeled with the hash of a data item and each internal
node labeled with the hash of the concatenated labels of its
children. Figure 2 shows an example of a MHT. The hash
functions, h, used in MHTs are one way hash functions i.e.,
for a given input z, h(x) = y, such that, given y and h, it is
computationally infeasible to obtain z. The hash function h
must also be collision-free, i.e., it is highly unlikely to have
two distinct inputs = and z that satisfies h(z) = h(z). Any
such hash function can be used to construct a MHT.

Data Authentication Using MHTs: MHTs are used to
authenticate a set of data values [24] by requiring the prover,
say Alice, to publicly share the root of the MHT, h,,0t, Whose
leaves form the data set. To authenticate a single data value,
all that a verifier, say Bob, needs from Alice is a Verification
Object (VO) consisting of all the sibling nodes along the path
from the data value to the root. The highlighted nodes in
Figure 2 form the verification object for data item a, VO(a),
which is of size log, n. To authenticate data item a, Alice
generates the VO(a), and provides the value of a and VO(a)
to Bob. Given the value of a, Bob computes h(a) and uses hy,
from VO(a) to compute h,, = h(h(a)|h(b)) i.e., the hash of
h(a) concatenated with h(b). Finally, using h, and h. 4 sent
in the VO(a), Bob computes the root, hgpc.a = (Ra,b|he,q)-
Bob then compares the computed root, hg p c .4, With the root
publicly shared by Alice h..,0r. Assuming the use of a collision
free hash function (h(a1) # h(az) where a1 # as), it would
be computationally infeasible for Alice to tamper with a’s
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value such that the h,,,; published by Alice matches the root
computed by Bob using the verification object.

III. FIDES ARCHITECTURE

Fides is a data management system built on untrusted infras-
tructure. This section lays the premise for Fides by presenting
the system and failure models, and the audit mechanisms.

A. System Model

Fides is a distributed database of multiple servers; the data
is partitioned into multiple shards and distributed on these
servers (perhaps provisioned by different providers). Shards
consist of a set of data items, each with a unique identifier.
The system assumes neither the servers nor the clients to
be trustworthy and hence, can behave arbitrarily. Servers and
clients are uniquely identifiable using their public keys and
are aware of all the other servers in the system. All message
exchanges (client-server or server-server) are digitally signed
by the sender and verified by the receiver [28].

The clients interact with the data via transactions consisting
of read and write operations. The data can be either single-
versioned or multi-versioned with each committed transaction
generating a new version. Every data item has an associated
read timestamp 7;s and a write timestamp w;s, indicating
the timestamp of the last transaction that read and wrote the
item, respectively. When a transaction commits, it updates the
timestamps of the accessed data items.

We choose a simplified design for a database server to
minimize the potential for failure. As indicated in Figure 3a,
each database server is composed of four components: an
execution layer to perform transactional reads and writes; a
commitment layer to atomically (i.e., all servers either commit
or abort a transaction) terminate transactions; a datastore
where the data shards are stored; and a tamper-proof log.

As individual servers are not trusted, we replace the local
transaction logs used in traditional protocols with a globally
replicated tamper-proof log (this approach is inspired by
blockchain). The log — a linked-list of transaction blocks linked
using cryptographic hash pointers — guarantees immutability.
Global replication of the log guarantees that even if a subset
(but not all) of the servers collude to tamper the log, the
transaction history is persistent.

B. Failure model

In Fides, a server that fails maliciously can behave arbitrar-
ily, i.e., send arbitrary messages, drop messages, or corrupt
the data it stores. Fides assumes that each server and client
is computationally bounded and is incapable of violating any
cryptographic primitives such as forging digital signatures
or breaking one-way hash functions — the operations that
typically require brute force techniques.

Let n be the total number of servers and f the maximum
number of faulty servers. Fides tolerates up to n — 1 faulty
servers, i.e., n > f. To detect failures, Fides requires at least
one server to be correct and failure-free (free of malicious,
crash, or network partition failures) at a given time. This
implies that the correct set of servers are not static and can
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vary over time. This failure model is motivated by Dolev and
Strong’s [9] protocol.

An individual server, comprising of four components as
shown in Figure 3a, can fail at one or more of the components.
A fault in the execution layer can return incorrect values;
in the commit layer can violate transaction atomicity; in the
datastore can corrupt the stored data values; and in the log can
change or reorder the transaction history. These failures can be
intentional (to gain application level benefits) or unintentional
(due to software bugs or external attacks); Fides does not
distinguish between the two.

A malicious client in Fides can send arbitrary messages
or semantically incorrect transactions to a database server but
later blame the server for updating the database inconsistently.
To circumvent this, the servers store all digitally signed,
unforgeable messages exchanged with the client. This message
log serves as a proof against a falsified blame when a client’s
transaction sends the database to a semantically inconsistent
state.

C. Auditing Fides

Auditability has played a key role in building dependable
distributed systems [15], [32], [33]. Fides provides auditablil-
ity: the application layer or an external auditor can audit
individual servers with an intent to either detect failures or
verify correct behavior.

