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This paper addresses the pulsating motion of cerebrospinal fluid in the aqueduct of
Sylvius, a slender canal connecting the third and fourth ventricles of the brain. Specific
attention is given to the relation between the instantaneous values of the flow rate and
the interventricular pressure difference, needed in clinical applications to enable indirect
evaluations of the latter from direct magnetic resonance measurements of the former.
An order of magnitude analysis accounting for the slenderness of the canal is used
in simplifying the flow description. The boundary layer approximation is found to be
applicable in the slender canal, where the oscillating flow is characterized by stroke lengths
comparable to the canal length and periods comparable to the transverse diffusion time. By
way of contrast, the flow in the non-slender opening regions connecting the aqueduct with
the two ventricles is found to be inviscid and quasi-steady in the first approximation. The
resulting simplified description is validated by comparison with results of direct numerical
simulations. The model is used to investigate the relation between the interventricular
pressure and the stroke length, in parametric ranges of interest in clinical applications.

Key words: biomedical flows

1. Introduction

The cerebrospinal fluid (CSF) is a colourless fluid with water-like physical properties

(i.e. density p ~ 103 kg m~3 and kinematic viscosity v ~ 0.71 x 1076 m? s~1) that bathes
the central nervous system (CNS), filling the ventricles of the brain and the surrounding
subarachnoid space (SAS), as shown in figure 1. The CSF flows between ventricles
through their different interconnecting passages (or foramina), including the foramina of
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FIGURE 1. (a) Schematic views of the cranial cavity and (b) the cerebral ventricular system
(BodyParts3D, © The Database Center for Life Science licensed under CC Attribution-Share
Alike 2.1 Japan). Anatomic magnetic resonance images are used to obtain (c) a smoothed
surface mesh of the cerebral aqueduct of a healthy subject, which was used for (d) the simplified
illustration highlighting the different flow regions and (e) the variation of the aqueduct radius
with the distance to the third ventricle.

Monro, connecting the lateral ventricles with the third ventricle, the cerebral aqueduct
(or aqueduct of Sylvius) connecting the third and fourth ventricles, and the foramen of
Magendie and foramina of Luschka, connecting the fourth ventricle with the SAS. The
resulting motion includes a steady component corresponding to the continuous flow from
the ventricles, where CSF is secreted from the blood plasma in the choroid plexus, towards
the SAS, where CSF is reabsorbed into the venous circulation at finger-like projections
of the arachnoid membrane surrounding the brain, called villi. Besides this slow steady
motion, the CSF is known to undergo a much faster pulsating motion driven by the
cardiac and respiratory cycles, with peak volumetric flow rates Q(f) ~ 0.1 cm’s~! that
are much larger than the steady flow rate ~0.005 cm? s~! corresponding to the continuous
evacuation of the CSF produced in the ventricles (Linninger et al. 2016). The associated
dynamics, involving complex nonlinear interactions between the fluid motion and the
displacement of the soft tissues of the CNS, plays a fundamental role in the physiological
function of CSF as a vehicle for metabolic waste clearance as well as in the development of
CNS diseases, such as idiopathic normal pressure hydrocephalus (iNPH) (Linninger et al.
2016).

In vivo measurements using non-invasive experimental methods based on magnetic
resonance imaging (MRI) (Feinberg & Mark 1987) and advanced modelling studies
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employing computational fluid dynamics (CFD) techniques (Kurtcuoglu et al. 2007; Gupta
et al. 2009; Sweetman et al. 2011) have been instrumental in increasing our understanding
of the underlying fluid—structure interaction problem. Despite recent progress, many
fundamental questions remain open, as summarized in a recent review by Linninger et al.
(2016).

