
Learning Fair Representations for Kernel Models

Zilong Tan Samuel Yeom Matt Fredrikson Ameet Talwalkar
Carnegie Mellon University

zilongt@cs.cmu.edu
Carnegie Mellon University

syeom@cs.cmu.edu
Carnegie Mellon University

mfredrik@cs.cmu.edu
Carnegie Mellon University

& Determined AI
talwalkar@cmu.edu

Abstract

Fair representations are a powerful tool for
satisfying fairness goals such as statistical
parity and equality of opportunity in learned
models. Existing techniques for learning
these representations are typically model-
agnostic, as they pre-process the original
data such that the output satisfies some fair-
ness criterion, and can be used with arbitrary
learning methods. In contrast, we demon-
strate the promise of learning a model-aware
fair representation, focusing on kernel-based
models. We leverage the classical sufficient
dimension reduction (SDR) framework to
construct representations as subspaces of the
reproducing kernel Hilbert space (RKHS),
whose member functions are guaranteed to
satisfy a given fairness criterion. Our method
supports several fairness criteria, continuous
and discrete data, and multiple protected at-
tributes. We also characterize the fairness-
accuracy trade-off with a parameter that re-
lates to the principal angles between sub-
spaces of the RKHS. Finally, we apply our ap-
proach to obtain the first fair Gaussian pro-
cess (FGP) prior for fair Bayesian learning,
and show that it is competitive with, and
in some cases outperforms, state-of-the-art
methods on real data.

1 Introduction

Fairness has emerged as a key issue in machine learn-
ing as the learned models are increasingly used in areas
such as hiring (Dastin, 2018), healthcare (Gupta and
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Mohammad, 2017), and criminal justice (Equivant,
2019). In particular, the models’ predictions should
not lead to decisions that discriminate on the basis of
a legally protected attribute, such as race or gender.
Among the proposals to address this issue, a growing
body of work focuses on learning fair representations
of data for downstream modeling (Calmon et al., 2017,
del Barrio et al., 2018, Feldman et al., 2015, Johndrow
and Lum, 2019, Kamiran and Calders, 2012). Most of
these approaches are model-agnostic, which provides
flexibility when working with the learned representa-
tions but comes at the cost of potentially suboptimal
results in terms of both fairness and accuracy.

In this work, we present a novel approach for fair rep-
resentation learning that takes into account the tar-
get hypothesis space of models that will be learned
from the representation. Specifically, we show how
to leverage information about the reproducing kernel
Hilbert space (RKHS) to learn a fair representation
for kernel-based models with provable fairness and ac-
curacy guarantees.

Our approach builds on the sufficient dimension re-
duction (SDR) framework (Fukumizu et al., 2009, Li,
1991, Wu et al., 2009), which is used to compute a
low-dimensional projection of the feature vector X
that captures all information related to the response
Y . Our key insight is that we can instead perform
SDR with respect to the protected attributes S, and
then take the orthogonal complement of the result-
ing projection to obtain a fair subspace of the RKHS
that captures information in X unrelated to S. We
show that functions in the fair subspace will be in-
dependent of S under mild conditions (§ 2.1), and we
leverage this fact to prove that our approach can guar-
antee several popular definitions of fairness, namely
statistical parity (Feldman et al., 2015), proxy nondis-
crimination (Datta et al., 2017), equality of opportu-
nity (Hardt et al., 2016), and equalized odds (Hardt
et al., 2016). Moreover, our approach is compatible
with both classification and regression, as well as in
settings where there are multiple, possibly continuous
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protected attributes.

Because a fair model might have a lower-than-desired
accuracy in practice, we further generalize our ap-
proach to consider this trade-off. In particular, we ap-
ply SDR to compute a predictive subspace of the RKHS
that captures sufficient information in the feature vec-
torX related to the response Y . We then define a third
model subspace of the RKHS, which is bounded be-
tween the fair and predictive subspaces by a specified
principal angle (Golub and Van Loan, 2013, Stewart
and Sun, 1990). In contrast to recent regularization-
and constraint-based trade-offs (Edwards and Storkey,
2016, Louizos et al., 2016, Madras et al., 2018, Song
et al., 2019, Zemel et al., 2013), we provide precise
characterizations of how the specified angle affects the
fairness and accuracy of any model in this subspace.

Finally, we apply our method to obtain, to the best of
our knowledge, the first fair Gaussian process (FGP)
prior for constructing fair models in the Bayesian set-
ting. Sample paths of the FGP will be functions in the
chosen model subspace, and hence satisfy the specified
fairness conditions. We identify the covariance kernel
of the FGP that corresponds to the chosen model sub-
space by using the duality between a Gaussian process
and its RKHS (Pillai et al., 2007, Tan and Mukher-
jee, 2018, Wahba, 1990). Our experiments show that
the FGP achieves both rigorous fairness properties and
improved accuracy compared to prior methods.