Fides guarantees that any failure, as discussed in Sec-
tion III-B, will be detected in an offline audit. Fides focuses
on failure detection rather than prevention; detection includes
identifying (i) the precise point in transaction history where
an anomaly occurred, and (ii) the exact misbehaving server(s)
that is irrefutably linked to a failure. The auditor is considered
to be a powerful external entity and during each audit:

(i) The auditor gathers the tamper-proof logs from all the
servers before the auditing process.

(i) Given that at least one server is correct, from the set of
logs collected from all servers, the auditor identifies the correct
and complete log (how is explained in detail in Section IV-D).
The auditor uses this log to audit the servers.

Optimizations such as checkpointing can be used to mini-
mize the log storage space at each server; these optimizations
are orthogonal and hence not discussed further. If the audit
uncovers any malicious activity, a practical solution can be to
penalize the misbehaving server in legal, monetary, or other
forms specific to the application. This discourages a server
from acting maliciously.

IV. FIDES

In this section we present Fides: an auditable data manage-
ment system built on untrusted infrastructure. The basic idea is
to integrate cryptographic techniques such as digital signatures
(public and private key encryption), collective signing, and
Merkle Hash Trees (MHT) with the basic transaction execution
in database systems. This integration results in verifiable
transaction executions in an environment where the database
servers cannot be trusted.
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A. Overview

Figure 3b illustrates the overall design of Fides. The clients
read and write relevant data by directly interacting with the
appropriate database partition server (this can be accomplished
by linking the client application with a run-time library that
provides a lookup and directory service for the database
partitions). The architecture intentionally avoids the layer of
front-end database servers (e.g., Transaction Managers) to
coordinate executing transactional reads and writes as these
front-end servers may themselves be vulnerable and exhibit
malicious behavior by relaying incorrect reads/writes. Hence,
in Fides all data-accesses are managed directly between the
client and the relevant database server.

Since data-accesses are handled with minimal synchroniza-
tion among concurrent activities, the burden of ensuring the
correct execution of transactions occurs when a transaction is
terminated. We use a simplified setup where one designated
server acts as the transaction coordinator responsible for ter-
minating all transactions. The coordinator is also an untrusted
database server that has additional responsibilities only during
the termination phase.

When a client application decides to terminate its trans-
action, it sends the termination request to the designated
coordinator; all other database servers act as cohorts during
the termination phase. For ease of exposition, we first present
a termination protocol executed globally involving all database
servers, irrespective of the shards accessed in that transaction.
The global execution implies transactions are terminated and
ordered sequentially. We relax this requirement and allow
different coordinators for concurrent transactions in [3].

The following is an overview of the client-server interaction:
a typical life-cycle of a transaction as depicted in Figure 3c.
1. Begin transaction: A client starts accessing the data by
first sending a Begin Transaction request to all the database
servers storing items read or written by the transaction.

2. Read-write request: The client then sends requests to each
server indicating the data items to be read and written.

3. Read-write response: The servers respond to a read
requests by fetching the data from the datastore and relaying
it to the client. The write requests are buffered.

4. End Transaction: After completing data access, the client
sends End Transaction to the coordinator which coordinates
the commitment to ensure transaction correctness (i.e., serializ-
ability) and transaction atomicity (i.e., all-or-nothing property).
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key | description

Txnld commit timestamp of txn

R set list of (id : value, T¢s, wes)

W set list of (id : new_val, old_val, r¢s, wes)
>~ roots MHT roots of shards
decision commit or abort

h hash of previous block
co-sign a collective signature of participants

TABLE I: Details stored in each block

5. Atomic commitment: The coordinator and the cohorts
collectively execute the atomic commit protocol — TFCommit—
and decide either to commit or abort the transaction. The
commitment produces a block (i.e., an entry in the log)
containing the transaction details. If the decision is commit,
then the next two steps are performed.

6. Add log: All servers append the block in a consistent order
to their logs, thus creating a globally replicated log.

7. Update datastore: The datastore is updated based on the
buffered writes, if any, along with updating the timestamps 74
and w;s of the data items accessed in the transaction.

8. Response: The coordinator responds to the client informing
whether the transaction was committed or aborted.

The log, stored as a linked-list of blocks, encompasses
the transaction details essential for auditing. It is vital to
understand the structure of each block before delving deeper
into transaction execution details. Every block stores the
information shown in Table I. Although a block can store
multiple transactions, for ease of explanation, we assume that
only one transaction is stored per block.

As indicated in Table I, each transaction is identified by its
commit timestamp, assigned by the client that executed this
transaction. Any timestamp that supports total ordering can be
used by the client — e.g., a Lamport clock with (client_id :
client_time) — as long as all clients use the same timestamp
generating mechanism.

A block contains the transaction read and write sets con-
sisting of three vital pieces of information: 1) the data-item
identifiers that are read/written, 2) the values of items read
and the new values written; the old_val in the write set is
populated only for blind writes, and 3) the latest read r;s and
write wys timestamps of those data items at the time of access.

The blocks also contain: the Merkle Hash Tree roots of
the shards involved in the transaction (explained more in
Section IV-B); the commit or abort transaction decision; the
hash of the previous block forming a chain of blocks linked
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by their hashes; and finally, a collective signature of all the
servers (how and why are explained in Section IV-C).

B. Transaction Execution

This section describes the correct mechanism of executing
transactions (reads and writes) and discusses techniques to
detect deviations from the expected behavior.

