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Abstract

Motivation: Detecting subtle biologically relevant patterns in protein sequences often requires the
construction of a large and accurate multiple sequence alignment (MSA). Methods for constructing
MSAs are usually evaluated using benchmark alignments, which, however, typically contain very few
sequences and are therefore inappropriate when dealing with large numbers of proteins.

Results: eCOMPASS addresses this problem using a statistical measure of relative alignment quality
based on direct coupling analysis (DCA): To maintain protein structural integrity over evolutionary time,
substitutions at one residue position typically result in compensating substitutions at other positions.
eCOMPASS computes the statistical significance of the congruence between high scoring directly
coupled pairs and 3D contacts in corresponding structures, which depends upon properly aligned
homologous residues. We illustrate e COMPASS using both simulated and real MSAs.

Availability and Implementation: The eCOMPASS executable, C++ open source code and input data

sets are available at https://www.igs.umaryland.edu/labs/neuwald/software/compass.

Contact: aneuwald@som.umaryland.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein sequence analyses, and particularly those that are statistically
based, often rely upon very large multiple sequence alignments (MSAs),
consisting of tens or hundreds of thousands of sequences belonging to a
large superfamily. Using such an alignment increases the statistical power
and breadth of an analysis and, by partitioning the MSA into hierarchically
arranged subgroups based on subgroup-specific patterns (Neuwald, 2014),
one can identify sequence and structural features likely determining
functional specificity. For example, this approach has been used
(Neuwald, et al., 2012) to automate the manual curation of hierarchical
MSAs (hiMSAs) for the NCBI Conserved Domain Database (CDD)
(Yang, et al., 2020) and, when applied to an MSA of 474,040 AAA+
ATPases, has revealed sequence and structural properties implicated in
DNA clamp loader functional specificity (Tondnevis, et al., 2020). We

have performed similar analyses using alignments of 237,359 N-
acetyltransferases, 127,418 GTPases, 131,321 helicases, 45,799
exonuclease-endonuclease-phosphatases and 23,592 DNA glycosylases
(Neuwald, et al., 2018) and of 33,760 TIR domains (Toshchakov and
Neuwald, 2020). It is important, of course, that such alignments be as
biologically accurate as possible. However, it is well known that only
heuristic methods are available for constructing even small alignments,
and these produce results that may be far from optimal (Edgar, 2010).
Generally, an MSA method’s accuracy is evaluated using a set of
benchmark alignments that are manually curated using structural data and
each of which typically contain relatively few sequences. However, there
are many potential problems with these evaluations. First, they rely upon
the accuracy of the benchmark alignments, which may itself be in question
(Ashkenazy, et al., 2019; Fletcher and Yang, 2010; Kim and Lee, 2007,
Levy Karin, et al., 2014; Thompson, et al., 2011). Second, they implicitly
assume the accuracy of an MSA on a benchmark set of sequences is a good
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proxy for its accuracy on a much larger superset. This may not be the
case, particularly when the larger set contains many protein subgroups
within a superfamily, not all of which are represented within the
benchmark alignment. Curating large benchmark MSAs is error prone
and may be prohibitively labor intensive. Finally, the relative accuracy of
one MSA method to another on a set of benchmark alignments is no
guarantee that it will produce the more accurate alignment for a specific
set of sequences of interest, particularly one that is large and diverse.

We define an accurate alignment to be one that reflects sequence
homology. A more accurate MSA should reveal evolutionarily conserved
structural and functional constraints better than a less accurate one. In
large, diverse sequence sets such constraints become more statistically
evident, thereby allowing subtly conserved homologous regions to be
identified and aligned, as illustrated in (Neuwald and Hirano, 2000;
Neuwald and Poleksic, 2000).

Because obtaining a highly accurate MSA typically requires manual
curation, we have developed and applied the Multiply Aligned Profiles for
Global Alignment of Protein Sequences (MAPGAPS) program (Neuwald,
2009), which uses a manually curated hiMSA as a query to identify and
align database sequences belonging to a modeled superfamily. Within a
hiMSA each subgroup alignment is profiled and aligned to the other
subgroup alignments. Using this feature, MAPGAPS creates an MSA with
accuracy comparable to that of the hiMSA (Neuwald, et al., 2020). This
assumes that each subgroup is accurately aligned both internally and
relative to other subgroups, which is typically not yet the case. Hence, to
further improve this approach, we need to assess alignment quality for
each subgroup and for the MSA as a whole.

Here we introduce eCOMPASS, a program that evaluates the relative
accuracy of two MSAs of the same large set of sequences by applying
direct coupling analysis (DCA) based upon pseudo-likelihood
maximization in conjunction with a procedure to estimate statistical
significance. It requires as input only the MSAs themselves and structural
coordinates for a minimum number (ideally at least ten) of the aligned
sequences. It does not rely upon any set of benchmark alignments, nor
even upon a “gold-standard” alignment of the subset of sequences with
known structure. Furthermore, it requires no knowledge of how the MSAs
were produced, nor upon how the methods that produced them perform on
other sets of sequences. Rather, for each MSA, it first derives, from
pairwise correlations among columns, internal evidence of likely 3D
contacts among residue positions of the aligned proteins, and then uses the
known structures to assess the relative accuracy of this evidence. This
approach is based on the principle that, to maintain a protein family’s
structural fold, interacting residues pairs tend to coevolve, resulting in
correlations better seen within accurate alignments. Hence, the degree to
which 3D contacts may be correctly inferred from an MSA depends upon
its accuracy.

