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ABSTRACT

We introduce leave-one-out unfairness, which characterizes how
likely a model’s prediction for an individual will change due to the
inclusion or removal of a single other person in the model’s training
data. Leave-one-out unfairness appeals to the idea that fair decisions
are not arbitrary: they should not be based on the chance event of any
one person’s inclusion in the training data. Leave-one-out unfairness
is closely related to algorithmic stability, but it focuses on the consis-
tency of an individual point’s prediction outcome over unit changes
to the training data, rather than the error of the model in aggre-
gate. Beyond formalizing leave-one-out unfairness, we characterize
the extent to which deep models behave leave-one-out unfairly on
real data, including in cases where the generalization error is small.
Further, we demonstrate that adversarial training and randomized
smoothing techniques have opposite effects on leave-one-out fair-
ness, which sheds light on the relationships between robustness,
memorization, individual fairness, and leave-one-out fairness in
deep models. Finally, we discuss salient practical applications that
may be negatively affected by leave-one-out unfairness.
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1 INTRODUCTION

Deep networks are becoming the go-to choice for challenging clas-
sification tasks due to their remarkable performance on many high-
profile problems: they are used everywhere from recommendation
systems [15] to medical research [8, 21], and increasingly in even
more sensitive contexts, such as hiring [46], loan decisions [5, 51],
and criminal justice [25]. Their continued rise in adoption has led
to growing concerns about the tendency of these models to discrimi-
nate against certain individuals [4, 10, 13, 44], or otherwise produce
outcomes that are seen as unfair.

There are several definitions that aim to formalize fair behavior
in machine learning contexts: group-based notions, such as demo-
graphic parity [23] and equalized odds [26], stipulate that different
demographic groups should be treated similarly in aggregate; on
the other hand, individualized notions focus on how each person
is treated, such as individual fairness [20], which requires “similar”
outcomes for similar people, and counterfactual fairness [34], which
argues that people should be treated the same as their hypothetical
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counterpart, who takes a different protected attribute. Fundamen-
tally, these fairness criteria depend on a comparison of how one group or
individual is treated versus another. However, there are also situations
where the decision-making mechanism is unfair not because of how
its behavior varies across defined groups or individuals, but rather
because its decisions cannot be justified by consistent, intelligible
criteria. In other words, decisions may be unfair because they are
arbitrary.

In this paper, we study the extent to which instability can lead to
such fairness issues. Intuitively, when a person’s outcome hinges on
the presence of another, single individual in the training data, the out-
come that follows may be viewed as unfair. Take for example a person
in reasonable financial health who applies for an auto loan. Suppose
that whether their application is approved or not depends on whether
another unrelated person had applied for a loan from the same bank,
and was subsequently included in the training data. Such a decision
may be viewed as unfair, as it depends on the willingness and avail-
ability of another person to provide their data for training—a chance
occurrence, rather than a well-justified set of criteria. Even beyond
its potential unfairness, this behvaior may be especially undesireable
in applications which come with a "right to explanation” [33].

Measuring leave-one-out Unfairness. To formalize this intuition,
we introduce leave-one-out unfairness (LUF): the chance that an indi-
vidual’s outcome will change due to the presence of any one instance
in the training data (Section 3, Definition 2). To the best of our knowl-
edge, this is the first attempt to formalize unfairness as stemming
from the arbitrary nature of decision rules, and in particular the sta-
bility of the underlying learning algorithm. Certainly, there are other
random choices made during model development that may lead to
an arbitrary change in model outcome for an individual—changes
in the random initialization or architecture, for example, which we
explore in Section 6. However, we focus on instability with respect
to training data in particular due to its connections to other areas of
machine learning literature such as stability, privacy, and robustness.

We find that in many cases, the use of deep models can lead to
this type of unfair outcome with surprising frequency, and can re-
sult in different outcomes for seemingly unrelated individuals. To
gain an intuition for why this might be, Figure 1 depicts the deci-
sion boundaries of two low-dimensional binary classifiers whose
training data differs only on the presence of the point highlighted in
red. Notice that the boundary near the left-out point remains fairly
consistent, but there are non-trivial differences in both the boundary
locations and the confidence of the model’s predictions in regions
away from the point. While this low-dimensional example provides
some intuition, we systematically characterize the extent to which
deep models behave as such on real data (Section 4). We find that
it occurs often enough to be a concern in some settings (i.e., up to
7% of data is affected); that it occurs even on points for which the
model assigns high confidence; and is not consistently influenced by
dataset size, test accuracy, or generalization error (Figure 4, Table 2).
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Figure 1: Classification boundaries of a deep model with three hid-
den layers, trained on two-dimensional data with uniform-random
binary labels, before (left) and after (right) the point highlighted in
red is removed from the training data. Lighter regions correspond to
predictions with less confidence. While the model remains largely
unchanged in the area around the left-out point, its boundary

changes significantly in other, far-away areas. For example, the
middle-right region assigns greater confidence to white points, even
flipping its prediction on one such point.

Connections. Leave-one-out unfairness has useful connections
to other fields such as stability, privacy, and robustness. We show
that while LUF is strictly stronger than some prior notions of leave-
one-out stability [49] (Section 3.3, Proposition 3.2), it is weaker than
differential privacy [18] (Proposition 3.3). Thus, one can achieve
bounded levels of leave-one-out unfairness by satisfying differential
privacy, but it may also be possible to do so via relaxations that allow
greater flexibility in the selection of learning rules [41].

Recent work has related robust classification to desirable proper-
ties beyond mitigating adversarial examples [54], such as the encod-
ing of more human-interpretable features [22, 31, 43, 56], and indi-
vidual fairness on weighted £, metrics [61]. These results may seem
to suggest that robust models would also be less susceptible to leave-
one-out unfairness. Evaluating two common techniques for produc-
ing robust models, adversarial training [40] and randomized smooth-
ing [14], we find that these methods in fact have vastly different effects
on leave-one-out unfairness. Whereas randomized smoothing tends
tohave no effect, adversarial training amplifies the problem, resulting
in up to a factor of five more affected points (Section 5). These results
suggest that although LUF and robustness are not inherently tied
to each other, certain types of models may prove beneficial for both.