1) Correct Behavior: With regard to transaction execution,
a correct database server is responsible for the following
actions: (i) return the values and timestamps of data-items
specified in the read requests, and (ii) buffer the values of
data-items updated in the transaction and if the transaction suc-
cessfully commits, update the datastore based on the buffered
writes. We explain how a correct server achieves these actions.

Reads and Writes: A client sends a begin transaction
message to all the database servers storing the items read or
written by the transaction. The client then sends a Read request
consisting of the data-item ids to the respective servers. For
example, if a transaction reads data item x from server S1
and item y from server S2, the client sends Read(x) to S1
and Read(y) to S2. The servers respond with the data values
along with the associated read rs and write w;s timestamps.

The client then sends the Write message with the data-
item ids and their updated values to the respective servers.
For example, if a transaction writes data item x in server S1
with value 5 and item y in server S2 with value 10, the client
sends Write(x,5) to S1 and Write(y,10) to S2. The servers
buffer these updates and respond with an acknowledgement.
To support blind writes, the acknowledgement includes the
old values and associated timestamps of the data-items that
are being written but were not read before.

After completing the data accesses, the client sends the end
transaction request — sent only to the designated coordinator —
consisting of the read and the write set: a list of data item ids,
respective rys and w;s returned by the servers, and the values
read and the new values written. The coordinator then executes
TFCommit among all the servers to terminate (commit or
abort) the transaction (explained in detail in Section IV-C).
If all the involved servers decide to commit the transaction,
each involved server constructs a Merkle Hash Tree (MHT)
(Section II-B) of its data shard with all the data items — with
updated values — as the leaves of the tree and with the root
node root,,n:. The read and write sets and MHT roots become
part of the block in the log once the transaction is committed.

Updating the datastore: If the transaction commits, the
servers involved in the transaction update the data values
in their datastores based on the buffered writes. The servers
also update the read and write timestamps of the data items
accessed in the transaction to its commit timestamp.

The data can be single-versioned or multi-versioned. For
multi-versioned data, when a transaction commits, a correct
server additionally creates a new version of the data items
accessed in the transaction while maintaining the older ver-
sions. Although an application using Fides can choose between
single-versioned or multi-versioned data, multi-versioned data
can provide recoverability. If a failure occurs, the data can
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be reset to the last sanitized version and the application can
resume execution from there.

2) Detecting Malicious Behavior: With regard to trans-
action execution, a server may misbehave by: (i) returning
inconsistent values of data-items specified in the read requests;
and (ii) buffering incorrect values of data-items updated in the
transaction or updating the datastore incorrectly.

(i) Incorrect Reads: All faults in Fides are detected by
an auditor during an audit. As mentioned in Section III-C,
during an audit, the auditor collects the log from all servers
and constructs the correct and complete log.

To detect an incorrect read value returned by a malicious
server, the auditor must know the expected value of the data-
item. The read and write sets in each log entry contains the
information on the updated value of a written item and the read
value of a read item. Note that in our simplifying assumption
(which will be relaxed later), each block contains only one
transaction and the transactions are committed sequentially
with the log reflecting this sequential order. By traversing the
log, at each entry, the auditor knows the most recent values
of a given data item. We leverage this to identify incorrectly
returned values.

Lemma 1: The auditor detects an incorrect value returned for
a data item by a malicious server.

Proof: Consider a transaction 7T; that committed at times-
tamp ts; and stored in the log at block b;. Assume transaction
T; read an item x and updated it. Let b; be the first block after
b; to access the same data item x — where j > i, indicating
that transaction T in b; committed after the transaction 7T} in
b;. The read value of x in b; must reflect the value written in
b;; if the values differ, an anamoly is detected. O

(ii) Incorrect Writes: The effect of incorrectly buffering a
write or incorrectly updating the datastore is the same: the
datastore ends up in an inconsistent state. The definition of
incorrect datastore depends on the type of data: for single
versioned data, the latest state of data (data values and times-
tamps) in the datastore is incorrect; for multi-versioned data,
one or more versions of the data are incorrect. We discuss
techniques to detect incorrect datastore for both types of data.

To detect an inconsistent datastore, we use the data au-
thentication technique proposed by Merkle [24] discussed in
Section II-B. To use this technique, the auditor requires the
read and written values in each transaction and the resultant
Merkle Hash Tree (MHT) root — all pieces of information
stored within each block.

Multi-versioned data: For multi-versioned data, the audit
policy can involve auditing a single version chosen arbitrarily
or exhaustively auditing all versions starting from either the
first version (block 0) or the latest version. We explain auditing
a single version, which can easily be extended to exhaustively
auditing all versions.

Let T; be a transaction committed at timestamp ¢s that read
and wrote data item x stored in server S}. Assume the auditor
audits server S}, at version ts. Once the auditor notifies the
server about the audit, the server constructs the Merkle Hash
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Tree with the data at version ts as the leaves; S then shares
the Verification Object VO- consisting of all the sibling nodes
along the path from the data x to the root — with the auditor.

The log entry corresponding to transaction 7; stores the
value read for item x and the new value written. The auditor
uses (i) the VO sent by Sk, and (ii) the hash of z’s value stored
in the write set of the log, to compute the expected MHT root
for the data in S. The auditor then compares the computed
root with the one stored in the log. A mismatch indicates that
the data at version ¢s is incorrect.

