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a  b  s  t  r  a  c  t  

The  motion  of  the  cerebrospinal  fluid  in  the  spinal  subarachnoid  space,  a  slender  annu-  
lar  canal  surrounding  the  spinal  cord,  exhibits  an  oscillatory  velocity  component  driven  by  
the  pressure  oscillations  induced  by  the  cardiac  and  respiratory  cycles.  A  time-averaged  
transport  equation  has  been  recently  proposed  for  describing  solute  transport  along  the  
canal,  circumventing  the  need  to  compute  the  concentration  fluctuations  resulting  from  
this  fast  oscillatory  motion.  The  accuracy  and  limitations  of  this  time-averaged  descrip-  
tion  are  tested  here  by  means  of  comparisons  with  results  of  direct  numerical  simulations  
spanning  hundreds  of  oscillation  cycles,  as  needed  to  generate  significant  dispersion  of  the  
solute.  The  comparisons  between  the  numerical  results  and  the  predictions  of  the  analyt-  
ical  model  include  velocity  fields  and  quantifications  of  transient  solute-dispersion  events  
for  selected  values  of  the  flow  parameters  and  two  different  idealized,  canonical  geome-  
tries  of  the  spinal  canal.  The  comparisons  clearly  demonstrate  the  accuracy  of  the  time-  
averaged  description  of  the  analytical  model,  which  is  seen  to  provide  a  good  fidelity  at  a  
fraction  of  the  computational  cost  involved  in  the  direct  numerical  simulations.  The  vari-  
ations  of  canal  eccentricity  along  the  spinal  canal  are  found  to  play  an  important  role  in  
the  dynamics  of  the  solute  transport,  leading  to  the  emergence  of  closed  recirculating  La-  
grangian  vortices  that  may  hinder  solute  dispersion  along  the  canal,  as  revealed  by  both  
direct  numerical  simulations  and  time-averaged  results.  

© 2021  Elsevier  Inc.  All  rights  reserved.  

1.  Introduction  

The  cerebrospinal  fluid  (CSF)  is  a  clear  fluid  with  water-like  properties  (i.e.  density  ρ "  10  3  kg/m  3  and  kinematic  viscosity  

ν =  0  .  7  × 10  −6  m  2  /s)  that  bathes  the  central  nervous  system  (CNS).  Its  motion,  generated  by  the  quasi-periodic  pressure  
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Fig.  1.  Sketch  of  the  geometrical  configurations.  (a)  Anatomy  of  the  spinal  subarachnoid  space  (SSAS)  extending  from  the  foramen  magnum  to  the  sacrum.  
The  figure  shows  several  axial  cuts  at  different  locations.  (b)  Geometrical  model  with  constant  eccentricity  indicating  the  curvilinear  coordinates  (x,  s,  η)  .  
(c)  Geometrical  model  with  variable  eccentricity.  (d)  Definition  of  the  unperturbed  canal  width  in  the  geometrical  models.  

fluctuations  induced  by  the  cardiac  and  respiratory  cycles,  has  been  reasoned  to  play  a  fundamental  role  in  the  physiological  

function  of  CSF  as  a  vehicle  for  metabolic-waste  clearance  [1]  .  

Attention  will  be  focused  here  on  the  motion  occurring  in  the  spinal  subarachnoid  space  (SSAS),  a  slender  annular  canal  

of  length  L  "  60  cm  surrounding  the  spinal  cord,  represented  schematically  in  Fig.  1  (a).  The  canal  is  compliant,  due  to  

the  presence  of  veins  and  fatty  tissue  in  the  surrounding  dura  membrane,  which  deforms  in  response  to  the  local  pres-  

sure  fluctuations,  allowing  the  motion  of  CSF  in  the  closed  canal.  Understanding  this  fundamental  fluid-structure  interaction  

problem  is  needed,  for  instance,  to  properly  comprehend  substance  and  metabolite  transport  and  distribution  in  the  CNS  

[2]  ,  and  to  investigate  the  development  of  CNS  diseases  associated  with  pathological  processes  related  to  CSF  disorders  and  

neurodegenerative  diseases  [2–4]  .  A  quantitative  description  of  CSF  flow  is  also  fundamental  to  understand  the  implications  

of  Chiari  malformation  [5–7]  and  its  relation  with  the  inception  and  growth  of  syringomyelia  [8–10]  .  Furthermore,  it  is  a  

fundamental  element  in  developing  quantitative  predictions  of  drug  dispersion  in  intrathecal  drug  delivery  (ITDD)  [11–13]  ,  

a  medical  procedure  used  for  treatment  of  some  cancers  [14]  ,  infections  [15]  and  pain  [16]  .  ITDD  involves  the  delivery  of  

a  drug  to  the  CNS  by  direct  injection  into  the  CSF,  typically  at  an  intraventricular,  intracisternal,  or  lumbar  site  [13]  .  The  

lumbar  route  is  most  easily  accessed  and  most  commonly  used.  Although  ITDD  currently  provides  satisfactory  results,  the  

complex  convective  and  diffusive  mechanisms  controlling  the  transport  of  the  drug  are  not  clearly  understood,  thereby  lim-  

iting  predictive  capabilities  concerning  drug-delivery  rates  to  targeted  locations.  Understanding  of  ITDD  processes  has  been  

advanced  in  recent  years  through  in-vivo  experiments  [17,18]  ,  in-vitro  experiments  [19,20]  ,  numerical  simulations  [21,22]  ,  or  

a  combination  of  simulations  and  experimental  measurements  [23–25]  .  Despite  these  previous  research  effort  s,  there  is  still  

a  pending  need  to  develop  reliable  drug-dispersion  predictive  methodologies  able  to  account  for  the  specific  anatomy  and  

physiological  conditions  of  the  patient  as  well  as  the  injection  protocol  and  properties  of  the  drug.  

As  revealed  by  in-vivo  magnetic-resonance  measurements  [26,27]  ,  the  pulsating  velocity  in  the  spinal  canal  displays  peak  

values  on  the  order  of  a  few  centimeters  per  second  in  the  cervical  region,  decaying  along  the  canal  to  vanish  at  its  closed  

end  in  the  sacral  region.  The  time-averaged  value  of  the  velocity  is  not  zero,  but  its  magnitude  is  very  small,  on  the  order  of  

a  few  centimeters  per  minute  in  the  cervical  region  and  smaller  elsewhere  in  the  canal.  This  slow  motion  plays  a  relevant  

517  



C.  Gutiérrez-Montes,  W.  Coenen,  J.J.  Lawrence  et  al.  Applied  Mathematical  Modelling  94  (2021)  516–533  

role  in  the  transport  of  solutes  carried  by  the  CSF,  such  as  metabolic-waste  products  and  ITDD  drugs.  Resulting  characteristic  

residence  times,  obtained  by  dividing  the  spinal-canal  length  by  the  characteristic  time-averaged  velocity,  are  on  the  order  

of  30  minutes,  much  larger  than  the  characteristic  times  associated  with  the  oscillatory  flow  (e.g.  about  one  second  for  the  

motion  driven  by  the  cardiac  cycle).  

Computational  efforts  to  describe  the  flow  in  the  canal  have  addressed  different  aspects  of  the  problem,  as  summarized  

in  a  recent  paper  by  Khani  et  al.  [25]  .  Fundamentally,  the  analysis  involves  a  fluid-structure  interaction  problem,  subject  to  

boundary  conditions  that  depend  on  the  detailed  anatomical  features  of  the  canal.  Additional  complications  arise  owing  to  

the  disparity  of  time  scales  present  in  the  problem.  For  instance,  quantification  of  solute  dispersion,  occurring  over  charac-  

teristic  times  on  the  order  of  30  minutes,  requires  the  description  of  hundreds  of  cycles,  each  one  providing  an  infinitesimal  

contribution  to  the  dispersion  of  the  solute  particles.  

Recent  theoretical  effort  s  [28,29]  have  exploited  the  disparity  of  length  and  time  scales  present  in  the  problem  to  develop  

a  simplified  description  of  the  flow  and  of  the  associated  solute  transport  rate.  The  complicated  fluid-structure  interaction  

problem  was  solved  in  the  thin-film  approximation  [28]  ,  with  the  ratio  ε of  the  stroke  length  to  the  canal  length  used  as  an  

asymptotically  small  parameter.  The  analysis,  treating  the  SSAS  as  an  unobstructed  annular  canal  of  slowly  varying  section  

and  assuming  a  linear  elastic  model  for  the  canal  deformation,  determines  the  motion  of  the  CSF  and  the  accompanying  

displacement  of  the  dura  membrane  for  a  prescribed  temporal  variation  of  the  intracranial  pressure.  In  the  first  approxi-  

mation,  the  Eulerian  velocity  is  determined  from  a  periodic  linear  lubrication  problem  that  can  be  solved  in  closed  form.  

In  addition  to  this  oscillatory  flow,  with  zero  time-averaged  velocity  at  any  location,  it  was  found  that  the  nonlinear  terms  

associated  with  the  convective  acceleration  and  with  the  deformation  of  the  canal  introduce  small  corrections,  leading  to  

steady-streaming  velocities  that  are  a  factor  ε smaller  than  those  of  the  oscillatory  flow.  This  small  steady  velocity  deter-  

mines,  together  with  the  Stokes  drift  of  the  non-uniform  pulsating  flow,  the  slow  time-averaged  Lagrangian  motion  of  the  

CSF  particles,  which  was  found  in  [29]  to  be  responsible  for  the  transport  of  the  solute  along  the  canal.  A  key  outcome  of  

the  analysis  is  a  time-averaged  transport  equation,  given  below  in  Eq.  (10)  ,  which  describes  the  solute  evolution  in  the  

long-time  scale.  The  use  of  the  simplified  equation  effectively  circumvents  the  need  to  integrate  the  complete  problem  over  

hundreds  of  oscillatory  cycles,  thereby  reducing  drastically  the  associated  computational  times.  

The  results  of  the  theoretical  analysis  were  previously  used  in  [28]  and  [29]  to  investigate  the  motion  and  solute  dis-  

persion  rate  in  a  model  of  the  canal  with  a  simple  geometry,  shown  in  Fig.  1  (b).  The  predictions  were  found  to  be  in  

good  qualitative  agreement  with  accompanying  in-vitro  experimental  measurements  using  flow  visualizations  enabled  by  

neutrally  buoyant  fluorescent  dye  [28]  .  Validation  through  detailed  quantitative  comparisons  with  results  of  numerical  in-  

tegrations  of  the  full  transport  equation  was  provided  only  for  the  case  of  a  concentric  annular  canal  [29]  ,  a  simplified  

configuration  of  limited  academic  interest.  Additional  model  assessments,  including  the  important  effect  of  azimuthal  veloc-  

ities  (absent  in  the  concentric  canal),  are  needed  to  further  validate  the  model,  that  being  the  purpose  of  the  present  paper.  

