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Abstract
Motivation: Detecting subtle biologically relevant patterns in protein sequences often requires the 
construction of a large and accurate multiple sequence alignment (MSA). Methods for constructing 
MSAs are usually evaluated using benchmark alignments, which, however, typically contain very few 
sequences and are therefore inappropriate when dealing with large numbers of proteins. 
Results: eCOMPASS addresses this problem using a statistical measure of relative alignment quality 
based on direct coupling analysis (DCA): To maintain protein structural integrity over evolutionary time, 
substitutions at one residue position typically result in compensating substitutions at other positions. 
eCOMPASS computes the statistical significance of the congruence between high scoring directly 
coupled pairs and 3D contacts in corresponding structures, which depends upon properly aligned 
homologous residues. We illustrate eCOMPASS using both simulated and real MSAs.
Availability and Implementation: The eCOMPASS executable, C++ open source code and input data 
sets are available at https://www.igs.umaryland.edu/labs/neuwald/software/compass. 
Contact: aneuwald@som.umaryland.edu 
Supplementary information: Supplementary data are available at Bioinformatics online. 

1 Introduction 
Protein sequence analyses, and particularly those that are statistically 
based, often rely upon very large multiple sequence alignments (MSAs), 
consisting of tens or hundreds of thousands of sequences belonging to a 
large superfamily. Using such an alignment increases the statistical power 
and breadth of an analysis and, by partitioning the MSA into hierarchically 
arranged subgroups based on subgroup-specific patterns (Neuwald, 2014), 
one can identify sequence and structural features likely determining 
functional specificity.  For example, this approach has been used 
(Neuwald, et al., 2012) to automate the manual curation of hierarchical 
MSAs (hiMSAs) for the NCBI Conserved Domain Database (CDD) 
(Yang, et al., 2020) and, when applied to an MSA of 474,040 AAA+ 
ATPases, has revealed sequence and structural properties implicated in 
DNA clamp loader functional specificity (Tondnevis, et al., 2020).  We 

have performed similar analyses using alignments of 237,359 N-
acetyltransferases, 127,418 GTPases, 131,321 helicases, 45,799 
exonuclease-endonuclease-phosphatases and 23,592 DNA glycosylases 
(Neuwald, et al., 2018) and of 33,760 TIR domains (Toshchakov and 
Neuwald, 2020). It is important, of course, that such alignments be as 
biologically accurate as possible. However, it is well known that only 
heuristic methods are available for constructing even small alignments, 
and these produce results that may be far from optimal (Edgar, 2010). 
Generally, an MSA method’s accuracy is evaluated using a set of 
benchmark alignments that are manually curated using structural data and 
each of which typically contain relatively few sequences.  However, there 
are many potential problems with these evaluations.  First, they rely upon 
the accuracy of the benchmark alignments, which may itself be in question 
(Ashkenazy, et al., 2019; Fletcher and Yang, 2010; Kim and Lee, 2007; 
Levy Karin, et al., 2014; Thompson, et al., 2011).  Second, they implicitly 
assume the accuracy of an MSA on a benchmark set of sequences is a good 
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proxy for its accuracy on a much larger superset.  This may not be the 
case, particularly when the larger set contains many protein subgroups 
within a superfamily, not all of which are represented within the 
benchmark alignment.  Curating large benchmark MSAs is error prone 
and may be prohibitively labor intensive.  Finally, the relative accuracy of 
one MSA method to another on a set of benchmark alignments is no 
guarantee that it will produce the more accurate alignment for a specific 
set of sequences of interest, particularly one that is large and diverse. 

We define an accurate alignment to be one that reflects sequence 
homology. A more accurate MSA should reveal evolutionarily conserved 
structural and functional constraints better than a less accurate one.  In 
large, diverse sequence sets such constraints become more statistically 
evident, thereby allowing subtly conserved homologous regions to be 
identified and aligned, as illustrated in (Neuwald and Hirano, 2000; 
Neuwald and Poleksic, 2000).  

Because obtaining a highly accurate MSA typically requires manual 
curation, we have developed and applied the Multiply Aligned Profiles for 
Global Alignment of Protein Sequences (MAPGAPS) program (Neuwald, 
2009), which uses a manually curated hiMSA as a query to identify and 
align database sequences belonging to a modeled superfamily.  Within a 
hiMSA each subgroup alignment is profiled and aligned to the other 
subgroup alignments. Using this feature, MAPGAPS creates an MSA with 
accuracy comparable to that of the hiMSA (Neuwald, et al., 2020).  This 
assumes that each subgroup is accurately aligned both internally and 
relative to other subgroups, which is typically not yet the case. Hence, to 
further improve this approach, we need to assess alignment quality for 
each subgroup and for the MSA as a whole.

Here we introduce eCOMPASS, a program that evaluates the relative 
accuracy of two MSAs of the same large set of sequences by applying 
direct coupling analysis (DCA) based upon pseudo-likelihood 
maximization in conjunction with a procedure to estimate statistical 
significance.  It requires as input only the MSAs themselves and structural 
coordinates for a minimum number (ideally at least ten) of the aligned 
sequences.  It does not rely upon any set of benchmark alignments, nor 
even upon a “gold-standard” alignment of the subset of sequences with 
known structure.  Furthermore, it requires no knowledge of how the MSAs 
were produced, nor upon how the methods that produced them perform on 
other sets of sequences.  Rather, for each MSA, it first derives, from 
pairwise correlations among columns, internal evidence of likely 3D 
contacts among residue positions of the aligned proteins, and then uses the 
known structures to assess the relative accuracy of this evidence. This 
approach is based on the principle that, to maintain a protein family’s 
structural fold, interacting residues pairs tend to coevolve, resulting in 
correlations better seen within accurate alignments. Hence, the degree to 
which 3D contacts may be correctly inferred from an MSA depends upon 
its accuracy.