Single-versioned data: For single versioned data, the cor-
rectness is only with respect to the latest state of the data.
Hence, rather than using an arbitrary block to obtain the MHT
root of server Sy, the auditor uses the latest block in the log
that accessed the data in S; to obtain the latest MHT root.
The other steps are similar to multi-versioned data.

Lemma 2: The auditor detects an inconsistent datastore. For
multi-versioned data, the auditor detects the precise version at
which the datastore became inconsistent.

Proof: Detection is guaranteed since Merkle Hash Trees
(MHT) use collision-free hash functions (i.e., h(x) # h(y)
where = # y), and a malicious server cannot update a data
value such that the MHT root stored in the block matches the
root computed by the auditor using the verification object sent
by the server. For multi-versioned data, the auditor identifies
the precise version at which data corruption occurred by
systematically authenticating all blocks in the log until a
version with mismatching MHT roots is detected. g

C. Transaction Commitment

This section describes how transactions are terminated in
Fides and presents a novel distributed atomic commitment
protocol — TrustFree Commit (TFCommit) — that handles
malicious failures. This section also discusses techniques to
detect failures if a server deviates from the expected behavior.
With regard to transaction commitment, a correct database
server is responsible for the following: (i) Ensure transaction
isolation (i.e., strict serializability); (ii) Ensure atomicity —
either all servers commit the transaction or no servers commit
the transaction; and (iii) Ensure verifiable atomicity.

1) Correct Behavior: Transaction Isolation: Transaction
isolation determines how the impact of one transaction is
perceived by the other transactions. In Fides, even though
multiple transactions can execute, i.e., read and write data,
concurrently, Fides provides serializable executions in which
concurrent transactions seem to execute in sequence. To do
so, servers in Fides abort a transactions if it cannot be
serialized with already committed transactions in the log.
The read r;s and write w;s timestamps associated with each
data item is used to detect non-serializable transactions. The
latest timestamps can be obtained from either the datastore
or the transaction log. Similar to timestamp based optimistic
concurrency control mechanism, at commit time, a server
checks if the data accessed in the terminating transaction has
been updated since they were read. If yes, the server chooses
to abort the transaction.
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Atomicity and Verifiablity: Consider a traditional atomic
commit protocol that provides atomicity: Two Phase Commit
(2PC) [14]. 2PC guarantees atomicity provided servers are
benign and trustworthy. It is a centralized protocol where one
server acts as a coordinator and the others act as cohorts. To
terminate a transaction, the coordinator collects commit or
abort votes from all cohorts, and decides to commit the trans-
action only if all the cohorts choose to commit, and otherwise
decides to abort. The decision is then asynchronously sent to
the client and the cohorts. 2PC is sufficient to ensure atomicity
if servers are trustworthy; but in untrusted environments, 2PC
is inadequate as a cohort or the coordinator may maliciously
lie about the decision.

To make 2PC trust-free, we combine 2PC with a multi-
signature scheme, Collective Signing or CoSi (Section II-A): a
two-round protocol where a set of processes collectively sign
a given record using their private keys and random secrets.
CoSi guarantees that a record (or in our case block) produced
by a leader (or coordinator) is validated and signed by all
the witnesses (or cohorts) and that if any of the involved
processes lied in any of the phases, the resulting signature
will be incorrect. A signature is bound to a single record; any
process with the public keys of all the processes can verify
whether the signature is valid and corresponds to that record.

We propose a novel approach of integrating 2PC with CoSi
to achieve the atomicity properties of 2PC and the verifiable
properties of CoSi. The basic idea is that the coordinator,
similar to 2PC, collects commit or abort votes from the
cohorts, forms a decision, and encapsulates the transaction
details including the decision in a block. The coordinator then
sends the block to be verified and collectively signed by the
cohorts. An incorrect block (either with inaccurate transaction
details or wrong decision) produced by a malicious coordinator
will not be accepted by correct servers, thus resulting in an
invalid signature that can be easily verified by an auditor.

A successful round of TFCommit produces a block to be
appended to the log in a consistent order by all servers. For
ease of exposition, this section presents TFCommit with two
main assumptions: (i) the transactions are committed sequen-
tially to avoid forks in the log; and (ii) all servers participate in
transaction termination — even the servers that did not partake
in transaction execution — to have identical block order in
their logs. We relax these assumptions and discuss various
techniques to scale TFCommit, which is published in the
extended technical report [3] due to lack of space.

Recall from Table I all the details stored in each block. Once
a block is cosigned and logged by all servers, it is immutable;
hence, all the details must be filled in during different phases
of TFCommit. However, to ensure atomicity and verifiability
of TFCommit, we only need the transaction id, its decision,
and the co-sign. Other details such as the Read and Write sets,
Merkle Tree roots, and hashes are necessary to detect other
failures including isolation violation and data corruption.
The protocol:

A client, A, upon finishing transaction execution, sends a
signed pu = <end_transacti0n(tsi, R set—Wset))aA request
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Sch Announcement>
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<null,
SchChallenge>

<null,

chResponse> <Decision, null>

Fig. 4: Different phases and block generation progress made in each phase of TFCommit

to the coordinator, where ts; is a client-assigned commit
timestamp of the transaction and R set-W set is the read and
write sets consisting of data item ids, values read and new
values written, and the timestamps .5, and w;s. The servers
ignore any end transaction request with a timestamp lower
than the latest committed timestamp. Since the datastore is
updated only after a successful commit of a transaction, the
servers are unaffected if a malicious client does not send the
end_transaction request.