Additional Related Work Much of the prior work
on fair representation learning optimizes only for sta-
tistical parity (del Barrio et al., 2018, Feldman et al.,
2015, Johndrow and Lum, 2019, Komiyama and Shi-
mao, 2017, Komiyama et al., 2018, Louizos et al.,
2016, Oneto et al., 2019a, Zemel et al., 2013) or
individual fairness (Calmon et al., 2017). Learned
Adversarially Fair and Transferable Representations
(LAFTR) (Madras et al., 2018) provides additional
support for equality of opportunity and equalized odds
by taking into account the model loss while learning
the fair representation. The authors prove bounds for
statistical parity and equalized odds, but it should be
noted that these bounds depend on the optimal ad-
versary, which may not be available in non-convex set-
tings. Our approach supports a broader set of fairness
criteria (see § 2.2), and we characterize the generaliza-
tion performance in terms of both fairness and accu-
racy.

Provably fair kernel learning has been recently stud-
ied by Donini et al. (2018) and Oneto et al. (2019b).
Both approaches primarily target equality of opportu-
nity in the setting of a single protected attribute. As
previously noted, we address a more general setting.
Komiyama et al. (2018) also study fair kernel meth-

ods, but they only remove linear correlation between
the input features X and the protected attribute S; by
contrast, we can remove general statistical associations
between X and S.

Bayesian formulations of fairness have been studied by
Foulds et al. (2018) and Dimitrakakis et al. (2019), who
take into account the uncertainty in model parameters.
Dimitrakakis et al. (2019) propose Bayesian versions of
the balance (Kleinberg et al., 2017) and calibration cri-
teria (Chouldechova, 2017) based on decision-theoretic
risk formulations. Foulds et al. (2018) introduce a dif-
ferential fairness criterion inspired by the definition
of differential privacy in the setting of multiple pro-
tected attributes. Unlike these works, we do not pro-
pose new fairness criteria, instead focusing on several
widely used criteria as described in § 2.2.

Much previous research on learning rules with ex-
plicit fairness constraints or objectives (Kamiran et al.,
2010, Zafar et al., 2017b, Zliobaite, 2015) includes em-
pirical studies on the fairness-accuracy trade-off, re-
porting that classifiers trained in this way outper-
form those trained on model-agnostic fair represen-
tations. Our proposed fair representations are not
model-agnostic, and our performance is competitive
if not better in some cases than that of those learn-
ing methods. Menon and Williamson (2018) pro-
vide a theoretical analysis of the trade-off, providing
information-theoretic bounds on accuracy in terms of
the correlation between the target and protected at-
tributes, as well as a regularization parameter analo-
gous to the principal angle between subspaces used to
set the trade-off in our work. In contrast, we provide
insight into how the trade-off impacts generalization
performance.

Another approach to fair classification uses random-
ized post-processing of the classifier’s predictions to
ensure group fairness criteria. Hardt et al. (2016)
propose such a procedure for ensuring equalized odds
on binary classifiers. Woodworth et al. (2017) ar-
gue that this approach can be suboptimal, and pro-
pose an alternative scheme: first learn a classifier with
constraints to approximate fairness, and subsequently
post-process its predictions to reduce discrimination.
These approaches are orthogonal to fair representation
learning, and do not consider either regression or mul-
tiple protected attributes.

2 Using SDR to Formulate Fairness

We begin by introducing some notation. We write X
for the feature space and S for the space of protected
attributes. In addition, X ∈ X , S ∈ S, and Y ∈ R
denote the random variables for the feature vector,
protected attributes, and label/response, respectively.
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We write accordingly {(xi, si, yi) ∈ X × S × R}ni=1 for
the training data of n examples.

The fair subspace is chosen as a vector space such
that the projection of X onto the fair subspace does
not contain information about S while retaining the
residual information of X. We then use the projection
as the fair representation. In the next subsection, we
present an SDR-based method, i.e., Proposition 1, for
finding a fair subspace. In § 2.2, we show that the fair
subspace based representation satisfies several existing
fairness criteria.