Because eCOMPASS applies to the evaluation of the overall quality of 
specific sequence alignments that are very large, it cannot be readily 
evaluated using known benchmark MSAs, nor are we aware of previous 
approaches to which it can be properly compared.  We therefore argue for 
its validity from its inherent plausibility, its application to simulated gold 
standard alignments, and its consistency with a completely independent 
measure of alignment accuracy than the measure eCOMPASS deploys.  

We first describe the eCOMPASS algorithm and illustrate its use by 
applying it to eight pairs of large MSAs obtained from the CDD and 
PFAM databases and containing a sufficient number of proteins of known 
structure. We also describe the sort of insights eCOMPASS can reveal 
regarding the relative quality of such MSAs.  Second, we validate it on 
simulated MSAs generated from realistic Potts models of protein 
superfamilies versus realignments of the simulated sequences using four 

different alignment methods. Third, we evaluate its robustness to changes 
in various hyperparameter settings.  

2 Methods

2.1 Input and basic strategy 
eCOMPASS takes as input two MSAs of the same set of protein sequences 
aligned using two different methods. We recommend that the set include 
at least ten proteins of known structure.  The method’s basic strategy is, 
first, to use correlations among columns in each MSA to predict which 
pairs of columns correspond to residue 3D contacts; and then to check the 
accuracy of these predictions (measured as described below) using the 
aligned proteins of known structure.  The method assumes that the more 
accurate the overall MSA, the more accurate will be structural predictions 
derived from its column correlations.  Evidence for the validity of this 
assumption is provided through analyses of simulated MSAs.

Note that, although eCOMPASS uses a relatively small number of 
sequences with known structure to vote on the relative accuracy of two 
MSAs, each structure’s vote is based upon evidence derived from all the 
sequences in each of the MSAs.  Thus, an MSA that accurately aligns the 
structures in question to one another but does a poor job of aligning 
sequences from a much larger and more diverse protein superfamily, 
should fare poorly in eCOMPASS’s estimation.  This contrasts with 
evaluation methods that use the accurate alignment of a (typically small) 
test set alone as a proxy for an MSA’s more general accuracy.  Note also 
that eCOMPASS requires no “gold standard” alignments whose accuracy 
must be assumed.  It bases its evaluation only on the given MSAs and on 
the experimentally determined structures. 

2.2 Direct Coupling Analysis
In order to infer structural information from correlations between column 
pairs of each MSA, as a prelude to assessing the accuracy of this 
information, eCOMPASS first performs on the alignments direct coupling 
analysis (DCA) (Hopf, et al., 2012; Lunt, et al., 2010; Morcos, et al., 2011; 
Nugent and Jones, 2012; Weigt, et al., 2009).  Residue pairwise 
correlations were long believed, in principle, to be predictive of structural 
contacts, but early approaches fell short of expectations due to the 
confounding effect of indirect correlations: When residues correlate both 
at positions i and j and at positions j and k, then residues at positions i and 
k may also correlate even though they fail to interact directly. DCA 
overcomes this problem by disentangling direct from indirect correlations 
using a variety of algorithmic strategies. eCOMPASS uses pseudo-
likelihood maximum entropy optimization (Marks, et al., 2011; Marks, et 
al., 2012) as implemented in CCMpred (Seemayer, et al., 2014); this 
strategy outperformed (Neuwald and Altschul, 2018) DCA programs 
based either on sparse inverse covariance estimation (Jones, et al., 2012) 
or on multivariate Gaussian modeling (Baldassi, et al., 2014).

Many multiple alignment methods construct an idealized model to 
which individual protein sequences are aligned, resulting in some residues 
being treated as insertions with respect to this model, and therefore left 
essentially unaligned to residues in other sequences.  For an MSA 
constructed by such a method, it is only the columns corresponding to 
modeled positions to which we apply DCA, and we effectively ignore all 
inserted residues.  Other multiple alignment methods align all residues in 
all input sequences, but this usually results in many columns having null 
characters for most sequences.  To apply DCA effectively to such 
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alignments, we first exclude columns having greater than 50% null 
characters.

The output of DCA applied to an MSA M1 is a set K1 of direct coupling 
(DC) scores for all of M1’s column pairs.  DC-scores correspond to the 
average product corrected Frobenius norms (Dunn, et al., 2008; Seemayer, 
et al., 2014). (DCA methods model both one- and two-site statistics, though 
eCOMPASS makes use of only the later.) We assume only that these scores 
grow monotonically with the degree of inferred direct coupling between 
MSA columns.  We observe, however, that there is no immediate way to 
compare the set K1 with an analogous set K2 derived from M2, both because 
they  typically will differ in size, and because there is no clear 
correspondence between the columns of M1 and M2.

