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Abstract—Significant amounts of data are currently being
stored and managed on third-party servers. It is impractical for
many small scale enterprises to own their private datacenters,
hence renting third-party servers is a viable solution for such
businesses. But the increasing number of malicious attacks, both
internal and external, as well as buggy software on third-party
servers is causing clients to loose their trust in these external in-
frastructures. While small enterprises cannot avoid using external
infrastructures, they need the right set of protocols to manage
their data on untrusted infrastructures. In this paper, we propose
TFCommit, a novel atomic commitment protocol that executes
transactions on data stored across multiple untrusted servers.
To our knowledge, TFCommit is the first atomic commitment
protocol to execute transactions in an untrusted environment
without using expensive Byzantine replication. Using TFCommit,
we propose an auditable data management system, Fides, residing
completely on untrustworthy infrastructure. As an auditable
system, Fides guarantees the detection of potentially malicious
failures occurring on untrusted servers using tamper-resistant
logs with the support of cryptographic techniques. The experi-
mental evaluation demonstrates the scalability of our approach
and the relatively low overhead of executing transactions on
untrusted infrastructure.

Index Terms—Databases, Security, Malicious failures, Audits,
Fault detection, ACID guarantees
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I. INTRODUCTION

A fundamental problem in distributed data management is to

ensure the atomic and correct execution of transactions. Any

transaction that updates data stored across multiple servers

needs to be executed atomically, i.e., either all the operations

of the transaction are executed or none of them are executed.

This problem has been solved using commitment protocols,

such as Two Phase Commit (2PC) [14]. Traditionally, the

infrastructure, and hence the servers storing the data, were

considered trustworthy. A standard assumption was that if a

server failed, it would simply crash; and unless a server failed,

it executed the designated protocol correctly.

The recent advent of cloud computing and the rise of

blockchain systems are dramatically changing the trust as-

sumptions about the underlying infrastructure. In a cloud envi-

ronment, clients store their data on third-party servers, located

on one or more data centers, and they execute transactions on

the data. The servers hosted in the data centers are vulnerable

to external attacks or software bugs that can potentially expose

a client’s critical data to a malign agent (e.g., credit details

exposed in Equifax data breach [2]). Further, a server may

intentionally decide not to follow the protocol execution, either

to improve its performance or for any other self-interest (e.g.,

next big cyber threat is speculated to be intentional data

manipulation [1]).

The increasing popularity of blockchain is also exposing

the challenges of storing data on non-trustworthy infrastruc-

tures. Applications such as supply chain management [19]

execute transactions on data repositories maintained by mul-

tiple administrative domains that mutually distrust each other.

Blockchains resort to expensive protocols (mining or byzantine

replication) to tolerate malicious failures since for many appli-

cations, both the underlying infrastructure and the participating

entities are untrusted.

In most existing databases, the prevalent approach to tolerate

malicious failures is by replicating either the whole database

or the transaction manager [4], [12], [13], [31], [35]. Practical

Byzantine Fault Tolerance (PBFT) [7] by Castro and Liskov

has become the predominant replication protocol used in

designing data management systems residing on untrusted or

byzantine infrastructure. These systems provide fault-tolerance

in that the system makes progress in spite of byzantine failures;

the replication masks these failures and ensures that non-faulty

processes always observe correct and reliable information.

Fault tolerance is guaranteed only if at most one third of the
replicas are faulty [6].

In a relatively open and heterogeneous environment, know-

ing the number of faulty servers – let alone placing a bound on

them – is unrealistic. In such settings, an alternate approach

to tolerate malicious failures is fault-detection which can

be achieved using auditability. Fault detection imposes no

bound on the number of faulty servers – any server can fail

maliciously but the failures are always detected as they are

not masked from the correct servers; detection requires only

one server to be correct at any given time. To guarantee

fault detection through audits, tamper-proof logs have been

proposed and widely used in systems such as PeerReview [15]

and CATS [33].

Motivated by the need to develop a fault-detection based

data management system, we make two major propositions

in this paper. First, we develop a data management system,

Fides1, consisting of untrusted servers that may suffer arbi-

trary failures in all the layers of a typical database, i.e., the

transaction execution layer, the distributed atomic commitment

layer, and the datastore layer. Second, we propose a novel

atomic commit protocol – TrustFree Commitment (TFCom-

mit) – an integral component of Fides that commits distributed

transactions across untrusted servers while providing auditable

1Fides is the Roman Goddess of trust and good faith.
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Fig. 1: Collective Signing.

guarantees. To our knowledge, TFCommit is the first to solve

the distributed atomic commitment problem in an untrusted

infrastructure without using expensive byzantine replication

protocols. Although we present Fides with TFCommit as an in-

tegral component, TFCommit can be disintegrated from Fides

and used in any other design of a trust-free data management.

With detection being the focus rather than tolerance of

malicious failures, Fides precisely identifies the point in the

execution history at which a fault occurred, as well as the

servers that acted malicious. These guarantees provide two

fold benefits: i) A malicious fault by a database server is

eventually detected and undeniably linked to the malicious

server, and ii) A benign server can always defend itself

against falsified accusations. By providing auditabiity, Fides

incentivises a server not to act maliciously. Furthermore, by

designing a stand-alone commit protocol, TFCommit, that

leverages cryptography, we take the first step towards develop-

ing a full-fledged data management system that fully resides in

untrusted infrastructures. We believe it is critical to start with

a strong and solid atomic commitment building block that can

be expanded to include fault tolerance and other components

of a transaction management hierarchy.

Section II provides the necessary background used in de-

veloping a trust-free data management system. Section III

discusses the architecture, system, and failure models of Fides.

Section IV describes the auditable transaction model in Fides

and also introduces TFCommit. Experimental evaluation of

TFCommit is presented in Section V, followed by related work

in Section VI. Section VII concludes the paper.

II. CRYPTOGRAPHIC PRELIMINARIES

Developing a data management system built on untrusted in-

frastructure relies heavily on many cryptographic tools. In this

section, we provide the necessary cryptographic techniques

used in developing Fides.

A. Collective Signing

Multisignature (multisig) is a form of digital signature that

allows more than one user to sign a single record. Multisigs,

such as Schnorr Multisignature [29], provide additional au-

thenticity and security compared with single user’s signature.