Because eCOMPASS applies to the evaluation of the overall quality of
specific sequence alignments that are very large, it cannot be readily
evaluated using known benchmark MSAs, nor are we aware of previous
approaches to which it can be properly compared. We therefore argue for
its validity from its inherent plausibility, its application to simulated gold
standard alignments, and its consistency with a completely independent
measure of alignment accuracy than the measure e€COMPASS deploys.

We first describe the eCOMPASS algorithm and illustrate its use by
applying it to eight pairs of large MSAs obtained from the CDD and
PFAM databases and containing a sufficient number of proteins of known
structure. We also describe the sort of insights eCOMPASS can reveal
regarding the relative quality of such MSAs. Second, we validate it on
simulated MSAs generated from realistic Potts models of protein
superfamilies versus realignments of the simulated sequences using four

different alignment methods. Third, we evaluate its robustness to changes
in various hyperparameter settings.

2 Methods

2.1 Input and basic strategy

eCOMPASS takes as input two MSAs of the same set of protein sequences
aligned using two different methods. We recommend that the set include
at least ten proteins of known structure. The method’s basic strategy is,
first, to use correlations among columns in each MSA to predict which
pairs of columns correspond to residue 3D contacts; and then to check the
accuracy of these predictions (measured as described below) using the
aligned proteins of known structure. The method assumes that the more
accurate the overall MSA, the more accurate will be structural predictions
derived from its column correlations. Evidence for the validity of this
assumption is provided through analyses of simulated MSAs.

Note that, although eCOMPASS uses a relatively small number of
sequences with known structure to vote on the relative accuracy of two
MSAs, each structure’s vote is based upon evidence derived from all the
sequences in each of the MSAs. Thus, an MSA that accurately aligns the
structures in question to one another but does a poor job of aligning
sequences from a much larger and more diverse protein superfamily,
should fare poorly in eCOMPASS’s estimation. This contrasts with
evaluation methods that use the accurate alignment of a (typically small)
test set alone as a proxy for an MSA’s more general accuracy. Note also
that eCOMPASS requires no “gold standard” alignments whose accuracy
must be assumed. It bases its evaluation only on the given MSAs and on
the experimentally determined structures.

2.2 Direct Coupling Analysis

In order to infer structural information from correlations between column
pairs of each MSA, as a prelude to assessing the accuracy of this
information, ECOMPASS first performs on the alignments direct coupling
analysis (DCA) (Hopf, et al., 2012; Lunt, et al., 2010; Morcos, et al., 2011;
Nugent and Jones, 2012; Weigt, et al., 2009). Residue pairwise
correlations were long believed, in principle, to be predictive of structural
contacts, but early approaches fell short of expectations due to the
confounding effect of indirect correlations: When residues correlate both
at positions / and j and at positions j and £, then residues at positions i and
k may also correlate even though they fail to interact directly. DCA
overcomes this problem by disentangling direct from indirect correlations
using a variety of algorithmic strategies. eCOMPASS uses pseudo-
likelihood maximum entropy optimization (Marks, et al., 2011; Marks, et
al., 2012) as implemented in CCMpred (Seemayer, et al., 2014); this
strategy outperformed (Neuwald and Altschul, 2018) DCA programs
based either on sparse inverse covariance estimation (Jones, et al., 2012)
or on multivariate Gaussian modeling (Baldassi, et al., 2014).

Many multiple alignment methods construct an idealized model to
which individual protein sequences are aligned, resulting in some residues
being treated as insertions with respect to this model, and therefore left
essentially unaligned to residues in other sequences. For an MSA
constructed by such a method, it is only the columns corresponding to
modeled positions to which we apply DCA, and we effectively ignore all
inserted residues. Other multiple alignment methods align all residues in
all input sequences, but this usually results in many columns having null
characters for most sequences. To apply DCA effectively to such
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alignments, we first exclude columns having greater than 50% null
characters.

The output of DCA applied to an MSA M, is a set K; of direct coupling
(DC) scores for all of M;’s column pairs. DC-scores correspond to the
average product corrected Frobenius norms (Dunn, et al., 2008; Seemayer,
etal., 2014). (DCA methods model both one- and two-site statistics, though
eCOMPASS makes use of only the later.) We assume only that these scores
grow monotonically with the degree of inferred direct coupling between
MSA columns. We observe, however, that there is no immediate way to
compare the set K; with an analogous set K, derived from M,, both because
they typically will differ in size, and because there is no clear
correspondence between the columns of M, and M.