We address this issue by using the sequence of each protein with known 
structure, considered individually, to choose comparable subsets of K1 and 
K2, which we call K1’ and K2’.  Specifically, for a given protein, we first 
determine the subset R of its residues that are aligned both in a column in 
M1 and in a column in M2.  Identifying the residues in R with the MSA 
columns  to which they are aligned, we define K1’  (and K2’ analogously) 
as the subset of K1 corresponding to all pairs of residues in R separated by 
at least m (5 by default) intervening residues within the protein’s primary 
sequence.  (We impose this latter condition because we are not interested 
in predicting close contacts that are imposed by a protein’s backbone.)  K1’ 
and K2’ are then of equal size, with elements corresponding to identical 
pairs of residues within R.  Note, however, that each individual structure 
defines distinct K1’ and K2’, and it is only such sets, constructed from the 
same structure, that are directly comparable. 

2.3 Initial Cluster Analysis
Our approach is based on the assumptions that within a protein family the 
evolution of structurally interacting residue pairs is likely to be correlated, 
and that an accurate multiple alignment of sequences in the family should 
capture information concerning such correlations in the form of high DC 
scores.  Given two MSAs for a protein family, and a particular structure, 
we have constructed sets of DC scores, K1’ and K2’, each of whose 
elements correspond to the same set of residue pairs of known 3D distance 
and are therefore comparable.  We note, however, that inherent 
differences, such as differing numbers of columns, in the MSAs M1 and 
M2 that are used to construct first K1 and K2, and then K1’ and K2’, renders 
problematic the direct comparison of the raw scores within K1’ and K2’.  
Instead, we assume only that higher scores within each set should be 
preferentially associated with closer structural distances.

To measure the strength of the association between DC scores and 
physical distances, we turn to Initial Cluster Analysis (ICA) (Altschul and 
Neuwald, 2018).  ICA considers an ordered array of L elements, among 
which D are designated as distinguished, and seeks the initial segment of 
the array, of length X, with the most surprising number d of distinguished 
elements, as measured by a p-value.  A generalization of ICA that has been 
applied to DC scores (Neuwald and Altschul, 2018), and which we employ 
here, adds an ordering to the distinguished elements, and folds into its 
optimization a statistical measure of the degree to which the higher ranked 
among the distinguished elements appear earlier in the array.  In essence, 
this generalization can be understood as measuring the degree of 
congruence between two ordered sets.

Here, we take the array of elements to be the set of DC scores K1’ (or 
K2’), ordered from highest to lowest.  The distinguished elements are those 
corresponding to residue pairs whose structural distance is ≤ z (with z = 4 
Å by default).  Note that, except for glycine, z is based on the distance 
between sidechain atoms rather than between α- or β-carbons.  ICA returns 

an S-score (Neuwald and Altschul, 2018) calculated as 10 .  S-𝑆 = ―log (𝑝)
scores have units of log-probability and are therefore directly comparable.  
Nevertheless, when the relationship between two orderings is known, or 
strongly suspected, to be significant, an array with a larger number of 
elements L, and/or a larger number of distinguished elements D, may 
intrinsically favor the generation of higher or lower S-scores.  In such 
cases, it is best to compare only S-scores generated from arrays with the 
same L and D.  Because the scores S1 and S2 we calculate for our two input 
MSAs from K1’ and K2’ are, by construction, generated using the same L 
and D, we take their difference  = S1 – S2  as a valid measure of the Δ𝑆
evidence provided by the structure in question for the relative accuracies 
of MSAs M1 and M2. In this study, an S-score can be understood as a 
statistical measure of the congruence of structural contacts with DC-scores 
(i.e., average product corrected Frobenius norms).

2.4 Eliminating Structures Likely to be Misaligned
It would be possible to assess the relative quality M1 and M2 by evaluating 
solely how well each MSA aligns the reference structures to one another.  
However, this would ignore how the vast number of remaining sequences 
are aligned.  In contrast, eCOMPASS measures how well the DC scores 
derived from each MSA predict 3D-contacts between residue pairs in each 
reference structure. This assumes, however, that each structure is properly 
aligned, in the main, within both MSAs, which may not be the case.
  To identify reference structures that may be misaligned within a 
particular MSA, we first determine, for each structure i, the subset Ri of 
its residues that are aligned by the MSA to residues rather than null 
characters in all other structures; note that the Ri will be of the same size 
for all structures.  We then compute, for each pair of structures i and j, the 
quantity Δ𝔇ij, defined as the mean, for all pairs of residues a and b within 
Ri, of the absolute difference between the Cα distance of a to b and the Cα 
distance within structure j of the residues to which a and b align.  It can be 
seen that Δ𝔇ij = Δ𝔇ji, and this quantity may be understood to measure how 
well sequences i and j are structurally aligned with one another (Hasegawa 
and Holm, 2009; Holm, et al., 2008).  Assuming most structures are on 
average properly aligned, a structure i that is poorly aligned should have 
high Δ𝔇ij for most j, and therefore an unusually high mean value of Δ𝔇ij 
for all j≠ i, which we denote as Δ𝔇i.  Any structure whose Δ𝔇i is ≥ 2 SD 
above the mean is likely to be misaligned and thus to yield unreliable 
results, and we accordingly may choose to remove it from consideration.  
We iteratively recalculate until convergence the mean and SD from the 
remaining Δ𝔇i, and each time remove any structure whose Δ𝔇i is ≥ 2 SD 
above the mean. Of course, to apply this approach effectively it is 
important to have a sufficient number of diverse structures (corresponding 
by default to proteins sharing ≤ 65% sequence identity).  After all 
structures with questionable alignment within either MSA have been 
removed, we calculate , the mean value of , both for the remaining Δ𝑆 Δ𝑆
structures and for all structures, as two alternative measures of the relative 
quality of M1 and M2.
   Note that the number of columns used to calculate the Δ𝔇i varies from 
one MSA to another, as of course do the subsets of residues Ri within the 
various structures.  Thus, in contrast to the Si, the Δ𝔇i are properly 
comparable only among different structures for the same MSA, but not 
between one MSA and another.  Nevertheless, as we will see below, there 
is a noticeable tendency for the MSA preferred by the measure  also to Δ𝑆
yield a lower  (mean Δ𝔇i ), which can be understood as a rough Δ𝔇
measure of how well an MSA aligns the reference structures to one 
another.
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2.5 Using simulated Potts model MSAs as gold standards
We created a Potts model for each of 40 CDD/MAPGAPS-generated 
MSAs (listed in Table S1) using CCMpredPy (Vorberg, et al., 2018).  To 
obtain 3D contacts for each Potts model, we created corresponding 
homology modeled structural coordinates using SWISS-MODEL 
(Waterhouse, et al., 2018); column pairs corresponding to 3D contacts > 
8 Å in the structure are set to zero in the Potts model generated by 
CCMpredPy.  A simulated 5,000 sequence alignment was generated for 
each Potts model using CCMgen (Vorberg, et al., 2018).  We realigned 
the sequences for each of the simulated MSAs using four different MSA 
programs (see below) and used eCOMPASS to score each realigned MSA 
when compared to the corresponding gold standard MSA.  

