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Abstract

Experiments have found substantial morphological differences between buoyancy-driven flames developing
on the upper and lower surfaces of inclined burning plates. These differences cannot be explained on the
basis of existing analytical solutions of steady semi-infinite flames, which provide identical descriptions for
the top and bottom configurations. To investigate the potential role of flame instabilities in the experimentally
observed flow differences, a temporal linear stability analysis is performed here. The problem is formulated
in the limit of infinitely fast reaction, taking into account the non-unity Lewis number of the fuel vapor. The
stability analysis incorporates non-parallel effects of the base flow and considers separately spanwise traveling
waves and Gortler-like streamwise vortices. The solution to the stability eigenvalue problem determines the
downstream location at which the flow becomes unstable, characterized by a critical value of the relevant
Grashof number, whose value varies with the plate inclination angle. The results for the flame formed on
the underside of the fuel surface indicate that instabilities emerge farther downstream than they do for a
flame developing over the top of the fuel surface, in agreement with experimental observations. Increased
buoyancy-induced vorticity production is reasoned to be responsible for the augmented instability tendency
of topside flames.
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Fig. 1. Top: steady streamwise streaks and traveling spanwise waves are shown over a gas burner used to generate a flame
over a surface inclined 70° from the vertical with a very low ~ 0.2 m/s crossflow. Bottom: (left) schematic of wave instability,

(right) schematic of vortex instability, modified from [16].

1. Introduction

Fires developing on both upper and lower in-
clined surfaces are commonly encountered in both
the built and wildland environments. Inclined flame
spread has been a relevant topic of study in the con-
text of fires within enclosed spaces [1] and larger-
scale wildland fires. While some work has investi-
gated flame spread on the upper side of an inclined
surface, flame spread along the lower side of an in-
clined surface, relevant to fires in attics and inclined
ceilings, has received less attention. Experiments
[2,3] have observed that the structure of a flame that
forms on the topside of an inclined fuel surface is
distinctly different from a flame that forms on the
underside of the fuel surface. A majority of stud-
ies on topside flame spread have assumed the flame
structure to be essentially two-dimensional; how-
ever, recent studies have shown that flames often
form unique three-dimensional structures driven
by instabilities in the flow, such as spanwise waves
and streamwise streaks, which may contribute to
augmented heat transfer, resulting in faster flame
spread [4,5]. Both types of instabilities are visible
in the image of a flame developing over an inclined
burner shown in Fig. 1.

A number of relevant studies on topside in-
clined flame spread are summarized in [6]. Pre-
vious numerical studies describe the flame shape,
velocity and temperature fields, and the mass burn-
ing rate [7,8]. Studies on upward flame spread have
developed simplified theoretical models for steady

laminar vertical flames [9]. Although no previous
studies have addressed the stability of these flows,
a similar problem, the structure and stability of the
flow that develops over the topside of an inclined
heated plate, has been studied extensively over the
last fifty years. Early experiments [10,11] and theo-
retical analyses [12,13] found two modes of insta-
bility, a vortex instability, characterized by station-
ary Gortler-type streamwise vortices, and a wave
instability, characterized by Tollmein-Schlichting
spanwise traveling waves. As seen for flames in
Fig. 1, these instabilities develop to form streaks
and waves of finite amplitude that interact in a non-
linear fashion, eventually leading to a transition to
turbulence. Early analytical studies [12,13] found
that the flow became more unstable as the an-
gle of inclination ¢ was increased from the verti-
cal. For small values of ¢ below a critical value
of ¢ = 14-17°, the wave mode was found to be
dominant; for larger angles, the vortex mode was
found to be dominant. While these early studies
used the Boussinesq approximation, recent analy-
ses have considered non-Boussinesq effects in de-
scribing the structure [14] and stability [15] of the
the flow over an inclined heated plate. The for-
mer [14] found that the flows over the topside and
underside of an inclined heated plate are identi-
cal. The latter [15] found that, for the topside con-
figuration, the flow becomes increasingly unstable
as the value of the plate-to-ambient temperature
ratio is increased. When the ratio is increased
above 1.8, the wave mode becomes dominant for
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Fig. 2. A schematic representation of the flame forming over the topside or the underside of an inclined fuel surface.
The coordinate system is indicated for a topside flame; for the underside flame, the y-coordinate points in the opposite,

downward, direction.