Here  we  will  focus  on  the  ability  of  the  time-averaged  model  to  circumvent  the  inherent  complications  stemming  from  the  

disparity  of  time  scales  present  in  the  problem.  This  is  a  first  necessary  step  in  developing  a  comprehensive  reduced-order  

model  with  sufficiently  accurate  predictive  capabilities,  to  be  ultimately  used  for  optimization  of  drug  delivery  protocols.  In  

that  respect,  it  should  be  emphasized  that,  although  the  present  model  encompasses  many  of  the  essential  physical  mech-  

anisms  involved  in  the  flow  of  CSF  in  the  SSAS,  there  are  additional  important  effects  that  should  be  considered  in  future  

work  which  are  described  in  detail  in  Sec  5  .  

Fig.  1  (a)  shows  an  illustration  of  the  SSAS,  including  schematic  views  of  the  characteristic  annular  cross  section  at  eight  

different  positions.  As  can  be  seen,  the  position  of  the  spinal  cord  relative  to  the  dura  mater  changes  along  the  canal,  i.e.  it  

is  located  close  to  the  posterior  side  in  the  cervical  region  but  close  to  the  anterior  side  over  most  of  the  thoracic  region,  

shifting  back  towards  the  posterior  side  as  the  lumbar  region  is  approached.  This  variation  of  the  eccentricity  along  the  

spinal  canal  within  the  anteroposterior  plane  has  been  shown  to  have  an  important  effect  on  the  motion  of  the  cerebrospinal  

fluid  and  associated  drug  dispersion  rate  [27]  .  To  investigate  these  effects,  a  simple  geometrical  model  that  exhibits  variable  

eccentricity  along  the  canal,  shown  in  Fig.  1  (c),  will  be  considered  in  a  second  set  of  computations,  aimed  at  validating  the  

theoretical  model  under  more  relevant  geometrical  conditions.  

We  begin  below  by  describing  in  Section  2  the  formulation  of  the  problem.  Results  corresponding  to  the  model  with  

constant  eccentricity  will  be  presented  in  Section  3  ,  followed  by  the  results  for  variable  eccentricity  in  Section  4  .  The  paper  

ends  with  concluding  remarks  in  Sec  5  .  

2.  Methods  

2.1.  Simplified  representation  of  the  spinal  canal  

The  spinal  canal  is  doubly  slender,  in  that  its  length  L  "  500  − 600  mm,  characteristic  perimeter  %  c  "  20  − 30  mm,  and  

characteristic  width  h  c  "  3  − 4  mm  satisfy  

h  c  % %  c  % L.  (1)  

As  explained  in  [28]  and  [29]  ,  this  slenderness  condition  enables  a  thin-film  approximation  in  which  terms  that  are  of  order  

(%  c  /L  )  2  and  (h  c  /%  c  )  2  (and smaller)  are neglected when writing  the conservation equations,  along with those  associated with  

the  small  curvature  along  the  spinal  cord.  The  flow  is  described  in  terms  of  curvilinear  coordinates  (x,  s,  η)  ,  where  x  =  x  ∗/L  
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is  the  axial  distance  from  the  canal  entrance  scaled  with  L,  s  is  the  azimuthal  distance  normalized  with  the  local  perimeter,  

with  2  πs  being  the  corresponding  azimuthal  angle,  and  η is  the  transverse  distance  to  the  inner  surface  normalized  with  

the  local  width,  so  that  all  coordinates  vary  from  zero  to  unity.  A  sketch  of  the  flow  configuration  with  an  indication  of  

relevant  coordinates  is  given  in  Fig.  1  .  

Following  our  previous  theoretical  developments  [28,29]  ,  the  present  analysis  will  approximate  the  SSAS  as  an  open  an-  

nular  canal,  thereby  neglecting  the  presence  of  micro-anatomical  obstacles,  such  as  trabeculae,  ligaments,  and  nerve  roots.  

Two  geometrically  simple  configurations  will  be  investigated,  as  sketched  in  Figs.  1  (b)  and  (c).  The  exterior  surface  sur-  

rounding  the  canal  represents  the  dura  membrane,  while  the  interior  surface  represents  the  rigid  pia  mater  surrounding  the  

spinal  cord.  The  deformation  under  pressure  fluctuations  of  the  veins  and  fatty  tissue  present  in  the  dura  membrane  must  

be  accounted  for  in  analyzing  the  motion  of  the  CSF,  leading  to  a  fluid-structure  interaction  problem  that  was  previously  

solved  on  the  basis  of  a  linear  elastic  model  [28,29]  .  The  associated  time-dependent  displacements  are  small  compared  with  

the  canal  thickness,  and  can  therefore  be  analyzed  as  small  perturbations  from  an  unperturbed  state.  

In  this  paper,  the  undeformed  shape  of  the  dura  membrane  will  be  taken  to  be  a  circular  cylinder  of  radius  R  e  and  

length  L  .  A  circular  cross  section  will  also  be  assumed  for  the  rigid  inner  surface  surrounding  the  spinal  canal,  whose  radius  

is  R  i  =  R  e  − h  c  with  h  c  % R  e  .  Correspondingly,  in  a  plane  perpendicular  to  the  axis  of  the  outer  cylinder  the  annular  canal  

is  the  space  defined  between  two  eccentric  circles  whose  centers  are  separated  by  a  small  distance  e,  with  0  ≤ e  ≤ h  c  ,  as  

indicated  in  Fig.  1  (d).  With  small  errors  of  order  h  c  /R  e  % 1  the  local  undeformed  width  of  the  canal  h̄  ∗,  measured  normal  

to  the  inner  surface,  can  be  seen  to  be  given  by  h̄  ∗ =  h  c  − e  cos  (2  πs  )  ,  with  0  ≤ s  ≤ 1  .  The  configuration  with  two  parallel  

cylinders  of  Fig.  1  (b),  used  in  the  illustrative  computations  of  our  previous  analyses  [28,29]  ,  corresponds  to  the  case  of  

constant  eccentricity  e  =  βh  c  ,  with  β <  1  representing  a  positive  constant.  The  configuration  in  Fig.  1  (c),  introduced  here  

to  investigate  effects  of  variable  eccentricity,  considers  the  simple  functional  dependence  e/h  c  =  β cos  (2  πx  )  .  

2.2.  Slender-flow  formulation  for  small  stroke  lengths  

The  oscillatory  motion  in  the  spinal  canal  is  driven  by  the  fluctuations  of  cranial  pressure,  associated  with  the  car-  

diac  and  respiratory  cycles.  For  simplicity,  the  cranial  pressure  oscillations  are  modeled  with  the  simple  harmonic  function  

((p)  c  cos  (t  )  ,  where  t  =  ωt  ∗ represents  the  time  t  ∗ scaled  with  the  angular  frequency  ω  =  2  π/T ,  with  T being  the  period  

(i.e.  T "  1  s  for  the  cardiac  cycle  and  T "  5  s  for  the  respiratory  cycle).  Because  of  the  presence  of  fatty  tissue  and  veins,  the  

dura  membrane  surrounding  the  subarachnoid  space  acts  as  an  elastic  wall  that  responds  to  the  local  pressure  perturbations  

δp with small displacements δh, and can be described with  a simple linear elastic model δh  =  γ δp,  where  γ (x,  s  )  repre-  

sents  a  compliance  factor.  The  model  accommodates  general  axial  and  azimuthal  variations  of  γ (x,  s  )  ,  as  needed  to  account  

for  the  non-uniform  deformable  nature  of  the  dura  membrane  [30]  ,  enabling  subject-specific  studies  in  which  the  function  

γ (x,  s  )  can  be  determined  from  in-vivo  MRI  measurements  of  CSF  flow,  as  done  recently  [27]  .  For  the  sake  of  simplicity,  

however,  the  following  validation  exercise  is  restricted  to  cases  with  constant  γ .  

The  canal  compliance  is  small  in  that  the  ratio  

ε  =  
γ ((p)  c  

h  c  
∼ L  s  

L  
% 1  (2)  

of  the  characteristic  dura-membrane  displacement  γ ((p)  c  to  the  characteristic  canal  width  h  c  is  small,  resulting  in  an  oscil-  

latory  motion  with  stroke  lengths  L  s  ∼ 1  cm,  much  smaller  than  the  canal  length  L  "  60  cm,  and  corresponding  characteristic  

streamwise  velocities  u  c  ∼ ωL  s  " εωL  on  the  order  of  a  few  cm/s.  In  particular,  Coenen  et  al.  [27]  reported  MRI-measured  

CSF  peak  velocities  along  the  spinal  canal  between  7  cm/s  (cervical  zone)  and  1.5  cm/s  (lumbar  zone)  in  a  healthy  human  

subject  at  a  normal  heart  rate  of  60  bpm,  which  yields  stroke  lengths  between  2.2  cm  and  0.5  cm,  consistent  with  the  order  

of  magnitude  L  s  ∼ 1  cm  .  

A  simple  order-of-magnitude  analysis  helps  to  clarify  the  main  flow  characteristics.  The  convective  acceleration,  whose  

order  of  magnitude  is  u  2  
c  /L,  is  a  factor  ε smaller  than  the  local  acceleration,  of  order  ωu  c  .  On  the  other  hand,  the  charac-  

teristic  viscous  time  across  the  canal,  h  2  
c  /ν,  based  on  the  typical  value  of  the  canal  width  h  c  "  3  − 4  mm  [25,27,31,32]  ,  is  on  

the  order  of  10–20  seconds,  about  2–4  times  larger  than  the  period  of  the  respiratory  cycle  and  about  10–20  times  larger  

than  the  period  of  the  cardiac  cycle.  These  estimates  indicate  that  the  viscous  force  per  unit  mass,  although  significantly  

smaller  than  the  local  acceleration,  is  still  non  negligible,  and  must  be  accounted  for  in  the  description.  Viscous  forces  scale  

in  the  dimensionless  formulation  [28,29]  with  α−2  ,  where  

α =  

(
h  2  

c  ω  

ν

)1  /  2  

(3)  

is  the  relevant  Womersley  number.  Although  α is  of  order  10  for  the  cardiac-induced  motion,  for  consistency  with  the  

results  presented  earlier  [28,29]  ,  most  of  the  direct  numerical  simulations  will  be  performed  for  flow  conditions  such  that  

α =  3  .  

The  elastic  behavior  of  the  canal  is  characterized  by  the  dimensionless  wavenumber  

k  =  
ωL  

[(h  c  /γ )  /ρ]  1  /  2  ∼ 1  ,  (4)  
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involving  the  relevant  elastic  wave  speed  [(h  c  /γ )  /ρ]  1  /  2  ,  which  has  been  measured  to  be  of  the  order  of  a  few  meters  per  

second  [33,34]  ,  yielding  order-unity  values  of  k  .  

In  the  previous  theoretical  developments,  the  problem  was  formulated  by  scaling  the  axial,  azimuthal,  and  transverse  

velocities  v̄  ∗ =  (u  ∗,  w  ∗,  v  ∗)  with  their  characteristic  values  εωL,  εω%  c  ,  and  εωh  c  to  give  the  order-unity  variables  (u,  w,  v  )  .  