Collective Signing (CoSi) [30], an optimization of Schnorr

Multisigs, allows a leader to produce a record which then can

be publicly validated and signed by a group of witnesses. CoSi

requires two rounds of communication to produce a collective
signature (co-sign) with the size and verification cost of a

single signature. Figure 1 represents the four phases of CoSi

where L is the leader and 1, 2, .., N are the witnesses:

Announcement: The leader announces the beginning of a

new round to all the witnesses and sends the record R to be

collectively signed.

Commitment: Each witness, in response, picks a random

secret, which is used to compute the Schnorr commitment,

xsch. The witness then sends the commitment to the leader.

Challenge: The leader aggregates all the commits, X =∑
xsch and computes a Schnorr challenge, ch = hash(X|R).

The leader then broadcasts the challenge to all the witnesses.

Response: Each witness validates the record before com-

puting a Schnorr-response, rsch, using the challenge and its

secret key. The leader collects and aggregates all the responses

to finally produce a Schnorr multisignature.

The collective signature provides a proof that the record

is produced by the leader and that all the witnesses signed

it only after a successful validation. Anyone with the public

keys of all the involved servers can verify the co-sign and the

verification cost is the same as verifying a single signature. An

invalid record will not produce enough responses to prove the

authenticity of the record. We refer to the original work [30]

for a detailed discussion of the protocol.

B. Merkle Hash Tree

Fig. 2: Merkle Hash Tree example.

A merkle hash tree (MHT) [24] is a binary tree with each

leaf node labeled with the hash of a data item and each internal

node labeled with the hash of the concatenated labels of its

children. Figure 2 shows an example of a MHT. The hash

functions, h, used in MHTs are one way hash functions i.e.,

for a given input x, h(x) = y, such that, given y and h, it is

computationally infeasible to obtain x. The hash function h
must also be collision-free, i.e., it is highly unlikely to have

two distinct inputs x and z that satisfies h(x) = h(z). Any

such hash function can be used to construct a MHT.

Data Authentication Using MHTs: MHTs are used to

authenticate a set of data values [24] by requiring the prover,

say Alice, to publicly share the root of the MHT, hroot, whose

leaves form the data set. To authenticate a single data value,

all that a verifier, say Bob, needs from Alice is a Verification
Object (VO) consisting of all the sibling nodes along the path

from the data value to the root. The highlighted nodes in

Figure 2 form the verification object for data item a, VO(a),
which is of size log2 n. To authenticate data item a, Alice

generates the VO(a), and provides the value of a and VO(a)
to Bob. Given the value of a, Bob computes h(a) and uses hb

from VO(a) to compute ha,b = h(h(a)|h(b)) i.e., the hash of

h(a) concatenated with h(b). Finally, using ha,b and hc,d sent

in the VO(a), Bob computes the root, ha,b,c,d = (ha,b|hc,d).
Bob then compares the computed root, ha,b,c,d, with the root

publicly shared by Alice hroot. Assuming the use of a collision

free hash function (h(a1) �= h(a2) where a1 �= a2), it would

be computationally infeasible for Alice to tamper with a’s
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value such that the hroot published by Alice matches the root

computed by Bob using the verification object.

III. FIDES ARCHITECTURE

Fides is a data management system built on untrusted infras-

tructure. This section lays the premise for Fides by presenting

the system and failure models, and the audit mechanisms.

A. System Model

Fides is a distributed database of multiple servers; the data

is partitioned into multiple shards and distributed on these

servers (perhaps provisioned by different providers). Shards

consist of a set of data items, each with a unique identifier.

The system assumes neither the servers nor the clients to

be trustworthy and hence, can behave arbitrarily. Servers and

clients are uniquely identifiable using their public keys and

are aware of all the other servers in the system. All message

exchanges (client-server or server-server) are digitally signed

by the sender and verified by the receiver [28].

The clients interact with the data via transactions consisting

of read and write operations. The data can be either single-

versioned or multi-versioned with each committed transaction

generating a new version. Every data item has an associated

read timestamp rts and a write timestamp wts, indicating

the timestamp of the last transaction that read and wrote the

item, respectively. When a transaction commits, it updates the

timestamps of the accessed data items.

We choose a simplified design for a database server to

minimize the potential for failure. As indicated in Figure 3a,

each database server is composed of four components: an

execution layer to perform transactional reads and writes; a

commitment layer to atomically (i.e., all servers either commit
or abort a transaction) terminate transactions; a datastore
where the data shards are stored; and a tamper-proof log.

As individual servers are not trusted, we replace the local

transaction logs used in traditional protocols with a globally
replicated tamper-proof log (this approach is inspired by

blockchain). The log – a linked-list of transaction blocks linked

using cryptographic hash pointers – guarantees immutability.

Global replication of the log guarantees that even if a subset

(but not all) of the servers collude to tamper the log, the

transaction history is persistent.

B. Failure model

In Fides, a server that fails maliciously can behave arbitrar-

ily, i.e., send arbitrary messages, drop messages, or corrupt

the data it stores. Fides assumes that each server and client

is computationally bounded and is incapable of violating any

cryptographic primitives such as forging digital signatures

or breaking one-way hash functions – the operations that

typically require brute force techniques.

Let n be the total number of servers and f the maximum

number of faulty servers. Fides tolerates up to n − 1 faulty

servers, i.e., n > f . To detect failures, Fides requires at least

one server to be correct and failure-free (free of malicious,

crash, or network partition failures) at a given time. This

implies that the correct set of servers are not static and can

vary over time. This failure model is motivated by Dolev and

Strong’s [9] protocol.

An individual server, comprising of four components as

shown in Figure 3a, can fail at one or more of the components.

A fault in the execution layer can return incorrect values;

in the commit layer can violate transaction atomicity; in the

datastore can corrupt the stored data values; and in the log can

change or reorder the transaction history. These failures can be

intentional (to gain application level benefits) or unintentional

(due to software bugs or external attacks); Fides does not

distinguish between the two.

A malicious client in Fides can send arbitrary messages

or semantically incorrect transactions to a database server but

later blame the server for updating the database inconsistently.