2.1 SDR-Induced Fair Representations

First consider the simple case where X = Rp and S =
R, including both the categorical and continuous cases.
The goal is to obtain a basis of the fair subspace of
dimension d ≤ p represented by the columns of C ∈
Rp×d. A salient challenge in finding the fair subspace
arises as the link between S and X is unknown. To
address this issue, the key insight we use is that C can
be obtained from an SDR subspace of X with respect
to S. Next, we briefly recall the definition of the SDR
subspace as well as its assumption (Cook and Forzani,
2009, Li, 1991). Then, we provide the construction of
C in Proposition 1.

An m-dimensional vector space is called an SDR sub-
space of X with respect to S if the projection of X
onto the subspace captures the statistical dependency
of S on X. The proposed SDR-induced fair represen-
tation relies on a kernel version of the following SDR
assumption.

Assumption 1. There exists a function fS : Rm ×
Rl → R and a matrix B ∈ Rp×m such that

S = fS
(
B>X, εS

)
or X ⊥⊥ S | B>X, (1)

where εS is a random variable independent of X.

The column span of B is known as the SDR subspace.
It is worth pointing out that the condition (1) is always
satisfied since there is a one-to-one correspondence be-
tweenB>X andX wheneverB is square non-singular.
The condition (1) states that the projection B>X cap-
tures all information in X about S or more. The goal
is thus to recover an SDR subspace with the lowest
dimension. Under mild conditions on X, this recov-
ery is guaranteed without requiring the knowledge of
fS (Hall and Li, 1993, Li, 1991).

The SDR-induced fair representation is given by the
projection onto the fair subspace X ′ := C>X, where
C is defined as in Proposition 1. Note that the proposi-
tion does not make assumptions about the underlying
link function fS . Its proof adapts techniques used in
Brillinger, 1983 as well as the properties of elliptically

contoured distributions, and is provided in supplemen-
tary material.

Proposition 1. Suppose that E |S| < ∞ and
E |XiS| < ∞ for i = 1, · · · , p. Let the columns of
C form a basis of the nullspace of Var (X)B. If con-
dition (1) holds and X follows an elliptically contoured
distribution, then Cov

(
C>X,S

)
= 0.

The class of elliptically contoured distributions con-
tains the normal distribution. In the case where
X ′ and S are jointly multivariate normal, the lack
of correlation guaranteed by Proposition 1 implies
X ′ ⊥⊥ S. We remark that the multivariate normal
requirement of the pair (X ′, S) is reasonable for high-
dimensional X, as most low-dimensional projections
of high-dimensional data are nearly normal under mild
conditions (Diaconis and Freedman, 1984, Hall and Li,
1993). Moreover, the high-dimensional condition holds
for kernel models where input data is mapped to po-
tentially infinite-dimensional feature space.

Extensions to Multivariate S and RKHS Our
approach incorporates two generalizations of the lin-
ear SDR condition (1). First, the condition (1) does
not apply to the setting with multiple protected at-
tributes. This is handled by replacing (1) with the
joint conditions Si = fSi

(
B>X, εSi

)
for each pro-

tected attribute Si (Coudret et al., 2014). Second,
S can depend on nonlinear structures of X, and hence
the linear condition (1) may not yield a low-rank B.
In that case, the resulting fair subspace C>X may be
too low-dimensional for accurately predicting Y . To
address this issue, we use the RKHS counterpart of
condition (1).

Denote by Hκ an RKHS of functions f : X 7→ R gen-
erated by kernel κ (·, ·). In the RKHS setting with
training points x1, . . . ,xn, X is replaced by the fea-
ture function κ (·, X), and Bi will instead be functions
in Hκ expressed as Bi =

∑n
j=1Wjiκ (·,xj) for some

W ∈ Rn×m by the representer theorem (Schölkopf
et al., 2001). Thus, condition (1) in the RKHS setting
reads

S = fS (κ (X,X)W1, · · · , κ (X,X)Wm, εS) (2)

with κ (X,X) := (κ (X,x1) , . . . , κ (X,xn)). Similarly,
we also adapt Proposition 1 to the RKHS setting with
Ci replaced by

∑n
j=1Qjiκ (·,xj) for some Q ∈ Rn×r.

This yields the corresponding fair subspace

span


n∑
j=1

Qj1κ (·,xj) , . . . ,
n∑
j=1

Qjrκ (·,xj)

 , (3)

and the fair representation X ′ = κ (X,X)Q of X.
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Kernel Misspecification In the RKHS setting,
Proposition 1 states that the fair representation X ′

does not contain information about S. However, this
does not necessarily imply that X ′ is predictive in
terms of Y . For example, one can trivially satisfy (2)
by letting W be the identity matrix. Then, the cor-
responding fair representation will be the constant 0,
which is trivially independent of X. Thus, in order for
the fair representation to be predictive, κ (·, ·) and W
should be chosen such that (2) holds for a small m.