TFCommit is a 3-round protocol involving 5 phases of
communication as shown in Figure 4. Since TFCommit merges
2PC with CoSi, we indicate each phase by a mapping of <2PC
phase, CoSi phase>. Figure 4 shows the phases as well as the
progress made in constructing the block at each phase. The
phases of TFCommit are:

1) <GetVote, SchAnnouncement>: Upon receiving the
p = (end_ transaction(ts;, R set—Wset)>UA request from
the client, to commit a transaction 7', the coordinator C pre-
pares a partially filled block, b; = [ts;, Rset - Wset, h;_1],
containing the commit timestamp, read and write sets, and
hash of the previous block. C then encapsulates the signed
client request 1 and sends the (get_vote(bi, u)) ., message
to all the cohorts.

2) <Vote, SchCommitment>: Every cohort H verifies
both the get_vote message and the encapsulated client request,
and computes the Schnorr-commitment (z4.5,) for CoSi. Then,
only the cohorts that are part of the transaction, perform
the following actions. A cohort involved in the transaction
locally decides whether to commit or abort the transaction.
If the cohort locally decides to commit, then it constructs a
Merkle Hash Tree (MHT) (Section II-B) of its shard with all
the data items as leaves of the MHT and with the root node
root;,pe. The MHT reflects all the updates in 7; assuming
that 7T; be committed; since MHT computation is done in
memory, the datastore is unaffected if 7; eventually aborts.
(The MHT root is required for datastore authentication, as
explained in Section IV-B2.) The involved cohorts then send
<vote(decision,rootmht,wsch)>0H whereas the cohorts not
part of the transaction send <vote(m 50h)>a?—t to the coordinator.
As the coordinator is also involved in co-signing, it produces
the appropriate vote message.

3) <null, SchChallenge>: In this phase, the coordinator C
collects all the cohort responses and checks if any cohort (or
itself) involved in the transaction decided to abort. If none, it
chooses commit, otherwise abort. It then aggregates all the
MHT roots of the involved cohorts (roots = > r00tmpt), and
fills the roots field in the block b; along with the decision field.
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If any involved cohorts chose abort, the respective roots will
be missing in the block. Finally, the coordinator aggregates the
Schnorr-commitments X.p, = Y @ scp from all the servers and
computes the Schnorr-challenge by concatenating and hashing
Xsen, with b; ie, ch = h(Xsen||bi). The coordinator then
sends (challenge(ch, X scp, bi)>ac to all cohorts.

4) <null, SchResponse>: In this phase, every cohort, ,
checks if the decision within the block b; is abort, and if so,
b; should have some missing roots; if the decision is commit,
b; should have all the roots from the involved servers. Every
involved cohort that sent the MHT root in the vote phase
verifies if its corresponding root in the block is the same as the
one it sent. Cohorts also verify whether a potentially malicious
coordinator computed the challenge, ch, correctly by hashing
the concatenated X,.;, and b;, both of which were sent in
the challenge message. A cohort then computes the Schnorr-
response r; using its secret key and the challenge ch, and
sends <response(n)>UH to the coordinator.

5) <Decision, null>: The coordinator collects all the
Schnorr-responses and aggregates them, Ry, = Y. Tsch,
to form the collective signature represented by (ch, Rscp).
Intuitively, the challenge ch is computed using the block; and
the Schnorr-response Rs., requires the private keys of the
servers, thus the signature binds the block with the public
keys of the servers. The coordinator then updates the co-sign
field in the block and sends the finalized block to the client
and the cohorts. If the decision is commit, all servers append
block b; to their log and update their respective datastores.

The client, with the public keys of all the servers, verifies
the co-sign before accepting the decision — even an aborted
transaction must be signed by all the servers. If the verification
fails, the client detects an anomaly and may trigger an audit,
which may halt the progress in the system.

TFCommit, similar to 2PC, can be blocking if either the
coordinator or any cohort fails (crash or malicious). TFCommit
can be made non-blocking by adding another phase that makes
the chosen value available, as in the case of Three Phase
Commit, Paxos-Commit, or Paxos Atomic Commit, all of them
discussed in [22]; we leave this extension for future work.

2) Detecting Malicious Behavior: A correct execution of
TFCommit ensures serializable transaction isolation, atomic-
ity, and verifiable commitment. However, a malicious server
can (i) violate the isolation guarantees by committing non-
serializable transactions; (ii) a malicious coordinator can break
atomicity by convincing some servers to commit a transactions
and others to abort; or (iii) a server can send wrong crypto-
graphic values during co-signing to violate verifiability.
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Fig. 5: Atomicity violation of TFCommit

Lemma 3: The auditor detects serializablity violation.