Summary. In a similar vein to the oft-cited “lack of interpretabil-
ity” [38], leave-one-out unfairness complicates the responsible appli-
cation of deep models to sensitive decisions. Particularly in settings
where a “right to explanation” is pertinent [33], these complications
may need to be weighed against the benefits that deep models pro-
vide over less complex alternatives. This paper presents the first steps
towards a better understanding of this issue, and points to several
intriguing directions for future study. To summarize, we present the
following contributions:

(1) We introduce and formalize leave-one-out unfairness, which
characterizes a possible source of unfair, arbitrary outcomes
in ML applications.

(2) We relate leave-one-out unfairness to well-known prior no-
tions of stability, shedding light on when models may suffer
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Figure 2: From left to right: Individual removed from the dataset (z).
When zis included in the training set, the two individuals to the right
(x, y) are labeled as a match with confidence 0.84. When z is not in
the dataset, x and yare predicted as not a match with confidence 0.07.

from leave-one-out unfairness, and techniques that might
help to mitigate it.

(3) Finally, we present an extensive evaluation of how prevalent
LUF is when deep neural networks are trained on a variety of
datasets, and compare it to other sources of instability such
as random initialization and choice of architecture.

In Section 2, we provide two examples of machine learning appli-
cations where leave-one-out unfairness may lead to unjust model
behavior, along with experimental results demonstrating that LUF
indeed may occur in these contexts. Following this, in Section 3,
we formally define leave-one-out unfairness and explore its rela-
tionships to LOO-stability and differential privacy. In Section 4 and
Section 5, we present our experimental results of the extent of leave-
one-out unfairness on real datasets for conventional and robustly
trained machine learning models.

2 CONTEXTUALIZING
LEAVE-ONE-OUT UNFAIRNESS

Leave-one-out unfairness may not pose a problem in all machine-
learning applications. If the model’s outcome is of little consequence
to peoples’ lives, or if the application context does not require consis-
tency across data samples for adequate justification, then arbitrary
predictions may be acceptable. Determining whether or not leave-
one-out unfairness leads to fairness issues requires considering this
context. In this section, we motivate examples of how leave-one-out
unfairness constitutes a fairness issue in two contexts: facial recog-
nition use by law enforcement, and loan application decision models
used by financial institutions.

2.1 Facial Recognition

Facial Recognition Technology (FRT) has proliferated in recent years
as a method of verifying identity at scale. Its use in law enforcement,
and the potential harms that may follow, have gained particular at-
tention due to the potentially dire consequences of misidentification:
matches for facial recognition matches have been used as evidence
for arrest [29, 57]. Moreover, the use of this technology in this context
is becoming prevalent: according to a study from 2016 [25], at least
one in four police agencies in the United States have made use of it.

Background. The use of FRT by law enforcement relies primarily
on face-matching models, where two face images are provided as
input to determine whether they depict the same individual. Note
that this differs from face classification models, which aim to identify
the person depicted in a face image from a pre-determined set of
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individuals. A typical workflow proceeds as follows: given an image
of a suspect, law enforcement queries a face-matching model against
alarge set of images in a database, which also contains identifying
information. The face-matching model provides a binary label, with
a confidence score, and the most confident matches are provided to
the operator for further review [47].

Many police agencies use ready-made, third-party models. For ex-
ample, one such third-party, Clearview Al reportedly contracts with
approximately 2,400 law enforcement agencies [39]. Such third-party
models are often trained on images obtained from public sources like
the Internet, in particular by taking advantage of Creative-Commons
licenses widely used on social media websites. [42]. The database
of images on which these models are run during inference are of-
ten obtained from public records such as drivers license databases.
Notably, these databases may largely consist of individuals with no
prior criminal record [25].

Impact of Instability. The results FRT are increasingly being used
by law enforcement as evidence to justify arrest [29, 57]. According
to U.S. law, an individual must be arrested for a justifiable reason, i.e.
probable cause [1]: a police officer must have evidence leading them
to believe that the person arrested likely did commit the crime in
question. Thus, when FRT results are cited when justifying probable
cause, the factors that lead a particular face-matching model to its
predictions must be scrutinized. In particular, if it is likely that a
matching outcome can change due to the inclusion of a particular
image—unrelated to the suspect or the potential match—out of tens
of thousands in the model’s training set, then it may be argued the
evidence used to justify the eventual arrest is based on a chance
occurrence, rather than on convincing facts relevant to the case. In
short, such an outcome would be unfair due to the arbitrary nature of
the supporting evidence. We aim to formalize this behavior, and in-
vestigate its prevalence on models trained on real datasets, including
face-matching models.

Experimental Confirmation. We trained a face-matching model
on Labeled Faces in the Wild (LFW) [30], consisting of 13,000 uncon-
strained pictures of 1680 different individuals. To measure the effect
of individual images on prediction outcomes, we trained models
both with and without a randomly sampled individual, controlling
for all sources of non-determinism (e.g., parameter initialization and
GPU operations). We repeated this experiment for 25 different ran-
domly sampled individuals, and measured the effects on prediction
behavior. Further details of our methodology are given in Section 4.

We found that the predictions given by the face-matching model
change across datasets with single-image differences, with surprising
frequently. One such example of this behavior is shown in Figure 2.
When person z is included in the dataset, persons x and y are labeled
as a match; but when person z is removed, they are not. Persons x
and y are clearly different from one another, and aside from gender,
share few salient characteristics. More surprisingly, both predictions
are made with high confidence—0.84 and 0.07-far from a baseline
random guess. Such behavior was not limited to these images, but
rather we observed that 12% of the model’s predictions changed
across datasets differing in one image, while the change in accu-
racy remained less than 2%. Moreover, this behavior was consistent
across changes in random initialization and choice of architectures,
including a residual network resembling ResNet50.
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‘ age  education occupation sex  capital gain ‘ model conf.
Affected point (x) | 51  Bachelors  Self-employed F 0 0.87
LOO point (z) 39  11thGrade ServiceIndustry M 0 -

Table 1: Selected feature values for a point treated leave-one-out
unfairly in a deep model on the Adult dataset, and the point z whose
removal resulted in the change in prediction. Confidence refers to
the raw output of the model’s prediction in the model with z.

2.2 Consumer Finance

Machine learning is also finding uses in consumer finance [7, 9, 50,
51]. Not surprisingly, the predictions made by these models, too, can
greatly impact peoples’ lives, potentially playing a decisive role in
their ability to obtain buy a car, a house, or start a business.