To circumvent this, the servers store all digitally signed,

unforgeable messages exchanged with the client. This message

log serves as a proof against a falsified blame when a client’s

transaction sends the database to a semantically inconsistent

state.

C. Auditing Fides

Auditability has played a key role in building dependable

distributed systems [15], [32], [33]. Fides provides auditablil-

ity: the application layer or an external auditor can audit

individual servers with an intent to either detect failures or

verify correct behavior.

Fides guarantees that any failure, as discussed in Sec-

tion III-B, will be detected in an offline audit. Fides focuses

on failure detection rather than prevention; detection includes

identifying (i) the precise point in transaction history where

an anomaly occurred, and (ii) the exact misbehaving server(s)

that is irrefutably linked to a failure. The auditor is considered

to be a powerful external entity and during each audit:

(i) The auditor gathers the tamper-proof logs from all the

servers before the auditing process.

(ii) Given that at least one server is correct, from the set of

logs collected from all servers, the auditor identifies the correct
and complete log (how is explained in detail in Section IV-D).

The auditor uses this log to audit the servers.

Optimizations such as checkpointing can be used to mini-

mize the log storage space at each server; these optimizations

are orthogonal and hence not discussed further. If the audit

uncovers any malicious activity, a practical solution can be to

penalize the misbehaving server in legal, monetary, or other

forms specific to the application. This discourages a server

from acting maliciously.

IV. FIDES

In this section we present Fides: an auditable data manage-

ment system built on untrusted infrastructure. The basic idea is

to integrate cryptographic techniques such as digital signatures

(public and private key encryption), collective signing, and

Merkle Hash Trees (MHT) with the basic transaction execution

in database systems. This integration results in verifiable
transaction executions in an environment where the database

servers cannot be trusted.
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(a) Components of a db server. (b) Client interactions in Fides (c) Transaction life-cycle in Fides

Fig. 3: The database server components and the client-server interactions in Fides

A. Overview

Figure 3b illustrates the overall design of Fides. The clients

read and write relevant data by directly interacting with the

appropriate database partition server (this can be accomplished

by linking the client application with a run-time library that

provides a lookup and directory service for the database

partitions). The architecture intentionally avoids the layer of

front-end database servers (e.g., Transaction Managers) to

coordinate executing transactional reads and writes as these

front-end servers may themselves be vulnerable and exhibit

malicious behavior by relaying incorrect reads/writes. Hence,

in Fides all data-accesses are managed directly between the

client and the relevant database server.

Since data-accesses are handled with minimal synchroniza-

tion among concurrent activities, the burden of ensuring the

correct execution of transactions occurs when a transaction is

terminated. We use a simplified setup where one designated
server acts as the transaction coordinator responsible for ter-

minating all transactions. The coordinator is also an untrusted

database server that has additional responsibilities only during

the termination phase.

When a client application decides to terminate its trans-

action, it sends the termination request to the designated

coordinator; all other database servers act as cohorts during

the termination phase. For ease of exposition, we first present

a termination protocol executed globally involving all database

servers, irrespective of the shards accessed in that transaction.

The global execution implies transactions are terminated and

ordered sequentially. We relax this requirement and allow

different coordinators for concurrent transactions in [3].

The following is an overview of the client-server interaction:

a typical life-cycle of a transaction as depicted in Figure 3c.

1. Begin transaction: A client starts accessing the data by

first sending a Begin Transaction request to all the database

servers storing items read or written by the transaction.

2. Read-write request: The client then sends requests to each

server indicating the data items to be read and written.

3. Read-write response: The servers respond to a read

requests by fetching the data from the datastore and relaying

it to the client. The write requests are buffered.

4. End Transaction: After completing data access, the client

sends End Transaction to the coordinator which coordinates

the commitment to ensure transaction correctness (i.e., serializ-

ability) and transaction atomicity (i.e., all-or-nothing property).

key description
TxnId commit timestamp of txn
R set list of 〈id : value, rts, wts〉
W set list of 〈id : new val, old val, rts, wts〉∑
roots MHT roots of shards

decision commit or abort
h hash of previous block

co-sign a collective signature of participants

TABLE I: Details stored in each block

5. Atomic commitment: The coordinator and the cohorts

collectively execute the atomic commit protocol – TFCommit–

and decide either to commit or abort the transaction. The

commitment produces a block (i.e., an entry in the log)

containing the transaction details. If the decision is commit,
then the next two steps are performed.

6. Add log: All servers append the block in a consistent order

to their logs, thus creating a globally replicated log.

7. Update datastore: The datastore is updated based on the

buffered writes, if any, along with updating the timestamps rts
and wts of the data items accessed in the transaction.

8. Response: The coordinator responds to the client informing

whether the transaction was committed or aborted.

The log, stored as a linked-list of blocks, encompasses

the transaction details essential for auditing. It is vital to

understand the structure of each block before delving deeper

into transaction execution details. Every block stores the

information shown in Table I. Although a block can store

multiple transactions, for ease of explanation, we assume that
only one transaction is stored per block.

As indicated in Table I, each transaction is identified by its

commit timestamp, assigned by the client that executed this

transaction. Any timestamp that supports total ordering can be

used by the client – e.g., a Lamport clock with 〈client id :
client time〉 – as long as all clients use the same timestamp

generating mechanism.

A block contains the transaction read and write sets con-

sisting of three vital pieces of information: 1) the data-item

identifiers that are read/written, 2) the values of items read

and the new values written; the old val in the write set is

populated only for blind writes, and 3) the latest read rts and

write wts timestamps of those data items at the time of access.

The blocks also contain: the Merkle Hash Tree roots of

the shards involved in the transaction (explained more in

Section IV-B); the commit or abort transaction decision; the

hash of the previous block forming a chain of blocks linked
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by their hashes; and finally, a collective signature of all the

servers (how and why are explained in Section IV-C).

B. Transaction Execution

This section describes the correct mechanism of executing

transactions (reads and writes) and discusses techniques to

detect deviations from the expected behavior.

1) Correct Behavior: With regard to transaction execution,

a correct database server is responsible for the following

actions: (i) return the values and timestamps of data-items

specified in the read requests, and (ii) buffer the values of

data-items updated in the transaction and if the transaction suc-

cessfully commits, update the datastore based on the buffered

writes. We explain how a correct server achieves these actions.