3 Application

3.1 Overview
Most commonly used multiple alignment programs fail to generate 
plausible MSAs when given as input the numbers of sequences considered 
in this study, typically in the tens or hundreds of thousands.  Therefore, 
we do not attempt to evaluate these programs, but instead apply 
eCOMPASS in three ways: (i) to  8 CDD versus PFam MSAs; (ii) to 40 
realigned versus gold standard simulated MSAs; and (iii) to 31 CDD 
versus JackHMMER MSAs using various eCOMPASS hyperparameter 
settings.

Table 1. Eight pairs of CDD vs Pfam MSAs analyzed here. 

name MSA1 MSA2 avg.
abbr. # seqs len CDD len Pfam #pdb %id
C2 72,249 102 cd00030 103 PF00168 34 22
CuDX 15,418 110 cd00920 119 PF07732 20 23
HAD 58,031 95 cd01427 95 PF00702 18 21
MBL 70,293 188 cd06262 197 PF00753 32 14
PH 36,099 89 cd00900 105 PF00169 30 17
PTS 9,395 84 cd00133 90 PF02302 13 18
RHOD 61,053 89 cd00158 107 PF00581 33 19
SFTS 35,560 237 cd00016 309 PF00884 21 19

mean: 44,762 124 141 25 19

The numbers of aligned sequences for each domain are given in column 2. Lengths 
of MSA 1 and 2 are given in columns 3 and 5, respectively, and corresponding CDD 
and Pfam identifiers are given in columns 4 and 6, respectively. CDD alignments 
were obtained using, as input to MAPGAPS, the NCBI CDD hierarchical MSA and 
the sequences present in the corresponding Pfam MSA, as was recently described 
(Neuwald, et al., 2020). Each Pfam MSAs had been generated automatically by 
creating a hidden Markov model profile from a Pfam seed alignment and then 
aligning related sequences to the profile (Sonnhammer, et al., 1998).  For each 
analysis, the number of reference structures and the average % identity shared among 
aligned regions of known structure are given in columns 7 and 8, respectively.

3.2 CDD versus Pfam MSAs 
We illustrate eCOMPASS using 8 pairs of MSAs (Table 1),  each 
consisting of one CDD-based MSA (obtained as described in Table 1) and 
one Pfam MSA (El-Gebali, et al., 2019).  These MSA pairs represent the 
following protein superfamilies: C2 domains (C2); cupredoxins (CuDX); 
haloacid dehalogenase-like hydrolases (HAD); class B metal β-lactamases 
(MBL); pleckstrin homology domains (PH); phosphotransferase system 

subunit IIB (PTS); rhodanese homology domain (RHOD); and sulfatases 
(SFTS). We obtained a mean of 25 reference structures per domain. Over 
their domain footprints, on average these share 19% sequence identity, and 
each structure shares < 50% identity with all other structures.  Thus, these 
represent well the diversity of each superfamily. The eCOMPASS output 
files are available as Supplementary Material. “CDD” MSAs achieved, on 
average, higher S-scores than Pfam MSAs (Table 2). However, because 
both types of alignments depend on some degree of manual curation, we 
draw no general conclusion regarding which of these tend to be more 
accurate. Rather, our aim here is merely to describe eCOMPASS and 
illustrate its application. 

3.3 CDD vs PFam subgroup-specific analyses
Because a protein superfamily is typically composed of multiple families 
and subfamilies, which may be aligned with differing accuracy, the  Δ𝑆
scores for different structures should not be considered as drawn from the 
same underlying distribution and their variance may therefore be very 
high.  Accordingly, when asking which is the more accurate of two MSAs 
overall, it is better to consider each  score as a separate vote.  Assuming Δ𝑆
independence for simplicity, we calculate the significance of the majority 
vote using the two-tailed p-value for the equiprobable binomial 
distribution.  We expect these p-values to correlate to some extent with 

, the mean  score, but these two quantities may vary considerably in Δ𝑆 Δ𝑆
implied significance, or, in principle, even disagree on which is the better 
MSA.  Also, we recognize that even two structures with low sequence 
identity are not truly independent, so that our calculated p-values must be 
discounted to some extent.  