Similarly,  the  streamwise  pressure  difference  from  the  entrance  value  is  scaled  with  its  characteristic  value  ρεω  2  L  2  to  give  

the  function  p  ′  (x,  t)  ,  with  the  small  pressure  variations  of  order  ρεω  2  %  2  
c  that  exist  around  the  canal  (i.e.  at  a  fixed  value  of  x  )  

described  by  the  accompanying  dimensionless  function  ˆ  p  (x,  s,  t)  ,  needed  in  describing  the  azimuthal  motion.  The  geometry  

of  the  canal  is  defined  by  the  dimensionless  functions  %  (x  )  and  h  (x,  s,  t)  describing,  respectively,  the  distribution  of  cord  

perimeter  scaled  with  %  c  and  the  instantaneous  local  value  of  canal  width  scaled  with  h  c  .  For  the  configurations  depicted  in  

Figs.  1  (b)  and  (c),  to  be  used  in  the  validation  exercise,  the  dimensionless  perimeter  is  just  %  (x  )  =  1  ,  since  the  radius  of  the  

inner  surface  is  constant,  while  the  undeformed  canal  width  is  given,  with  small  errors  of  order  h  c  /R  e  ,  by  
{

h̄  =  1  − β cos  (2  πs  )  (constant  eccentricity)  ,  

h̄  =  1  − β cos  (2  πs  )  cos  (2  πx  )  (variable  eccentricity)  ,  
(5)  

to  be  used  in  the  following  computations.  Because  of  the  limited  canal  compliance,  changes  in  the  canal  width  from  its  

unperturbed  distribution  h̄  (x,  s  )  are  small,  as  described  by  the  order  unity  deformation  h  ′  (x,  t)  =  (h  − h̄  )  /ε,  related  to  the  

local  pressure  by  the  elastic  equation  

h  ′  (x,  t)  =  cos  t  +  k  2  p  ′  (x,  t)  .  (6)  

2.3.  Description  of  the  velocity  field  

The  problem  is  solved  for  ε  % 1  with  α ∼ 1  and  k  ∼ 1  by  introducing  regular  asymptotic  expansions  in  powers  of  ε for  

all  variables  (i.e.  u  =  u  0  +  εu  1  +  ε  2  u  2  +  · · · )  [see  28  ].  At  leading-order  in  the  limit  ε  % 1  ,  there  exists  a  balance  between  

the  local  acceleration,  the  pressure  gradient,  and  the  viscous  forces,  so  that  the  zeroth-order  functions  are  determined  by  a  

transient  lubrication  problem,  coupled  with  the  canal  deformation  through  the  linear  elastic  Eq.  (6)  .  Because  of  its  linear  

character,  the  solution  can  be  written  in  the  form  u  0  =  Re  
(
ie  i  t  U  

)
,  w  0  =  Re  

(
ie  i  t  W  

)
,  v  0  =  Re  

(
ie  i  t  V 

)
,  and  h  ′  

0  =  Re  
(
e  i  t  H  

)
,  where  

the  complex  functions  U(x,  s,  η)  ,  W  (x,  s,  η)  ,  V (x,  s,  η)  ,  and  H(x  )  are  evaluated  as  explained  in  the  Appendix.  In  particular,  

the  function  H(x  )  describing  the  canal  deformation,  related  to  the  streamwise  pressure  variation  by  H  =  1  +  k  2  P,  as  follows  

from  Eq.  (6)  ,  is  determined  by  solving  the  boundary-value  problem  

1  

%  

d  

d  x  

[
%  

(∫  1  

0  
q  d  s  

)
d  H  

d  x  

]
+  k  2  H  =  0  ;

{
H  =  1  at  x  =  0  
d  H  
d  x  =  0  at  x  =  1  

,  (7)  

where  

q  (x,  s  )  =  h̄  −
√  

2  (1  − i)  

α
tanh  

(
αh̄  

2  

1  +  i  √  
2  

)
.  (8)  

For  the  configurations  considered  in  Figs.  1  (b)  and  (c)  the  solution  simplifies,  because  %  =  1  .  Furthermore,  for  the  case  of  con-  

stant  eccentricity,  the  unperturbed  canal  width  h̄  =  1  − β cos  (2  πs  )  is  independent  of  x,  and  Eq.  (7)  can  be  solved  exactly  to  

give  H(x  )  =  cos  [  k  (1  − x  )  /  (  
∫  1  

0  q  d  s  )  1  /  2  ]  /  cos  [  k/  (  
∫  1  

0  q  d  s  )  1  /  2  ]  .  Its  corresponding  modulus,  |  H|  ,  and  argument,  arg  (H)  ,  are  shown  

in  Fig.  2  for  k  =  0  .  5  ,  α =  3  and  β =  0  .  5  ,  along  with  those  obtained  for  variable  eccentricity  by  integration  of  Eq.  (7)  .  These  

two  functions,  determining  the  elastic  wave  travelling  along  the  canal  h  ′  
0  (x,  t)  =  |  H  |  cos  [  t  +  arg  (H  )]  ,  are  used  in  the  DNS  

computations  to  define  the  deformation  of  the  dura  membrane,  as  described  below.  For  completeness,  additional  elastic-  

wave  results  are  included  as  supplementary  material.  

The  leading-order  harmonic  velocity  has  a  zero  average  value,  i.e.  (〈  u  0  〉  ,  〈  w  0  〉  ,  〈  v  0  〉  )  =  (0  ,  0  ,  0)  ,  where  〈·〉  =  

1  /  (2  π)  
∫  2  π

0  · d  t  =  0  .  As  shown  previously  in  [28]  ,  the  first-order  corrections  (u  1  ,  w  1  ,  v  1  )  ,  arising  from  the  nonlinear  

effects  associated  with  convective  acceleration  and  canal  deformation,  contain  a  steady  component  (u  SS  ,  v  SS  ,  w  SS  )  =  

(〈  u  1  〉  ,  〈  v  1  〉  ,  〈  w  1  〉  )  .  Besides  this  steady-streaming  velocity,  the  mean  motion  of  the  oscillating  fluid  particles  contains  a  con-  

tribution  arising  from  Stokes  drift  [29]  .  This  is  a  purely  kinematic  effect  associated  with  the  spatial  nonuniformity  of  the  

pulsatile  flow.  In  the  presence  of  a  velocity  gradient,  a  fluid  particle  subject  to  an  oscillating  velocity  field  experiences  dur-  

ing  each  oscillatory  cycle  an  instantaneous  velocity  that  differs  by  a  small  amount  from  that  existing  at  the  initial  point  at  

corresponding  times,  so  that  it  does  not  return  to  its  original  position  at  the  end  of  the  cycle.  The  small  cyclical  displace-  

ments  accumulate  in  time  to  give  the  so-called  Stokes  drift,  with  associated  steady  velocities  that  are  comparable  to  those  of  

steady  streaming.  The  sum  of  the  steady-streaming  velocity  and  the  Stokes-drift  velocity  provides  the  steady  time-averaged  

Lagrangian  velocity,  

(u  L  ,  w  L  ,  v  L  )  =  (u  SS  +  u  SD  ,  w  SS  +  w  SD  ,  v  SS  +  v  SD  )  ,  (9)  

that  determines  the  slow  motion  of  the  fluid  particles  in  the  spinal  canal.  The  steady-streaming  velocity  components  

(u  SS  ,  v  SS  ,  w  SS  )  and  the  Stokes-drift  velocity  components  (u  SD  ,  w  SD  ,  v  SD  )  can  be  evaluated  in  terms  of  integrals  involving  U,  

W,  V,  and  H,  with  associated  expressions  given  in  the  Appendix.  
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Fig.  2.  Amplitude  and  phase  of  the  wall  displacement  h  ′  0  (x,  t)  =  |  H|  cos  [  t  +  arg(H)]  resulting  from  the  elastic  wave  that  travels  along  the  canal,  for  the  
model  with  constant  eccentricity  (solid  line)  and  for  that  with  variable  eccentricity  (dashed  line).  The  corresponding  instantaneous  dimensionless  canal  
width  is  given  by  h  (x,  s,  t)  =  h̄  (x,  s  )  +  εh  ′  0  (x,  t)  .  

2.4.  Solute  transport  in  the  spinal  canal  

Our  previous  analysis  [29]  also  considered  the  description  of  the  transport  of  a  solute  with  molecular  diffusivity  κ carried  

by  the  CSF.  While  the  oscillatory  motion  of  the  CSF  particles  has  a  characteristic  time  ω  −1  ,  the  cumulative  displacemenent  

along  the  canal  associated  with  steady  streaming  and  Stokes  drift  involves  characteristic  times  of  order  ε  −2  ω  −1  ,  that  be-  

ing  the  residence  time  obtained  by  dividing  the  characteristic  spinal-canal  length  L  by  the  characteristic  magnitude  of  the  

streamwise  Lagrangian  velocity  ε  u  c  =  ε  2  ωL  .  This  disparity  of  time  scales  allows  for  a  two-time-scale  asymptotic  description  

of  solute  transport  to  derive  the  following  reduced  equation,  which  will  be  used  to  describe  the  transport  of  drugs  delivered  

intrathecally  in  the  spinal  canal  in  terms  of  the  slow  time  variable  τ =  ε  2  t,  

∂c  0  

∂τ
+  u  L  

(
∂c  0  

∂x  
− ∂  ̄h  

∂x  

η

h̄  

∂c  0  

∂η

)
+  

v  L  

h̄  

∂c  0  

∂η
+  

w  L  

%  

(
∂c  0  

∂s  
− ∂  ̄h  

∂s  

η

h̄  

∂c  0  

∂η

)
=  

1  

α2  ε  2  S  ̄h  2  

∂  2  c  0  

∂η2  .  (10)  

Here,  c  0  (x,  s,  η,  τ )  is  the  leading-order  term  in  the  expansion  c  =  c  0  +  εc  1  +  · · · for  the  solute  concentration.  

2.5.  Direct  numerical  simulations  

With  the  aim  of  providing  detailed  numerical  results  for  validation  of  the  theoretical  model,  three-dimensional,  unsteady  

direct  numerical  simulations  of  the  fluid  motion  and  solute  dispersion  in  the  canal  were  carried  out.  To  facilitate  the  com-  

putation,  instead  of  using  the  intracranial  pressure  as  input,  the  displacement  of  the  dura  membrane  was  prescribed,  that  

also  being  the  approach  of  the  moving-boundary-motion  method  first  used  in  the  DNS  computations  of  Tangen  et  al.  (2015)  

[23]  (see  also  Khani  et  al.  2018  [25]  ).  For  consistency,  the  nonuniform  temporal  distribution  of  the  dura-membrane  displace-  

ment  was  selected  to  be  that  found  at  leading  order  in  the  previous  theoretical  analysis  of  the  fluid-structure  interaction  

problem  [28]  .  