Reads and Writes: A client sends a begin transaction
message to all the database servers storing the items read or

written by the transaction. The client then sends a Read request

consisting of the data-item ids to the respective servers. For

example, if a transaction reads data item x from server S1
and item y from server S2, the client sends Read(x) to S1
and Read(y) to S2. The servers respond with the data values

along with the associated read rts and write wts timestamps.

The client then sends the Write message with the data-

item ids and their updated values to the respective servers.

For example, if a transaction writes data item x in server S1
with value 5 and item y in server S2 with value 10, the client

sends Write(x,5) to S1 and Write(y,10) to S2. The servers

buffer these updates and respond with an acknowledgement.

To support blind writes, the acknowledgement includes the

old values and associated timestamps of the data-items that

are being written but were not read before.

After completing the data accesses, the client sends the end
transaction request – sent only to the designated coordinator –

consisting of the read and the write set: a list of data item ids,

respective rts and wts returned by the servers, and the values

read and the new values written. The coordinator then executes

TFCommit among all the servers to terminate (commit or

abort) the transaction (explained in detail in Section IV-C).

If all the involved servers decide to commit the transaction,

each involved server constructs a Merkle Hash Tree (MHT)

(Section II-B) of its data shard with all the data items – with

updated values – as the leaves of the tree and with the root

node rootmht. The read and write sets and MHT roots become

part of the block in the log once the transaction is committed.

Updating the datastore: If the transaction commits, the

servers involved in the transaction update the data values

in their datastores based on the buffered writes. The servers

also update the read and write timestamps of the data items

accessed in the transaction to its commit timestamp.

The data can be single-versioned or multi-versioned. For

multi-versioned data, when a transaction commits, a correct

server additionally creates a new version of the data items

accessed in the transaction while maintaining the older ver-
sions. Although an application using Fides can choose between

single-versioned or multi-versioned data, multi-versioned data

can provide recoverability. If a failure occurs, the data can

be reset to the last sanitized version and the application can

resume execution from there.

2) Detecting Malicious Behavior: With regard to trans-

action execution, a server may misbehave by: (i) returning

inconsistent values of data-items specified in the read requests;

and (ii) buffering incorrect values of data-items updated in the

transaction or updating the datastore incorrectly.

(i) Incorrect Reads: All faults in Fides are detected by

an auditor during an audit. As mentioned in Section III-C,

during an audit, the auditor collects the log from all servers

and constructs the correct and complete log.

To detect an incorrect read value returned by a malicious

server, the auditor must know the expected value of the data-

item. The read and write sets in each log entry contains the

information on the updated value of a written item and the read

value of a read item. Note that in our simplifying assumption

(which will be relaxed later), each block contains only one
transaction and the transactions are committed sequentially

with the log reflecting this sequential order. By traversing the

log, at each entry, the auditor knows the most recent values

of a given data item. We leverage this to identify incorrectly

returned values.

Lemma 1: The auditor detects an incorrect value returned for

a data item by a malicious server.

Proof : Consider a transaction Ti that committed at times-

tamp tsi and stored in the log at block bi. Assume transaction

Ti read an item x and updated it. Let bj be the first block after

bi to access the same data item x – where j > i, indicating

that transaction Tj in bj committed after the transaction Ti in

bi. The read value of x in bj must reflect the value written in

bi; if the values differ, an anamoly is detected. �
(ii) Incorrect Writes: The effect of incorrectly buffering a

write or incorrectly updating the datastore is the same: the

datastore ends up in an inconsistent state. The definition of

incorrect datastore depends on the type of data: for single

versioned data, the latest state of data (data values and times-

tamps) in the datastore is incorrect; for multi-versioned data,

one or more versions of the data are incorrect. We discuss

techniques to detect incorrect datastore for both types of data.

To detect an inconsistent datastore, we use the data au-

thentication technique proposed by Merkle [24] discussed in

Section II-B. To use this technique, the auditor requires the

read and written values in each transaction and the resultant

Merkle Hash Tree (MHT) root – all pieces of information

stored within each block.

Multi-versioned data: For multi-versioned data, the audit

policy can involve auditing a single version chosen arbitrarily

or exhaustively auditing all versions starting from either the

first version (block 0) or the latest version. We explain auditing

a single version, which can easily be extended to exhaustively

auditing all versions.

Let Ti be a transaction committed at timestamp ts that read

and wrote data item x stored in server Sk. Assume the auditor

audits server Sk at version ts. Once the auditor notifies the

server about the audit, the server constructs the Merkle Hash
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Tree with the data at version ts as the leaves; Sk then shares

the Verification Object VO– consisting of all the sibling nodes

along the path from the data x to the root – with the auditor.

The log entry corresponding to transaction Ti stores the

value read for item x and the new value written. The auditor

uses (i) the VO sent by Sk, and (ii) the hash of x’s value stored

in the write set of the log, to compute the expected MHT root

for the data in Sk. The auditor then compares the computed

root with the one stored in the log. A mismatch indicates that

the data at version ts is incorrect.

Single-versioned data: For single versioned data, the cor-

rectness is only with respect to the latest state of the data.

Hence, rather than using an arbitrary block to obtain the MHT

root of server Sk, the auditor uses the latest block in the log

that accessed the data in Sk to obtain the latest MHT root.

The other steps are similar to multi-versioned data.

Lemma 2: The auditor detects an inconsistent datastore. For

multi-versioned data, the auditor detects the precise version at

which the datastore became inconsistent.

Proof : Detection is guaranteed since Merkle Hash Trees

(MHT) use collision-free hash functions (i.e., h(x) �= h(y)
where x �= y), and a malicious server cannot update a data

value such that the MHT root stored in the block matches the

root computed by the auditor using the verification object sent

by the server. For multi-versioned data, the auditor identifies

the precise version at which data corruption occurred by

systematically authenticating all blocks in the log until a

version with mismatching MHT roots is detected. �
C. Transaction Commitment

This section describes how transactions are terminated in

Fides and presents a novel distributed atomic commitment

protocol – TrustFree Commit (TFCommit) – that handles

malicious failures. This section also discusses techniques to

detect failures if a server deviates from the expected behavior.