Attention is focused here on the pulsating flow in the cerebral aqueduct, driven by
the interventricular pressure difference Ap(f) >~ p3 — p4, where p3(#) and p4(¢) are the
time-dependent, nearly uniform (Kurtcuoglu et al. 2007) values of the pressure in the third
and fourth ventricles. Approximate descriptions assuming fully developed unidirectional
Womersley-like flow (Bardan et al. 2012) or a simplified hydraulic model (Longatti et al.
2019) are available, as well as computational studies of the associated flow including
realistic anatomical shapes (Jacobson et al. 1996, 1999; Fin & Grebe 2003; Kurtcuoglu
et al. 2007). In this manuscript we report on the development of a simplified model
accounting for the relevant controlling parameters, to be used in predicting the relation
between the interventricular pressure difference Ap(f) = p3 — pa and the resulting volume
flow rate in the aqueduct Q(¢). Accurate knowledge of this relation is needed to quantify
Ap(t) from MRI measurements of CSF flow rate Q(7) (Bardan et al. 2012). Since the
cerebral aqueduct is the narrowest interventricular passage, most of the pressure drop
associated with the CSF motion in the ventricular system occurs as the CSF flows between
the third and fourth ventricles (Sweetman er al. 2011; Bardan ef al. 2012). As a result,
the value of Ap(f) >~ p3 — p4 provides an approximate representation for the so-called
transmantle pressure (Jacobson et al. 1996, 1999), the pressure difference between the
lateral ventricles and the upper convexity of the SAS. Direct measurements of this quantity
require very accurate simultaneous readings from two separate high-resolution pressure
sensors (Vinje et al. 2019), an invasive procedure with considerable risk factors (Penn
et al. 2005), thereby fostering interest in indirect non-invasive techniques based on MRI
measurements of Q(r).

The interventricular pressure difference Ap(t) = p3 — p4 and the resulting volume flow
rate in the aqueduct Q(f) exhibit distinct quasi-periodic components associated with the
cardiac and respiratory pulsations, with corresponding periods 7"~ 1 s and T ~ 4-5 s,
respectively. Except for one study (Dreha-Kulaczewski et al. 2015), all available MRI flow
measurements (Chen et al. 2015; Takizawa et al. 2017; Yatsushiro et al. 2018) indicate
that the cardiac component of the flow velocity is somewhat larger than the respiratory
component, that being also the case for the flow elsewhere in the cranial cavity (Yildiz
et al. 2017) and along the spinal canal (Friese et al. 2004), the latter flow displaying
increasing effects of respiration on approaching the lumbar region. Since the pressure
difference required to accelerate the flow in the aqueduct can be anticipated to be inversely
proportional to the oscillation period, as follows from a balance between the local flow
acceleration and the pressure force per unit mass, the interventricular pressure difference
Ap(t) associated with the cardiac cycle is much larger than that of the respiratory cycle,
a conclusion supported by direct pressure measurements (Vinje et al. 2019). By way
of contrast, the stroke length L; (or stroke volume) of the oscillatory flow, linearly
proportional to the oscillation period, is significantly larger for the respiratory-driven flow
(Vinje et al. 2019), as shown by MRI measurements (Yamada ef al. 2013; Yatsushiro et al.
2018). As aresult, studies focusing on the determination of the stroke volume, an important
parameter characterizing aqueductal flow in iNPH patients and their response to shunting
(Ringstad et al. 2015; Shanks et al. 2019), must account for the effects of respiration. The
present analysis is general, in that the parametric ranges investigated include conditions
corresponding to both cardiac- and respiratory-driven motion.
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2. Scales and order of magnitude estimates

The cerebral aqueduct, shown in figure 1, is a slightly curved slender canal of length
L ~ 10-15 mm and radius of curvature R. ~ 40—60 mm. Its detailed anatomic shape is
displayed in the outer contour given in figure 1(c), measured in a healthy subject with
MRI imaging techniques. The aqueduct’s nearly cylindrical shape (Fin & Grebe 2003)
can be described by assuming a circular section with slowly varying radius a(s) < L,
with s representing the distance along the centreline of the aqueduct measured from the
third ventricle. The variation corresponding to the aqueduct of figure 1(c), obtained after
smoothing the segmented contour, is shown in figure 1(e). The corresponding aqueduct

volume fOL ma® ds can be equated to that of a circular cylinder with the same length L

to define the characteristic aqueduct radius a. from na?L = fOL mwa? ds, yielding typical
values of order a, ~ 1-1.5 mm < L.