We note that a misspecified kernel affects the predic-
tive power, but not fairness, of the fair representation
as long as (2) holds. Kernel misspecification can be de-
tected in practice because the resulting model based
on X ′ would give a large prediction error. The prob-
lem of finding appropriate W and m will be discussed
in § 3.1.

2.2 Fairness as Statistical Independence

In this section, we formulate several common fair-
ness criteria in terms of the statistical independence
X ′ ⊥⊥ S, where X ′ is the projection of X onto the fair
subspace described in § 2.1. Let h (·) denote the model
and let Ŷ = h(X ′) be the model output. This paper
focuses on the following fairness criteria:

• Statistical parity (SP), also called demographic
parity, is one of the simplest notions of fairness
and requires model predictions to be independent
of the protected attributes, i.e., Ŷ ⊥⊥ S. This
follows from X ′ ⊥⊥ S since Ŷ is a function of X ′.

• Proxy nondiscrimination (Datta et al., 2017,
Yeom et al., 2018) goes further than statistical
parity in that it considers all components of the
model rather than just its output. For example,
a component c of a linear model h (X) = β>X
has the output Ŷ c :=

∑p
i=1 ciβiXi for ci ∈ [0, 1].

The strictest version of proxy nondiscrimination
requires Ŷ c ⊥⊥ S for all component c. This follows
from X ′ ⊥⊥ S since Ŷ c is a function of X ′.

• Equalized Odds, Equality of Opportunity: In the
binary classification setting where Y ∈ {0, 1},
the equalized odds (EO) condition (Hardt et al.,
2016) is defined as the conditional independence
Ŷ ⊥⊥ S | Y . Compared to statistical parity, one
advantage of equalized odds is that it admits the
perfect model Ŷ = Y . Equality of opportunity
(EOP) (Hardt et al., 2016) is a relaxation of equal-
ized odds, requiring only that Ŷ ⊥⊥ S | Y=1. To
attain EOP, we can apply (1) to only the indi-
viduals with Y=1, and use the resulting X ′ as
input features. Similarly, we can achieve EO by

restricting (1) to individuals with Y=1 to ob-
tain BY=1 and to individuals with Y=0 to ob-
tain BY=0. Then, we compute X ′ by taking the
union of SDR subspaces [BY=1 BY=0] as the B
in Proposition 1.

We conclude the discussion by pointing out that our
approach does not support accuracy parity (Zafar
et al., 2017a), which requires 1(Ŷ = Y ) ⊥⊥ S, or
the calibration condition Y ⊥⊥ S | Ŷ (Chouldechova,
2017). This is because, without further assumptions
on the model, a fair representation alone cannot pre-
clude a constant model. If Ŷ is a constant, to satisfy
accuracy parity and calibration we would need some
independence condition between Y and S, which does
not in general hold. Thus, it could be interesting fu-
ture work to further identify additional conditions on
the model needed to support the other fairness defini-
tions.

3 Computing the Hypothesis Space

We now describe how to compute the fair subspace
as well as the model subspace in which every func-
tion attains a desired fairness-accuracy trade-off. The
construction is presented analytically in (8), and we
provide generalization bounds in Theorem 1 and (11)
for the deviation between an optimal fair or predictive
model in the RKHS and the model obtained from the
model subspace on unseen data. The pseudo-code and
all proofs are provided as supplementary material.

Problem Setup Recall that a kernel-based learning
problem is typically formulated as the following opti-
mization under Tikhonov regularization (Cucker and
Smale, 2002, Hofmann et al., 2008):

min
f∈Hκ

L (f, {(xi, yi)}ni=1) +R
(
‖f‖Hκ

)
, (4)

where L is a convex loss, R is a monotonically increas-
ing regularization function, and {(xi, yi)}ni=1 is the set
of training points. While Hκ is infinite dimensional,
the well-known representer theorem (Schölkopf et al.,
2001, Wahba, 1990) states that the solution f? for (4)
is in a data-dependent finite-dimensional subspace of
Hκ:

Hκ,n :=

{
n∑
i=1

aiκ (·,xi)
∣∣∣ {ai}ni=1 ⊂ R

}
. (5)

Our goal is to obtain a subset of functions in Hκ,n
that meets the fairness criteria described in § 2.2. This
subset will be the fair subspace (3) of Hκ,n.
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3.1 Learning the Fair and Predictive
Subspaces

Both the predictive subspace G and the fair subspace
F of Hκ can be estimated using a standard SDR esti-
mator for the RKHS. Specifically, the predictive sub-
space G is given by the SDR subspace with respect
to Y . Similarly, the fair subspace F given by (3) is
obtained by first computing the SDR subspace with
respect to S and then using Proposition 1 to obtain
Q.