In  the  first  stage  of  the  computations,  the  Navier–Stokes  equations  for  an  incompressible  Newtonian  fluid,  

∇  · v̄  ∗ =  0  ,  (11)  

∂  ̄v  ∗

∂t  ∗
+  v̄  ∗ · ∇  ̄v  ∗ =  −∇  p  ∗ +  ν∇  2  ̄v  ∗,  (12)  

were  solved  over  many  wall-displacement  oscillation  cycles  until  a  periodic  solution  was  attained.  In  the  governing  

Eqs.  (11)  and  (12)  asterisks  denote  dimensional  variables,  and  p  ∗ represents  the  spatial  pressure  differences  divided  by  

the  density.  Numerically  averaging  the  periodic  Eulerian  velocity  v̄  ∗ yields  its  steady-streaming  component,  which  in  turn  
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can  be  subtracted  from  v̄  ∗ to  determine  the  zero-mean  pulsating  component  of  the  velocity.  Both  are  to  be  compared  with  

the  results  of  the  asymptotic  analysis  presented  before  in  Section  2.3  .  In  the  second  stage  of  the  computations,  the  transport  

problem  

∂c  

∂t  ∗
+  v̄  ∗ · ∇  c  =  

ν
S  

∇  2  c,  (13)  

was  solved  to  study  the  slow-time  dispersion  of  a  solute,  with  the  convective  transport  evaluated  using  the  periodic  velocity  

field  determined  from  the  first  set  of  calculations.  The  initial  spatial  distribution  of  the  solute,  defined  below  in  Eq.  (15)  ,  is  

selected  as  representative  of  the  release  of  a  drug  in  the  lumbar  region.  The  simulations  were  extended  over  a  large  number  

of  cycles,  corresponding  to  values  of  the  long-time  scale  τ of  order  unity,  and  their  results  are  to  be  compared  with  those  of  

the  simplified  transport  problem  (10)  .  Note  that  in  the  computations,  all  terms  in  the  conservation  equations  were  retained,  

i.e.  no  simplifications  on  the  basis  of  the  slenderness  of  the  canal  or  the  smallness  of  the  stroke  length  were  introduced.  

The  numerical  solution  of  Eqs.  (11)  –(13)  was  carried  out  with  the  finite-volume  solver  Ansys  Fluent  (Release  16.2),  as-  

suring  second-order  accuracy  in  time  and  in  space.  The  PISO  algorithm  was  used  for  the  pressure-velocity  coupling  [35]  .  The  

no-slip  conditions  were  imposed  at  the  canal  walls,  and  a  condition  of  developed  flow,  ∇  ̄v  ∗ · n̄  =  0  ,  was  imposed  at  the  inlet,  

where  a  buffer  region  of  length  0  .  15  L  was  added  to  avoid  entrance  effects.  To  model  the  deformation  of  the  dura  membrane,  

a  dynamic  mesh  solver  that  employs  a  Laplacian  mesh  motion  algorithm  was  used  [25,36]  ,  with  the  instantaneous  radius  of  

the  external  boundary  surface  R  ′  
e  varying  from  its  unperturbed  value  R  e  according  to  

R  ′  
e  =  R  e  +  εh  c  h  ′  

0  (x  ∗/L,  ωt  ∗)  =  R  e  +  εh  c  |  H|  cos  [  ωt  ∗ +  arg  (H)]  .  (14)  

Here,  the  elastic-wave  deformation  h  ′  
0  =  |  H  |  cos  [  ωt  ∗ +  arg  (H  )]  was  determined  a  priori  by  solving  the  linear  fluid-structure  

interaction  problem  for  a  prescribed  harmonic  intracranial  pressure  fluctuation,  as  described  before  in  Section  2.3  .  The  spe-  

cific  functions  |  H|  and  arg  (H)  used  in  the  simulations  are  those  shown  above  in  Fig.  2  .  

While  the  theoretical  model  is  formulated  in  terms  of  dimensionless  parameters,  the  DNS  dimensional  formulation  re-  

quires  specification  of  dimensional  values  for  all  parameters  appearing  in  the  equations  and  boundary  conditions.  In  the  

integrations,  the  kinematic  viscosity,  appearing  in  Eqs.  (12)  and  (13)  ,  was  taken  to  be  ν =  0  .  698  × 10  −6  m  2  /s,  the  value  cor-  

responding  to  water  at  36.8  o  C.  The  dimensions  of  the  domain  for  the  two  configurations  shown  in  Figs.  1  (b)  and  (c)  are  

L  =  0  .  6  m,  R  e  =  5  mm,  and  R  i  =  4  mm,  corresponding  to  a  canal  with  characteristic  width  h  c  =  R  e  − R  i  =  1  mm  and  constant  

inner  perimeter  %  c  =  2  πR  i  "  25  mm.  In  all  computations,  the  dimensionless  eccentricity  is  taken  to  be  β =  0  .  5  .  The  canal  de-  

formation,  given  in  Eq.  (14)  ,  is  evaluated  for  an  angular  frequency  ω  =  2  π s  −1  ,  as  corresponds  approximately  to  the  cardiac  

cycle,  with  the  function  H(x  ∗/L  )  ,  shown  in  Fig.  2  ,  computed  with  k  =  0  .  5  and  α =  (h  2  
c  ω/ν)  1  /  2  =  3  ,  the  latter  value  consistent  

with  the  parametric  choice  h  c  =  1  mm,  ω  =  2  π s  −1  ,  and  ν =  0  .  698  × 10  −6  m  2  /s.  In  all  computations,  the  reduced  amplitude  

is  taken  to  be  ε  =  1  /  20  .  It  is  worth  noting  that  the  canal  thickness  h  c  =  1  mm  used  in  our  computations,  smaller  than  the  

typical  values  h  c  =  3  − 4  mm  reported  in  the  literature  [25,27,31,32]  ,  was  chosen  to  give  a  value  of  α =  3  ,  consistent  with  

results  presented  earlier  [28,29]  .  Consideration  of  more  realistic  values  of  h  c  ∼ 3  mm  would  lead  to  larger  values  of  α "  10  ,  

producing  changes  in  the  flow  that  were  already  quantified  in  our  previous  analyses  [28,29]  .  Although  departures  of  the  

model  predictions  from  the  DNS  results  are  expected  to  increase  for  increasing  values  of  h  c  /R  i  ,  the  predictive  capability  of  

the  model  remains  valid,  provided  that  the  condition  h  c  % l  c  is  satisfied.  

The  computational  domain  was  discretized  using  a  structured  uniform  mesh.  A  grid  sensitivity  analysis  was  conducted  to  

ensure  the  grid-size  independence  of  the  results.  To  that  end,  integrations  were  sequentially  performed  with  an  increasing  

number  of  grid  points,  starting  from  a  coarse  grid  with  7  .  5  × 10  4  computational  cells.  In  comparing  results  corresponding  to  

different  grids,  the  periodic  velocity  field  was  characterized  by  the  amplitude  of  the  axial  velocity  oscillation  (u  ∗max  − u  ∗
min  )  

at  two  locations  of  the  anteroposterior  plane,  namely,  x  ∗ =  L/  2  (  x  =  1  /  2  ),  y  ∗ =  h̄  /  2  (  η =  1  /  2  )  and  s  =  0  and  s  =  0  .  5  .  This  

velocity  amplitude  was  seen  to  decrease  as  the  number  of  grid  point  increases,  with  relative  changes  becoming  progressively  

smaller.  The  transport  of  the  solute  was  also  assessed  by  comparing  axial  distributions  of  averaged  concentration  at  different  

x  -sections.  Differences  in  concentration  profiles  were  quantified  with  the  discretized  version  of  the  L  2  -norm  ||  f  − g||  2  =  

[  
∫  1  

0  ( f  − g)  2  d  η]  1  /  2  .  The  refinement  was  continued  until  the  relative  differences  resulting  from  doubling  the  number  of  grid  

points  in  consecutive  computations  were  less  than  0.3%  for  the  velocity  and  less  than  1%  for  the  concentration.  The  final  

configuration  selected,  to  be  used  in  the  computations  presented  below,  contains  a  total  of  1  .  95  × 10  6  grid  points.  

In  the  following,  results  from  the  simulations  will  be  compared  with  those  of  the  previous  theoretical  analyses.  The  

steady-streaming  velocity  components  u  SS  and  w  SS  will  be  evaluated  from  the  DNS  results  by  taking  the  time  averages  

〈  u  ∗〉  =  ω/  (2  π)  
∫  2  π/ω  

0  u  ∗ d  t  ∗ and  〈  w  ∗〉  =  ω/  (2  π)  
∫  2  π/ω  

0  w  ∗ d  t  ∗,  and  scaling  the  resulting  axial  and  azimuthal  components  

with  their  characteristic  values  ε  2  ωL  and  ε  2  ω%  c  ,  respectively.  These  values  are  compared  below  with  the  theoretical  pre-  

dictions  u  SS  =  〈  u  1  〉  and  w  SS  =  〈  w  1  〉  stemming  from  the  asymptotic  analysis.  Similarly,  the  harmonic  leading-order  veloc-  

ity  components  predicted  by  the  linear  lubrication  problem,  (u  0  ,  w  0  )  =  Re  
[
ie  i  t  (U,  W  )  

]
,  will  be  compared  with  the  corre-  

sponding  DNS  predictions  for  the  purely  oscillatory  flow,  obtained  by  subtracting  its  mean  value  according  to  u  ∗ − 〈  u  ∗〉  and  

w  ∗ − 〈  w  ∗〉  ,  and  scaling  the  resulting  axial  and  azimuthal  velocity  components  with  their  characteristic  values  εωL  and  εω%  c  .  

Additional  results  will  be  presented  for  the  time-dependent  dispersion  of  a  solute,  with  results  of  integrations  of  the  full  

transport  Eq.  (13)  compared  with  those  of  the  simplified  Eq.  (10)  for  different  values  of  the  Schmidt  number  S.  
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Fig.  3.  Comparison  of  the  oscillatory  velocity  determined  in  the  numerical  simulations  with  that  predicted  by  the  simplified  model.  The  theoretical  predic-  
tions  are  evaluated  from  the  analytical  expressions  u  0  =  Re  

[
ie  i  t  U(x,  η,  s  )  

]
and  w  0  =  Re  

[
ie  i  t  W  (x,  η,  s  )  

]
,  with  the  normalized  transverse  coordinate  η taken  

to  be  perpendicular  to  the  inner  surface.  To  enable  quantitative  comparisons  to  be  made,  the  DNS  results  are  represented  in  their  dimensionless  form  
(u  ∗ − 〈  u  ∗〉  )  /  (εωL  )  and  (w  ∗ − 〈  w  ∗〉  )  /  (εω%  c  )  with  %  c  =  2  πR  i  .  

3.  Results  with  constant  eccentricity  

We  begin  in  this  section  by  presenting  results  for  the  constant–eccentricity  model  shown  in  Fig.  1  (b),  also  addressed  in  

our  previous  publications,  with  the  case  of  variable  eccentricity  investigated  in  the  following  section.  