all ¢. The present work extends these previous non-
Boussinesq studies to cases in which density differ-
ences are due to a diffusion flame burning the fuel
vaporized from a semi-infinite inclined surface with
the oxygen in the surrounding air atmosphere. In
particular, we investigate whether the instabilities in
the flow can account for the observed experimental
differences between topside and underside flames.

2. General formulation

A description of a laminar flame burning over
a semi-infinite fuel surface inclined at an angle ¢
from the vertical, shown in Fig. 2, must consider
the continuity and momentum equations

ap
— +V. =0, 1
otV (oY) (M)
ﬂ+v -Vv= _vr + lv (Vv VvD] + (1 — pﬁ)g,
at p P P

(2

where p, u, and v represent the dimensional den-
sity, viscosity, and velocity of the gas, and the sub-
script co denotes ambient air properties. The flow
is characterized by small values of the associated
Mach number, so that the spatial variations of the
pressure are much smaller than the ambient value.
In (2), p denotes the sum of the pressure differ-
ence from the ambient hydrostatic value and the
isotropic component of the stress tensor. Cartesian
coordinates are used to describe the flow, including
the streamwise coordinate x, the transverse coordi-
nate y, and the spanwise coordinate z, with corre-
sponding velocity components v = (vy, vy, v-). The
gravity vectoris g = —gcos¢ e, — gsin ¢ e,, where
g is the magnitude of the gravitational accelera-
tion and the ¢’s are unit vectors in the subscript
direction. The differences between the topside and
underside flame are a result of the transverse gravi-

tational acceleration —gsin ¢, negative on the top-
side (¢ > 0) and positive on the underside (¢ < 0).

The reaction between the fuel and the oxygen in
the air is taken to occur according to a global irre-
versible reaction F + sO; —> (1 + s5)P + ¢', where
s and ¢’ are the mass of oxygen consumed and
the amount of heat released per unit mass of fuel
burnt, respectively. These thermochemical param-
eters appear in the equations below as S = s/ Yo, 4
and ¢ = ¢'/(c, T ), where Yp,4 2~ 0.232 is the am-
bient oxygen mass fraction, c, is the specific heat
at constant pressure, assumed to be constant, and
T is the temperature. Values of S, the mass of air
needed to burn a unit mass of fuel vapor, are of or-
der S'~ 6 for alcohol fuels and S~ 15 for alkanes,
while the ratio ¢/S is approximately ¢/S = 7 for all
fuels of interest.

In the limit of infinitely fast reaction considered
here, the flame appears as an infinitesimally thin
surface separating an oxygen-free fuel region from
the surrounding fuel-free air. Following [16,17] the
problem is formulated in terms of coupling func-
tions that account for non-unity values of the Lewis
number of the fuel vapor Ler. The description in-
cludes two different mixture fractions

7 SYF— Y0+1 andZZ SYF/LQF— Y0+1
S+1 S/Lep + 1
3)
and a modified enthalpy
T'/Tx — 1+ (q/S) (Yo — 1)
£ = 2 @)
TB/Too -1- Q/S
with associated transport equations
aZ 1 ~
p— +pv-VZ=—V.-(pD7VZ) ®)
at Le
and
0
p—+pv-VE=V-(oDrVE). (6)

at
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Here Yy and Yy = Yo,/ Yo, are, respectively, the
mass fraction of the fuel vapor and the nor-
malized mass fraction of the oxygen, Le = (S +
1)/(S/Ler + 1) is an effective Lewis number, D7 is
the thermal diffusivity of the gas mixture, and T3
is the boiling temperature of the fuel. As discussed
in [18], the effect of heat losses by radiation, which
has been neglected in writing (6), could be incorpo-
rated approximately in the description by lowering
the value of ¢.