Since G and F are subspaces of Hκ,n, we write G =
span {φA1, · · · ,φAd} and F = span {φQ1, · · · ,φQr}
with r = n−m and φ := (κ (·,x1) , · · · , κ (·,xn)). Our
goal is thus to compute A and Q, the latter of which
requires the SDR subspace specified by W . Next we
briefly review the estimation of A; W is obtained sim-
ilarly with respect to S. In the following, we assume
without loss of generality that d+m ≤ n.

Estimating the SDR Subspace The estimate of
A is given by the eigenvectors of the following gener-
alized eigenvalue decomposition (Tan and Mukherjee,
2018):

ΓnKAi = τi (∆ + nηIn)Ai, (6)

where Γn := In − 1n1>n /n, K represents the kernel
matrix with Kij := κ (xi,xj), η > 0 is a regularization
parameter, and ∆ is a matrix to be discussed shortly.
For simplicity, (6) assumes that the data tuples
(xi, si, yi) are sorted by yi, either in ascending or
descending order. To obtain ∆, one first partitions
the data into slices {(x1, s1, y1) , · · · , (xn1

, sn1
, yn1

)},
{(xn1+1, sn1+1, yn1+1) , · · · , (xn1+n2

, sn1+n2
, yn1+n2

)},
and so forth, where ni denotes the size of the i-th
slice. Then, set ∆ = diag (Γni)K where diag (Γni) is
the block-diagonal matrix with diagonal blocks Γni .
The overall computational complexity for estimating
A is O

(
n2d
)
.

Another relevant problem is to decide the dimensions
of G and F , i.e., the values of m and d. When yi (resp.
the entries of si) is categorical with N categories, at
most N−1 linearly independent directions are needed.
This gives an upper bound for d (resp. m). In both
the categorical and continuous cases, one can use the
methods proposed by Li (1991) and Schott (1994). For
example, Li (1991) introduced an eigenvalue-based se-
quential test for the true SDR subspace dimension d?.
Based on the test, Tan and Mukherjee (2018) provided
a lower bound for the eigenvalue τd? . We use the lower
bound to select the SDR dimension d. In particular,
we choose the largest dimension d such that τd satisfies
the lower bound.

Estimating the Fair Subspace Given W , we in-
voke Proposition 1 to compute the fair subspace F
which is described by Q. In the RKHS setting, the
covariance matrix Var (X) in Proposition 1 is replaced
by the covariance operator Var (κ (·, X)) on Hκ. Let ⊗
denote the tensor product and let µX := EX [κ (·, X)],
the empirical estimator of Var (κ (·, X)), be writ-
ten EX [(κ (·, X)− µX)⊗ (κ (·, X)− µX)] ≈ 1

nφΓn ⊗
φΓn. Proposition 1 states that for all i ∈ [m] and
j ∈ [r], Q satisfies

〈
φWi,

(
1
nφΓn ⊗ φΓn

)
φQj

〉
=

1
nW

>
i KΓnKQj = 0. Thus, the columns of Q are

given by a basis of the nullspace of W>KΓnK.

A subtlety in estimating the fair subspace for EO and
EOP, as described in § 2.2, is that only a subset of the
training data with certain value of Y is used. In this
case, W and Q both will have a reduced number of
rows. This is not an issue as the fair subspace is still a
subspace of Hκ,n, and the pseudo-code in supplemen-
tary material shows how to handle this case.

3.2 Controlling the Trade-off between
Accuracy and Fairness

We now describe a fairness-accuracy trade-off speci-
fied by the maximum principal angle between two sub-
spaces of Hκ,n. Recall that the i-th principal angle θi
between F and G is defined as (Golub and Van Loan,
2013, Stewart and Sun, 1990):

cos θi := max
fi∈F ,‖fi‖≤1
∀j<i:〈fi,fj〉=0

max
gi∈G,‖gi‖≤1
∀j<i:〈gi,gj〉=0

〈fi, gi〉 .

If the largest principal angle maxi θi equals 0, F and G
coincide. Based on this idea, we consider constructing
the hypothesis class of the model as a subspace M of
Hκ,n such that the largest principal angle between M
and F is small. Intuitively, functions inM would then
be approximately fair.