3.1.  Pulsating  velocity  fields  

The  axial  and  azimuthal  components  of  the  oscillatory  velocity  obtained  in  the  DNS  computations,  expressed  in  the  

dimensionless  form  (u  ∗ − 〈  u  ∗〉  )  /  (εωL  )  and  (w  ∗ − 〈  w  ∗〉  )  /  (εω%  c  )  ,  are  compared  in  Fig.  3  with  the  theoretical  predictions  

(u  0  ,  w  0  )  =  Re  
[
ie  i  t  (U,  W  )  

]
.  Velocity  distributions  are  given  for  t  =  ωt  ∗ =  π at  four  different  sections  x  =  (0  ,  0  .  25  ,  0  .  5  ,  0  .  75)  .  

In  plotting  the  theoretical  predictions,  the  coordinate  η is measured  perpendicular to  the inner surface.  Note  that  upward  

(cranial)  /  downward  (caudal)  flow  corresponds  to  negative  /  positive  values  of  the  axial  velocity.  

As  expected,  the  flow  is  symmetric  with  respect  to  the  symmetry  plane  of  the  canal,  defined  by  s  =  0  and  s  =  0  .  5  .  The  

magnitude  of  the  axial  velocities  is  seen  to  decrease  with  the  axial  coordinate,  to  eventually  vanish  at  the  closed  end  of  the  

canal  x  =  1  [28]  .  By  way  of  contrast,  the  magnitude  of  the  azimuthal  velocity,  shown  on  the  right-hand  side  of  the  figure,  

tends  to  increase  along  the  spinal  canal,  as  needed  to  accommodate  the  flow  recirculation.  

At  the  instant  of  time  t  =  ωt  ∗ =  π selected  in  the  figure,  the  flow  moves  downwards  in  the  narrow  part  of  the  canal  and  

upwards  in  the  wide  part.  Since  viscous  effects  are  more  prominent  in  the  narrow  regions  (i.e.  around  s  =  0  ),  the  largest  

peak  velocities  are  found  at  s  =  0  .  5  .  The  time-dependent  evolution  of  the  velocity,  shown  in  a  movie  included  as  supple-  

mentary  material,  displays  the  expected  wave-like  behavior,  associated  with  the  canal  deformation  described  by  Eq.  (14)  .  

To  enable  a  more  precise  quantitative  comparison,  profiles  of  axial  velocity  are  plotted  across  the  canal  at  s  =  0  .  5  (left)  

and  s  =  0  (right).  The  velocity  profiles  obtained  analytically  are  symmetric  in  both  locations,  since  the  model  does  not  take  

into  account  curvature  effects.  However,  the  numerical  results,  obtained  with  large  but  finite  curvature  R  i  /h  c  =  4  ,  display  

slight  asymmetries,  with  peak  velocities  lying  closer  to  the  inner  surface  η =  0  .  The  relative  difference  in  centerline  velocity,  

measured  by  the  value  of  |  u  0  − (u  ∗ − 〈  u  ∗〉  )  |  /  |  u  0  |  at  η =  0  .  5  ,  varies  over  the  course  of  the  oscillation  cycle.  This  relative  

difference  is  of  the  order  of  9%  when  the  flow  rate  is  maximum  at  t  =  π/  2  (upward  flow)  and  at  t  =  3  π/  2  (downward  flow)  

and  of  the  order  of  15%  when  the  flow  rate  reverses  direction  at  t  =  0  and  t  =  π,  the  flow  in  the  latter  instant  of  time  being  

represented  in  Fig.  3  .  As  explained  later  in  the  discussion  of  Fig.  5  ,  both  the  small  asymmetries  and  the  departures  in  the  

velocity  values  are  associated  with  curvature  effects  resulting  from  the  finite  value  of  the  slenderness  ratio  h  c  /R  i  .  

3.2.  Steady  streaming  

The  predictions  u  SS  =  〈  u  1  〉  and  w  SS  =  〈  w  1  〉  for  the  axial  and  azimuthal  components  of  the  steady-streaming  velocity,  

evaluated  from  the  expressions  given  in  the  Appendix,  are  compared  in  Fig.  4  with  the  time-averaged  values  of  the  DNS  
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Fig.  4.  Comparison  of  the  steady-streaming  velocity  components  u  SS  and  w  SS  determined  numerically  with  those  predicted  by  the  simplified  model.  The  
theoretical  predictions  are  evaluated  using  the  expressions  u  SS  =  〈  u  1  〉  (x,  η,  s  )  and  w  SS  =  〈  w  1  〉  (x,  η,  s  )  given  in  Appendix  A.2,  with  the  normalized  transverse  
coordinate  η taken  to  be  perpendicular  to  the  inner  surface.  To  enable  quantitative  comparisons  to  be  made,  the  DNS  results  are  represented  in  their  
dimensionless  form  u  SS  =  〈  u  ∗〉  /  (ε  2  ωL  )  and  w  SS  =  〈  w  ∗〉  /  (ε  2  ω%  c  )  with  %  c  =  2  πR  i  .  

velocities,  expressed  in  the  dimensionless  form  u  SS  =  〈  u  ∗〉  /  (ε  2  ωL  )  and  w  SS  =  〈  w  ∗〉  /  (ε  2  ω%  c  )  ,  as  needed  for  consistency.  Good  

agreement  is  again  found  between  the  theoretical  predictions  and  the  numerical  results,  with  relative  differences  in  peak  

values  remaining  below  15  %  .  As  can  be  inferred  from  the  transverse  profiles  of  u  SS  at  s  =  0  and  s  =  0  .  5  ,  the  magnitude  

of  the  steady-streaming  velocities  computed  in  the  direct  numerical  simulations  is  slightly  larger  than  that  predicted  by  

the  analytical  model.  As  explained  below,  the  observed  departures,  on  the  order  of  10%  to  15%,  can  be  attributed  to  the  

different  approximations  incorporated  in  developing  the  analytical  results,  as  well  as  the  finite  slenderness  of  the  geometry.  

Although  the  results  presented  here  have  been  obtained  for  α =  3  ,  preliminary  direct  numerical  simulations  at  α =  10  also  

corroborate  the  good  agreement  between  the  theoretical  and  the  numerical  results  at  more  realistic  Womersley  numbers,  

commonly  observed  in  human  beings.  

The  resulting  axial  velocities  are  found  to  be  mainly  positive  (downwards)  where  the  canal  width  is  larger  (i.e.  values  of  s  

around  s  =  0  .  5  )  and  mostly  negative  (upwards)  where  the  canal  width  is  smaller  (i.e.  values  of  s  around  s  =  0  ),  in  agreement  

with  previous  results.  The  flow  is  symmetric  with  respect  to  the  plane  s  =  0  and  s  =  0  .  5  ,  where  w  SS  =  0  ,  with  the  fluid  

moving  azimuthally  in  the  direction  of  decreasing  canal  width.  It  is  of  interest  that  the  magnitude  of  u  SS  decreases  away  

from  the  entrance  (i.e.  for  increasing  values  of  x  )  while  that  of  w  SS  increases,  as  needed  to  accommodate  flow  recirculation.  

The  small  discrepancies  observed  between  the  numerical  simulations  and  the  theoretical  predictions  can  be  attributed  

to  the  simplifications  introduced  in  developing  the  theoretical  model.  To  investigate  the  inaccuracies  associated  with  the  

assumption  of  slender  flow,  stated  in  Eq.  (2)  ,  computations  were  performed  in  more  slender  canals  with  smaller  widths  h  c  =  

R  e  − R  i  ,  such  that  h  c  /R  i  =  1  /  8  and  h  c  /R  i  =  1  /  40  .  Resulting  profiles  of  axial  velocity  at  x  =  0  .  5  and  s  =  0  .  5  are  plotted  in  Fig.  5  

along  with  those  of  the  previous  calculations,  corresponding  to  h  c  /R  i  =  1  /  4  .  The  pulsating  and  time-averaged  components  

(u  ∗ − 〈  u  ∗〉  )  /  (εωL  )  and  〈  u  ∗〉  /  (ε  2  ωL  )  are  compared  with  the  functions  u  0  and  〈  u  1  〉  .  As  can  be  seen,  as  effects  of  curvature  

become  less  important  for  decreasing  values  of  h  c  /R  i  ,  the  associated  DNS  profiles  become  more  symmetric  and  tend  to  

approach  the  theoretical  prediction.  For  instance,  when  the  canal  thickness  is  reduced  to  h  c  /R  i  =  1  /  40  ,  the  peak  values  

of  the  pulsating  and  time-averaged  velocity  components  predicted  by  the  model  differ  by  only  1  .  5%  and  3  .  5%  from  the  

corresponding  DNS  values.  

The  long-term  Eulerian  bulk  flow  induced  by  the  steady  streaming  can  be  characterized  by  representing  on  an  s  − x  plane  

the  streamlines  associated  with  the  width-averaged  values  of  the  axial  and  azimuthal  velocity  components  
∫  1  

0  u  SS  d  η and  
∫  1  

0  w  SS  d  η.  Results  corresponding  to  the  computation  of  Fig.  4  are  shown  on  the  left-hand  side  of  Fig.  6  ,  with  small  arrows  

added  to  indicate  the  direction  of  the  flow.  The  separation  between  streamlines  characterizes  the  velocity  magnitude,  with  

smaller  spacing  corresponding  to  larger  speeds.  The  resulting  streamlines  are  very  similar  to  those  corresponding  to  the  

theoretical  predictions,  represented  in  the  accompanying  right-hand-side  plot  (  Fig.  6  b).  The  streamlines  help  visualize  the  

flow  features  previously  discussed.  The  fluid  is  seen  to  enter  along  the  wide  part  of  the  canal  and  leave  along  the  narrow  

part,  recirculation  occurring  at  a  faster  rate  towards  the  closed  end,  in  agreement  with  the  velocity  contours  shown  in  Fig.  4  .  
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Fig.  5.  Profiles  of  axial  velocity  at  x  =  0  .  5  and  s  =  0  .  5  for  three  different  values  of  h  c  /R  i  ,  including  the  instantaneous  pulsating  component  (u  ∗ − 〈  u  ∗〉  )  /  (εωL  )  
evaluated  at  t  =  ωt  ∗ =  π (a),  and  the  time-averaged  component  u  SS  =  〈  u  ∗〉  /  (ε  2  ωL  )  (b).  The  dashed  lines  represent  the  corresponding  theoretical  predictions  
u  0  and 〈  u  1  〉  .  

Fig.  6.  Streamlines  corresponding  to  the  width-averaged  velocities  
∫  1  

0  u  SS  d  η and  
∫  1  

0  w  SS  d  η for  the  flow  conditions  of  Fig.  4  .  The  letters  N  and  W  near  the  
bottom  indicate  the  azimuthal  location  of  the  narrowest  and  widest  sections.  