Impact of Instability. Models used in this context may be expected
to have consistent, justifiable reasons for the predictions that they
make. A salient example is credit models used to inform lending
decisions, where in Europe the General Data Protection Regulation
(GDPR) requires that creditors using automated decision systems
release “meaningful information about the logic involved” to ap-
plicants [3]. Similar regulations are relevant in the US through the
Federal Deposit Insurance Corporation (FDIC) consumer protection
law [2], which provides a “right to explanation” in lending decisions.

Some interpretations argue that the right to explanation provided
by the GDPR requires that it should be possible to trace a decision
back to pertinent details of an individual’s loan application, and
further that “the information about the logic must be meaningful to
[the applicant], notably, a human and presumably without partic-
ular technical expertise” [48]. This suggests that if the explanation
is not legible to the applicant based on prevailing norms, e.g. if it
seems to be made based on incomprehensible or arbitrary facts such
as the incidental makeup of the model’s training data, then such a
decision infringes upon their “rights and freedoms”. After receiving
an explanation, the GDPR provides the applicant the right to contest
such a decision, and request human review.

Experimental Confirmation. As with the face-matching model
in the previous subsection, we conducted experiments on models
trained to predict a proxy for creditworthiness using datasets dif-
fering in a single instance. We used the UCI Adult dataset [17], con-
sisting of a subset of US census data, and trained one-hidden-layer
neural networks with 200 internal units to predict income from
demographic, education, and employment information (details in
Section 4). Our results suggest that the predictions of these models
are often sensitive to the presence of single instances, indicating the
potential for leave-one-out unfairness.

Looking more closely at the results, one of these models was
trained with the point z shown in Table 1 included in the training
set: a 39-year-old man with an 11th-grade education who works in
the service industry. This model predicts that a 51-year-old, college-
educated, self-employed woman makes more than $50k (0.87 con-
fidence), whereas a model trained on the same data without z made
the opposite prediction. Mirroring our findings with the FRT models,
there is no apparent connection between the features that represent
these individuals (see Table 1), and the models predict the woman’s
outcome with high confidence. The removal of this one individual
does not just affect this 51-year-old woman, but rather we find that
approximately 2% of the entire data set, 603 predictions, are changed.
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3 LEAVE-ONE-OUT UNFAIRNESS

In this section, we introduce the definition of leave-one-out un-
fairness, and discuss its connections to prior notions of stability:
leave-one-out stability [49], differential privacy [18], and individual
fairness [20]. We prove that leave-one-out unfairness is a stronger
notion than leave-one-out stability, and weaker than differential pri-
vacy. Our formalization of LUF allows us to measure its prevalence
objectively on real data, and our investigation of its connections
to other forms of stability suggest mitigation techniques as well
potential middle ground for achieving gains in privacy.

3.1 Notation and Preliminaries

We assume a typical supervised learning setting. Let z= (x,y) e XXY
be a data point, where x represents a set of features and y a response.
Points z are drawn from a distribution D, as are datasets S from
the iid product of D, i.e. S ~ D". We assume that learning rules h
are randomized mappings from datasets S to models hg, which are
functions mapping features to responses; in other words, hg: X —Y
is the model obtained by learning with h on data S. We use U (m) to
refer to the uniform distribution over the integers {1...m}. Given S
sampled from D" and index i ~ U (m), we denote the sample S with
the ith element removed as S(\).

3.2 Leave-one-out Unfairness

Leave-one-out unfairness is based on the notion that a model’s treat-
ment of an individual should not depend too heavily on the inclusion
of any other single training point. This is related to the concept of al-
gorithmic stability, which measures the effect that a small change in
input has on an algorithm’s output. For example, a machine learning
algorithm is stable if a small change to its input (training set) causes
limited change in its output (a trained model). Usually, the change in
output is measured in the form of model error. Definition 1 formal-
izes this as leave-one-out (LOO) stability, but we note that there are
several variants that quantify over pointwise replacement instead of
leave-out, and use different types of aggregation in their bound [49].

DEFINITION 1 (LEAVE-ONE-OUT (LOO) STABILITY [49]). Let€ggpe:
N — R be a monotonically-decreasing function. Given a training set
S=(21,..o2m) ~ D", and a training set
SO = (215e-52i=1Zit15e-5Zm) Withi~U(m), a learning rule h is leave-
one-out-stable (or LOO-stable) on loss function ¢ with rate €gy,p1.(m) if

1 m
— > E_[e(hsz)~(hg0n.20)[] < €stapie(m)
M o"

LOO-stability records the average effect of removing an individ-
ual from the training set on the absolute loss on that individual’s
prediction. Quantifying the effect model of instability on the fairness
of predicted outcomes, however, calls for a definition focusing on
different aspects of model behavior. LOO-stability is a predicate on
alearning rule that can be satisfied in order to achieve an acceptable
level of model stability, in expectation over all draws of a training set
S.However, in this paper, we are interested in quantifying the extent
of arbitrariness in a particular individual’s prediction—to capture
this, we need a metric of unfairness, rather than a fairness guarantee.
Pursuant of capturing an particular individual’s real-life experience
with a particular model, we are interested in a quantifying arbitrary
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behavior in relation to a particular model context-i.e., on a fixed
training set S.

To focus the effect of instability on the experience of the pop-
ulation on which it is deployed, rather than a measure of model
performance, we need a metric which accounts for the instability
that arises for any person from the inclusion of a given point in the
training set—rather than the impact that the changed point has on
the error its own prediction. Even with this focus on the experience
of the individuals, an aggregate calculation such as in LOO-stability
may hide the experiences of an unlucky few who may encounter par-
ticularly high arbitrariness in their outcome. To ensure that model
behavior on every individual is considered, a worst-case metric is
more suitable. Further, appealing to the intuition that a model acts
unfairly if it is arbitrary, the consistency of its prediction, rather than
its loss, is the target; consistent predictions, even when incorrect,
suggest that the model’s decision is not arbitrary. Definition 2, below,
reflects these considerations.

DEFINITION 2 (LEAVE-ONE-OUT UNFAIRNESS (LUF)). Let D be the
distribution from which the training set S is drawn, and let x be in the
support of D. We define the leave-one-out unfairness (LUF) experienced
by x under learning rule h and training set S~ D to be:

LUF(h,S,x) =m%x|Pr[h5(x) =k]-Pr[hgqs (x)=Kk]|
i,

The randomness in this expression is over the choices made by h. Note
that in cases of a deterministic learning rule, Pr[hs(x)=k] is0 or 1.