We address the pulsating motion induced by the periodic pressure difference Ap(f) ~
p3 — pa, resulting in a periodic volumetric flow rate Q(f) with the same period 7. The
corresponding stroke volume Vi = fOT |Q] dt/2 has been measured to be comparable to
the aqueduct volume nagL (Ringstad et al. 2015; Markenroth Bloch, Téger & Stahlberg
2018; Shanks et al. 2019). Correspondingly, the characteristic stroke length Ly = V/ (na%)
is comparable to the aqueduct length L. Since the temporal variations of the aqueduct
volume, associated with the deformation of the bounding tissue, are much smaller than the
aqueduct volume itself (Kurtcuoglu ez al. 2007), the aqueduct can be assumed to be rigid
for the analysis of the flow, as done below in our analysis. In this respect, the problem is
fundamentally different from that of CSF flow in the spinal canal (Linninger et al. 2016),
where there exists close coupling between the fluid motion and the displacement of the
canal walls, leading to a complex fluid—structure interaction problem that has been recently
described with a linear elastic model adopted for the canal deformation (Sdnchez et al.
2018; Lawrence et al. 2019). For the flow in the aqueduct, the errors associated with the
use of the rigid-wall approximation can be anticipated to be of the order of the ratio of the
cyclic variation of the aqueduct volume to the stroke volume, a quantity of the order of
1072, as revealed by MRI brain-motion scans (Kurtcuoglu ef al. 2007).

The above estimates can be used to anticipate the character of the flow in the aqueduct,
as done below. It is important to remark here that the analysis must consider the existence
of three distinct regions, namely, the long central part of the aqueduct, where the flow is
slender, and the two (much shorter) non-slender opening regions connecting the ends of
the aqueduct with the ventricles.

Inside the aqueduct the flow is slender, with characteristic streamwise and transverse
lengths L and a, < L. Since the streamlines are always nearly aligned inside the aqueduct,
the transverse pressure variations are of order (a./L)* Ap < Ap and thus can be neglected
in the first approximation. The characteristic streamwise velocity is given by U, = wLg ~
Ly/T in terms of the angular frequency w = 27/T, yielding U?/L = »*L?/L and wU, =
w?L for the orders of magnitude of the convective and local accelerations, respectively,
their relative importance being therefore measured by the parameter Ly/L ~ 1, the inverse
of the relevant Strouhal number. The viscous time across the aqueduct af Jv~1sis
comparable in magnitude to the flow oscillation period 7, thereby yielding order-unity
values of the Womersley number o = (a)ag/ v)1/2; the associated Stokes number o?
representing the ratio of the magnitudes of the local acceleration to the viscous force (per
unit mass). The order of magnitude analysis therefore reveals that inside the aqueduct
all terms in the streamwise momentum equation have comparable magnitude. Since
convective acceleration has a non-negligible effect, the relation between Ap and the flow
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rate Q(¢) is inherently nonlinear, thereby compromising the accuracy of studies adopting
a presumed linear relation (Longatti et al. 2019). Also, analyses neglecting convective
terms by assuming developed (i.e. Womersley-like) flow either everywhere (Bardan et al.
2012) or at the aqueduct entrance (Kurtcuoglu et al. 2007; Vinje et al. 2019), a valid
approximation when L;/L < 1, are necessarily inaccurate when L; ~ L, the prevailing
condition found in healthy and iNPH subjects (Ringstad et al. 2015; Markenroth Bloch
et al. 2018; Shanks et al. 2019).