3.3.  Solute  dispersion  

To  test  the  accuracy  of  the  theoretical  model  in  describing  transport  in  the  spinal  canal,  we  consider  the  temporal  evo-  

lution  of  a  bolus  of  solute  released  at  the  initial  instant  of  time.  The  initial  concentration  is  given  by  the  truncated  Gaussian  

distribution  

c  (  x  ∗/L  )  =  min  

{
1  ,  

3  

2  
exp  

[
−16  2  

(
x  ∗

L  
− 3  

4  

)2  ]}
,  (15)  

selected  as  representative  of  injection  of  a  solute  bolus  in  the  upper  lumbar  region.  The  initial  profile  (15)  ,  representing  

a  band  of  saturated  solute  flanked  by  thin  regions  with  concentration  decay,  is  selected  for  convenience  and  comparison  
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Fig.  7.  Width-averaged  distributions  of  concentration  at  different  instants  of  time  following  the  release  of  a  bolus  of  solute  with  Schmidt  number  S  =  100  
(a)  and  S  =  40  0  0  (b)  in  the  constant-eccentricity  canal  of  Fig.  1  (b).  Flow  conditions  correspond  to  those  in  Figs.  3  and  4  .  DNS  results  are  represented  by  the  
contours  on  the  left-hand  side  of  the  panels  and  by  the  solid  curves  representing  the  axial  distribution  of  solute  on  the  side  plots.  Theoretical  predictions  
corresponding  to  integrations  of  Eq.  (10)  are  represented  by  the  contours  on  the  right-hand  side  of  the  panels  and  by  the  dashed  curves  on  the  side  plots.  
The  letters  N  and  W  near  the  bottom  of  the  leftmost  panels  indicate  the  azimuthal  location  of  the  narrowest  and  widest  sections.  

purposes  between  the  model  and  the  DNS  results.  Clearly,  the  specific  shape  of  the  initial  concentration  depends  on  the  

details  of  the  injection  protocol.  Its  influence  on  the  resulting  transport  history  should  be  further  investigated  in  future  

work.  In  that  regard,  the  reader  is  referred  to  the  work  of  Tangen  et  al.  [20]  for  a  comprehensive  computational  and  in-vitro  

experimental  study  of  the  effects  of  injection  volume,  including  additional  effects  of  drug-tissue  chemical  interaction.  

Predictions  obtained  by  integrating  the  time-averaged  Eq.  (10)  in  the  long  time  scale  τ =  ε  2  t  =  ε  2  ωt  ∗ for  0  ≤ τ ≤ 2  

are  compared  in  Fig.  7  with  results  of  integrations  of  Eq.  (13)  for  0  ≤ ωt  ∗ ≤ 800  .  The  figure  shows  distributions  of  width-  

averaged  concentration  for  different  times,  together  with  the  corresponding  axial  distributions  of  the  averaged  concentration  

at  each  section  x,  computed  according  to  
∫  1  

0  (  ̄h  
∫  1  

0  〈  c〉  d  η)  d  s  and  
∫  1  

0  (  ̄h  
∫  1  

0  c  o  d  η)  d  s  for  the  DNS  and  the  model,  respectively.  

Here,  〈  c〉  =  ω/  (2  π)  
∫  t  ∗+2  π/ω  

t  ∗ c(  ̄x  ∗,  t  ∗)  d  t  ∗ indicates  the  time-averaged  value  of  the  concentration  over  a  cardiac  cycle.  The  

results  correspond  to  the  flow  conditions  of  Figs.  3  and  4  for  two  different  values  of  the  Schmidt  number,  namely  S  =  100  

and  S  =  40  0  0  .  

The  agreement  between  the  numerical  results  and  those  given  by  the  model  is  very  satisfactory.  Relative  differences  

in  axial  distributions  of  averaged  concentration,  measured  with  the  L  2  -norm  ||  
∫  1  

0  (  ̄h  
∫  1  

0  〈  c〉  d  η)  d  s  −
∫  1  

0  (  ̄h  
∫  1  

0  c  o  d  η)  d  s  ||  2  =  

{  
∫  1  

0  [  
∫  1  

0  (  ̄h  
∫  1  

0  〈  c〉  d  η)  d  s  −
∫  1  

0  (  ̄h  
∫  1  

0  c  o  d  η)  d  s  ]  2  d  x  }  1  /  2  ,  were  seen  to  remain  below  0.05  (  S  =  100  )  and  0.04  (  S  =  40  0  0  )  through-  

out  the  duration  of  the  computations.  These  small  differences  can  be  mainly  attributed  to  the  aforementioned  discrepancies  

in  the  pulsatile  and  steady-streaming  velocity  profiles.  

The  comparisons  in  Fig.  7  clearly  demonstrate  the  predictive  capability  of  the  reduced  transport  Eq.  (10)  ,  involving  

the  combined  effects  of  convection,  driven  by  the  time-averaged  Lagrangian  velocity,  and  molecular  diffusion  across  the  

width  of  the  canal.  As  expected  from  the  streamline  pattern  shown  in  Fig.  6  ,  the  solute  is  convected  along  the  nar-  

row  part  of  the  canal  (  s  =  0  ),  reaching  the  canal  entrance  at  τ =  ε  2  t  ≈ 1  .  2  .  This  fast  upward  motion  is  accompanied  

by  a  slower  downward  motion  occurring  along  the  wide  part  of  the  canal  (  s  =  0  .  5  ).  This  result  is  consistent  with  the  

findings  of  Tangen  et  al.  [17]  ,  who  have  recently  shown  a  fast  caudocranial  motion  in-vivo  experiments  in  cynomolgus  

monkeys.  

The  theoretical  model  is  seen  to  appropriately  capture  the  effects  of  solute  diffusivity,  described  in  the  time-averaged  

Eq.  (10)  by the  transverse-diffusion term on the  right-hand side,  leading to  solute spatial distributions that  are different  

for  S  =  100  and  S  =  40  0  0  ,  with  theoretical  predictions  in  good  quantitative  and  qualitative  agreement  with  the  DNS  results.  
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In  explaining  the  differences  in  solute  dispersion  between  these  two  different  Schmidt  numbers,  one  should  bear  in  mind  

that  the  extent  of  transverse  diffusion  depends  on  the  value  of  α2  ε  2  S,  the  ratio  of  the  transverse  diffusion  time  h  2  
c  /κ to  

the  characteristic  residence  time  ε  −2  ω  −1  associated  with  the  mean  Lagrangian  motion.  For  the  values  α =  3  and  ε  =  0  .  05  

considered  here,  this  time  ratio  becomes  α2  ε  2  S  =  90  for  S  =  40  0  0  and  α2  ε  2  S  =  2  .  25  for  S  =  100  ,  indicating  that  transverse  

diffusion  is  significant  for  S  =  100  but  largely  absent  for  S  =  40  0  0  .  In  the  former  case,  diffusion  tends  to  uniformize  the  

solute  concentration  in  the  transverse  direction  η,  so  that  convective  transport  occurs  with  the  width-averaged  Lagrangian  

velocity,  resulting  in  the  plots  of  width-averaged  concentration  maps  shown  in  Fig.  7  (a).  In  contrast,  for  S  =  40  0  0  each  

individual  fluid  particle  moves  with  a  nearly  constant  concentration.  Particles  near  the  pia  and  dura  membranes,  where  the  

Lagrangian  velocity  vanishes,  tend  to  stay  stagnant,  while  those  located  near  η =  0  .  5  ,  where  the  velocity  peaks,  move  fast,  

contributing  to  the  dispersion  of  the  solute.  The  width-averaged  concentration  maps  shown  in  Fig.  7  (b)  are  a  consequence  of  

this  differential  convective  transport,  which  has  a  more  pronounced  effect  on  the  wide  side  of  the  canal  (i.e.  s  =  0  .  5  ),  where  

the  transverse  diffusion  time  is  largest.  Perhaps  counterintuitively,  the  resulting  solute  dispersion  rate  for  S  =  40  0  0  is  larger  

than  that  for  the  less  diffusive  case  S  =  100  ,  as  can  be  seen  by  comparing  the  maps  of  solute  concentration  in  Fig.  7  (a)  

and  (b).  The  comparison  reveals,  in  particular,  that  the  rate  of  solute-front  propagation  along  the  canal  from  the  injection  

location,  both  towards  the  entrance  x  =  0  and  towards  the  closed  end  x  =  1  ,  is  faster  for  S  =  40  0  0  than  for  S  =  100  .  This  

can  be  explained  by  recalling  that  for  S  =  100  the  solute  front  moves  along  the  canal  at  a  rate  given  approximately  by  the  

width-averaged  Lagrangian  velocity,  that  being  a  result  of  the  uniformizing  effect  of  transverse  diffusion.  By  way  of  contrast,  

in  the  less  diffusive  case  S  =  40  0  0  the  evolution  of  the  solute  front  is  largely  determined  by  the  motion  of  the  fluid  particles  

located  near  the  canal  center  η =  0  .  5  ,  which  move  at  a  velocity  that  exceeds  the  mean  value,  thereby  explaining  the  faster  

front-propagation  rate.  

The  interplay  between  convection  and  transverse  diffusion  also  affects  the  axial  distribution  of  solute  concentration  

[  
∫  1  

0  (  ̄h  
∫  1  

0  c  0  d  η)  d  s  ]  ,  depicted  on  the  side  plots  next  to  the  two-dimensional  maps  of  Fig.  7  .  An  interesting  finding  is  that  

smaller  diffusivities  appear  to  yield  greater  equilibration  of  concentration,  in  that  the  peak  values  of  [  
∫  1  

0  (  ̄h  
∫  1  

0  c  0  d  η)  d  s  ]  are  

somewhat  lower  for  S  =  40  0  0  ,  that  being  a  result  of  the  rapid  dispersion  associated  with  the  motion  of  the  individual  fluid  

particles,  moving  with  nearly  constant  concentration.  Also,  while  for  S  =  100  the  peak  values  are  seen  to  migrate  towards  

x  =  1  ,  driven  by  the  convective  flow,  for  S  =  40  0  0  they  do  not  move  far  from  x  =  0  .  75  ,  because  a  large  amount  of  solute  

remains  at  the  injection  location  on  the  wide  side  of  the  canal  (i.e.  around  s  =  0  .  5  ),  trapped  in  slow  moving  near-wall  layers.  

It  is  worth  emphasizing  that  all  of  these  nontrivial  effects  of  solute  diffusivity  are  a  consequence  of  the  interplay  of  trans-  

verse  diffusion  with  the  time-averaged  Lagrangian  motion,  while  solute  diffusion  in  the  axial  and  azimuthal  direction  plays  

a  negligible  role,  as  demonstrated  by  the  good  agreement  between  the  DNS  results  and  the  theoretical  predictions  based  on  

the  model  transport  Eq.  (10)  .  