Proof: Transaction execution is based on executing read and
write operations in the timestamp order. The transactions are
ordered based on the timestamps, which are monotonically
increasing. If a transaction has done a conflicting access
inconsistent with the timestamp order, it leads to one of
the following conflicts: 1) RW-conflict: a transaction with a
smaller timestamp read a data-item with a larger timestamp;
2) WW-conflict: a transaction with a smaller timestamp wrote
a data-item that was already updated with a larger timestamp;
3) WR-conflict: a transaction with a smaller timestamp wrote
a data-item after it was read by a transaction with a larger
timestamp. For each transaction audited, the auditor verifies if
any of the above violations exist, and if so, the auditor detects
the server responsible for the violation to be misbehaving.
This is equivalent to verifying that no cycle exists in the
Serialization Graph of the transactions being audited. ]

Lemma 4: The auditor or a correct server detects incorrect
cryptographic values for CoSi sent by a malicious server —
which hampers verifiablity of TFCommit.

Proof: Refer to the extended technical report [3] for the proof.

Lemma 5: The auditor or a correct server detect atomicity
violation of TFCommit.

Proof: Recall that the coordinator C collects votes in
phase two of TFCommit, forms the decision, and sends the
partial block containing the decision in the challenge message.
Consider Figure 5 where a malicious coordinator sends block
b. with commit decision to group G. and block b, with abort
decision to group G,. More precisely, the coordinator sends
(challenge(ch, Xen;be)) o 10 Ge (Xgen is the aggregated
Schnorr-commits) and <challenge(ch7 Xscn, ba)>gc to G,.
Since the decision is part of the block, the two blocks b, and b,,
have to be different if the coordinator violates atomicity. But
with respect to the challenge ch, there are two possibilities,
both producing invalid signatures:

e Case I: Coordinator sends the same challenge ch com-
puted using block b, (or b,) to both groups.

Any correct server in the group G, will recompute the
challenge using the block it received, b,, and immediately
recognize that the challenge sent by the coordinator does not
correspond to the block b,. (Alternatively, if the coordinator
used b, to compute the challenge ch, then servers in G, will
detect the anomaly.) Even if the servers in one group, say G,
collude with the coordinator and do not expose the anomaly,
the challenge ch corresponds only to block b.. The auditor,
while auditing a server in group G, detects that the co-sign
in block b, is invalid as it does not correspond to that block.

e Case 2: Coordinator sends the challenge ch computed
using block b, to group G, and the challenge ch’ computed
using block b, to group G,.
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In the final step of TFCommit, the servers in group G, will
use ch to compute the Schnorr-response, whereas the servers
in group G, will use ch’ to compute the Schnorr-response.
Given that the final collective signature can be tied only to a
single block, the co-sign does not correspond to either b. or
ba, hence producing a wrong signature. |

D. Transaction Logging

The transaction log in Fides is a tamper-proof, globally
replicated log. When a transaction commits after a successful
round of TFCommit, all servers append the newly produced
block to their logs.

Detecting Malicious Behavior: One or more faulty servers
can collude (but not all at once) to (i) tamper an arbitrary
block, (ii) reorder the blocks, or (iii) omit the tail of the log
(last few blocks). The auditor collects logs from all the servers
and uses the collective signature stored in each block to detect
an incorrect log.

Lemma 6: Given a set of logs collected from all servers, the
auditor detects all incorrect logs — logs with arbitrary blocks
that are modified or logs with reordered blocks.

Proof: The collective signature in each block prevents a
malicious server from manipulating that block once it is
appended to the log. The signature is tied specifically to one
block and if the contents of the block are manipulated, the
signature verification will fail. One or more malicious servers
cannot tamper with an arbitrary block successfully without
the cooperation of all the servers. And since the hash of the
previous block is part of a log entry, unless all the servers
collude, the blocks cannot be successfully re-ordered. O

Lemma 7: From the logs collected from all servers, the auditor
detects all incomplete logs — logs with missing tail entries.
Proof: A subset of servers cannot successfully modify
arbitrary blocks in the log (proof in Lemma 6) but they can
omit the tail of the log. During an audit, the auditor gathers the
logs from all the servers. At least one correct server exists with
the complete log — which can easily be verified for correctness
by validating the collective signature and hash pointer in each
block. The auditor uses this complete and verified log to detect
that one or more servers store an incomplete log. |

E. Correctness of Fides

Definition 1: Verifiable ACID properties

In transaction processing, ACID refers to the four key
components: Atomicity, Consistency, Isolaiton, and Durability.

We define v-ACID as the ACID properties that can be
verified. v-ACID indicates that a database system provides
verifiable evidence that the ACID guarantees are upheld.
This definition is useful when individual database servers are
untrusted and may violate ACID — in which case the system
must allow verifying and detecting the violations.

Theorem 1: Fides provides Verifiable ACID guarantees.
Proof: Fides guarantees that an external auditor can verify if
the database servers provide ACID guarantees or not. The first
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step in the verification is for the auditor to obtain a correct and
complete log. Given the assumption that at least one server is
correct at a given time, Lemmas 6 and 7 prove that during an
audit, the auditor always identifies correct and complete log.