More formally, our goal is to enforce the distance be-
tween M and F as measured by the largest principal
angle to be no greater than a given threshold. This is
equivalent to requiring the cosine of the largest prin-
cipal angle to be no less than a parameter 0 ≤ ε ≤ 1
specified by the user. Recall that the cosines of prin-
cipal angles are the singular values of the projection
of an orthonormal basis of one subspace onto an or-
thonormal basis of the other (Golub and Van Loan,
2013). A direct method for finding an M that satis-
fies the principal angle constraint is by reversing the
well-known Wedin’s bound for the perturbation of sin-
gular subspaces (Wedin, 1972). However, a limitation
that inherits from the bound is the dependency on the
eigengap. Therefore, we instead consider a simple con-
struction of M given by:

M := span {aiei + biui}di=1
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for some orthonormal set of functions {ei}ri=1 in F
and orthonormal set of functions {uj}dj=1 in G. With
careful choices of ai, bj , as well as the orthonormal sets,
we show that the above hypothesis class satisfies the
principal angle constraint as well as several desirable
properties.

First, we compute an orthonormal basis for F
and G by performing the eigenvalue decompositions
Q>KQM = MΛ and A>KAT = TΩ. The
columns of M and T are eigenvectors, while Λ and
Ω are diagonal containing the corresponding eigenval-
ues, i.e., λi = Λii and ωi := Ωii. It is easy to see that
F and G have the following orthonormal bases:

F := span
{
λ
−1/2
i φQMi

}r
i=1

G := span
{
ω
−1/2
i φATi

}d
i=1

.
(7)

Using the orthonormal bases (7), Theorem 1 gives the
hypothesis space M for the model which is bounded
between the fair RKHS F and the predictive RKHS G
through ε specifying the cosine of the largest principal
angle between M and F .

Theorem 1. Let Λ−1/2M>Q>KATΩ−1/2 =
UΣV > be the thin singular value decomposition with
singular values σi := Σii, and let the hypothesis class
of the model be

M = span
{
φ
[
(γi − ρiσi)QMΛ−1/2Ui+

ρiATΩ−1/2Vi

]}d
i=1

(8)

with γi := max {σi, ε}, and ρi :=
√

1−γ2
i

1−σ2
i

if σi < 1 and

ρi := 0 if σi = 1 for i = 1, 2, · · · , d. Denote by σmin :=
mini σi and let PF , PG, and PM be the orthogonal
projection operators onto the fair RKHS F , predictive
RKHS G, and the model RKHSM, respectively. Then,
the following operator norms hold:

‖PF − PM‖ =
√

1−max {ε2, σ2
min} (9)

‖PG − PM‖ = max

{
0, ε
√

1− σ2
min − σmin

√
1− ε2

}
.

(10)

For the case where ε = 1, the basis of (8) are lin-
ear combinations of the orthonormal basis of F in (7),
and hence M ⊂ F . Additionally, it can be verified
that ‖PF − PM‖ = 0 from (9), and (10) becomes
‖PG − PM‖ =

√
1− σ2

min which is the sine of the
largest principal angle between F and G as desired.
Similarly, if we set ε = 0 we get M = G.

The key utility of Theorem 1 involves bounding the
difference between the model obtained using M and

an optimal fair (or predictive) model. In particular,
Equation (11) shows thatM contains a function which
approximates the optimal fair model ffair ∈ Hκ. Let
δxf := f (x) be the evaluation functional. Then, for
any x ∈ X :

|(PMffair) (x)− ffair (x)|
= ‖δx (PMffair)− δxffair‖
≤ ‖δx‖ ‖PMffair − ffair‖
= ‖δx‖ ‖PMffair − PFffair + PFffair − ffair‖
≤ ‖δx‖ (‖PM − PF‖ ‖ffair‖+ ‖PFffair − ffair‖) .

(11)

Here, ‖δx‖ and ‖ffair‖ are bounded from the property
of the RKHS, and the last norm in (11) converges in
probability to zero at rate OP

(
n−1/4

)
by the consis-

tency of F and G (Wu et al., 2013). Together with (9),
(11) sheds light on the impact of ε on the generaliza-
tion of the fairness criteria; similar arguments can be
made for an optimal predictive model.

4 Application to Fair GPs

In this section, we demonstrate the utility of our ap-
proach by constructing a fair Gaussian process (FGP)
which can be used to develop a class of fair models un-
der the Bayesian framework (Rasmussen and Williams,
2006). In particular, the FGP specifies a prior over
functions in M that satisfy the fairness criteria dis-
cussed in § 2.2.