With regard to transaction commitment, a correct database

server is responsible for the following: (i) Ensure transaction

isolation (i.e., strict serializability); (ii) Ensure atomicity –

either all servers commit the transaction or no servers commit

the transaction; and (iii) Ensure verifiable atomicity.
1) Correct Behavior: Transaction Isolation: Transaction

isolation determines how the impact of one transaction is

perceived by the other transactions. In Fides, even though

multiple transactions can execute, i.e., read and write data,

concurrently, Fides provides serializable executions in which

concurrent transactions seem to execute in sequence. To do

so, servers in Fides abort a transactions if it cannot be

serialized with already committed transactions in the log.

The read rts and write wts timestamps associated with each

data item is used to detect non-serializable transactions. The

latest timestamps can be obtained from either the datastore

or the transaction log. Similar to timestamp based optimistic

concurrency control mechanism, at commit time, a server

checks if the data accessed in the terminating transaction has

been updated since they were read. If yes, the server chooses

to abort the transaction.

Atomicity and Verifiablity: Consider a traditional atomic

commit protocol that provides atomicity: Two Phase Commit

(2PC) [14]. 2PC guarantees atomicity provided servers are

benign and trustworthy. It is a centralized protocol where one

server acts as a coordinator and the others act as cohorts. To

terminate a transaction, the coordinator collects commit or

abort votes from all cohorts, and decides to commit the trans-

action only if all the cohorts choose to commit, and otherwise

decides to abort. The decision is then asynchronously sent to

the client and the cohorts. 2PC is sufficient to ensure atomicity

if servers are trustworthy; but in untrusted environments, 2PC

is inadequate as a cohort or the coordinator may maliciously

lie about the decision.

To make 2PC trust-free, we combine 2PC with a multi-

signature scheme, Collective Signing or CoSi (Section II-A): a

two-round protocol where a set of processes collectively sign

a given record using their private keys and random secrets.

CoSi guarantees that a record (or in our case block) produced

by a leader (or coordinator) is validated and signed by all

the witnesses (or cohorts) and that if any of the involved
processes lied in any of the phases, the resulting signature
will be incorrect. A signature is bound to a single record; any

process with the public keys of all the processes can verify

whether the signature is valid and corresponds to that record.

We propose a novel approach of integrating 2PC with CoSi

to achieve the atomicity properties of 2PC and the verifiable

properties of CoSi. The basic idea is that the coordinator,

similar to 2PC, collects commit or abort votes from the

cohorts, forms a decision, and encapsulates the transaction

details including the decision in a block. The coordinator then

sends the block to be verified and collectively signed by the

cohorts. An incorrect block (either with inaccurate transaction

details or wrong decision) produced by a malicious coordinator

will not be accepted by correct servers, thus resulting in an

invalid signature that can be easily verified by an auditor.

A successful round of TFCommit produces a block to be

appended to the log in a consistent order by all servers. For

ease of exposition, this section presents TFCommit with two

main assumptions: (i) the transactions are committed sequen-

tially to avoid forks in the log; and (ii) all servers participate in

transaction termination – even the servers that did not partake

in transaction execution – to have identical block order in

their logs. We relax these assumptions and discuss various

techniques to scale TFCommit, which is published in the

extended technical report [3] due to lack of space.

Recall from Table I all the details stored in each block. Once

a block is cosigned and logged by all servers, it is immutable;

hence, all the details must be filled in during different phases

of TFCommit. However, to ensure atomicity and verifiability

of TFCommit, we only need the transaction id, its decision,

and the co-sign. Other details such as the Read and Write sets,

Merkle Tree roots, and hashes are necessary to detect other

failures including isolation violation and data corruption.

The protocol:
A client, A, upon finishing transaction execution, sends a

signed μ =
〈
end transaction(tsi, R set-Wset)

〉
σA request
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Fig. 4: Different phases and block generation progress made in each phase of TFCommit

to the coordinator, where tsi is a client-assigned commit

timestamp of the transaction and R set-Wset is the read and

write sets consisting of data item ids, values read and new

values written, and the timestamps rts, and wts. The servers

ignore any end transaction request with a timestamp lower

than the latest committed timestamp. Since the datastore is

updated only after a successful commit of a transaction, the

servers are unaffected if a malicious client does not send the

end transaction request.

TFCommit is a 3-round protocol involving 5 phases of

communication as shown in Figure 4. Since TFCommit merges

2PC with CoSi, we indicate each phase by a mapping of <2PC

phase, CoSi phase>. Figure 4 shows the phases as well as the

progress made in constructing the block at each phase. The

phases of TFCommit are:

1) <GetVote, SchAnnouncement>: Upon receiving the

μ =
〈
end transaction(tsi, R set-Wset)

〉
σA request from

the client, to commit a transaction T , the coordinator C pre-

pares a partially filled block, bi = [tsi, Rset - Wset, hi−1],
containing the commit timestamp, read and write sets, and

hash of the previous block. C then encapsulates the signed

client request μ and sends the
〈
get vote(bi, μ)

〉
σC

message

to all the cohorts.

2) <Vote, SchCommitment>: Every cohort H verifies

both the get vote message and the encapsulated client request,

and computes the Schnorr-commitment (xsch) for CoSi. Then,

only the cohorts that are part of the transaction, perform

the following actions. A cohort involved in the transaction

locally decides whether to commit or abort the transaction.

If the cohort locally decides to commit, then it constructs a

Merkle Hash Tree (MHT) (Section II-B) of its shard with all

the data items as leaves of the MHT and with the root node

rootmht. The MHT reflects all the updates in Ti assuming

that Ti be committed; since MHT computation is done in

memory, the datastore is unaffected if Ti eventually aborts.

(The MHT root is required for datastore authentication, as

explained in Section IV-B2.) The involved cohorts then send〈
vote(decision, rootmht, xsch)

〉
σH whereas the cohorts not

part of the transaction send
〈
vote(xsch)

〉
σH to the coordinator.

As the coordinator is also involved in co-signing, it produces

the appropriate vote message.

3) <null, SchChallenge>: In this phase, the coordinator C
collects all the cohort responses and checks if any cohort (or

itself) involved in the transaction decided to abort. If none, it

chooses commit, otherwise abort. It then aggregates all the

MHT roots of the involved cohorts (roots =
∑

rootmht), and

fills the roots field in the block bi along with the decision field.