In other words, given a learning rule h and a training set S, the LUF
experienced by a person x is the worst-case probability that x receives
a different prediction in a model trained with h on S, and one trained
with h on S with a single point removed. Intuitively, this is one way
of quantifying the arbitrariness of the model’s decision at x. If LUF
is high, then the model’s decision is brittle under small, potentially
irrelevant changes, i.e., a one-point change in the model’s training
set—casting doubt on the reason behind the model’s decision.

In certain situations, such as when evaluating various models
during development, it may be useful to understand the extent of
leave-one-out unfairness across the entire population under a given
learning rule: i.e. understanding how likely it is any individual in the
distribution will experience an arbitrary decision. This motivates
the concept of expected leave-one-out unfairness, defined below. As
most of our experiments aim to measure the frequency and severity
of arbitrary behavior across real datasets, we will focus most heavily
on this definition throughout the paper.

DEFINITION 3 (EXPECTED LEAVE-ONE-OUT UNFAIRNESS). Let D
be the distribution from which the training set S is drawn, and let
x be drawn randomly from D. We define the expected leave-one-out
unfairness (LUF) experienced by x under learning rule h and training
set S~ D to be:

Ex[LUF(hSx)]=Ex-D [nfilakXIPr[hs (x)=k]=Pr[hg (x)=k]l]

Where the randomness in the expectation is taken over samples of x
from D.

3.3 Connections to Existing Stability Notions

While our introduction of Definition 2 above is clearly motivated by
LOO stability, in this section we explore the connections to this and
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other forms of stability in greater depth. Specifically, we demonstrate
that while learning rules that are already known to be leave-one-out-
stable may still be susceptible to leave-one-out unfairness, strategies
for ensuring stronger notions of stability, such differential privacy,
can be used to mitigate LUF. We also explore the connection between
LUF and other individual-based fairness notions, i.e. individual fair-
ness.

LOO Stability. Leave-one-out stability is a coarser notion than
leave-one-out unfairness, as it records the average change in a
model’s error on a given point when that same point is removed from
the training set. Meanwhile, LUF focuses on how a certain point’s
model outcome can change as a result of any point in the training
set being removed.

A LOO-stable model may still treat points leave-one-out unfairly:
a model can exhibit similar error on a given point before and after
that point is removed from the training set, but it may treat other
points differently. We demonstrate this point on the simple learning
rule and distribution in Figure 3. Additionally, the fact LOO-stability
isaveraged over the entire training set can obscure the fact that some
individual points are strongly affected by a small change in the train-
ing set. Proposition 3.1 formalizes this, showing that LOO-stability
is strictly weaker than LUF.

PROPOSITION 3.1. Leth be a learning rule, £ be 0-1 loss, and e (m) be
a montonically-decreasing function such that h is leave-one-out stable
with rate e(m) for all S~ D™. Then there exists a training set S such
that Ex [LUF(h,s,x)] > €5qp1e(m) and x.

Proor. Consider a binary classification problem a discrete dis-
tribution D with three points, as pictured in Figure 3: x1,x2 € D are
of class 0, and x3 € D is of class 1, shown in red and blue. We define
alearning rule, h, according to the different classifiers learned with
each possible training set S ~ D, shown in Figure 3. Notice that this
learning rule is LOO-stable with €g,p1e (3)=0, as when each point is
removed, the classification error on that point remains the same: this
is shown by construction in Figure 3 when S = x1,x2,x3, and in all
other cases, the learning rule is constant, as shown in the figure. Thus,
% Z?:] Es-p [|€(h5,z,-) —t(hgai ,zi)|] =0 < 0. However, notice that
e.g., if S=x1,x2,x3, and x3 is removed, x experiences a change in clas-
sification outcome. Thus, LUF(A,S,x2) = 1. See that, in fact, that every
point is susceptible to a change in prediction as the result of different
point being removed from the dataset—thus, £, [LUF(h,S,x)]=1. O

Proposition 3.2 shows that models with bounded LUF are also
LOO-stable; the proof is given in the supplementary material.

PROPOSITION 3.2. Let h be a learning rule, ¢ be 0-1 loss, and e(m)
be a montonically-decreasing function such that LUF(h,S,x) < e(m)
forallS~D™ and x. Then h is leave-one-out stable with rate e(m).

Differential Privacy. Privacy and fairness are related in various
ways, as others have illustrated before [16, 20]. Like differential pri-
vacy,leave-one-out unfairnessis a stability property of learning rules,
but differential privacy is stronger. In particular, differential privacy
(Definition 4) quantifies universally over all pairs of related training
data, and limits the probability of any change in outcome. On the
other hand, Definitions 2 and 3 fix a training set, and require stability
of the model’s response on points from the target distribution.
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For all other S:

| @

X3

x.
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Figure 3: Left: A learning rule h that satisfies LOO-stability, but not
expected LUF, over the distribution D of the three points pictured. In
eachbox, we see the decision boundary learned with a specified train-
ing set S ~ D, thus fully defining h. The proof is explained in Propo-
sition 3.1. Right: Visual intuition for how a model can have LUF =
0,Vx € D but not satisfy differential privacy. Consider a 1-KNN model
on a binary classification problem over the distribution pictured
above: two perfectly separated uniform distributions over circles.
The diameter of each circle is d, and the distance between the cen-
ters of the two circles is 3d. Consider any training set S drawn from
this distribution that has at least two data points from each class. See
that LUF(h,S,x) =0 for all x € D: removing any point from S cannot
change the classification of any point in the distribution, i.e., within
the circles pictured above. However, 1-KNN is not differentially pri-
vate, as itis a deterministic, non-constant, learning rule. Specifically,
see that adding or removing a point in S can shift the boundary suffi-
ciently far to change the model’s behavior on points not in D, (such
as point x; pictured), which is a violation of differential privacy.

DEFINITION 4 ((€,8) -DIFFERENTIAL PRIVACY). An algorithm A:
X — Y satisfies (¢,0)-differential privacy, for 0 < € and § € [0,1], if
forall S € X", " € X"\ that differ in a single row and all Y C Y,
Pr[A(S)e Y] <efPr[A(S") e Y]+6.