4.  Results  with  variable  eccentricity  

To  investigate  effects  of  nonuniform  eccentricity  of  the  canal  section,  additional  integrations  were  performed  for  the  

model  geometry  shown  in  Fig.  1  (c).  Streamlines  corresponding  to  the  width-averaged  values  
∫  1  

0  u  SS  d  η and  
∫  1  

0  w  SS  d  η of  the  

axial  and  azimuthal  velocity  components  are  shown  in  Fig.  8  .  As  can  be  seen,  the  theoretical  predictions  are  in  good  agree-  

ment  with  the  DNS  results.  The  resulting  flow  pattern,  including  three  recirculating  regions,  is  markedly  different  from  that  

shown  previously  in  Fig.  6  for  constant  eccentricity.  The  flow  direction  is  reversed  between  contiguous  recirculating  cells,  so  

that  in  the  top  and  bottom  regions  the  flow  is  downwards  at  s  =  0  .  5  and  upwards  at  s  =  0  ,  while  in  the  intermediate  region  

the  flow  is  upwards  at  s  =  0  .  5  and  downwards  at  s  =  0  .  The  streamlines  separating  the  three  distinct  regions  include  stag-  

nation  points  at  the  symmetry  plane  s  =  0  and  s  =  0  .  5  ,  around  which  the  flow  exhibits  a  local  counterflow  configuration.  

The  streamline  spacing  is  used  to  indicate  the  magnitude  of  the  velocity,  which  shows  very  different  values  in  the  different  

regions,  smaller  at  larger  distances  from  the  entrance.  The  results  indicate  that  the  time-averaged  motion  is  virtually  absent  

in  the  bottom  recirculating  region,  where  the  velocities  are  three  orders  of  magnitude  smaller  than  those  found  in  the  top  

recirculating  region,  in  agreement  with  previous  findings  [27]  .  

The  existence  of  unconnected  closed  recirculating  regions  has  a  dramatic  effect  on  the  solute  dispersion  along  the  canal,  

as  verified  in  accompanying  integrations  of  the  transport  Eq.  (13)  with  the  initial  condition  stated  in  Eq.  (15)  .  These  DNS  

results  are  shown  in  Fig.  9  ,  along  with  predictions  obtained  with  the  simplified  transport  Eq.  (10)  .  As  can  be  seen,  the  model  

properly  describes  the  transport  of  the  solute  along  the  canal.  The  resulting  maximum  values  of  the  L  2  -norm  differences  in  

axial  distributions  of  the  averaged  concentration  (0.08  for  S  =  100  and  0.06  for  S  =  40  0  0)  are  somewhat  larger  than  those  

previously  obtained  for  constant-eccentricity  (0.05  for  S  =  100  and  0.04  for  S  =  40  0  0),  the  increase  being  attributable  to  the  

added  complexity  of  the  flow.  

According  to  the  streamline  pattern  shown  in  Fig.  8  ,  the  initial  distribution  of  solute,  given  in  Eq.  (15)  ,  is  centered  at  

x  ∗/L  =  0  .  75  ,  so  that  the  bolus  occupies  initially  a  section  of  the  canal  lying  between  the  bottom  and  central  vortices.  As  

a  consequence,  the  upper  and  lower  sides  of  the  bolus  are  subject  to  a  recirculating  flow  with  opposite  sign,  eventually  

resulting  in  counterflowing  convective  transport  along  the  line  s  =  0  .  5  ,  with  the  solute  carried  by  the  central  vortex  moving  

upwards  and  the  solute  carried  by  the  bottom  vortex  moving  downwards.  The  subsequent  temporal  evolution  of  the  solute  

demonstrates  the  dominant  role  of  Lagrangian  convection,  with  the  solute  largely  following  the  streamlines  of  Fig.  8  .  In  

the  absence  of  molecular  diffusion,  solute  particles  would  remain  trapped  in  the  central  and  bottom  recirculating  regions.  
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Fig.  8.  Streamlines  corresponding  to  the  width-averaged  velocities  
∫  1  

0  〈  u  SS  〉  d  η and  
∫  1  

0  〈  w  SS  〉  d  η for  the  variable-eccentricity  model  geometry  of  Fig.  1  (c).  The  
letters  N  and  W  indicate  the  azimuthal  location  of  the  narrowest  and  widest  sections  respectively.  

The  DNS  results  reveal  that  diffusive  transport  provides  limited  inter-vortex  connectivity,  enabling  a  small  portion  of  solute  

to  reach  the  entrance  of  the  canal  at  the  end  of  the  numerical  integration,  as  shown  in  Fig.  9  .  Since  axial  and  azimuthal  

diffusion  fluxes  are  neglected  in  the  model,  vortex  connectivity  relies  on  the  action  of  transverse  diffusion  across  overlapping  

streamlines  near  the  vortex  separating  interface,  with  the  consequence  that  the  amount  of  solute  reaching  the  entrance  of  

the  canal  is  underpredicted.  Additional  mixing  induced  by  the  presence  of  microanatomical  features,  not  accounted  for  in  

the  model,  can  be  expected  to  provide  additional  inter-vortex  connectivity,  an  aspect  of  the  problem  to  be  investigated  in  

future  work.  

The  distribution  of  solute  along  the  canal  also  differs  with  the  Schmidt  number.  For  S  =  40  0  0  ,  the  solute  covers  a  wide  

part  of  s  =  0  .  5  and  a  surrounding  area  along  the  central  and  lowest  recirculating  regions,  whereas  for  S  =  100  it  concentrates  

closer  to  s  =  0  .  5  (and  subsequently  s  =  0  ),  caused  by  the  effect  of  the  transverse  molecular  diffusion  for  that  S.  In  fact,  since  

the  molecular  diffusion  is  negligible  for  S  =  40  0  0  ,  the  azimuthal  convection  becomes  more  relevant,  dispersing  the  solute  

along  s  .  Some  studies  have  also  reported  the  absence  of  solute  rostral  flow  [18,20,37]  ,  which  limits  the  presence  of  solute  at  

the  posterior  region,  similarly  to  what  is  found  here  for  S  =  40  0  0  .  This  result  has  also  been  argued  to  partly  depend  on  the  

physicochemical  characteristics  of  the  solute.  

An  interesting  aspect  related  to  balance  between  transverse  diffusion  and  convection  around  the  separatrix  between  the  

bottom  and  central  vortices  is  the  peak  of  concentration  observed  in  the  results  given  by  the  model,  displayed  in  Fig.  9  (a).  

The  initial  time  evolution  of  the  solute  boluses  are  similar  for  S  =  100  and  S  =  40  0  0  ,  dispersing  upstream  and  downstream  

from  the  injection  point  around  s  =  0  .  5  and  decreasing  their  thickness  around  x  =  0  .  75  .  However,  at  longer  times  the  solute  

is  convected  axially  and  azimuthally  for  Schmidt  number  S  =  40  0  0  ,  while  it  remains  in  two  thin  layers  at  x  =  0  .  75  and  

close  to  s  =  0  .  5  in  the  central  vortex  for  S  =  100  .  Since  the  axial,  radial  and  azimuthal  velocities  are  nearly  zero  around  x  =  

0  .  75  ,  transverse  diffusion  dominates  in  this  region,  equilibrating  the  concentration  in  the  radial  direction,  which  translates  

in  the  thin  peak  of  solute  concentration  shown  in  Fig.  9  (a).  However,  at  larger  values  of  S,  transverse  diffusion  becomes  

negligible,  and  the  convective  terms  in  Eq.  (10)  dominate  the  process,  dispersing  the  solute  axially  and  azimuthally  before  

it  is  tranversally  diffused.  
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Fig.  9.  Width-averaged  distributions  of  concentration  at  different  instants  of  time  following  the  release  of  a  bolus  of  solute  with  Schmidt  number  S  =  100  
(a)  and  S  =  40  0  0  (b)  in  the  variable-eccentricity  canal  of  Fig.  1  (c).  The  solute  is  carried  by  the  flow  depicted  in  Fig.  8  .  DNS  results  are  represented  by  the  
contours  on  the  left-hand  side  of  the  panels  and  by  the  solid  curves  representing  the  axial  distribution  of  solute  on  the  side  plots.  Theoretical  predictions  
corresponding  to  integrations  of  Eq.  (10)  are  represented  by  the  contours  on  the  right-hand  side  of  the  panels  and  by  the  dashed  curves  on  the  side  plots.  
The  letters  N  and  W  at  the  leftmost  panels  indicate  the  azimuthal  location  of  the  narrowest  and  widest  sections.  

5.  Discussion  and  conclusions  

As  stated  in  the  introduction,  the  main  objective  of  this  paper  is  to  test  the  predictive  capability  of  the  theoretical  model  

proposed  in  previous  papers  for  the  motion  and  transport  of  CSF  in  the  subarachnoid  space  of  the  spinal  canal  [28,29]  .  The  

velocity  field  includes  pulsating  and  steady  components  that  were  evaluated  separately.  The  analytical  model  for  the  solute  

transport  employs  a  two-time  scale  asymptotic  procedure  that  effectively  filters  out  the  small  cyclical  variations  of  the  so-  

lute  concentration  associated  with  the  pulsating  flow,  so  that  the  resulting  evolution  equation  involves  only  the  long-time  

scale,  of  interest  in  describing  solute  transport  along  distances  comparable  to  the  canal  length.  The  predictions  of  the  ana-  

lytical  model  were  compared  with  results  of  direct  numerical  simulations  spanning  127  oscillatory  cycles  for  two  simplified,  

canonical  geometries,  namely,  a  canal  of  constant  cross-section  used  previously  in  [28,29]  and  a  modified  geometry  allowing  

for  variations  of  the  spinal-cord  eccentricity  along  the  canal,  that  being  a  typical  feature  of  the  human-body  anatomy  (see  

Fig.  1  ).  For  the  latter,  more  complicated  geometry,  the  time-averaged  flow  exhibits  closed  recirculating  streamlines  that  dra-  

matically  affect  the  rate  of  solute  transport.  Although  these  recirculating  Lagrangian  vortices  have  been  observed  in  recent  

subject-specific  studies  [27]  ,  more  work,  involving  in-vitro  and  in-vivo  experiments,  is  needed  for  a  thorough  characteriza-  

tion  of  their  morphology.  

The  model  predictions  involve  limited  computational  times  that  are  about  three  orders  of  magnitude  smaller  than  those  

required  to  generate  the  DNS  results.  The  comparisons  demonstrate  that  the  time-averaged  velocity  field  combined  with  the  

simple  evolution  Eq.  (10)  can  provide  sufficient  accuracy  to  compute  the  drug  dispersion  in  anatomically  correct  geometries,  

as  needed  to  enable  patient-specific  predictions  in  ITDD  applications.  The  capability  of  the  theoretical  model  to  describe  the  

dispersion  of  a  solute  is  particularly  significant  at  high  Schmidt  numbers,  typically  found  in  drugs  used  in  ITDD  treatments,  

as  Figs.  7  and  9  demonstrate.  The  agreement  of  the  model  with  the  numerical  integrations  of  the  complete  momentum  and  

species  conservation  equations  indicates  that  the  model  correctly  includes  all  of  the  relevant  physical  mechanisms  acting  

in  the  long  time  scale,  with  solute  transport  being  determined  by  the  combined  action  of  convection  driven  by  the  time-  

averaged  Lagrangian  velocity  and  transverse  molecular  diffusion  across  the  canal.  