In the opening regions, of characteristic size a., the flow is non-slender, with
characteristic velocity U, = wLg, corresponding to a Strouhal number a./L; ~ a./L < 1
and a Reynolds number U .a./v ~ o? /(ac/L) > 1. Since local acceleration and viscous
forces have small effects scaling with a./L <« 1, the flow in the opening regions is
quasi-steady and inviscid in the first approximation. As seen in previous CFD simulations
of the flow in the third ventricle (Kurtcuoglu et al. 2007), the resulting streamline pattern
is very different for outflow, when the stream separates to form a jet that discharges
into the ventricle, and for inflow, where the CSF accelerates from rest approaching the
aqueduct entrance from all directions, with the sum of the pressure and the kinetic energy
remaining constant along any given streamline. Since Ly ~ L, the associated pressure
drop in the opening region, of order ,oUCZ = pa)zLE, is comparable in magnitude to the
pressure drop along the aqueduct, of order pU.wL = pw*LyL, so that both contributions
must be accounted for in evaluating the interventricular pressure Ap(t) = p3 — p4 for a
given volumetric flow rate Q(¢).

3. Simplified description of the flow

The aqueduct is seen as a slender canal connecting two large reservoirs whose pressure
varies periodically in time. The problem will be posed as that of determining the
interventricular pressure difference Ap(¢) that results in a given volume flow rate Q(z),

with the latter having a zero mean value, i.e. fOT Qdt = 0. The slender-flow approximation
ac/L < 1 will be employed in simplifying the solution, with the dimensionless problem
reducing to that of finding the pressure difference IT = Ap/(pwU.L) associated with
a dimensionless flow rate Q = Q/(wV;) for a given aqueduct anatomy, defined by the
distribution of aqueduct radius a = a/a., and given values of the controlling parameters
Ly/L ~ 1 and o = wa?/v ~ 1.

The function Q0 must satisfy f02 T|Q|dt = 2, as follows from the definition of the

stroke volume V, = fOT |Q|dt/2, with T = wt representing a dimensionless time. For the
cardiac-induced motion, the typical temporal variation Q(t) over a cycle is represented
by the solid curve on the upper plot of figure 2, to be discussed later, corresponding to
cardiac-gated MRI measurements of the aqueduct flow rate in a healthy subject. A Fourier
analysis of the signal reveals that the first mode, of period 277 /w, is dominant (Bardan et al.

2012), so that for many quantitative purposes a simple sinusoidal function Q(t) = sin 7/2
can be used to represent the flow. B

The computation of I1(t) for a given Q(7) requires consideration of the flow both inside
the aqueduct and in the opening regions connecting the aqueduct to the ventricles. The
slender flow in the aqueduct is described in terms of the dimensionless streamwise distance
from the third ventricle x = s/L and the dimensionless radius r, the latter obtained by
scaling the radial distance with the characteristic aqueduct radius a.. Neglecting small
terms of order (a./L)? and a./R. in writing the conservation equations inside the aqueduct
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FIGURE 2. The solid curve in the lower plot represents the dimensionless pressure difference
I1(t) determined from the simplified model with L;/L = 0.93, o« = 3.23 and a = 1 for the
dimensionless function Q(t) represented by the solid curve in the upper plot, corresponding to
the Fourier decomposition of MRI measurements of the volumetric flow rate in the aqueduct of a
healthy 36-year old male subject using phase contrast (K. King, personal communication 2019).
The additional dot-dashed, dashed and dotted curves in the lower plot represent, respectively, the
results of the Womersley approximation (3.11), of the inviscid approximation (3.8), and of the
quasi-steady Poiseuille flow (3.7). The dotted curves in the upper plot are obtained from direct
numerical simulations (DNS) using the interventricular pressure difference I7(t) represented by
the solid curve in the lower plot for different values of a./L.

leads to the axisymmetric boundary layer problem

8u+l 0 () = 0 3.1)
ax rar =0 ’
du Lg [ Ou ou op 110 [ Ou
L (i) I . () 32
at + L (u8x+v8r> dx +a2r8r (rar) (3-2)

where the dimensionless streamwise and radial velocity components u and v are
scaled with U, = wLg and U.a./L, respectively. The axial velocity must satisfy Q(7) =
foa 2rudr, as follows from the selected scaling. The streamwise pressure gradient
P, (x, T) = dp’/dx, where p’ denotes the spatial pressure difference scaled with pwU,L,
is unknown and must be determined as part of the integration.