In Table 2, we present a summary of eCOMPASS’s results for the eight 
domains considered.  After putatively misaligned reference structures are 
excluded, for four domains (C2, MBL, PH and PTS) eCOMPASS finds 
unanimity among the remaining structures favoring one of the MSAs.  
These agreements are statistically significant, with the Pfam MSA favored 
for C2, and the CDD MSA favored for MBL, PH and PTS.  (This frequent 
unanimity is evidence that the  score is no mere random artifact but is Δ𝑆
a valid measure for the greater ability of one MSA to encode structural 
features as directly coupled residue pairs.)  For the remaining four 
domains, neither MSA is preferred with an estimated p < 0.001, and the 
SD of the  values exceeds their absolute mean. Δ𝑆

Table 2.  eCOMPASS results with outliers excluded.  

ID MSA 1 MSA 2 Δ𝑆 SD -log10(p)
N1 Δ𝔇 N2 Δ𝔇

C2 0 1.12 25 1.15 -9.7 5.3 7.2
CuDX 12 1.19 4 0.89 2.4 5.3 1.1
HAD 4 1.27 10 1.18 -4.3 8.9 0.7
MBL 18 1.74 0 3.28 82.1 16.5 5.1
PH 20 0.99 0 1.43 8.9 6.4 5.7
PTS 12 2.19 0 2.89 11.2 5.6 3.3
RHOD 19 1.57 9 2.18 6.5 10.3 1.1
SFTS 14 1.40 5 1.80 15.5 19.7 1.2

For each domain, values of and were calculated only after excluding Δ𝔇 Δ𝑆 
unreliably aligned structures, as described in the text.  N1 and N2 are the observed 
number of included structures for which S1 > S2 and S2 > S1, respectively. The -Δ𝑆
score standard deviation (SD) measures the variability among reference structures 
for each domain.  For the last column, p is calculated as the 2-tail binomial 
probability for the observed N1 and N2, assuming an equal chance for each MSA to 
have higher  for each structure. Δ𝑆
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To illustrate and study our procedure for excluding structures, we 
consider in detail its operation on the PTS domain.  In Table 3, we show 
the specific values of S and Δ𝔇i for each of the 13 reference structures and 
each MSA.  As is apparent, only for structure 3czcA and MSA 1 does Δ𝔇i 
exceed the mean by over two SDs, so we exclude this one structure as 
unreliably aligned.  (When the mean and SD for the remaining Δ𝔇i for 
MSA 1 are recalculated, no further structures are excluded.)  Note that this 
has the effect of eliminating the one negative , leaving unanimous Δ𝑆
preference for MSA 1 among the remaining structures.  An examination 
of the structures eliminated by our procedure for the other seven domains 
shows that they very often yield outlying values of , although this is Δ𝑆
neither expected nor observed to be universally the case.

Table 3.  eCOMPASS output for the PTS domain.  

pdbid MSA 1 MSA 2 Δ𝑆 cols D L
S1 Δ𝔇i S2 Δ𝔇i

3czcA 29 2.78 41 2.94 -12.0 82 100 2944
2wy2D 47 2.10 34 2.60 12.9 77 85 2583
2l2qA 21 2.42 15 3.00 5.9 65 39 1801

4mgeA 51 2.06 38 2.48 12.7 78 93 2659
3nbmA 54 2.24 30 2.87 23.5 76 88 2525
1tvmA 29 2.34 19 2.92 10.2 74 60 2367
5gqsA 31 2.23 15 2.92 15.8 78 79 2647
1vkrA 28 2.12 11 3.07 16.7 71 64 2164
5dleA 32 2.08 24 2.95 7.3 77 97 2590
2r48A 32 2.11 22 2.91 10.1 77 93 2590
4tn5A 24 2.12 16 2.90 7.5 75 86 2453
2kyrA 22 2.37 20 3.07 2.4 77 90 2595

2m1zA 31 2.10 22 2.92 9.0 77 87 2594
mean: 2.24 2.89 9.4

SD: 0.20 0.17 8.4

Values for 2czcA are shown in bold to indicate that its Δ𝔇 value for MSA 1 is ≥ 2 
SD above the mean. The 7th column gives the number of columns shared by MSA 1 
and 2 when computing S-scores. Columns 8 and 9 give the values of D and L for the 
ICA procedure. 

Fig. 1.  Δ𝔇i  ≥ 2 SD above the mean for 3czcA is due to misalignment. (top) For 
the CDD PTS MSA, the sequence corresponding to 3czcA yielded Δ𝔇i = 2.78 Å, 
which is 2.7 SD above the mean, suggesting this structure is misaligned relative to 
the 12 other structures, four of which are shown. As a result, eCOMPASS discarded 
3czcA’s  value when computing   = 11.2 in Table 2. (bottom) When 3czcA was 𝛥𝑆 Δ𝑆

structurally realigned using Dali (Holm and Rosenstrom, 2010), its Δ𝔇i decreased to 
2.35 Å (1.5 SD above the mean) and its S score increased to 41.5, providing further 
evidence that it was originally misaligned. The realigned region is highlighted in 
black; numbers correspond to the residue positions at each end.