If any involved cohorts chose abort, the respective roots will

be missing in the block. Finally, the coordinator aggregates the

Schnorr-commitments Xsch =
∑

xsch from all the servers and

computes the Schnorr-challenge by concatenating and hashing

Xsch with bi i.e., ch = h(Xsch||bi). The coordinator then

sends
〈
challenge(ch,Xsch, bi)

〉
σC

to all cohorts.

4) <null, SchResponse>: In this phase, every cohort, H,

checks if the decision within the block bi is abort, and if so,

bi should have some missing roots; if the decision is commit,
bi should have all the roots from the involved servers. Every

involved cohort that sent the MHT root in the vote phase

verifies if its corresponding root in the block is the same as the

one it sent. Cohorts also verify whether a potentially malicious

coordinator computed the challenge, ch, correctly by hashing

the concatenated Xsch and bi, both of which were sent in

the challenge message. A cohort then computes the Schnorr-

response ri using its secret key and the challenge ch, and

sends
〈
response(ri)

〉
σH to the coordinator.

5) <Decision, null>: The coordinator collects all the

Schnorr-responses and aggregates them, Rsch =
∑

rsch,

to form the collective signature represented by 〈ch,Rsch〉.
Intuitively, the challenge ch is computed using the block; and

the Schnorr-response Rsch requires the private keys of the

servers, thus the signature binds the block with the public

keys of the servers. The coordinator then updates the co-sign
field in the block and sends the finalized block to the client

and the cohorts. If the decision is commit, all servers append

block bi to their log and update their respective datastores.

The client, with the public keys of all the servers, verifies

the co-sign before accepting the decision – even an aborted

transaction must be signed by all the servers. If the verification

fails, the client detects an anomaly and may trigger an audit,

which may halt the progress in the system.

TFCommit, similar to 2PC, can be blocking if either the

coordinator or any cohort fails (crash or malicious). TFCommit

can be made non-blocking by adding another phase that makes

the chosen value available, as in the case of Three Phase

Commit, Paxos-Commit, or Paxos Atomic Commit, all of them

discussed in [22]; we leave this extension for future work.

2) Detecting Malicious Behavior: A correct execution of

TFCommit ensures serializable transaction isolation, atomic-

ity, and verifiable commitment. However, a malicious server

can (i) violate the isolation guarantees by committing non-

serializable transactions; (ii) a malicious coordinator can break

atomicity by convincing some servers to commit a transactions

and others to abort; or (iii) a server can send wrong crypto-

graphic values during co-signing to violate verifiability.
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Fig. 5: Atomicity violation of TFCommit

Lemma 3: The auditor detects serializablity violation.

Proof : Transaction execution is based on executing read and

write operations in the timestamp order. The transactions are

ordered based on the timestamps, which are monotonically

increasing. If a transaction has done a conflicting access

inconsistent with the timestamp order, it leads to one of

the following conflicts: 1) RW-conflict: a transaction with a

smaller timestamp read a data-item with a larger timestamp;

2) WW-conflict: a transaction with a smaller timestamp wrote

a data-item that was already updated with a larger timestamp;

3) WR-conflict: a transaction with a smaller timestamp wrote

a data-item after it was read by a transaction with a larger

timestamp. For each transaction audited, the auditor verifies if

any of the above violations exist, and if so, the auditor detects

the server responsible for the violation to be misbehaving.

This is equivalent to verifying that no cycle exists in the

Serialization Graph of the transactions being audited. �
Lemma 4: The auditor or a correct server detects incorrect

cryptographic values for CoSi sent by a malicious server –

which hampers verifiablity of TFCommit.

Proof : Refer to the extended technical report [3] for the proof.

Lemma 5: The auditor or a correct server detect atomicity

violation of TFCommit.

Proof : Recall that the coordinator C collects votes in

phase two of TFCommit, forms the decision, and sends the

partial block containing the decision in the challenge message.

Consider Figure 5 where a malicious coordinator sends block

bc with commit decision to group Gc and block ba with abort
decision to group Ga. More precisely, the coordinator sends〈
challenge(ch,Xsch, bc)

〉
σC

to Gc (Xsch is the aggregated

Schnorr-commits) and
〈
challenge(ch,Xsch, ba)

〉
σC

to Ga.

Since the decision is part of the block, the two blocks bc and ba
have to be different if the coordinator violates atomicity. But

with respect to the challenge ch, there are two possibilities,

both producing invalid signatures:

• Case 1: Coordinator sends the same challenge ch com-

puted using block bc (or ba) to both groups.

Any correct server in the group Ga will recompute the

challenge using the block it received, ba, and immediately

recognize that the challenge sent by the coordinator does not

correspond to the block ba. (Alternatively, if the coordinator

used ba to compute the challenge ch, then servers in Gc will

detect the anomaly.) Even if the servers in one group, say Ga,

collude with the coordinator and do not expose the anomaly,

the challenge ch corresponds only to block bc. The auditor,

while auditing a server in group Ga, detects that the co-sign

in block ba is invalid as it does not correspond to that block.

• Case 2: Coordinator sends the challenge ch computed

using block bc to group Gc and the challenge ch′ computed

using block ba to group Ga.

In the final step of TFCommit, the servers in group Gc will

use ch to compute the Schnorr-response, whereas the servers

in group Ga will use ch′ to compute the Schnorr-response.

Given that the final collective signature can be tied only to a

single block, the co-sign does not correspond to either bc or

ba, hence producing a wrong signature. �

D. Transaction Logging

The transaction log in Fides is a tamper-proof, globally

replicated log. When a transaction commits after a successful

round of TFCommit, all servers append the newly produced

block to their logs.

Detecting Malicious Behavior: One or more faulty servers

can collude (but not all at once) to (i) tamper an arbitrary

block, (ii) reorder the blocks, or (iii) omit the tail of the log

(last few blocks). The auditor collects logs from all the servers

and uses the collective signature stored in each block to detect

an incorrect log.

Lemma 6: Given a set of logs collected from all servers, the

auditor detects all incorrect logs – logs with arbitrary blocks

that are modified or logs with reordered blocks.