Differential privacy is stronger than leave-one-out-unfairness, as
any change to the model—even ifit does not actually affect prediction
of any point in the distribution—can potentially leak information,
and is therefore a violation of differential privacy. This makes sense in
the context of privacy, as it concerns an adversarial setting where an
attacker is free to interact with a model as-needed to extract informa-
tion. The focus of fairness is how people receiving an outcome froma
model are treated, and thus leave-one-out unfairness focuses on the
model’s behavior on the data distribution, drawing attention to how
changes in the model could affect those who are its likely subjects.

Leave-one-out unfairness does not require randomization in the
model’s learning rule, whereas differential privacy does. Figure 3
shows an intuitive example of this, where the deterministic learning
rule may yield models with unstable outcomes, but only on points
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with vanishing probability; for points with non-zero probability, the
model’s predictions will remain consistent across unit changes to
the training data. Moreover, because Definition 1 depends on D, a
learning rule may have little leave-one-out unfairness on some dis-
tributions, and more on others. However, as Proposition 3.2 shows,
differential privacy implies bounded LUF. A proof can be found in
the supplementary material.

PROPOSITION 3.3. Let h be an (€,0)-differentially private learning
rule, and x ~ D be a point. Then LUF(h,S,x) <e€—1+96.

Individual Fairness. Individual Fairness is a Lipschitz condition
that aims to formalize the maxim: “similar people ought to be treated
similarly”. Importantly, in the context of supervised learning this is
typically construed as a constraint on models rather than learning
rules. This stands in contrast to Definitions 2 and 3, which impose a
constraint on the latter. Additionally, our definitions do not relate the
treatment of individuals to others, but instead measure the degree
to which one’s treatment by the model may be arbitrarily decided by
the composition of the training data. While there is no reason that in-
dividual fairness and leave-one-out fairness cannot coincide, there is
no a priori reason to believe that they will. In Section 5, we present ex-
perimental results on models trained with random smoothing, which
has been shown to guarantee individual fairness [61]; shedding fur-
ther light on the relationship between these two fairness concepts.

We note that leave-one-out unfairness is also related to the defini-
tion of memorization introduced by Feldman [24], which we discuss
in greater detail in Section 7.

4 LUFIN DEEP MODELS

We characterize the prevalence of leave-one-out unfairness across
models trained on several types of data: tabular, time-series, and
image data. Importantly, we find that a non-trivial fraction of data
(from 3% to 77%) experiences LUF, and moreover, that the prevalence
does not appear to depend on model generalization, test accuracy,
or dataset size.

Datasets. We perform all of our experiments over five datasets:
UCI German Credit [17], Adult [17], Seizure [17], Fashion MNIST [59],
and Labeled Faces in the Wild [30]. The German Credit data set con-
sists of individuals’ financial data, with a binary response indicating
their creditworthiness. The Adult dataset consists of a subset of
publicly-available US Census data, with a binary response indicating
annual income of > 50k. The Seizure dataset comprises time-series
EEG recordings for 500 individuals, with a binary response indicat-
ing the occurrence of a seizure. Fashion MNIST contains images
of clothing items, with a multilabel response of 10 classes. Labeled
Faces in the wild consists of unconstrained pictures of individuals’
faces, with labels connoting the identity of the individual in each pic-
ture. Further information about these datasets and the preprocessing
steps we apply can be found in the supplementary material. Table 2
contains the accuracy and generalization error for each baseline
model hg for all datasets.

Setup. For all experiments, we train models using Keras 2.4.3 with
TensorFlow 2.0. In keeping with common practice, we set the ran-
dom seeds used by Python, numpy, and Tensorflow. Beyond this,
in order to isolate the effect of leave-one-out unfairness from other
sources of instability, we use the same random initialization of model
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parameters across models in the same experiment, and we turn off
non-determinism in GPU operations [55]. This effectively makes
the learning rule h deterministic, so that when measuring LUF, the
probabilities in Definition 2 are € {0,1}. We note that, in the case of,
LFW, an additional source of instability remains in the process that
produces pairs of faces dynamically during training. This is neces-
sary in order for the model to encounter a sufficiently high number of
face pairs during training while being bound to memory constraints.
We provide results of the same experiments over a smaller, static
dataset in the supplementary material, with similar LUF behavior
but lower accuracy.

As it would be prohibitively expensive to train |S| models for
the datasets S listed above, we instead measure differences over a
fixed number of training sets obtained by randomly deriving from
each dataset: a training set S, a set O C S of size 100 that consists of
points drawn randomly from test data (i.e. with which to create 100
different S(\)), and a test set. We train a “baseline” deep model hg
with which to calculate the differences in prediction resulting from
removing a point from O from S. For each z; € O, we train hg() by
removing z; from S. For each hg\;), we estimate LUF(h,S,x) for all
x in the dataset by measuring the differences between hg(x) and
hgi (x), and taking the maximum difference over the sample of 100
leave-one-out points O. Since the distribution that each training set
S comes from is a uniform distribution over the entire dataset, this
is measuring E, [LUF(A,S,x)] for each training set S and learning
rule h. A step-by-step explanation of this calculation is given in the
supplementary material. Due to the cost, for LFW we train 50 hg(\s)
models, i.e., in this case we set |O|=50.

To verify that the leave-one-out unfairness is a property of the
models and not an unavoidable consequence of training a machine
learning model on the presented datasets, we also train linear models
on the same datasets with the same method, and compare the leave-
one-out unfairness of these linear models to their deep counterparts.

The majority of our results displaying the extent of expected LUF
in deep models center around the use of one architecture, seed, and
set of hyper-parameters per dataset, in order to keep as many vari-
ables controlled as possible. To ensure that the behavior described is
consistent, we present experiments displaying the effect of changing
architecture and random seed on our main results in Figure 5. The
main set of models for German Credit and Seizure datasets have
three hidden layers, of size 128, 64, and 16. Models on the Adult
dataset have one hidden layer of 200 neurons. The FMNIST model
is a modified LeNet architecture [36]. This model is trained with
dropout. The LFW face-matching model consists of a concatenation
layer composing the two input images, a 4-layer convolutional stack,
followed by a dense layer, and a Sigmoid output. German Credit,
Adult, and Seizure models are trained for 100 epochs; FMNIST and
LFW models are trained for 50. German Credit models are trained
with a batch size of 32, FMNIST 64, and Adult, Seizure, and LFW used
batch sizes of 128. German Credit, Adult, Seizure and LFW models
were trained with Adam (Ir=1.e73), and FMNIST with SGD (Ir=0.1).