Recall that a GP {f (x) : x ∈ X} is specified by a mean
function and a covariance function. The covariance
function characterizes the class of functions, i.e., the
curves of f (·), the GP can realize. The FGP is a GP
equipped with a covariance function that ensures that
any sample path f (x) is fair. To obtain the covariance
function, we use the integral representation of GPs
(Itô, 1954):

f (x) =

∫
X
κ (x, z) ν (z) dµ (z) , (12)

where ν : X × Ω 7→ R is another GP on a probability
space (Ω,F , P ) and µ is the measure on X . Clearly,
f (·) given by (12) is a GP. Without loss of generality,
we assume the GP has mean zero, then the covariance
function Cov (f (x) , f (z)) is written∫

X

∫
X
κν (s, t)κ (x, s)κ (z, t) dµ (s) dµ (t) ,

where κν (·, ·) is the covariance function of the GP ν (·).
A key property of (12) we use to construct the FGP is
that functions in the form of (12) are contained in the
RKHS generated by kernel κ (·, ·) (Pillai et al., 2007,
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Tan and Mukherjee, 2018). By replacing κ (·, ·) in (12)
with the reproducing kernel of M, we obtain the de-
sired FGP which inherits the fairness as well as ac-
curacy guarantees of M. It is worth noting that the
representationM in (8) can be computed independent
of data. This can be done using a likelihood for SDR
subspaces (Cook and Forzani, 2009).

In practice, we use a sample version of the FGP for im-
proved computational efficiency. Consider the sample
average of (12) given by

fn (x) :=
1

n

n∑
i=1

ν (xi)κM (x,xi) , (13)

which converges in probability to (12) at rate
Op
(
n−1/2

)
by the central limit theorem for Hilbert

spaces (Ledoux and Talagrand, 1991). The covari-
ance function of the sample FGP has two parameters,
namely the covariance function κν (·, ·) of ν (·) and the
reproducing kernel κM (·, ·) of the RKHS M.

Finally, we give a reparameterization to simplify
the sample FGP. Let φEi represent the i-th ba-
sis function of (8), and denote by Π (z) :=(
κ (z,X)− 11>nK/n

)
E, where K is the kernel ma-

trix of κ as defined in (6). The sample FGP can be
rewritten as

fn (·) ∼ GP
(
0,Π (·) ΛΠ (·)>

)
, (14)

where the covariance function has only a single hy-
perparameter, a positive definite matrix Λ. Now, it
is straightforward to choose Λ as to maximizes the
marginal likelihood while training the FGP (14).

5 Experiments

We present experiments on five real datasets to: (1)
demonstrate the efficacy of our approach in mitigating
discrimination while maintaining prediction accuracy;
(2) characterize the empirical behavior of the algo-
rithms developed in § 3; and (3) highlight the ability
of our method to handle multiple, possibly continuous,
protected attributes.

We adapt the experimental setup, including the
processed datasets, code, as well as configurations,
used in prior work (Donini et al., 2018, Komiyama
et al., 2018) to compare the proposed FGP1 against
several approaches: a standard GP trained on an
adversarially-fair representation (Madras et al., 2018)
(LAFTR-GP), fairness-constrained ERM (Donini

1The datasets and our Matlab implementation of the
FGP are available at https://github.com/ZilongTan/
fgp.

et al., 2018), both the linear (Linear-FERM) and non-
linear (FERM) variants, and non-convex fair regres-
sion (Komiyama et al., 2018) (NCFR) which supports
settings with multiple protected attributes. We also
report the results of a standard GP with no fairness
objective.

We measure fairness conditions empirically using the
absolute correlation coefficient, as it can be general-
ized to the regression setting. Specifically, we com-
pute the population

∣∣Corr
(
Ŷ , S

)∣∣ as the SP risk score,∣∣Corr
(
Ŷ , S

)∣∣ on individuals with Y = 1 for EOP, and
EO is given by the maximum absolute correlation on
individuals with Y = 1 and Y = 0. All scores are cal-
culated on holdout test data. For the experiments, we
do not consider proxy non-discrimination as it relies on
certain model structures, and is not comparable to our
chosen baselines. Finally, for the baseline methods we
use the code published online by their respective au-
thors, and for the GPs we use a linear mean and a
radial basis covariance.

5.1 Fair Classification

A primary goal of our approach is to enforce a specified
fairness criterion with minimal loss in accuracy. We
evaluate how each of the fairness conditions are satis-
fied empirically on two standard datasets: the Adult
income dataset (Lichman, 2013), and the Compas re-
cidivism risk score data (Angwin et al., 2016). We
illustrate how the fairness score and prediction error
react to various choices of the fairness-accuracy trade-
off ε. For both datasets, we use gender as the single
protected attribute.