Lemma 5 proves that Atomicity violation is verifiable;
Lemma 2 proves that the auditor verifies if the effect of a
transaction resulted in an inconsistent database when a server
buffers inconsistent writes, i.e., verifiable Consistency; Lemma
3 proves that the Isolation guarantee which ensures serializable
transaction execution is verifiable; and finally, Lemmas 1 and
2 verify if the effects of committed transactions are Durable.
Hence, an auditor verifies whether the servers in Fides uphold
ACID properties.

Note that multiple ACID violations can exist in the transac-
tion execution. Since the log is sequential, the auditor identifies
the first occurrence of any of these violations and the blocks
after that need not be audited as everything past that violation
can be incorrect and hence irrelevant to a correct execution.[]

V. EVALUATION

In this section, we discuss the experimental evaluation of
TFCommit. Our goal is to measure the overhead incurred in
executing an atomic commit protocol on untrusted infrastruc-
ture. The focus of Fides and TFCommit is fault detection in
a non-replicated system, hence solutions based on replication
that typically use PBFT [7] are orthogonal to TFCommit.

In evaluating TFCommit, we measure the performance using
two aspects: commit latency - time taken to terminate a
transaction once the client sends end transaction request,
and throughput - the number of transactions committed per
second; TFCommit was implemented in Python. We deployed
multiple database servers on a single Amazon AWS datacenter
(US-West-2 region) where each server was an EC2 m5.xlarge
vm consisting of 4 vCPUs, 16 GiB RAM and upto 10
Gbps network bandwidth. Unless otherwise specified in the
experiment, each database server stores a single shard (or
partition) of data consisting of 10000 data items.

To evaluate the protocol, we used Transactional-YCSB-
like benchmark [8] consisting of transactions with read-write
operations. Each transaction consisted of 5 operations on
different data items thus generating a multi-record work-
load. The data items were picked at random from a pool
of all the data partitions combined, resulting in distributed
transactions. Although we presented TFCommit and Fides
with the simplifying assumption of one transaction per block,
in the experiments, we typically stored 100 non-conflicting
transactions in each block. Every experimental run consisted
of 1000 client requests and each data point plotted in this
section is an average of 3 runs.

A. TFCommit vs. 2PC

As a first step, we compare the trust-free protocol TF-
Commit with its trusted counterpart Two Phase Commit [14].
TFCommit is essentially 2PC combined with the cryptographic
primitives (Co-Signing and Merkle Hash Trees) which results
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in an additional phase due to the trust-free nature. Thus, com-
paring TFCommit with 2PC highlights the overhead incurred
by TFCommit to operate in an untrusted setting. Both 2PC
and TFCommit are implemented such that transactions are
terminated and blocks are produced sequentially so that the
log does not have forks.

Figure 6a contrasts the performance of 2PC vs. TFCommit.
We increase the number of servers and measure commit
latency and throughput. In this experiment, each block stores a
single transaction so that we can measure the overhead induced
by TFCommit per transaction.

As indicated in the figure, the average latency to commit
a single transaction in an untrusted setting is approximately
1.8x more than a trusted environment. The throughput for
2PC is approximately 2.1x higher than TFCommit. TFCom-
mit performs additional computations compared with 2PC:
Merkle Hash Tree (MHT) updates to compute new roots
after each transaction, collective signature on each block,
and an additional phase. In spite of the additional computing
and achieving trust-free atomic commitment, TFCommit is
only 1.8x slower than 2PC. Having shown the overhead of
TFCommit as compared to 2PC, the following experiments
measure the performance of TFCommit by varying different
parameters.

B. Number of transactions per block

In this experiment, we fix the number of servers to 5
and increase the load on the system by increasing the num-
ber of transactions stored within each block. Each database
server consisted of 10000 data items. Figure 6b indicates
the average latency to commit a single transaction and the
throughput while increasing number of transactions stored
within each block from 2 to 120. The latency to commit a
single transaction reduces by 2.8X (from 2.7ms to 0.7ms) and
the throughput increases by 2.5x when 80 or more transactions
are batched in a single block. This experiment highlights
that even though the blocks are produced sequentially, the
performance of TFCommit can be significantly enhanced by
processing multiple transactions in one block.

C. Number of shards

In this experiment, we measure the scalability of TFCommit
by increasing the number of database servers (each storing a
shard of 10000 data items) from 3 to 9, while keeping the
number of transaction per block constant (100 per block).
Figure 6¢ depicts the experimental results. The throughput of
TFCommit increases by 47% and the commit latency reduces
by 33% when the number of servers are increased from 3 to
9. Figure 6¢ also shows the most expensive operation in com-
mitting transactions i.e., Merkle Hash Tree (MHT) updates.
Recall from Section IV-C that in TFCommit, termination of
each transaction requires computing the updated MHT root.
Given that each block has 100 transactions, which in turn
consists of 5 operations each, there are 500 operations in each
block. With only 3 servers, all the operations access the three
shards whereas with 9 servers, the 500 operations are spread
across nine shards. Thus, the load per server reduces when
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Fig. 6: Various performance evaluations of TFCommit

there are more servers, resulting in the reduction of MHT
update latencies. This experiment highlights that TFCommit is
scalable and performs well with increasing number of servers.