Proof : The collective signature in each block prevents a

malicious server from manipulating that block once it is

appended to the log. The signature is tied specifically to one

block and if the contents of the block are manipulated, the

signature verification will fail. One or more malicious servers

cannot tamper with an arbitrary block successfully without

the cooperation of all the servers. And since the hash of the

previous block is part of a log entry, unless all the servers

collude, the blocks cannot be successfully re-ordered. �
Lemma 7: From the logs collected from all servers, the auditor

detects all incomplete logs – logs with missing tail entries.

Proof : A subset of servers cannot successfully modify

arbitrary blocks in the log (proof in Lemma 6) but they can

omit the tail of the log. During an audit, the auditor gathers the

logs from all the servers. At least one correct server exists with

the complete log – which can easily be verified for correctness

by validating the collective signature and hash pointer in each

block. The auditor uses this complete and verified log to detect

that one or more servers store an incomplete log. �

E. Correctness of Fides

Definition 1: Verifiable ACID properties
In transaction processing, ACID refers to the four key

components: Atomicity, Consistency, Isolaiton, and Durability.

We define v-ACID as the ACID properties that can be

verified. v-ACID indicates that a database system provides

verifiable evidence that the ACID guarantees are upheld.

This definition is useful when individual database servers are

untrusted and may violate ACID – in which case the system

must allow verifying and detecting the violations.

Theorem 1: Fides provides Verifiable ACID guarantees.
Proof : Fides guarantees that an external auditor can verify if

the database servers provide ACID guarantees or not. The first
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step in the verification is for the auditor to obtain a correct and

complete log. Given the assumption that at least one server is

correct at a given time, Lemmas 6 and 7 prove that during an

audit, the auditor always identifies correct and complete log.

Lemma 5 proves that Atomicity violation is verifiable;

Lemma 2 proves that the auditor verifies if the effect of a

transaction resulted in an inconsistent database when a server

buffers inconsistent writes, i.e., verifiable Consistency; Lemma

3 proves that the Isolation guarantee which ensures serializable

transaction execution is verifiable; and finally, Lemmas 1 and

2 verify if the effects of committed transactions are Durable.

Hence, an auditor verifies whether the servers in Fides uphold

ACID properties.

Note that multiple ACID violations can exist in the transac-

tion execution. Since the log is sequential, the auditor identifies

the first occurrence of any of these violations and the blocks

after that need not be audited as everything past that violation

can be incorrect and hence irrelevant to a correct execution.�

V. EVALUATION

In this section, we discuss the experimental evaluation of

TFCommit. Our goal is to measure the overhead incurred in

executing an atomic commit protocol on untrusted infrastruc-

ture. The focus of Fides and TFCommit is fault detection in

a non-replicated system, hence solutions based on replication

that typically use PBFT [7] are orthogonal to TFCommit.

In evaluating TFCommit, we measure the performance using

two aspects: commit latency - time taken to terminate a

transaction once the client sends end transaction request,

and throughput - the number of transactions committed per

second; TFCommit was implemented in Python. We deployed

multiple database servers on a single Amazon AWS datacenter

(US-West-2 region) where each server was an EC2 m5.xlarge
vm consisting of 4 vCPUs, 16 GiB RAM and upto 10

Gbps network bandwidth. Unless otherwise specified in the

experiment, each database server stores a single shard (or

partition) of data consisting of 10000 data items.

To evaluate the protocol, we used Transactional-YCSB-

like benchmark [8] consisting of transactions with read-write

operations. Each transaction consisted of 5 operations on

different data items thus generating a multi-record work-

load. The data items were picked at random from a pool

of all the data partitions combined, resulting in distributed

transactions. Although we presented TFCommit and Fides

with the simplifying assumption of one transaction per block,

in the experiments, we typically stored 100 non-conflicting

transactions in each block. Every experimental run consisted

of 1000 client requests and each data point plotted in this

section is an average of 3 runs.

A. TFCommit vs. 2PC

As a first step, we compare the trust-free protocol TF-

Commit with its trusted counterpart Two Phase Commit [14].

TFCommit is essentially 2PC combined with the cryptographic

primitives (Co-Signing and Merkle Hash Trees) which results

in an additional phase due to the trust-free nature. Thus, com-

paring TFCommit with 2PC highlights the overhead incurred

by TFCommit to operate in an untrusted setting. Both 2PC

and TFCommit are implemented such that transactions are

terminated and blocks are produced sequentially so that the

log does not have forks.

Figure 6a contrasts the performance of 2PC vs. TFCommit.

We increase the number of servers and measure commit

latency and throughput. In this experiment, each block stores a
single transaction so that we can measure the overhead induced

by TFCommit per transaction.

As indicated in the figure, the average latency to commit

a single transaction in an untrusted setting is approximately

1.8x more than a trusted environment. The throughput for

2PC is approximately 2.1x higher than TFCommit. TFCom-

mit performs additional computations compared with 2PC:

Merkle Hash Tree (MHT) updates to compute new roots

after each transaction, collective signature on each block,

and an additional phase. In spite of the additional computing

and achieving trust-free atomic commitment, TFCommit is

only 1.8x slower than 2PC. Having shown the overhead of

TFCommit as compared to 2PC, the following experiments

measure the performance of TFCommit by varying different

parameters.

B. Number of transactions per block

In this experiment, we fix the number of servers to 5

and increase the load on the system by increasing the num-

ber of transactions stored within each block. Each database

server consisted of 10000 data items. Figure 6b indicates

the average latency to commit a single transaction and the

throughput while increasing number of transactions stored

within each block from 2 to 120. The latency to commit a

single transaction reduces by 2.8x (from 2.7ms to 0.7ms) and

the throughput increases by 2.5x when 80 or more transactions

are batched in a single block. This experiment highlights

that even though the blocks are produced sequentially, the

performance of TFCommit can be significantly enhanced by

processing multiple transactions in one block.

C. Number of shards

In this experiment, we measure the scalability of TFCommit

by increasing the number of database servers (each storing a

shard of 10000 data items) from 3 to 9, while keeping the

number of transaction per block constant (100 per block).