Equations (3.1) and (3.2) must be integrated for 0 < x < 1 and 0 < r < a(x) subject to
the boundary conditions

du

8—=v=0 atr=0 and u=v=0 atr=ax). 3.3)
,
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To write the needed boundary conditions for u at the two ends of the canal x =0, 1
consideration must be given to the CSF motion in the near-field region, corresponding
to distances from the canal opening of order a. < L, where the flow is non-slender, with
characteristic velocities of order U,. Using a. and U, as characteristic scales of length and
velocity, reduces the momentum equation to

ac\ 0v L v vy 1 /sa. V2 34
<L)8‘L’+Lv. V= p+a2<L> v. (3.4)
This dimensionless equation reveals that, in the limit a./L < 1 considered here, with
o ~ land Lg/L ~ 1, the flow in the opening regions is quasi-steady and nearly inviscid in
the first approximation. The resulting streamline pattern, shown in figure 5 of Kurtcuoglu
et al. (2007), is drastically different for inflow (i.e. O>0atx=0o0orQ<0atx=1)
and outflow (i.e. Q <0 atx =0 or Q > 0 at x = 1). For outflow, the stream separates
to form a jet that discharges into the ventricle, with the pressure across the jet being
approximately equal to that of the ventricle. In the boundary layer approximation employed
here in describing the flow inside the aqueduct, no boundary condition is needed for the
flow velocity at the canal end when outflow is present.

For inflow, on the other hand, the CSF accelerates from rest approaching the aqueduct
entrance from all directions. As follows from the steady inviscid form of (3.4), the
stagnation pressure in the opening region, outside from a thin near-wall viscous boundary
layer, is equal to the pressure in the feeding reservoir. Since the streamlines align on
entering the aqueduct, the pressure is uniform across the entire entrance section, so that
the condition p’ 4+ (Ly/L)|v|?/2 = constant implies that the velocity must also be uniform
there, thereby leading to the alternating boundary conditions

0>0: u=0()/a*0) atx=0,

- - (3.5)
0<0:u=0()/a*(l) atx=1,
involving the dimensionless local radii a(0) = a(0)/a. and a(l) = a(L)/a, at the two
aqueduct’s ends. Correspondingly, the pressure drop between the ventricle and the
entrance of the aqueduct is (LS/L)[Q/&(O)]2/2 if O > 0 and (LS/L)[Q/&(I)]2/2 if O <0,
as follows from conservation of stagnation pressure.

As revealed by (3.4), the assumption of quasi-steady flow in the entrance region, valid
over most of the cycle, can be expected to fail when Q vanishes, during short flow-reversal
stages of relative duration At >~ a./L; when the velocity is of order a./L;. As a result,
the local acceleration becomes comparable to the convective acceleration in the entrance
region, while viscous forces are still negligible there. During this short stage the flow is
inviscid also inside the aqueduct, where the momentum balance (3.2) reduces to du/dt =
—ap’/dx, which can be integrated across the section to show that —dp’/dx = dQ/dt|o,
involving the rate of variation of the flow rate at the instant of flow reversal dQ/dt|o.
Integrating this last equation shows that, during this short stage, the pressure drop along
the aqueduct is given by dQ/dt|op ~ 1, while the corresponding pressure drop across the
entrance region is small, of order a./L;.