It is not eCOMPASS’s function to amend the MSAs with which it is 
supplied.  However, to study further the validity of eCOMPASS’s 
procedure for rejecting structures as misaligned, and their corresponding Δ

 as unreliable, we used Dali (Holm and Rosenstrom, 2010) to structurally 𝑆
realign 3czcA to the other structures.  As shown in Fig. 1, given the 
resulting modified MSA 1, Δ𝔇i for 3czcA is no longer an outlier, and the 

 for 3czcA turns positive.  Note, however, that sequences closely related Δ𝑆
to 3czcA in MSA 1 were not realigned; if they had been, presumably the Δ

 would have increased further. 𝑆
One may object to our procedure for excluding a structure, from one or 

both MSAs, based upon internal evidence that it has been misaligned.  
Such a structure generally represents not only itself but also the alignment 
of closely related sequences, and arguably should have a vote equal to that 
of other structures regarding which alignment is better.  In Table 4 we 
give the results of our analysis if no structures are excluded.  As might be 
expected, the values of  in Table 4 are higher, although this need not Δ𝔇
always be the case because the removal of a structure due to a significantly 
high Δ𝔇i for one MSA may decrease  for the other MSA.  Also, for all Δ𝔇
domains except CuDX, the standard deviation of the  is higher.  This Δ𝑆
too is expected, because, although structures are removed with no 
reference to , misaligned structures have a strong tendency to produce Δ𝑆
outlying values for , as illustrated, for example, in Table 3.  Most Δ𝑆
importantly, however, for all domains the assessment of which is the better 
MSA is essentially unchanged, by the measure either of   or of the Δ𝑆
binomial vote N1 vs. N2.  There appears to be a slight tendency for both |

| and -log10(p) to decrease with the inclusion of all structures, but this is Δ𝑆
neither systematic nor coordinated.  The advantage of excluding 
apparently misaligned structures is that this focuses more on the overall 
quality of the MSAs, as measured by their direct coupling signal, and less 
on the alignment accuracy of the relatively small number of structures 
considered.  To help assess such distinctions, eCOMPASS computes 
results using both approaches. 

Table 4.  eCOMPASS results with outliers included.

ID MSA 1 MSA 2 Δ𝑆 SD -
log10(p)

N1 Δ𝔇 N2 Δ𝔇

C2 3 1.43 31 1.53 -8.1 6.2 6.1
CuDX 15 1.19 5 0.96 2.1 5.1 1.4
HAD 6 1.35 12 1.33 -4.3 8.9 0.6
MBL 31 2.06 1 3.79 74.0 28.0 7.8
PH 29 1.12 2 1.59 9.4 14.3 6.3
PTS 12 2.24 1 2.89 9.4 8.4 2.5
RHOD 24 1.71 9 2.32 6.4 9.6 1.9
SFTS 15 1.52 6 1.84 13.0 24.4 1.1

For some superfamilies neither MSA was significantly favored based 
on the binomial p-value.  For example, for the sulfatases (SFTS) p = 0.06 
and, among the retained  scores, 14 were positive (favoring MSA 1) Δ𝑆
and 5 were negative (favoring MSA 2).  The variability in  scores was Δ𝑆
very high with a SD of 19.7 and a mean of 15.5. Similar results were 
obtained when using all  scores.  This suggests that MSA 1 better aligns Δ𝑆
some functionally divergent subgroups while MSA 2 better aligns others.  
This may occur, for example, when an MSA is generated by a query-based 
iterative alignment method, such as PSI-BLAST (Altschul, et al., 1997) or 
JackHMMER (Johnson, et al., 2010), resulting in  subgroups closely 

Original 3czcA PTS alignment: Δ𝔇i = 2.78 Å; S1 = 29.1; ΔS = -12.0
3czcA 41 VGE-.AKGlaSNYDIVVASNHLI.........HELDGRTNGKLIGLD...NLM 79
2wy2D 41 ETLAgEKG..QNADVVLLGPQIAymlpeiqrlL--PNKPVEVIDSLLy..GKV 87
2l2qA 24 ETRLsEVV..DRFDVVLLAPQSRfnkkrleeiTKPKGIPIEIINTIDy..GTM 72
4mgeA 38 GDAVkTNI..DQADVLLLGPQVRymlssmktlADERNVGIDVINPMHy..GMM 86
3nbmA 80 YGAHyDIM..GVYDLIILAPQVRsyyremkvdAERLGIQIVATRGMEyihLTK 130

Corrected 3czcA PTS alignment: Δ𝔇i = 2.35 Å; S1 = 41.5; ΔS = +4.3
3czcA 41 VGEAkGLASNYDIVVASNHLIhel......DGRTNGKLIGLD---...NLM 79
2wy2D 41 ETLAgEKGQNADVVLLGPQIAymlpeiqrlL--PNKPVEVIDSLLy..GKV 87
2l2qA 24 ETRLsEVVDRFDVVLLAPQSRfnkkrleeiTKPKGIPIEIINTIDy..GTM 72
4mgeA 38 GDAVkTNIDQADVLLLGPQVRymlssmktlADERNVGIDVINPMHy..GMM 86
3nbmA 80 YGAHyDIMGVYDLIILAPQVRsyyremkvdAERLGIQIVATRGMEyihLTK 130
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related to the query being more accurately aligned than distantly-related 
subgroups. The Pfam MSAs used for this study were generated using a 
similar profile-based alignment method. 