Figure 6c depicts the experimental results. The throughput of

TFCommit increases by 47% and the commit latency reduces

by 33% when the number of servers are increased from 3 to

9. Figure 6c also shows the most expensive operation in com-

mitting transactions i.e., Merkle Hash Tree (MHT) updates.

Recall from Section IV-C that in TFCommit, termination of

each transaction requires computing the updated MHT root.

Given that each block has 100 transactions, which in turn

consists of 5 operations each, there are 500 operations in each

block. With only 3 servers, all the operations access the three

shards whereas with 9 servers, the 500 operations are spread

across nine shards. Thus, the load per server reduces when
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Fig. 6: Various performance evaluations of TFCommit

there are more servers, resulting in the reduction of MHT

update latencies. This experiment highlights that TFCommit is

scalable and performs well with increasing number of servers.

D. Number of data items

In the final set of experiments, we measure the performance

of TFCommit by varying the number of data items stored

in each database server, while keeping a constant of 100

transactions per block and using 5 database servers. The

number of items stored in each server increased from 1000

to 10000 to measure the commit latency and throughput

of TFCommit, as shown in Figure 6d. The commit latency

increases by 15% and the throughput reduces by 14% with the

increase in number of data items per shard. The performance

fluctuation is due to the Merkle Hash Tree updates that varies

with the number of data items. Updating a single leaf node in

a binary hash tree with 1000 leaf nodes (data items) updates

10 nodes (from leaf to the root) and a tree with 10000 leaf

nodes updates roughly 14 nodes. Thus, the performance of

TFCommit decreases with increasing number of data items

stored within each server.

VI. RELATED WORK

The literature on databases that tolerate malicious failures

is extensive [11]–[13], [31]. All of these solutions differ from

Fides as they: assume a single non-partitioned database, rely

on replicating the database to tolerate byzantine failures, and

some also require a trusted component for correctness. Garcia-

Molina et al. [12] were the earliest to propose a set of database

schemes that tolerate malicious faults. Gashi et al. [13] discuss

fault-tolerance other than just crash failures and provide a

report composed of database failures caused by software bugs.

HRDB by Vandiver et al. [31] propose a replication scheme to

handle byzantine faults wherein a trusted coordinator delegates

transactions to the replicas. The coordinator also orders the

transactions and decides when to safely commit a transaction.

Byzantium by Garcia et al. [11] provides an efficient replicated

middleware between the client and the database to tolerate

byzantine faults.

The advent of blockchains brought with it a set of technolo-

gies and protocols that manage data in untrusted environments.

But these protocols and their applications are mostly limited

to crypto-currencies and cannot be easily extended for large

scale distributed data management. Although permissionless

blockchains such as Elastico [21] Omniledger [18], and Rapid-

Chain [34] discuss sharding, it is with respect to transactions,

i.e., different servers execute different transactions to enhance

performance but all of them maintain copies of same data,

essentially acting as replicas of a single database. These

solutions differ from Fides as they focus of replicated data

rather than distributed data.

In the space of transaction commitment, proposals such as

[4], [25], [35] tolerate malicious faults. Mohan et al. [25]

integrated 2PC with Byzantine Fault-Tolerance (BFT) to make

2PC non-blocking and to prevent the coordinator from sending

conflicting decisions. Zhao et al. [35] propose a commit

protocol that tolerates byzantine faults at the coordinator by

replicating the coordinator and executing BFT. Chainspace [4]

proposes a commit protocol in a blockchain setting by repli-

cating each shard and executing BFT per shard to agree on the

transaction decision. All these solutions require replication and

execute BFT on the replicas, and hence differ from TFCommit.

TFCommit uses CoSi [30], to allow verifiability. CoSi has been

adapted to make consensus more efficient in blockchains, e.g.,

ByzCoin [17]. To our knowledge, TFCommit is the first to

merge CoSi with atomic commitment.

Fides uses a tamper-proof log to audit the system and detect

any failures across database servers; this technique has been

studied for decades in distributed systems [15], [32], [33]. In

[32], Yumerefendi et al. highlight the use of accountability

– a mechanism to detect and expose misbehaving servers–

as a general distributed systems design. They implement

CATS [33] an accountable network storage system that uses

secure message logs to detect and expose misbehaving nodes.

PeerReview [15] generalizes this idea by building a practical

accountable system that uses tamper-evident logs to detect and

irrefutably identify the faulty nodes. More recent solutions

such as BlockchainDB [10], BigchainDB [23], Veritas [5] use

blockchain as a tamper-proof log to store transactions across

fully or partially replicated databases. CloudBFT [27], on the

other hand, tolerates malicious faults in the cloud by relying

on tamper-proof hardware to order the requests.

The datastore authentication technique that uses Merkle

Hash Trees (MHT) and Verification Objects was first proposed

by Merkle [24]. The technique employed in Fides that enables

verifing the datastore per transaction is inspired by the work

of Jain et al. [16]. Their solution assumes a single outsourced

database, and requires a central trusted site to store the MHT

roots of the outsourced data and the transaction history. Many

353

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 06,2021 at 17:00:14 UTC from IEEE Xplore.  Restrictions apply. 



works have looked at query correctness, freshness, and data

provenance for static data but only few solutions such as [20]

and [26] (apart from [16] discussed above) consider data

updates, but they also assume a single outsourced database.

VII. CONCLUSION

Traditional data management systems typically consider

crash failures only. With the increasing usage of the cloud,

crowdsourcing, and the rise of blockchain, the need to store

data on untrusted servers has risen. The typical approach

for achieving fault-tolerance, in general, uses replication.

However, given the strict bounds on consensus in malicious

settings, alternative approaches need to be explored. In this

paper, we propose Fides, an auditable data management system

designed for infrastructures that are not trusted. Instead of

using replication for fault-tolerance, Fides uses fault-detection

to discourage malicious behavior. An integral component

of any distributed data management system is the commit

protocol. We propose TFCommit, a novel distributed atomic

commitment protocol that executes transactions on untrusted

servers. Since every server in Fides is untrusted, Fides replaces

traditional transaction logs with a tamper-proof log similar

to blockchain. The tamper-proof log stores all the necessary

information required to audit the system and detect any

failures. In conclusion, Fides provides a correct and solid

data management system built on untrusted infrastructure that

provides a solid foundation for future expansions to include

other features of data management.
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