For given values of L;/L and o, a given aqueduct shape a(x), and a given 2 -periodic
dimensionless flow rate Q(t), integration of (3.1) and (3.2) subject to the boundary
conditions stated in (3.3) and (3.5) determines the velocity field u(x, r, ) and v(x, r, 7)
and associated pressure gradient P,(x, t). As previously explained, the interventricular
pressure difference p3 — p4 is the sum of the pressure loss along the slender portion of
the aqueduct and the pressure loss at the aqueduct entrance, the latter evaluated earlier,
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below (3.5), with use of Bernoulli’s law. In our dimensionless formulation, the result can
be expressed in the form

1L, 0° -
1 +-—= if O > 0,
P3 — D4 2L a*0)
(r) == =— [ Pydx _ (3.6)
pw-LgL 0 1Ly O . -
——— if0<0.
2 L a*(1)
This result is to be compared with the pressure drop
80 ! dx
I(r) = — o (3.7)
a” Jo a*(x)
corresponding to the quasi-steady Poiseuille velocity profile u = —(a?P.(a* — r?))/4,

obtained in the present formulation when taking the limit o« < 1. Additional closed-form
analytical solutions can be found in the inviscid limit o >> 1, when (3.6) can be seen to
reduce to

L 0 e
(r) = /l_dx 10 2La e (3.8)
“\o 2w ) dr | 1L, ¢ . '
—————— if0 <0,
2 L a*(0)

and also for Ly/L < 1, when convective terms have a small effect on the aqueduct flow, as
can be inferred from (3.2), resulting in a linear Womersley-like problem that can be solved
explicitly using a complex Fourier series representation for the flow rate

O(r) =Re (Z Qnei’”> (3.9)
n=1

to give Py = Re(3_°0 | A,e!""), where
i

inQy J1(Bn) .
20 ! d () =—= 3.10
a2<x>< i (,3n/2)Jo(ﬁn)—J1(ﬁn)> and () =~ /neao) (3.10)

are complex functions that vary along the aqueduct, with Re() denoting the real part of
a complex expression and Jo and J; representing the Bessel functions of order O and 1,
respectively. Since the pressure drop at the aqueduct entrance becomes negligibly small
for Ly/L < 1, the dimensionless interventricular pressure difference (3.6) reduces in this
case to

An(x) = -

o0

| ol J1(Bn) )
IT1(r) =R et = |1 dx |- >
(7) G[IZ”Q ¢ /o a2< " Bu/DIoBr) — 11 Bo) o

n=1

4. Selected numerical results

The governing equations (3.1) and (3.2) were discretized using a Krause zigzag
finite-difference scheme in x and ¢ (Tannehill, Anderson & Pletcher 1997) (uniform
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Ax = 1/200; adaptive time step with mean At = 27 /800), combined with Chebyshev
spectral collocation in r (32 points). At each step in time, the equations are marched
from x =0 to 1 when Q > 0, and from x = 1 to 0 when Q < 0. The nonlinearity in the
convective term is handled by an iterative fixed-point procedure at every marching step
in x. The computation was run in time until a 27 -periodic solution was reached, with
convergence occurring after approximately 5—10 cycles. Special attention was given to the
transition between outflow and inflow, occurring once at each end of the aqueduct during
the flow cycle. In the proposed scheme, the velocity profile at the canal end where outflow
is present is computed as part of the boundary layer computation, with the corresponding
velocity at the other end given by (3.5). As previously discussed, this approximation can be
expected to fail during the short stages of flow reversal, as the quasi-steady approximation
breaks down in the opening region. This was apparent in the numerical integrations, which
revealed that, when Q vanishes, the resulting outflow velocity, although very small (typical
peak values not exceeding 10~!), was not exactly zero, leading to a discontinuity in the
temporal evolution at the canal end when switching between the boundary conditions
in (3.5). This was accounted for in the numerical integration by incorporating a short
transition stage, with duration At < 1 following the change of sign of Q, during which the
inflow velocity profile was continuously adapted with a linear temporal fit from that found
at the end of the outflow period to the inflow uniform value defined in (3.5). The resulting
value of I7(t) was found to be independent of At provided that 1072 <« At <« 1071,
The bottom plot in figure 2 shows illustrative results corresponding to a canal of constant
radius a = 1. The shape Q of the specific flow rate employed in this computation, shown as
a solid curve in the upper plot, as well as the values of L;/L = 0.93, « = 3.23 correspond
to those obtained using cardiac-gated MRI measurements of the aqueduct flow in a healthy
human subject (K. King, personal communication 2019). The periodic function I7(t)
evaluated from (3.6) is shown as a solid curve. Because of the effect of the nonlinear
convective terms, the average interventricular pressure, identically zero in the linear