We address this issue by using the sequence of each protein with known
structure, considered individually, to choose comparable subsets of K; and
K, which we call K;” and K,’. Specifically, for a given protein, we first
determine the subset R of its residues that are aligned both in a column in
M; and in a column in M,. Identifying the residues in R with the MSA
columns to which they are aligned, we define K;” (and K, analogously)
as the subset of K, corresponding to all pairs of residues in R separated by
at least m (5 by default) intervening residues within the protein’s primary
sequence. (We impose this latter condition because we are not interested
in predicting close contacts that are imposed by a protein’s backbone.) K;’
and K, are then of equal size, with elements corresponding to identical
pairs of residues within R. Note, however, that each individual structure
defines distinct ;" and K, and it is only such sets, constructed from the
same structure, that are directly comparable.

2.3 Initial Cluster Analysis

Our approach is based on the assumptions that within a protein family the
evolution of structurally interacting residue pairs is likely to be correlated,
and that an accurate multiple alignment of sequences in the family should
capture information concerning such correlations in the form of high DC
scores. Given two MSAs for a protein family, and a particular structure,
we have constructed sets of DC scores, K;” and K,’, each of whose
elements correspond to the same set of residue pairs of known 3D distance
and are therefore comparable. We note, however, that inherent
differences, such as differing numbers of columns, in the MSAs M, and
M, that are used to construct first K; and K, and then K, and K,’, renders
problematic the direct comparison of the raw scores within ;" and K.
Instead, we assume only that higher scores within each set should be
preferentially associated with closer structural distances.

To measure the strength of the association between DC scores and
physical distances, we turn to Initial Cluster Analysis (ICA) (Altschul and
Neuwald, 2018). ICA considers an ordered array of L elements, among
which D are designated as distinguished, and seeks the initial segment of
the array, of length X, with the most surprising number d of distinguished
elements, as measured by a p-value. A generalization of ICA that has been
applied to DC scores (Neuwald and Altschul, 2018), and which we employ
here, adds an ordering to the distinguished elements, and folds into its
optimization a statistical measure of the degree to which the higher ranked
among the distinguished elements appear earlier in the array. In essence,
this generalization can be understood as measuring the degree of
congruence between two ordered sets.

Here, we take the array of elements to be the set of DC scores K;’ (or
K;"), ordered from highest to lowest. The distinguished elements are those
corresponding to residue pairs whose structural distance is < z (with z =4
A by default). Note that, except for glycine, z is based on the distance
between sidechain atoms rather than between a- or B-carbons. ICA returns

eCOMPASS

an S-score (Neuwald and Altschul, 2018) calculated as S = —log,,(p). -
scores have units of log-probability and are therefore directly comparable.
Nevertheless, when the relationship between two orderings is known, or
strongly suspected, to be significant, an array with a larger number of
elements L, and/or a larger number of distinguished elements D, may
intrinsically favor the generation of higher or lower S-scores. In such
cases, it is best to compare only S-scores generated from arrays with the
same L and D. Because the scores S; and S, we calculate for our two input
MSAs from K;’ and K, are, by construction, generated using the same L
and D, we take their difference AS = S, — S, as a valid measure of the
evidence provided by the structure in question for the relative accuracies
of MSAs M, and M,. In this study, an S-score can be understood as a
statistical measure of the congruence of structural contacts with DC-scores
(i.e., average product corrected Frobenius norms).

2.4 Eliminating Structures Likely to be Misaligned

It would be possible to assess the relative quality M, and M, by evaluating
solely how well each MSA aligns the reference structures to one another.
However, this would ignore how the vast number of remaining sequences
are aligned. In contrast, e(COMPASS measures how well the DC scores
derived from each MSA predict 3D-contacts between residue pairs in each
reference structure. This assumes, however, that each structure is properly
aligned, in the main, within both MSAs, which may not be the case.

To identify reference structures that may be misaligned within a
particular MSA, we first determine, for each structure i, the subset R; of
its residues that are aligned by the MSA to residues rather than null
characters in all other structures; note that the R; will be of the same size
for all structures. We then compute, for each pair of structures 7 and j, the
quantity ADy;, defined as the mean, for all pairs of residues a and b within
R;, of the absolute difference between the Ca distance of a to b and the Ca
distance within structure j of the residues to which @ and b align. It can be
seen that AD;; = AD;, and this quantity may be understood to measure how
well sequences i and j are structurally aligned with one another (Hasegawa
and Holm, 2009; Holm, et al., 2008). Assuming most structures are on
average properly aligned, a structure i that is poorly aligned should have
high AD;; for most j, and therefore an unusually high mean value of AD;;
for all j # i, which we denote as AD,. Any structure whose AD; is = 2 SD
above the mean is likely to be misaligned and thus to yield unreliable
results, and we accordingly may choose to remove it from consideration.
We iteratively recalculate until convergence the mean and SD from the
remaining AD,, and each time remove any structure whose AD; is = 2 SD
above the mean. Of course, to apply this approach effectively it is
important to have a sufficient number of diverse structures (corresponding
by default to proteins sharing < 65% sequence identity). After all
structures with questionable alignment within either MSA have been
removed, we calculate AS, the mean value of AS, both for the remaining
structures and for all structures, as two alternative measures of the relative
quality of M; and M,.