The conservation equations are supplemented
by the equation of state written in the low-Mach
number form

o= [ 1)) ¢

which accounts for the large density variations as-
sociated with the presence of the fuel vapor, with
Wi and W, representing the molecular masses of
the fuel and air, respectively. The presumed power
law

D T\°
H_ P T (L (8)
Moo Poo DT,oc Too

with o = 0.7 is used in the numerical integration for
the temperature dependence of the transport prop-
erties.

Vaporization of the liquid fuel is taken to occur
at the boiling temperature of the fuel with latent
heat of vaporization L,. A dimensionless heat of
vaporization /, = [L, + ¢;(Tp — T5)]/(c, T ) 1s in-
troduced to account for the energy required to raise
the temperature of the liquid fuel, with specific heat
¢y, from T, to Tp.

The equilibrium condition associated with the
infinitely fast reaction limit YzYp =0 is used
to solve (1), (2), (5), and (6) supplemented
by (7) and (8). Both reactants reach the flame with
zero mass fraction, so that the flame values of the
mixture fraction variables are Z = Zg = 1/(S+ 1)
and Z = Zg = 1/(S/Ler + 1). Using the equilib-
rium condition and the definitions (3) and (4) pro-
vides

Z—-Zs Z-Zs
Yr = 2z, l—ZS’ and
T/Tow —1=(Tp/Toc — DE+(q/S)(1 &) (9)

on the fuel side of the flame sheet, where Z > Zj,
and

Yo =0,

Yr=0, 1—-Yy=2Z/Zs=Z7/Zs, and

T/Tow — 1 = (Tg/Too — 1)E + (q/S)(Z/ Zs — §)
(10)

on the air side of the flame sheet, where Z < Zs.
Egs. (9) and (10) give piecewise linear relations for
the evaluation of Yr, Yy, and Z in terms of Z, and
of T'in terms of Z and &.

To complete the problem, boundary conditions
are given in the farfield

Vx:Vy:p:ZZg:O
as (x**4+)°)—> o0 for py£0 (11)

and at the fuel surface

w=EE—-1=0
0
_'ODT@ =®PVy i aty =0 for x > 0,
3Z .
_pDTZT = Ler pvy(1 — 2)
y

(12)

where o = 1,/[(¢/S) + 1 — T/ T,]. The condition
& =1 corresponds to T = Tp at the fuel surface,
where Yy = 0.

3. Self-similar formulation for steady flames

Interest here lies in the slender boundary layer
that develops over the fuel surface at distances
from the plate leading edge x that are large com-
pared with the size dys = [v2 /(gcos¢)] of the
so-called Navier-Stokes region [14]. An order-of-
magnitude analysis of the continuity and mo-
mentum equations provides the estimates § =
(v2.x)*(gcos @) V4, u, = (xgcos¢)'/?, and v, =
(v2, gcos¢/x)/* for the variation with x of the
boundary-layer thickness § and the associated
streamwise and transverse velocity components, u,
and v.. These values are used in writing dimension-
less conservation equations for the base flow. The
solution is expressed in terms of the self-similar
coordinaten = y (vf,ox/gcos ¢)~"4, the dimension-
less temperature ©(n) = 7/T,, and the stream
function ¥ = ps (V2 X} gcos@)/*F(n) related to
velocity by

U =v,/(xgcos¢)> =F'/p (13)

V =v,/(v2, geos¢/x)/* = L(nF' —3F)/p  (14)

where 0 = p/p and the prime is used to denote
differentiation with respect to n. The problem re-
duces to the integration of (2), (5), and (6) written
in the self-similar form

[©°(F'/p)T + 3F(F'/p) = 3(FV/p+1-p=0

(15)
(©°Z') + 3LePrFZ' =0 (16)
(O°E'Y +3PrFE' =0 (17)

with boundary conditions F'=Z=£&=0 as
n—ooand F' =& —-1=0 and 3/4Pro;°F =
£ Ja = Z'[Ler(1 — Z)]"" at n =0, corresponding
to (11) and (12).
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Table 1
Fuel properties used in numerical integration.