D. Number of data items

In the final set of experiments, we measure the performance
of TFCommit by varying the number of data items stored
in each database server, while keeping a constant of 100
transactions per block and using 5 database servers. The
number of items stored in each server increased from 1000
to 10000 to measure the commit latency and throughput
of TFCommit, as shown in Figure 6d. The commit latency
increases by 15% and the throughput reduces by 14% with the
increase in number of data items per shard. The performance
fluctuation is due to the Merkle Hash Tree updates that varies
with the number of data items. Updating a single leaf node in
a binary hash tree with 1000 leaf nodes (data items) updates
10 nodes (from leaf to the root) and a tree with 10000 leaf
nodes updates roughly 14 nodes. Thus, the performance of
TFCommit decreases with increasing number of data items
stored within each server.

VI. RELATED WORK

The literature on databases that tolerate malicious failures
is extensive [11]-[13], [31]. All of these solutions differ from
Fides as they: assume a single non-partitioned database, rely
on replicating the database to tolerate byzantine failures, and
some also require a trusted component for correctness. Garcia-
Molina et al. [12] were the earliest to propose a set of database
schemes that tolerate malicious faults. Gashi et al. [13] discuss
fault-tolerance other than just crash failures and provide a
report composed of database failures caused by software bugs.
HRDB by Vandiver et al. [31] propose a replication scheme to
handle byzantine faults wherein a trusted coordinator delegates
transactions to the replicas. The coordinator also orders the
transactions and decides when to safely commit a transaction.
Byzantium by Garcia et al. [11] provides an efficient replicated
middleware between the client and the database to tolerate
byzantine faults.

The advent of blockchains brought with it a set of technolo-
gies and protocols that manage data in untrusted environments.
But these protocols and their applications are mostly limited
to crypto-currencies and cannot be easily extended for large
scale distributed data management. Although permissionless
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blockchains such as Elastico [21] Omniledger [18], and Rapid-
Chain [34] discuss sharding, it is with respect to transactions,
i.e., different servers execute different transactions to enhance
performance but all of them maintain copies of same data,
essentially acting as replicas of a single database. These
solutions differ from Fides as they focus of replicated data
rather than distributed data.

In the space of transaction commitment, proposals such as
[4], [25], [35] tolerate malicious faults. Mohan et al. [25]
integrated 2PC with Byzantine Fault-Tolerance (BFT) to make
2PC non-blocking and to prevent the coordinator from sending
conflicting decisions. Zhao et al. [35] propose a commit
protocol that tolerates byzantine faults at the coordinator by
replicating the coordinator and executing BFT. Chainspace [4]
proposes a commit protocol in a blockchain setting by repli-
cating each shard and executing BFT per shard to agree on the
transaction decision. All these solutions require replication and
execute BFT on the replicas, and hence differ from TFCommit.
TFCommit uses CoSi [30], to allow verifiability. CoSi has been
adapted to make consensus more efficient in blockchains, e.g.,
ByzCoin [17]. To our knowledge, TFCommit is the first to
merge CoSi with atomic commitment.

Fides uses a tamper-proof log to audit the system and detect
any failures across database servers; this technique has been
studied for decades in distributed systems [15], [32], [33]. In
[32], Yumerefendi et al. highlight the use of accountability
— a mechanism to detect and expose misbehaving servers—
as a general distributed systems design. They implement
CATS [33] an accountable network storage system that uses
secure message logs to detect and expose misbehaving nodes.
PeerReview [15] generalizes this idea by building a practical
accountable system that uses tamper-evident logs to detect and
irrefutably identify the faulty nodes. More recent solutions
such as BlockchainDB [10], BigchainDB [23], Veritas [5] use
blockchain as a tamper-proof log to store transactions across
fully or partially replicated databases. CloudBFT [27], on the
other hand, tolerates malicious faults in the cloud by relying
on tamper-proof hardware to order the requests.

The datastore authentication technique that uses Merkle
Hash Trees (MHT) and Verification Objects was first proposed
by Merkle [24]. The technique employed in Fides that enables
verifing the datastore per transaction is inspired by the work
of Jain et al. [16]. Their solution assumes a single outsourced
database, and requires a central trusted site to store the MHT
roots of the outsourced data and the transaction history. Many
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works have looked at query correctness, freshness, and data
provenance for static data but only few solutions such as [20]
and [26] (apart from [16] discussed above) consider data
updates, but they also assume a single outsourced database.

VII. CONCLUSION

Traditional data management systems typically consider
crash failures only. With the increasing usage of the cloud,
crowdsourcing, and the rise of blockchain, the need to store
data on untrusted servers has risen. The typical approach
for achieving fault-tolerance, in general, uses replication.
However, given the strict bounds on consensus in malicious
settings, alternative approaches need to be explored. In this
paper, we propose Fides, an auditable data management system
designed for infrastructures that are not trusted. Instead of
using replication for fault-tolerance, Fides uses fault-detection
to discourage malicious behavior. An integral component
of any distributed data management system is the commit
protocol. We propose TFCommit, a novel distributed atomic
commitment protocol that executes transactions on untrusted
servers. Since every server in Fides is untrusted, Fides replaces
traditional transaction logs with a tamper-proof log similar
to blockchain. The tamper-proof log stores all the necessary
information required to audit the system and detect any
failures. In conclusion, Fides provides a correct and solid
data management system built on untrusted infrastructure that
provides a solid foundation for future expansions to include
other features of data management.
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