Note that the number of columns used to calculate the AD; varies from
one MSA to another, as of course do the subsets of residues R; within the
various structures. Thus, in contrast to the S; the AD; are properly
comparable only among different structures for the same MSA, but not
between one MSA and another. Nevertheless, as we will see below, there
is a noticeable tendency for the MSA preferred by the measure AS also to
yield a lower AD (mean AD, ), which can be understood as a rough
measure of how well an MSA aligns the reference structures to one
another.
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2.5 Using simulated Potts model MSAs as gold standards

We created a Potts model for each of 40 CDD/MAPGAPS-generated
MSAs (listed in Table S1) using CCMpredPy (Vorberg, et al., 2018). To
obtain 3D contacts for each Potts model, we created corresponding
homology modeled structural coordinates using SWISS-MODEL
(Waterhouse, et al., 2018); column pairs corresponding to 3D contacts >
8 A in the structure are set to zero in the Potts model generated by
CCMpredPy. A simulated 5,000 sequence alignment was generated for
each Potts model using CCMgen (Vorberg, et al., 2018). We realigned
the sequences for each of the simulated MSAs using four different MSA
programs (see below) and used eCOMPASS to score each realigned MSA
when compared to the corresponding gold standard MSA.

3 Application

3.1 Overview

Most commonly used multiple alignment programs fail to generate
plausible MSAs when given as input the numbers of sequences considered
in this study, typically in the tens or hundreds of thousands. Therefore,
we do not attempt to evaluate these programs, but instead apply
eCOMPASS in three ways: (i) to 8 CDD versus PFam MSAs; (ii) to 40
realigned versus gold standard simulated MSAs; and (iii) to 31 CDD
versus JackHMMER MSAs using various e€COMPASS hyperparameter
settings.

Table 1. Eight pairs of CDD vs Pfam MSAs analyzed here.

name MSALI MSA2 avg.
abbr. #seqs len CDD len Pfam #pdb %id
C2 72,249 102 ¢d00030 103 PF00168 34 22

¢d00920 119
cd01427 95
¢d06262 197
¢d00900 105
cd00133 90

CuDX 15,418 110
HAD 58,031 95
MBL 70,293 188
PH 36,099 89
PTS 9,395 &4
RHOD 61,053 89 ¢d00158 107 PF00581 33 19
SFTS 35,560 237  ¢d00016 309 PF00884 21 19

mean: 44,762 124 141 25 19

PF07732 20 23
PF00702 18 21
PF00753 32 14
PF00169 30 17
PF02302 13 18

The numbers of aligned sequences for each domain are given in column 2. Lengths
of MSA 1 and 2 are given in columns 3 and 5, respectively, and corresponding CDD
and Pfam identifiers are given in columns 4 and 6, respectively. CDD alignments
were obtained using, as input to MAPGAPS, the NCBI CDD hierarchical MSA and
the sequences present in the corresponding Pfam MSA, as was recently described
(Neuwald, et al., 2020). Each Pfam MSAs had been generated automatically by
creating a hidden Markov model profile from a Pfam seed alignment and then
aligning related sequences to the profile (Sonnhammer, et al., 1998). For each
analysis, the number of reference structures and the average % identity shared among
aligned regions of known structure are given in columns 7 and 8, respectively.

3.2 CDD versus Pfam MSAs

We illustrate eCOMPASS using 8 pairs of MSAs (Table 1), each
consisting of one CDD-based MSA (obtained as described in Table 1) and
one Pfam MSA (El-Gebali, et al., 2019). These MSA pairs represent the
following protein superfamilies: C2 domains (C2); cupredoxins (CuDX);
haloacid dehalogenase-like hydrolases (HAD); class B metal B-lactamases
(MBL); pleckstrin homology domains (PH); phosphotransferase system

subunit [IB (PTS); rhodanese homology domain (RHOD); and sulfatases
(SFTS). We obtained a mean of 25 reference structures per domain. Over
their domain footprints, on average these share 19% sequence identity, and
each structure shares < 50% identity with all other structures. Thus, these
represent well the diversity of each superfamily. The eCOMPASS output
files are available as Supplementary Material. “CDD” MSAs achieved, on
average, higher S-scores than Pfam MSAs (Table 2). However, because
both types of alignments depend on some degree of manual curation, we
draw no general conclusion regarding which of these tend to be more
accurate. Rather, our aim here is merely to describe eCOMPASS and
illustrate its application.

3.3 CDD vs PFam subgroup-specific analyses

Because a protein superfamily is typically composed of multiple families
and subfamilies, which may be aligned with differing accuracy, the AS
scores for different structures should not be considered as drawn from the
same underlying distribution and their variance may therefore be very
high. Accordingly, when asking which is the more accurate of two MSAs
overall, it is better to consider each AS score as a separate vote. Assuming
independence for simplicity, we calculate the significance of the majority
vote using the two-tailed p-value for the equiprobable binomial
distribution. We expect these p-values to correlate to some extent with
B, the mean AS score, but these two quantities may vary considerably in
implied significance, or, in principle, even disagree on which is the better
MSA. Also, we recognize that even two structures with low sequence
identity are not truly independent, so that our calculated p-values must be
discounted to some extent.