Although  the  preliminary  validation  exercise  presented  above  is  restricted  to  two  simplified  canonical  geometries,  the  

model  can  be  used  in  conjunction  with  realistic  anatomical  representations  of  the  human  spinal  canal,  as  done  in  our  
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recent  work  [27]  .  Furthermore,  despite  the  present  model  encompasses  many  of  the  essential  physical  mechanisms  involved  

in  the  flow  of  CSF  in  the  SSAS,  there  are  additional  important  effects  that  should  be  considered  in  future  work.  For  example,  

attention  should  be  given  to  effects  of  extraventricular  CSF  production  within  the  spinal  canal  [38,39]  and  pharmacokinetics  

phenomena,  including  drug  enzymatic  decay,  tissue  uptake,  and  clearance  by  the  blood  [20,40]  .  Consideration  should  also  

be  given  to  the  buoyancy-induced  flow  resulting  from  density  differences  between  the  drug  and  the  CSF,  which  is  known  by  

clinicians  to  play  an  important  role  in  the  dispersion  rate  of  ITDD  drugs  [41–45]  .  In  addition,  future  extensions  of  the  model  

should  account  for  the  presence  of  microanatomical  features  in  the  SSAS,  such  as  trabeculae,  nerve  roots,  and  denticulate  

ligaments,  which  may  have  an  important  effect,  as  shown  in  previous  numerical  studies  [46–48]  ,  leading  to  enhanced  local  

mixing  [23,25,49]  .  Previous  modelling  approaches  include  the  work  of  Gupta  et  al.  [47]  ,  who  modelled  the  morphology  of  

the  complex  trabecular  structures  as  a  porous  medium  with  anisotropic  permeability.  Stockman  [21,46]  also  investigated  

effects  of  nerve  roots  in  computations  with  a  rigid  annular  model  including  obstacles,  showing  that  local  flow  stirring  leads  

to  effective  diffusivities  that  are  one  order  of  magnitude  larger  than  the  molecular  ones,  which  might  have  significant  im-  

plications  in  the  dispersion  of  a  solute.  Similar  results  were  reported  by  Haga  et  al.  [49]  ,  also  considering  a  rigid  model,  

in  this  case  of  the  cervical  region,  with  idealized  nerve  roots  and  denticulate  ligaments.  Additional  studies  have  considered  

the  complete  SSAS,  where  the  oscillatory  CSF  flow  is  driven  by  the  periodic  motion  of  the  outer  boundary,  representing  the  

dura  [23,25,48]  .  In  particular,  Khani  et  al.  [25]  showed  that  the  nerve  roots  modified  the  CSF  dynamics,  increasing  the  non-  

uniformity  of  the  axial  velocity  and  promoting  steady-streaming,  while  the  computations  of  Pahlavian  et  al.  [48]  and  Tangen  

et  al.  (2015)  [23]  revealed  that  micro-anatomy-induced  flow  patterns  promote  the  caudo-cranial  spread  of  an  intrathecally  

administered  drug.  Future  studies  should  also  address  the  potential  effect  of  Taylor  dispersion  in  the  presence  of  obstacles,  

which  has  been  recently  assessed  on  the  basis  of  a  porous  media  model  [50]  .  In  addition,  obstacles  may  induce  secondary  

flows  in  the  transverse  plane,  which,  under  certain  conditions,  can  strongly  enhance  the  Taylor  dispersion  mechanism,  as  

described  for  the  flow  in  a  curved  tube  by  [51]  1  .  More  work  is  warranted  to  clarify  how  these  local  mixing  flow  events,  

occurring  at  the  fast  oscillatory  time  scale,  contribute  to  the  long-time  drug  transport  and  dispersion  along  the  canal.  These  

future  refinements  lie  beyond  the  scope  of  the  present  contribution,  which  should  be  considered  as  a  first  but  necessary  

step  in  the  validation  of  an  all-encompassing  reduced-order  model  for  the  flow  in  the  human  spinal  canal.  
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Appendix  A.  Simplified  description  of  the  flow  

As  explained  in  [28]  ,  the  solution  for  the  flow  in  the  asymptotic  limit  ε  % 1  with  α ∼ 1  and  k  ∼ 1  can  be  obtained  by  

using  the  doubly  slender  approximation  L  . %  c  . h  c  in  writing  the  conservation  equations  in  simplified  form  and  expressing  

the  different  variables  as  regular  expansions  
  
          

          

u  =  u  0  +  εu  1  +  ε  2  u  2  +  · · ·
w  =  w  0  +  εw  1  +  ε  2  w  2  +  · · ·
v  =  v  0  +  εv  1  +  ε  2  v  2  +  · · ·
p  ′  =  p  ′  

0  +  εp  ′  
1  +  ε  2  p  ′  

2  +  · · ·
ˆ  p  =  ˆ  p  0  +  ε  ̂  p  1  +  ε  2  ˆ  p  2  +  · · ·
h  ′  =  h  ′  

0  +  εh  ′  
1  +  ε  2  h  ′  

2  +  · · ·

(A.1)  

Substituting  these  expressions  into  the  equations  and  collecting  terms  with  equal  powers  of  ε leads  to  a  succession  of  

problems  that  can  be  solved  sequentially.  

A1.  Leading-order  oscillatory  flow  

At  leading  order  the  problem  reduces  to  a  linear  time-dependent  lubrication  problem  that  can  be  solved  to  give  the  

harmonic  functions  

u  0  =  Re  
(
ie  i  t  U  

)
,  v  0  =  Re  

(
ie  i  t  V 

)
,  w  0  =  Re  

(
ie  i  t  W 

)
,  

1  Note  that  for  the  unobstructed  configuration  under  consideration  here,  the  recirculating  flow  patterns  in  Fig.  8  could  suggest  that  a  similar  mechanism  
could  be  at  play,  especially  at  large  Schmidt  numbers.  However,  differently  from  [51]  where  the  characteristic  length  of  the  secondary  flows  is  of  the  order  
of  the  tube  diameter,  in  the  present  case  the  size  of  the  recirculating  flow  is  of  the  order  of  the  length  of  the  canal,  with  a  characteristic  time  for  a  fluid  
particle  to  traverse  the  secondary  flow  that  is  much  larger  than  the  period  of  the  cycle.  Thus,  it  is  unlikely  that  this  mechanism  plays  a  relevant  role  in  the  
current  situation,  as  inferred  by  the  similar  evolution  of  the  axial  solute  concentration  distributions,  [  

∫  1  
0  (  ̄h  

∫  1  
0  c  0  d  η)  d  s  ]  ,  obtained  numerically  for  the  two  

Schmidt  numbers  shown  in  Figs.  9  (a)  and  (b)  (solid  curves  on  the  side  plots).  
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p  ′  
0  =  Re  

(
e  i  t  P 

)
,  ˆ  p  0  =  Re  

(
e  i  t  ˆ  P 

)
,  h  ′  

0  =  Re  
(
e  i  t  H  

)
,  (A.2)  

involving  the  complex  functions  U(x,  s,  η)  ,  W  (x,  s,  η)  ,  V (x,  s,  η)  ,  P (x  )  ,  ˆ  P (x,  s  )  ,  and  H(x  )  .  The  complex  velocities  are  expressed  

in  terms  of  the  components  of  the  pressure  gradient  

U  =  
d  P 

d  x  
G,  W =  

1  

%  

∂  ˆ  P 

∂s  
G,  (A.3)  

and  

V =  −1  

%  

∂  

∂x  

(
%  

d  P 

d  x  
h̄  

∫  η

0  
G  d  η

)
− 1  

%  

∂  

∂s  

(
1  

%  

∂  ˆ  P 

∂s  
h̄  

∫  η

0  
G  d  η

)
+  

∂  ̄h  

∂x  

d  P 

d  x  
ηG  +  

1  

%  

∂  ̄h  

∂s  

1  

%  

∂  ˆ  P 

∂s  
ηG.  (A.4)  

with  

G  (x,  η,  s  )  =  1  −
cosh  

[  
αh̄  
2  

1+i  √  
2  (  2  η − 1  )  

]  

cosh  

[  
αh̄  
2  

1+i  √  
2  

]  .  (A.5)  

As  explained  in  the  main  text,  the  displacement  H(x  )  is  obtained  by  solving  the  boundary-value  problem  (7)  .  Finally,  the  

azimuthal  pressure  gradient  is  given  in  terms  of  the  displacement  by  

1  

%  

∂  ˆ  P 

∂s  
=  −1  

q  

{
∂  

∂x  

[
%  

k  2  

(∫  s  

0  
q  d  ̃  s  

)
d  H  

d  x  

]
+  s%H  

}
,  (A.6)  

where  q  (s,  x  )  is  defined  in  (8)  ,  to  be  used  together  with  

d  P 

d  x  
=  

1  

k  2  
d  H  

d  x  
,  (A.7)  

in  evaluating  the  velocity  from  (A.3)  and  (A.4)  .  

A2.  Steady  streaming  

The  above  harmonic  velocity  has  a  zero  average  value,  i.e.  (〈  u  0  〉  ,  〈  w  0  〉  ,  〈  v  0  〉  )  =  (0  ,  0  ,  0)  with  〈·〉  =  1  
2  π

∫  2  π
0  · d  t  =  0  .  As  

shown  previously  by  [28]  ,  the  first-order  corrections  (u  1  ,  w  1  ,  v  1  )  ,  arising  from  the  nonlinear  effects  associated  with  con-  

vective  acceleration  and  canal  deformation,  contain  a  steady  component  (u  SS  ,  v  SS  ,  w  SS  )  =  (〈  u  1  〉  ,  〈  v  1  〉  ,  〈  w  1  〉  )  .  This  so-called  

steady-streaming  velocity  can  be  evaluated  from  

(u  SS  ,  v  SS  ,  w  SS  )  =  
1  

2  
Re  (  U  SS  ,  V  SS  ,  W  SS  )  ,  (A.8)  

involving  the  complex  functions  
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with  

F  x  =  
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and  
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where  the  asterisk  ∗ denotes  here  complex  conjugates,  and  the  auxiliary  pressure-gradient  functions  are  determined  by  

imposing  the  continuity  constraints  

∫  1  

0  
h̄  

(∫  1  

0  
U  SS  d  η

)
d  s  +  i  
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]
.  (A.13)  

A3.  Stokes  drift  

As  shown  by  [29]  ,  the  Lagrangian  velocity  components  are  computed  according  to  u  L  =  u  SS  +  u  SD  ,  v  L  =  v  SD  +  v  SD  ,  and  

w  L  =  w  SD  +  w  SD  ,  where  the  Stokes-drift  velocities  are  given  by  

(u  SD  ,  v  SD  ,  w  SD  )  =  
1  

2  
Re  [  i  (U  SD  ,  V  SD  ,  W  SD  )  ]  ,  (A.14)  

where  
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W  SD  =  
1  

h̄  

[
W H  ∗ +  

∂  

∂x  

(
h̄  W U  ∗

)]
+  

1  

h̄  

∂  

∂η

{
W 

[
V ∗ − η

(
H  ∗ +  

∂  ̄h  

∂x  
U  ∗

)]}
.  
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Supplementary  material  associated  with  this  article  can  be  found,  in  the  online  version,  at  doi:  10.1016/j.apm.2021.01.037  .  
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