limit Ly/L < 1, takes a small non-zero value f;ﬂ” I1dt/(2mw) = 0.04, in agreement
with previous findings (Stephensen, Tisell & Wikkelso 2002). For completeness, the
figure also includes the pressure predictions obtained with Poiseuille flow and also
in the two limits Lg/L <« 1 (Womersley) and « > 1 (inviscid). As can be seen, for
this specific case the former limit, neglecting nonlinear terms while retaining the local
acceleration, provides a largely satisfactory description of the interventricular pressure,
with quantitative departures remaining below 20 % over most of the cycle. In contrast,
the quasi-steady Poiseuille solution leads to severe underpredictions of interventricular
pressure difference.

The dimensionless interventricular pressure shown in figure 2 can be expressed in
dimensional form with use of Ap = pw?L,LIT. Using in the evaluation L = 10 mm for
the aqueduct length along with the standard cardiac frequency w = 27 s~! reveals that
the dimensionless peak value IT >~ 1.5 in figure 2 corresponds to an overpressure Ap =
p3 —pa = 5.5 Pa, consistent with existing measurements (Eide & Szhle 2010; Vinje
et al. 2019) and computations (Sweetman et al. 2011) of instantaneous spatial pressure
variations in the cranial cavity. As expected, the corresponding maximum overpressure
predicted with Poiseuille velocity p3—p4 =~ 1.66 Pa, corresponding to the peak I7T = 0.452
in figure 2, is significantly smaller.

Direct numerical simulations were used to test the accuracy of the simplified model. The
computations considered the geometry illustrated in the inset of figure 2, corresponding
to a duct of length L and constant radius @, connecting two quasi-infinite reservoirs, with
the smooth convex surface connecting the pipe with the reservoir having radius a.. The
axisymmetric Navier—Stokes equations were integrated for different values of a./L using
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FIGURE 3. The variation of |, ;+2n [IT|dt/(27) with Lg/L obtained from the simplified flow
model for a = 1, Q(t) = sin t/2 and different values of .

as a boundary condition the interventricular pressure difference I7(t) shown as a solid
curve in the lower plot of figure 2. Resulting flow rates Q(t) are represented in the upper
plot. As can be seen, the results rapidly converge to the original flow rate used in the
simplified model, with relative differences scaling approximately with a./L.

The model was used to quantify the parametric dependence of | :H” |[[1|dt/(2m), a
measure of the oscillating force exerted on the brain. Results corresponding to a =1
and Q(t) = sint/2 are plotted in figure 3 as a function of Ly/L for different values of
«, including the inviscid result |, ;+2” [[1|dt/(2m) = 1/7 + (Ls/L)/16 corresponding to
the limit o > 1. The figure covers the range of conditions typically found in healthy
subjects, characterized by values of L;/L of order unity and Womersley numbers ranging
from o =~ 2 for the respiratory cycle to o =~ 4 for the cardiac cycle. The plot can also be
used in connection with iNPH patients, who typically show enlarged aqueducts and higher
tidal volumes (Ringstad et al. 2015; Markenroth Bloch et al. 2018; Shanks et al. 2019),
corresponding to larger values of the parameters « and Ly /L.

5. Concluding remarks

The simplified flow model presented above can be instrumental in developing protocols
for non-invasive patient-specific quantification of the transmantle pressure difference
between the lateral ventricles and the SAS from MRI measurements of the aqueduct radius
a(s) and volumetric flow rate Q(f). These models have the potential for improving our
current understanding of intracranial flow dynamics, associated with the development of
CNS diseases, enabling the development of early-diagnosis techniques.
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