In Table 2, we present a summary of ECOMPASS’s results for the eight
domains considered. After putatively misaligned reference structures are
excluded, for four domains (C2, MBL, PH and PTS) eCOMPASS finds
unanimity among the remaining structures favoring one of the MSAs.
These agreements are statistically significant, with the Pfam MSA favored
for C2, and the CDD MSA favored for MBL, PH and PTS. (This frequent
unanimity is evidence that the AS score is no mere random artifact but is
a valid measure for the greater ability of one MSA to encode structural
features as directly coupled residue pairs.) For the remaining four
domains, neither MSA is preferred with an estimated p < 0.001, and the
SD of the AS values exceeds their absolute mean.

Table 2. eCOMPASS results with outliers excluded.

ID MSA 1 MSA 2 AS  SD  dogi(p)
N, AD N, AD
C2 0 112 25 115 97 53 72
CuDX 12 119 4 089 24 53 11
HAD 4 127 10 118 4.3 89 0.7
MBL 18 1.74 0 328 8.1 165 5.1
PH 20 0.99 0 143 89 64 57
PTS 12 219 0 289 112 56 33
RHOD 19 1.57 9 218 65 103 1.1
SFTS 14 1.40 5 180 155 197 12

For each domain, values of AP and ASwere calculated only after excluding
unreliably aligned structures, as described in the text. N; and N, are the observed
number of included structures for which S; > S, and S, > S, respectively. The AS.
score standard deviation (SD) measures the variability among reference structures
for each domain. For the last column, p is calculated as the 2-tail binomial
probability for the observed N; and N,, assuming an equal chance for each MSA to
have higher AS for each structure.
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To illustrate and study our procedure for excluding structures, we
consider in detail its operation on the PTS domain. In Table 3, we show
the specific values of S and AD; for each of the 13 reference structures and

each MSA. As is apparent, only for structure 3czcA and MSA 1 does AD;

exceed the mean by over two SDs, so we exclude this one structure as
unreliably aligned. (When the mean and SD for the remaining AD; for
MSA 1 are recalculated, no further structures are excluded.) Note that this
has the effect of eliminating the one negative AS, leaving unanimous
preference for MSA 1 among the remaining structures. An examination
of the structures eliminated by our procedure for the other seven domains
shows that they very often yield outlying values of AS, although this is
neither expected nor observed to be universally the case.

Table 3. eCOMPASS output for the PTS domain.

pdbid MSA 1 MSA 2 AS cols D L
S, AD; S, AD;

3czeA 29 278 41 294 -12.0 82 100 2944
2wy2D 47 2.10 34 2.60 12.9 77 85 2583
212qA 21 242 15 3.00 5.9 65 39 1801
4mgeA 51 2.06 38 248 12.7 78 93 2659
3nbmA 54 2.24 30 2.87 235 76 88 2525
ItvmA 29 234 19 292 10.2 74 60 2367
SggsA 31 223 15 292 15.8 78 79 2647
IvkrA 28 2.12 11 3.07 16.7 71 64 2164
S5dleA 32 2.08 24 295 7.3 77 97 2590
2r48A 32 2.11 22 291 10.1 77 93 2590
4tn5A 24 212 16  2.90 7.5 75 86 2453
2kyrA 22 237 20 3.07 2.4 77 90 2595
2mlzA 31 2.10 22 292 9.0 77 87 2594
mean: 2.24 2.89 9.4
SD: 0.20 0.17 8.4

Values for 2czcA are shown in bold to indicate that its AD value for MSA 1 is > 2
SD above the mean. The 7" column gives the number of columns shared by MSA 1
and 2 when computing S-scores. Columns 8 and 9 give the values of D and L for the
ICA procedure.

Original 3czcA PTS alignment: AD; = 2.78 A; 1 = 29.1; AS=-12.0

3czcA 41 VGERNNIAEISNYDIVVASNHLI NN OIR{aRs) . . . NLM 79
2wy2D 41 ETLAGEKG. QNADVVLLGPQIAymlpe:LquL——PNKPVEVIDSLLy .GKV 87
212dA 24 ETRLSEVV..DRFDVVLLAPQSRfnkkrleeiTKPKGIPIEIINTIDy..GTM 72
4mgeA 38 GDAVKTNI..DQADVLLLGPQVRymlssmktlADERNVGIDVINPMHy . .GMM 86
3nbmA 80 YGAHYDIM. .GVYDLIILAPQVRsyyremkvdAERLGIQIVATRGMEyihLTK 130