By providing a more articulated description of relative alignment 
quality than would a single measure of overall quality, eCOMPASS may 
aid the curation of hierarchical MSAs (Yang, et al., 2020), which were 
provided as input to MAPGAPS to generate the MSA 1 alignments used 
here.  For instance, for the SFTS domain, the structure 4uplA, which is a 
member of the phosphonate monoester hydrolase family (i.e., cd16028), 
has the lowest  score (-53.2) and the highest Δ𝔇i (2.99 Å) for MSA 1 Δ𝑆
(see Supplementary Data).  This suggests that, by further curating the 
cd16028 subgroup, one could improve the CDD hierarchical MSA and 
thus the SFTS MSA generated from it.

Finally, as discussed above,   scores should only be compared with Δ𝔇
caution because both the numbers and the nature of the residue pairs used 
to compute Cα–Cα distances differ between MSAs. For example, unlike 
other domains, the C2 MSA deemed superior by the measure of  Δ𝑆
(Tables 2 and 4) yielded higher .  This illustrates how relying on  Δ𝔇 Δ𝔇
scores may miss distinctions between MSAs revealed by better justified 
and statistically based  scores.  Δ𝑆

Fig. 2.  S/S° as a function of SP-score for simulated gold standard versus 
realigned MSAs.  The 160 data points represent 40 simulated (gold standard) MSAs, 
each of which is compared to 4 different realigned MSAs of the corresponding 
simulated sequences. The solid line corresponds to the regression line and the dotted 
line to y = x. 

3.4 Program-aligned vs gold standard simulated MSAs 
Using the procedure described in Methods, we created 40 simulated gold 
standard MSAs, each with a single associated structure.  We realigned the 
sequences of each MSA using four programs: GISMO (v3.1) (Neuwald 
and Altschul, 2016), Kalign 3 (Lassmann, 2020), MAFFT (v7.471) (Katoh 
and Standley, 2014), and MUSCLE (v3.7) (Edgar, 2004).  To compute 
each realigned MSA’s distance from its associated gold standard, we 
calculated an SP-score (from "Sum of the Pairs"), which is the proportion 
of aligned pairs of residues within the gold standard that are aligned 
identically within the realigned MSA. We then used eCOMPASS to 
compare each realigned MSA to its corresponding gold standard MSA. As 
described above, given two MSAs eCOMPASS generates directly 
comparable scores, which we here denote as S for the realigned MSA and 
as S° for the gold standard MSA.  Notably, as expected, in all cases the S-
score is less than the S°-score.  To study how well the relative values of S 

and S° correspond to the distance between the realigned and gold standard 
MSAs, we plot in Fig. 2 S/S° versus SP for each case.  There is clearly a 
strong and close to linear correlation between S/S° and SP, with the 
Pearson correlation coefficient equal to 0.92. The regression line has a 
slope of 1.117 and a y intercept of -0.077, suggesting that S/S° is a good 
and relatively direct proxy for gold standard distance.  Hence, for real 
protein sequence alignments, where we do not have gold standards for 
comparison, we may use comparable S scores as proxies for alignment 
accuracy. 

3.5 CDD vs JackHMMER MSA analyses
To further explore the utility and robustness of eCOMPASS, we compared 
the 40 CDD MSAs, upon which our simulated MSAs were based, to 
corresponding MSAs aligned with JackHMMER (JHM) (Johnson, et al., 
2010) using an arbitrary sequence as the query (Table S1).  To reduce 
sequence redundancy, we removed from each MSA all but one sequence 
among those sharing ≥95% sequence identity using either cd-hit (Fu, et 
al., 2012) or PurgeMSA (Neuwald, et al., 2020). Note that this analysis 
allows the inclusion of more reference structures because, unlike the CDD 
vs Pfam analysis, the number of structures included was not predefined by 
Pfam. To identify domains for which a clearly significant distinction was 
at least possible, we focused on 31 of the 40 domains having at least 18 
distinct structures, which could, in principle, yield a two tailed binomial 
probability p < 10-5.  Among these the CDD MSA was significantly better 
at the p < 10-3 level for 12 domains whereas the JHM MSA was 
significantly better for 6 domains (Fig. 3). 

Fig. 3.  eCOMPASS analysis of CDD vs Jackhmmer (JHM) MSAs. Data points 
represent 31 comparisons with the x- and y-axes corresponding to the numbers of 
reference structures for which ΔS > 0 and ΔS < 0, respectively. Hence, data points 
below and above the diagonal line correspond to analyses favoring the CDD and 
JHM MSA, respectively.  The area of each bubble is proportional to -log10

 (p), the 
values of which are indicated for several data points.

To evaluate the robustness of eCOMPASS, we reran each of these 
analyses using various CCMpred hyperparameter settings. (Another 
variable is the DCA implementation used, which, however, is too 
technically challenging to investigate here.)  Using either flat (uniform) 
priors or Jeffreys uninformed priors [28] yielded essentially identical 
results (Fig. S1). We also ran eCOMPASS with maximum residue pair 3D 
contact cutoffs of 4, 5, and 6 Å (Fig. 4), with alternative CCMpred 
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sequence reweighting thresholds of 70, 80, and 90% (Fig. 5 top), and with 
L1 regularization strengths of 0.1, 0.2, and 0.3 (Fig. 5 bottom). Notably, 
in only one case did two different parameter settings yield conflicting 
results both at a significance level ≤ 0.01. This arose for the L1 
regularization parameter and the AAT_1 domain, for which conflicting 
results were reported with p–values of 0.005 and 0.002.  