The experiments outlined above were also performed on models
with two other architectures per dataset, in order to compare results
across architecture, presented in Figure 5. For German Credit and
Seizure datasets, one additional architecture was a shallower model
of a 1-hidden layer model of size 100, and the other a narrower model
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Deep PGD Trades Smoothed Linear
dataset baseacc generr | baseacc generr | baseacc generr | baseacc generr | baseacc generr
German Credit 0.7500 0.2500 0.7400 0.22 0.745 0.253 0.755 0.245 0.745 0.0175
Adult 0.8418 0.0344 0.8226 -0.0019 | 0.83217 0.0845 0.8390 0.0180 0.8400 0.000
Seizure 0.9736 0.0264 0.9770 0.000 0.9672 0.0083 0.9754 0.0246 0.8113 0.0043
FMNIST 0.9111 0.0211 0.7876 0.0099 0.9016 0.0700 0.8678 0.0269 0.8368 0.0145
LFW 0.8695 0.0597 - - - - - - 0.5790 -0.0755

Table 2: Test accuracy and generalization error for all s models.
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Figure 4: Top row: Prediction confidence on the horizontal axis, percentage of stable points experiencing LUF (i.e., Ex [LUF (h,s,x) ]) on the vertical
axis. For FMNIST, confidence is calculated as the absolute difference between the two most confidently predicted classes; for other datasets,
confidence is |hs(x) —0.5|. Note the differences in scale between the graphs; adversarial German Credit and Adult models display especially
high leave-one-out unfairness, as well as LFW. Bottom Row: A bar chart displaying what percentage of points in the dataset are affected by each
one of the points taken out. Each bar shows the number of points in O (left-out points) whose absence changed the prediction of the percentage
of points shown on the x axis. Notably, every single point that was taken out of the dataset affected at least one other individual’s prediction.

Note the difference in scale on the x axis.

of 3hidden layers of sized 64, 32, and 8. For the Adult dataset, the addi-
tional models were a narrower 1-hidden layer of size 100, and a deep
model with the same architecture as the main German Credit models.
For FMNIST, we trained a shallower model with one set of layers
removed, as well as a model with no dropout. Finally, for LFW, we
compare with a ResNet50 [28] model, pre-trained on ImageNet, and
modified to take in two inputs and have a Sigmoid output, as wellas a
model whose filters are twice the size of the original model. For exper-
iments comparing the extent of expected LUF across models seeded
differently, we perform the main experiments outlined in the para-
graphs above over 5 different random seeds for all tabular and time
series datasets, and three different random seeds for image datasets.
Further details on model construction can be found in the appendix.

LUF in Deep Models. Figure 4 shows the prevalence of leave-one-
out unfairness on all five datasets. The first row plots the percentage
of individuals x experiencing LUF(h,S,x): i.e., Ex [LUF (h,S,x)], rang-
ing over the confidence of the baseline model’s prediction. On every
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dataset examined, deep models display nontrivial expected LUF,
ranging from ~4% to ~77%. The second row shows the number of
points in z; € O (out of 100) that lead to a given percentage of individ-
uals x having their predictions changed when only z is removed from
the dataset. The percentage per point on the X axis, and the number
of points that change this percentage of outcomes is on the Y axis.
Notably, the removal of each point sampled lead to an hg\; model
that changed the predictions of at least one other point, suggesting
that leave-one-out unfairness is in fact very common.

The results show that leave-one-out unfairness cannot be reliably
predicted given test accuracy, and more notably, generalization error
(shown in Table 2). While it may seem natural that models with
higher accuracies display less LUF, the deep model on the Adult
dataset has an accuracy ~10% higher than the German Credit dataset,
yet the German Credit dataset has approximately 2% fewer individ-
uals experiencing LUF. Even more impressively, the LFW model has
higher accuracy than both German Credit and Adult models, by 12%
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and 2% respectively, yet has a much higher expected LUF of ~77%,
compared to 7% and 10%. Similarly, following intuitions from model
stability, lower generalization error may naturally seem to coincide
with lower levels of LUF. However, the German Credit model has a
generalization error of ~25%, yet has lower LUF than both the Adult
model, with generalization error of just ~3%, and the LFW model,
with generalization error of ~5%. Indeed, while these results will be
further discussed in the next section, it is worthy of note that the
PGD model on the Adult dataset has essentially zero generalization
error, yet has a very high percentage of individuals experiencing
leave-one-out unfairness (~25%), while the deep model on the Adult
dataset has generalization error of ~3.5% and has around 10% of in-
dividuals experiencing LUF. While we did not explicitly control for
accuracy or generalization error, these results are evidence that LUF
does not depend on these metrics.

Also of note is that LUF does not decrease with dataset size—
FMNIST and German Credit are the largest and smallest datasets,
with training set sizes of 60,000 and 800 respectively, yet FMNIST dis-
played similar LUF to German Credit (within 1%). The Adult dataset
is also larger than German Credit (~|S|=15,000) and displays more
expected LUF.

Perhaps most importantly, confidently-predicted points are not
immune from leave-one-out unfairness in deep models: on the major-
ity of the datasets, a substantial portion of points with high LUF were
predicted with confidence greater than 0.9 by the baseline model.
This is illustrated by the fact that the curves displaying the number
of points versus baseline model confidence do not drop off sharply in
all models except for those on the Adult dataset. This is an interest-
ing manifestation of miscalibration in deep models: some confident
decisions may still be somewhat arbitrary, in that they are sensitive
to the specific makeup of the training set.

Consistency Under Varying Conditions. We provide calculations
of expected LUF over all datasets in deep models where the architec-
ture and random seed differ, in order to ensure that the results are
consistent across different modeling choices.

The results are presented in Figure 5. While there is some varia-
tion in expected LUF, no modeling choice explored eradicates the
behavior. Interestingly, certain architectures seem to exacerbate or
diminish LUF: a deeper model increases LUF in the Adult dataset
by nearly 10%, and removing dropout from the FMNIST model, as
well as increasing the filter size on LFW, have a similar effect. This
may warrant further study to find potential mitigation techniques
through architecture selection, however, no pattern is immediately
noticeable: for example, while a shallower model exhibited lower
expected LUF on the German Credit dataset than the baseline model,
the same shallow architecture exhibited more expected LUF than the
baseline on the Seizure dataset, which shares the same architecture
as the German Credit baseline model. Random seed also affects the
prevalence of expected LUF, to a slightly lesser extent for all mod-
els but LFW. Broadly, however, the results show that LUF is not an
artifact of any one particular set of training conditions.