Figure 1 compares different methods for achieving each
fairness goal (column). First, observe that Linear-
FERM and FERM do not meet SP on both datasets.
This is because Linear-FERM and FERM only tar-
get EOP. Also note that the accuracy of our approach
tends to converge to that of standard GP, which is ex-
pected as setting the trade-off ε = 0 in (8) yields this
model. Some baselines attain the the best fairness,
e.g., LAFTR-GP delivers the lowest EO on Compas,
at the cost of accuracy. However, overall our approach
generally achieves greater accuracy for a given level of
fairness.

5.2 Fair Regression with Multiple Protected
Attributes

We consider a regression setting with two protected at-
tributes. For this evaluation, we use three real datasets
with continuous target values, namely the UCI Com-
munities and Crime (Redmond and Baveja, 2002), the
National Longitudinal Survey of Youth (NLSY) (Bu-
reau of Labor Statistics, 2014) and the Law School

https://github.com/ZilongTan/fgp
https://github.com/ZilongTan/fgp
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Figure 1: Comparing the accuracy-fairness trade-offs on the Adult (first row) and Compas (second row) datasets.
The prediction error denotes the misclassification rate.
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Figure 2: Regression results with two protected attributes s1 and s2.

Admissions Council (Law School Admissions Council)
datasets. The protected attribute pairs (s1, s2) used
for these datasets are respectively (race, origin), (gen-
der, age), and (race, age).

Note that NCFR is the only baseline that handles mul-
tiple protected attributes. In addition, EO and EOP
are defined in the context of binary classification, so
they are not suitable in this regression experiment. We
use the root mean squared error (RMSE) to measure
the prediction error.

Figure 2 depicts the prediction error as well as SP
for each protected attribute. As stricter fairness
conditions are enforced, the RMSE climbs. Across
these datasets, our approach achieves consistently im-
proved accuracy. Interestingly, the curves correspond
to our approach are generally steeper than the curves
of NCFR, suggesting more effective fairness-accuracy
trade-offs.

6 Conclusions

We have presented a novel and theoretically princi-
pled method for learning fair representations for kernel
models, which also enables users to systemically nav-
igate the fairness-accuracy trade-off. We apply our
approach to obtain a fair Gaussian process, demon-
strating competitive empirical performance on sev-
eral datasets relative to state-of-the-art methods. Our
work hinges on the idea of learning a model-aware rep-
resentation, along with the key insight that several
popular fairness notations can be reformulated as suf-
ficient dimension reduction (SDR) problems. Future
work involves supporting additional fairness notions
like calibration and accuracy parity through additional
model assumptions, developing more scalable algo-
rithms using randomized approximations, and gener-
alizing the strategy of learning model-aware represen-
tations to other model classes.
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Per-Åke Wedin. Perturbation bounds in connection
with singular value decomposition. BIT Numerical
Mathematics, 12(1):99–111, Mar 1972.

Blake Woodworth, Suriya Gunasekar, Mesrob I.
Ohannessian, and Nathan Srebro. Learning non-
discriminatory predictors. In Proceedings of the 2017
Conference on Learning Theory, volume 65 of Pro-
ceedings of Machine Learning Research, pages 1920–
1953, 07–10 Jul 2017.

Qiang Wu, Sayan Mukherjee, and Feng Liang. Local-
ized sliced inverse regression. In Advances in Neural
Information Processing Systems, pages 1785–1792,
2009.

Qiang Wu, Feng Liang, and Sayan Mukherjee. Kernel
sliced inverse regression: Regularization and consis-
tency. Abstract and Applied Analysis, 2013, 01 2013.

Samuel Yeom, Anupam Datta, and Matt Fredrikson.
Hunting for discriminatory proxies in linear regres-
sion models. In Advances in Neural Information Pro-
cessing Systems, pages 4568–4578, 2018.

Muhammad Bilal Zafar, Isabel Valera, Manuel
Gomez Rodriguez, and Krishna P. Gummadi. Fair-
ness beyond disparate treatment & disparate impact:
Learning classification without disparate mistreat-
ment. In Proceedings of the 26th International Con-
ference on World Wide Web, pages 1171–1180, 2017a.

Muhammad Bilal Zafar, Isabel Valera,
Manuel Gomez Rogriguez, and Krishna P. Gummadi.
Fairness constraints: Mechanisms for fair classifi-
cation. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics,
volume 54, pages 962–970, 2017b.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and
Cynthia Dwork. Learning fair representations. In
International Conference on Machine Learning, vol-
ume 28, pages 325–333, 2013.

I. Zliobaite. On the relation between accuracy and
fairness in binary classification. arXiv e-prints, May
2015.