Fig. 4.  Influence of the 3D contact cutoff on eCOMPASS results.  Plots indicate 
probabilities for CDD MSAs versus JHM MSAs using 4, 5 and 6 Å cutoffs. Circles 
correspond to median values and vertical lines to the high and low values. Closed or 
open circles indicate that the MSAs considered better are consistent or inconsistent, 
respectively, across the 3 settings.  Domains are ordered left to right by the maximum 
of their three -log10(p) values.

Fig. 5.  Influence of DCA hyperparameter settings on results.  Plots indicate 
probabilities for CDD MSAs versus JHM MSAs using the 3 settings indicated. 
Circles correspond to median values and vertical lines to the high and low values. 
Closed or open circles indicate that the MSAs considered better are consistent or 
inconsistent, respectively, across the 3 settings. (top) CCMpred reweighting 
thresholds.  (bottom)  CCMpred L1 regularization strengths.

The observed variability in the binomial probability yielded by 
different parameter settings is likely due to changes the implicit nature of 
the MSAs, of the ICA array or of both.  For example, decreasing the 
CCMpred reweighting threshold (Seemayer, et al., 2014) is likely to 
decrease the DCA signal from highly populated subgroups.  

4 Discussion 
eCOMPASS computes a statistical score ( ) that compares the accuracy Δ𝑆
of two large MSAs and that is based on all the aligned sequences and on 
a set of reference structures. This score exploits the DC-signal implicit in 
each alignment and whose strength presumably depends on the degree to 
which homologous residues are accurately aligned.   eCOMPASS’s 
strategy constitutes a departure from current approaches.  These typically 
rely upon a benchmark set, consisting of a small number of sequences 
aligned using structural data. However, they are essentially blind to the 
alignment accuracy of sequences absent from the set.  Unlike other 
programs for assessing MSA quality (Ahola, et al., 2008; Lassmann and 
Sonnhammer, 2005; O'Sullivan, et al., 2003; Pei and Grishin, 2001; Song, 
et al., 2006; Thompson, et al., 2001), eCOMPASS provides measures of 
statistical significance, can handle extremely large MSAs, requires neither 
a gold standard MSA nor a structural alignment, and can assess the 
alignment quality of subgroups within an MSA. 

Almost all multiple alignment construction methods employ some 
objective function of alignment quality which they attempt to optimize.  
For assessing the relative accuracy of two multiple alignments, relying 
upon the objective function used for either's construction will of course 
bias the results, so it is best to seek an independent measure.  The 
congruence of structural contacts with alignment-derived DCA scores 
provides a convenient such measure, and one that avoids reliance upon a 
set of gold standard alignments.

Several recent multiple alignment construction methods (Muntoni, et 
al., 2020; Talibart and Coste, 2020; Talibart and Coste, 2020; Wilburn and 
Eddy, 2020) incorporate DCA models into the objective functions they 
seek to optimize.  To the extent that these models have been derived from 
particular structures, applying eCOMPASS to their evaluation using these 
very structures is likely to bias eCOMPASS's results in favor of the 
resulting multiple alignments.  How to extend eCOMPASS to the 
comparison of such multiple alignments, or at least how to mitigate any 
confounding effects, is a question for further research. In this paper, 
however, none of the alignments of real proteins studied here were 
constructed with the use of a Potts model.

Recently, Muntoni et al. (2020), in comparing the alignments 
constructed by their program DCAalign to those produced by other 
programs, used one method very similar in spirit to that of eCOMPASS.  
From alignment-derived pairwise coupling scores, they predicted 
contacting residue pairs and then, with reference to a known structure, 
plotted the true positive prediction rate as a function of the number of 
predictions made.  It should be possible to derive from the resulting graphs 
a statistically-based measure, similar to our ΔS, for the relative accuracy 
of the two alignments.  Following, for example, the approach of (Schaffer, 
et al., 2001), one could calculate a ROC (receiver operating characteristic) 
score from a variant of each graph, and then infer p-values for the 
difference of these scores.  Whether such a statistical approach is superior 
to the one taken here is an avenue for further study.

Ideally, eCOMPASS should be applied using a set of reference 
structures representing diverse subgroups within a superfamily, as in the 
examples here.  Then, in addition to providing an assessment of overall 

Page 7 of 9 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab374/6275262 by C

olum
bia U

niversity user on 06 June 2021



A.F.Neuwald et al.

alignment accuracy, eCOMPASS can identify those subgroups that are 
least accurately aligned, as an aid to improving MSA methods. This raises 
the issue of multiple conformations for the same protein, which is a major 
concern for DCA. A future version of eCOMPASS might provide the 
option of choosing the highest DC-score among alternative conformations 
for each residue pair.  In order to investigate directly coupled residue pairs 
corresponding to a subgroup specific conformation, such as we reported 
recently (Tondnevis, et al., 2020) , it may be useful to apply eCOMPASS 
to subgroup alignments within a superfamily MSA.

For MSA methods that fail to incorporate information from DCA into 
their objective functions, the statistical significance of the agreement 
between DC-scores and 3D contacts within available structures serves as 
a measure of alignment accuracy that is independent of the criteria used in 
constructing the MSA.  In any case, eCOMPASS should be uniquely 
useful for evaluating the extremely large MSAs typically required for deep 
learning protein sequence analyses and for statistical analyses requiring a 
vast amount of sequence data.  
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