Corrected 3czcA PTS alignment: AD; =2.35 A; §1 =41.5; AS=+4.3

3czcA 41 VGELNIGRISNYDIVVASNHL I S NN S e SRRttty . . . NLM 79
2wy2D 41 ETLAGEKGONADVVLLGPQIAymlpeiqrlL--PNKPVEVIDSLLy. .GKV 87
212gA 24 ETRLSEVVDRFDVVLLAPQSRfnkkrleeiTKPKGIPIEIINTIDy..GTM 72
4mgeA 38 GDAVKTNIDQADVLLLGPQVRymlssmktlADERNVGIDVINPMHy . .GMM 86
3nbmA 80 YGAHYDIMGVYDLIILAPQVRSyyremkvdAERLGIQIVATRGMEyihLTK 130

Fig. 1. AD; >2 SD above the mean for 3czcA is due to misalignment. (top) For
the CDD PTS MSA, the sequence corresponding to 3czcA yielded AD; = 2.78 A,
which is 2.7 SD above the mean, suggesting this structure is misaligned relative to
the 12 other structures, four of which are shown. As a result, eCOMPASS discarded
3czeA’s 4S value when computing AS —11.2in Table 2. (bottom) When 3czcA was
structurally realigned using Dali (Holm and Rosenstrom, 2010), its AD; decreased to
2.35 A (1.5 SD above the mean) and its S score increased to 41.5, providing further
evidence that it was originally misaligned. The realigned region is highlighted in
black; numbers correspond to the residue positions at each end.

eCOMPASS

It is not eCOMPASS’s function to amend the MSAs with which it is
supplied. However, to study further the validity of eCOMPASS’s
procedure for rejecting structures as misaligned, and their corresponding 4
S as unreliable, we used Dali (Holm and Rosenstrom, 2010) to structurally
realign 3czcA to the other structures. As shown in Fig. 1, given the
resulting modified MSA 1, AD; for 3czcA is no longer an outlier, and the
AS for 3czcA turns positive. Note, however, that sequences closely related
to 3czcA in MSA 1 were not realigned; if they had been, presumably the &
S would have increased further.

One may object to our procedure for excluding a structure, from one or
both MSAs, based upon internal evidence that it has been misaligned.
Such a structure generally represents not only itself but also the alignment
of closely related sequences, and arguably should have a vote equal to that
of other structures regarding which alignment is better. In Table 4 we
give the results of our analysis if no structures are excluded. As might be
expected, the values of AT in Table 4 are higher, although this need not
always be the case because the removal of a structure due to a significantly
high AD, for one MSA may decrease AD for the other MSA. Also, for all
domains except CuDX, the standard deviation of the AS is higher. This
too is expected, because, although structures are removed with no
reference to AS, misaligned structures have a strong tendency to produce
outlying values for AS, as illustrated, for example, in Table 3. Most
importantly, however, for all domains the assessment of which is the better
MSA is essentially unchanged, by the measure either of AS or of the
binomial vote N; vs. N,. There appears to be a slight tendency for both |
E\ and -log;((p) to decrease with the inclusion of all structures, but this is
neither systematic nor coordinated. —The advantage of excluding
apparently misaligned structures is that this focuses more on the overall
quality of the MSAs, as measured by their direct coupling signal, and less
on the alignment accuracy of the relatively small number of structures
considered. To help assess such distinctions, eCOMPASS computes
results using both approaches.

Table 4. eCOMPASS results with outliers included.

MSA 2 AS sD -
log1o(0)

ID MSA 1

N, AD N, AD
2 3143 31 153 81 62 6.1
CuDX 15 119 5096 21 51 14
HAD 6 135 12 133 43 89 06
MBL 31 2.06 379 740 280 7.8
PH 29 1.12 1.59 94 143 63
PTS 12 224 2.89 94 84 25
RHOD 24 171 2.32 64 96 19
SFTS 15 1.52 1.84 130 244 1.1

AN O = N =

For some superfamilies neither MSA was significantly favored based
on the binomial p-value. For example, for the sulfatases (SFTS) p = 0.06
and, among the retained AS scores, 14 were positive (favoring MSA 1)
and 5 were negative (favoring MSA 2). The variability in AS scores was
very high with a SD of 19.7 and a mean of 15.5. Similar results were
obtained when using all AS scores. This suggests that MSA 1 better aligns
some functionally divergent subgroups while MSA 2 better aligns others.
This may occur, for example, when an MSA is generated by a query-based
iterative alignment method, such as PSI-BLAST (Altschul, et al., 1997) or
JackHMMER (Johnson, et al., 2010), resulting in subgroups closely
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related to the query being more accurately aligned than distantly-related
subgroups. The Pfam MSAs used for this study were generated using a
similar profile-based alignment method.

By providing a more articulated description of relative alignment
quality than would a single measure of overall quality, cCOMPASS may
aid the curation of hierarchical MSAs (Yang, et al., 2020), which were
provided as input to MAPGAPS to generate the MSA 1 alignments used
here. For instance, for the SFTS domain, the structure 4uplA, which is a
member of the phosphonate monoester hydrolase family (i.e., cd16028),
has the lowest AS score (-53.2) and the highest AD; (2.99 A) for MSA 1
(see Supplementary Data). This suggests that, by further curating the
¢d16028 subgroup, one could improve the CDD hierarchical MSA and
thus the SFTS MSA generated from it.