Linear Models. We also provide the results for the same experi-
ments on linear models to calibrate against a more stable learning
rule that yields less complex models: observe the green line in Fig-
ure 4. These results show that LUF is not inherent to the data. While
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there are points that are treated leave-one-out unfairly, they are sub-
stantially fewer—with the exception of LFW, where the learning task
is markedly more complex than the other datasets, and unsuitable for
alinear model. Additionally, the overwhelming majority of points
treated leave-one-out unfairly in linear models are not confidently
predicted—in fact, in all models but FMNIST, there are no points
treated leave-one-out unfairly that are predicted with a difference
of more than 10% from 50% confidence.

This result agrees with intuition—linear boundaries are smooth,
and linear regression is stable. If the introduction of a point does shift
the boundary, it is likely that only points already close to the decision
boundary (i.e., low-confidence points) are affected. Deep models can
have arbitrarily complex decision boundaries, which appears to be
closely-related to LUF. As the phenomenon of memorization [24, 63]
suggests, and these results support, deep models have the capacity to
“overreact” to the presence of individual entries in their training data.
Figure 1 illustrates this further in a low-dimensional setting. Not
only can the region around the left-out point potentially change, but
there are may also be far-reaching effects on the decision boundary
beyond the neighborhood of the left-out point. These changes will af-
fect not just the predicted label of new points, but also their assigned
confidence score. While intuitions that are valid in low-dimensional
settings do not always transfer to high dimension, this may nonethe-
less provide some intuition behind the factors that contribute to
leave-one-out unfairness.

5 LUF AND ROBUST CLASSIFICATION

Calls to mitigate adversarial examples [45, 54] have motivated a
significant amount of research aimed at producing robust classi-
fiers [14, 40, 58]. Recent results have shown that some of these tech-
niques can even be repurposed to ensure individual fairness [61],
and moreover, that they often produce deep models that admit more
interpretable feature attributions [22, 31, 43]. Intuitively, these find-
ings could suggest that robust prediction methods rely on “robust
features” [31] that align more closely with human understanding
of the problem domain, and whose presence in the model may be
accordingly less dependent on individual points in the training data.

In this section, we explore this conjecture by measuring the in-
cidence of leave-one-out unfairness with two robust classification
methods: adversarial training, and randomized smoothing. We find
that models trained adversarially using projected gradient descent
(PGD) [40] as well as models trained with the TRADES algorithm [64]
have significantly higher rates of LUF, in most cases approximately
doubling the number of unstable points over standard training. On
the other hand, models that are made robust by post-hoc smooth-
ing with Gaussian noise [14] almost always have similar rates of
expected LUF. Taken together, these results suggest that LUF and
robustness are not inherently tied to one another, but that certain
classes of models may provide beneficial properties for both, war-
ranting further study.

Setup. We use the same experimental setup as in Section 4 for
measuring leave-one-out unfairness. In these experiments, we only
train deep models. For adversarial training, we use PGD with an ¢,
radius € =3.0 and 10 PGD steps on FMNIST and Seizure datasets. For
the Adult and German Credit datasets, we use radius €e=1.0. On the
German Credit dataset, we use the foo norm. The radius remained
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Figure 5: Effect of random seed and architecture on LUF results in deep models from Figure 4. The red and green plots show LUF for models
of slightly different architecture, as described in the experimental setup, and the bars on the blue line show the minimum and maximum LUF
values over 5 random seeds on the main architecture shown in main results. Notice the difference in scale across the graphs.

the same between PGD and TRADES training. We determined the ra-
dius for adversarial training by finding the minimum distance (with
respect to the adversarial norm) between any two points of different
classes over a large sample of the dataset. If this was impossible
because this distance was zero, we chose a distance smaller than that
between over 99% of cross-class pairs of points in the sample. For
TRADES training, we used all of the same hyperparameters as PGD
training, with the addition of the TRADES parameter, which was 1
for Adult and German Credit, and 10 for Seizure and FMNIST. Notice
that, for face-matching problems, the threat model for finding adver-
sarial examples is less clear—e.g., it is not obvious if the attacker has
access to individual images, or pairs of images. As we are unaware
of an established threat model for face-matching, we do not evalu-
ate LFW in this section. For randomized smoothing, we take 1,000
Gaussian samples with 2 =0.1 for the Adult and Seizure datasets,
10,000 samples with % =0.05 for FMNIST, and 2,000 samples with
62 =0.05 for German Credit. While Cohen et al. [14] report needing
more smoothing samples to achieve strong adversarial guarantees,
our goal in these experiments is to measure LUF, which we found to
be insensitive to additional samples beyond the numbers reported
above. The accuracy of these models is shown in Table 2.

Results and Discussion. The results are shown in Figure 4. The
most immediate trend is the degree to which PGD and TRADES
adversarial training worsens LUF: approximately by a factor of two
across all datasets, and by a factor of nearly three on the German
Credit dataset. Seizure is a partial exception in that the PGD training
does not worsen LUF, but TRADES training does. While adversarial
training produces models that are more invariant to small changes in
their inputs, these results show that the training procedure itself can
be unstable. This may be related to prior work demonstrating that
adversarially-trained models are more vulnerable to membership
inference [53, 62], a privacy attack that exploits memorization to leak
information about training data. While membership vulnerability
does not necessarily imply greater LUF, these experiments show
that in many cases the two phenomena may be related. We also note
that these results do not necessarily contradict the “robust feature”
hypothesis proposed by Ilyas et al. [31], as robust learned features
need not generalize across large portions of the dataset.

Turning to the curves labeled “Smooth” in Figure 4, it is clear that
randomized smoothing leads to qualitatively different leave-one-out
unfairness results. On most datasets, smoothing hadlittle effect (< 1%
difference) on expected LUF. Beyond suggesting that leave-one-out

293

unfairness is independent of robustness, these results also point to
the fact that individual fairness and LUF are related, but separate
notions. Randomized smoothing guarantees individual fairness for
weighted £, metrics [61], but has a negligible effect on leave-one-out
unfairness.