Finally, as discussed above, AT gscores should only be compared with
caution because both the numbers and the nature of the residue pairs used
to compute Co—Ca distances differ between MSAs. For example, unlike
other domains, the C2 MSA deemed superior by the measure of A3
(Tables 2 and 4) yielded higher AD. This illustrates how relying on AD
scores may miss distinctions between MSAs revealed by better justified
and statistically based AS scores.

1
08
06
S/s°

04

0.2

0 0.2 0.4 0.6 0.8 1

SP

Fig. 2. §/8° as a function of SP-score for simulated gold standard versus
realigned MSAs. The 160 data points represent 40 simulated (gold standard) MSAs,
each of which is compared to 4 different realigned MSAs of the corresponding
simulated sequences. The solid line corresponds to the regression line and the dotted
line to y = x.

3.4 Program-aligned vs gold standard simulated MSAs

Using the procedure described in Methods, we created 40 simulated gold
standard MSAs, each with a single associated structure. We realigned the
sequences of each MSA using four programs: GISMO (v3.1) (Neuwald
and Altschul, 2016), Kalign 3 (Lassmann, 2020), MAFFT (v7.471) (Katoh
and Standley, 2014), and MUSCLE (v3.7) (Edgar, 2004). To compute
each realigned MSA’s distance from its associated gold standard, we
calculated an SP-score (from "Sum of the Pairs"), which is the proportion
of aligned pairs of residues within the gold standard that are aligned
identically within the realigned MSA. We then used eCOMPASS to
compare each realigned MSA to its corresponding gold standard MSA. As
described above, given two MSAs eCOMPASS generates directly
comparable scores, which we here denote as S for the realigned MSA and
as S° for the gold standard MSA. Notably, as expected, in all cases the S-
score is less than the S°-score. To study how well the relative values of S

and S° correspond to the distance between the realigned and gold standard
MSAs, we plot in Fig. 2 S/S° versus SP for each case. There is clearly a
strong and close to linear correlation between S/S° and SP, with the
Pearson correlation coefficient equal to 0.92. The regression line has a
slope of 1.117 and a y intercept of -0.077, suggesting that $/S° is a good
and relatively direct proxy for gold standard distance. Hence, for real
protein sequence alignments, where we do not have gold standards for
comparison, we may use comparable S scores as proxies for alignment
accuracy.

3.5 CDD vs JackHMMER MSA analyses

To further explore the utility and robustness of eCOMPASS, we compared
the 40 CDD MSAs, upon which our simulated MSAs were based, to
corresponding MSAs aligned with JackHMMER (JHM) (Johnson, et al.,
2010) using an arbitrary sequence as the query (Table S1). To reduce
sequence redundancy, we removed from each MSA all but one sequence
among those sharing >95% sequence identity using either cd-hit (Fu, et
al., 2012) or PurgeMSA (Neuwald, et al., 2020). Note that this analysis
allows the inclusion of more reference structures because, unlike the CDD
vs Pfam analysis, the number of structures included was not predefined by
Pfam. To identify domains for which a clearly significant distinction was
at least possible, we focused on 31 of the 40 domains having at least 18
distinct structures, which could, in principle, yield a two tailed binomial
probability p < 10-°. Among these the CDD MSA was significantly better
at the p < 103 level for 12 domains whereas the JHM MSA was
significantly better for 6 domains (Fig. 3).

s e 42.9

E 175 €229
@
K=
®
= © x5
125
5
2 € 638
v
(%]
<
s 75
I+

247
& 883 .
25..- < 4 5.69 624-1

. .°
woe IP6 165
25 75 125 175 225

-25 # of AS > 0 (CDD is better)

-25

Fig. 3. e¢COMPASS analysis of CDD vs Jackhmmer (JHM) MSAs. Data points
represent 31 comparisons with the x- and y-axes corresponding to the numbers of
reference structures for which AS > 0 and AS < 0, respectively. Hence, data points
below and above the diagonal line correspond to analyses favoring the CDD and
JHM MSA, respectively. The area of each bubble is proportional to -logy, (p), the
values of which are indicated for several data points.

To evaluate the robustness of eCOMPASS, we reran each of these
analyses using various CCMpred hyperparameter settings. (Another
variable is the DCA implementation used, which, however, is too
technically challenging to investigate here.) Using either flat (uniform)
priors or Jeffreys uninformed priors [28] yielded essentially identical
results (Fig. S1). We also ran eCOMPASS with maximum residue pair 3D
contact cutoffs of 4, 5, and 6 A (Fig. 4), with alternative CCMpred
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sequence reweighting thresholds of 70, 80, and 90% (Fig. 5 top), and with
L1 regularization strengths of 0.1, 0.2, and 0.3 (Fig. 5 bottom). Notably,
in only one case did two different parameter settings yield conflicting
results both at a significance level < 0.01. This arose for the L1
regularization parameter and the AAT 1 domain, for which conflicting
results were reported with p—values of 0.005 and 0.002.
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Fig. 4. Influence of the 3D contact cutoff on eCOMPASS results. Plots indicate
probabilities for CDD MSAs versus JHM MSAs using 4, 5 and 6 A cutoffs. Circles
correspond to median values and vertical lines to the high and low values. Closed or
open circles indicate that the MSAs considered better are consistent or inconsistent,
respectively, across the 3 settings. Domains are ordered left to right by the maximum
of their three -log,o(p) values.
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Fig. 5. Influence of DCA hyperparameter settings on results. Plots indicate
probabilities for CDD MSAs versus JHM MSAs using the 3 settings indicated.
Circles correspond to median values and vertical lines to the high and low values.
Closed or open circles indicate that the MSAs considered better are consistent or
inconsistent, respectively, across the 3 settings. (top) CCMpred reweighting
thresholds. (bottom) CCMpred L1 regularization strengths.

eCOMPASS

The observed variability in the binomial probability yielded by
different parameter settings is likely due to changes the implicit nature of
the MSAs, of the ICA array or of both. For example, decreasing the
CCMpred reweighting threshold (Seemayer, et al., 2014) is likely to
decrease the DCA signal from highly populated subgroups.

4 Discussion

eCOMPASS computes a statistical score (B) that compares the accuracy
of two large MSAs and that is based on all the aligned sequences and on
a set of reference structures. This score exploits the DC-signal implicit in
each alignment and whose strength presumably depends on the degree to
which homologous residues are accurately aligned. =~ eCOMPASS’s
strategy constitutes a departure from current approaches. These typically
rely upon a benchmark set, consisting of a small number of sequences
aligned using structural data. However, they are essentially blind to the
alignment accuracy of sequences absent from the set. Unlike other
programs for assessing MSA quality (Ahola, et al., 2008; Lassmann and
Sonnhammer, 2005; O'Sullivan, et al., 2003; Pei and Grishin, 2001; Song,
et al., 2006; Thompson, et al., 2001), ecCOMPASS provides measures of
statistical significance, can handle extremely large MSAs, requires neither
a gold standard MSA nor a structural alignment, and can assess the
alignment quality of subgroups within an MSA.

Almost all multiple alignment construction methods employ some
objective function of alignment quality which they attempt to optimize.
For assessing the relative accuracy of two multiple alignments, relying
upon the objective function used for either's construction will of course
bias the results, so it is best to seek an independent measure. The
congruence of structural contacts with alignment-derived DCA scores
provides a convenient such measure, and one that avoids reliance upon a
set of gold standard alignments.

Several recent multiple alignment construction methods (Muntoni, et
al., 2020; Talibart and Coste, 2020; Talibart and Coste, 2020; Wilburn and
Eddy, 2020) incorporate DCA models into the objective functions they
seek to optimize. To the extent that these models have been derived from
particular structures, applying eCOMPASS to their evaluation using these
very structures is likely to bias eCOMPASS's results in favor of the
resulting multiple alignments. How to extend eCOMPASS to the
comparison of such multiple alignments, or at least how to mitigate any
confounding effects, is a question for further research. In this paper,
however, none of the alignments of real proteins studied here were
constructed with the use of a Potts model.

Recently, Muntoni et al. (2020), in comparing the alignments
constructed by their program DCAalign to those produced by other
programs, used one method very similar in spirit to that of eCOMPASS.
From alignment-derived pairwise coupling scores, they predicted
contacting residue pairs and then, with reference to a known structure,
plotted the true positive prediction rate as a function of the number of
predictions made. It should be possible to derive from the resulting graphs
a statistically-based measure, similar to our AS, for the relative accuracy
of the two alignments. Following, for example, the approach of (Schaffer,
etal., 2001), one could calculate a ROC (receiver operating characteristic)
score from a variant of each graph, and then infer p-values for the
difference of these scores. Whether such a statistical approach is superior
to the one taken here is an avenue for further study.

Ideally, eCOMPASS should be applied using a set of reference
structures representing diverse subgroups within a superfamily, as in the
examples here. Then, in addition to providing an assessment of overall
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alignment accuracy, e€COMPASS can identify those subgroups that are
least accurately aligned, as an aid to improving MSA methods. This raises
the issue of multiple conformations for the same protein, which is a major
concern for DCA. A future version of eCOMPASS might provide the
option of choosing the highest DC-score among alternative conformations
for each residue pair. In order to investigate directly coupled residue pairs
corresponding to a subgroup specific conformation, such as we reported
recently (Tondnevis, et al., 2020) , it may be useful to apply eCOMPASS
to subgroup alignments within a superfamily MSA.

For MSA methods that fail to incorporate information from DCA into
their objective functions, the statistical significance of the agreement
between DC-scores and 3D contacts within available structures serves as
a measure of alignment accuracy that is independent of the criteria used in
constructing the MSA. In any case, e€COMPASS should be uniquely
useful for evaluating the extremely large MSAs typically required for deep
learning protein sequence analyses and for statistical analyses requiring a
vast amount of sequence data.
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