Looking at the geometry of these models can shed further light
on the differences in results between PGD training and randomized
smoothing. As suggested by Figure 1, deep model decision bound-
aries have the potential to be very sensitive to individual points,
and this sensitivity may affect regions of the decision boundary far
beyond the local neighborhood of the point in question. This could
contribute to leave-one-out unfairness, as the predictions of points in
regions shifted by a training points’ addition or removal will change.
Adversarial training may in some cases intensify the boundaries’
sensitivity to training points by penalizing inconsistent predictions
in any direction within € away.

Alternatively, a smoothed model returns the expected prediction
over a continuous distribution centered at each point, rather than the
value of the underlying model at only one point. While this does not
remedy larger boundary changes stemming from instability, it likely
does not exacerbate them, as evidenced by the effects in Figure 4.

6 DISCUSSION

Our study focused on instability to changes in training data, as this
type of stability is particularly well-studied due to its relevance
to generalization and privacy. However, there are other potential
sources of instability that may lead to arbitrary outcomes as well: for
example, random initialization, batching order, and model architec-
ture. If a difference in any of these choices results in a difference in
outcome for an individual—e.g., if a change in random initialization
frequently leads to a change in predicted credit risk for someone—
then this too could be seen as unfair, as it would call into question
the robustness of any supposed justification.

To establish a preliminary understanding of the degree to which
these sources introduce changes in outcome similar to LUF, we exper-
imentally investigate the percentage of changed outcomes resulting
from varying the random seed prior to initializing and training mod-
els, as well as from the choice of model architecture. Figure 6 shows
these results for all of the datasets studied in Section 4, alongside
the corresponding measurements for LUF. The experimental setup
largely follows that described in Section 4. We isolate the effect of
each potential variable causing instability unfairness (architecture,
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Figure 6: Arbitrariness in decision outcome as a result of changes in random seed, and small changes in architecture, are presented alongside
expected LUF, i.e. arbitrariness from small changes in the training set. Calculation methods are described in 6. We present these results to
motivate a wider connection between learning algorithm stability and fairness, beyond LUF. Notice the difference in scale across graphs.

random seed, and leave-one-out unfairness) in its own experiment;
keeping other sources of instability controlled. For the random seed
experiments, we train the same model with 100 different random
seeds and calculated the effects of instability in the same manner as
calculating LUF described in Section 4; for the experiments calculat-
ing the fairness effects of changes in architecture, we train the model
on three different architectures, as described for the experiments
verifying consistency in LUF in Section 4. Further information on the
architectures considered can be found in the supplementary material.

As Figure 6 shows, any of these aspects in a model can affect
model behavior over a substantial percentage of the overall dataset.
Interestingly, LUF seems to have a more consistent effect across
points with high prediction confidence than arbitrariness resulting
from a change in architecture. LUF seems to have a similar effect to
changing random seed and initialization, as changing seed produces
a larger effect in FMNIST and German Credit, but a smaller effect
in Adult and Seizure models. While these other sources of instabil-
ity unfairness are interesting avenues for future work, we focus on
leave-one-out unfairness in this paper due to its useful connections
to other areas of the machine learning literature, bridging the fields
of fairness to those of stability and privacy as discussed in Section 3,
and also to the field of robustness, as explored in Section 5.

7 RELATED WORK

Leave-one-out unfairness views the problem of learning instabil-
ity [11, 12] from a fairness perspective. While deep learning is gener-
ally understood not to enjoy strong stability properties, our results
are among the few systematic studies of the extent, and potential
ramifications, of their instability. Hardt et al. show that even non-
convex models trained using Stochastic Gradient Descent remain
stable over a small number of iterations, and that popular heuris-
tics like dropout and ¢, regularization help [27], and provide some
experimental demonstrations. Towards achieving stability in deep
learning, Kuzborskij et al. [35], develop a screening protocol for
choosing random initalizations that improve stability.
Memorization, as defined by Feldman [24], is a symptom of model
instability where a model predicts the correct output on a given
point if it is in the training set, and incorrectly otherwise. There has
been much recent work unearthing the potential for memorization
in deep neural networks [63], discussion about the extent of the phe-
nomenon in practice [6] as well as arguments for its usefulness [24].
Memorization is closely related to leave-one-out unfairness in it is a
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measure of stability, and crucially, focuses on how instability affects
a given point, rather than an average. However, leave-one-out fair-
ness is much broader than memorization. Memorization quantifies
how much removing a given point from the training set affects that
whether that particular point is predicted correctly. Leave-one-out
fairness quantifies how the consistency, not the error, of a given
point’s prediction is affected by any other point.

A well-known meeting point of stability and privacy is differential
privacy [18], which quantifies privacy risk in terms of a uniform,
information-theoretic notion of stability. Leave-one-out fairness is
related to, but weaker than, differential privacy, as shown in Section 3.
Instability also worsens concrete privacy attacks: oversensitivity to
the training set can affect a model’s parameters, which can be lever-
aged to perform membership inference [37, 52, 60]. Our experiments
in Section 5 may suggest that this phenomenon has a connection to
leave-one-out unfairness, in that adversarial training increases both
LUF and the potential for membership inference attacks [53, 62].

There is little work that connects fairness and stability. Leave-one-
out fairness is an individual-based fairness notion. While there are
several definitions of “individualized” fairness [19, 20, 32, 34], they
are rarely operationalized in common fairness testing platforms, as
they can be difficult to calculate. In addition to already-noted differ-
ences from prior notions of fairness, expected LUF can be effectively
measured on real datasets to give insight into whether an individual
may be subject to unfair treatment at inference time.

8 CONCLUSION

We present leave-one-out fairness, a connection between algorith-
mic stability and fairness. We demonstrate the extent to which deep
models are leave-one-out unfair, and experimentally showed that
this behavior does not depend on generalization error. Interestingly,
adversarial training worsens leave-one-out unfairness in deep mod-
els, while random smoothing often mildly mitigates it, showing that
leave-one-out fairness is not dependent on robustness or individual
fairness. These results may suggest an interesting geometric intu-
ition of deep networks’ sensitivity to their training points. Finally,
we note that LUF may be undesirable in sensitive applications, as it
casts doubt on the justifiability of a model’s decision.
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