W]:/WA lv 93 LEF q/S S

Methanol 1.1 287 1.12 12 77 647
Ethanol 1.59 229 1.17 14 735 898
Heptane  3.46 1.14 124 18 7.0 152
0.6 1 3 methanol -
04 A= e e ethanol
D2l - RO heptane
(V1%
-0.2 : ‘ :

Fig. 3. From top to bottom: dimensionless measures of
streamwise and transverse velocity, following (13) and
(14), dimensionless temperature, and dimensionless den-
sity as a function of 7.

The solution to (15)—(17), independent of the
inclination angle, is complicated by discontinuities
in the derivatives of the density and temperature
at the flame. In order to overcome this difficulty,
the problem is split into two domains separated by
the flame surface n = n,. In each domain, the sys-
tem of ordinary differential equations is solved us-
ing a Chebyshev spectral collocation method. The
split domain introduces unknown boundary condi-
tions at 7, which are solved iteratively using a stan-
dard Newton-Raphson algorithm. The self-similar
base flow was solved using the transport, thermo-
chemical, and vaporization properties of methanol,
ethanol, and heptane, given in Table 1.

4. Solution for the steady base flow

Results for the base flow, including dimension-
less profiles of velocity, temperature, and density,
are shown in Fig. 3. The profiles, which differ con-
siderably from those obtained previously for the

heated plate [14], exhibit discontinuities in slope at
the flame, which is located at n; = 6.9, 7.3, and 8.5
for methanol, ethanol, and heptane, respectively.
Perhaps unexpectedly, differences in flame location
between different fuels remain relatively small, a re-
sult that can be attributed to cancellation of com-
peting effects. The large Ler of heptane indicates
that it is less diffusive than the alcohols, which
would result in a flame that lies closer to the plate.
On the other hand, the amount of air needed to ox-
idize a unit mass of heptane S is much larger than
the corresponding values for methanol or ethanol
(shown in Table 1), which would cause the hep-
tane flame to lie farther from the plate than the al-
cohol flames. The two effects tend to cancel each
other, with the result that the heptane flame lies
only slightly farther from the plate than do the al-
cohol flames. The most significant differences be-
tween the base flow of the heptane and alcohol
flames are found in the density profiles, with the
heptane flame exhibiting larger density differences
than the alcohol flames, a result of the disparities
in molecular weight. Although radiation is gener-
ally found to be small in comparison to convection
for small-scale laminar flames [19,20], future work
should consider the effects of radiation, which may
be larger for heptane. The selection of a smaller
value of the heat release parameter ¢ may lead to
lower and more realistic flame temperatures [18].

5. Formulation of the linear stability analysis

The temporal linear stability of the flow to
wave and vortex modes is investigated by intro-
ducing perturbations into (1), (2), (5), and (6) at
a point x = xy some distance from the leading
edge of the plate, such that xq > §ys. The char-
acteristic values 8 = [(v2 x0)/(gcos ¢)]"/* and uy =
(xogcos ¢)'/? are used as length and velocity scales
to nondimensionalize the problem with 8 /u, cor-
respondingly used as the time scale. Density and
transport properties are scaled with their relevant
ambient values. The self-similar profiles and their
corresponding derivatives (denoted by a prime)
will be used to evaluate the base flow. The ratio
of the streamwise distance to the local boundary-
layer thickness defines the Grashof number Gr =
xo/80 = (x5 gcos ) *v 172 >> 1, the relevant bifur-
cation parameter in the stability study. The lin-
earized equations for the quasi-parallel flow are ex-
pressed in terms of normal-mode perturbations

S o i By 8 2. ZE) ) (18)

involving the dimensionless variables ¥ = (x —
x0)/80, ¥ = y/80, Z=z/8y, and = t/(89/up). The
coefficients k and / in the exponential factor are the
dimensionless streamwise and spanwise wave num-
bers, while w = w, + iw; defines the frequency w,
and the growth rate w; of the perturbations. We an-
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ticipate two modes of instability, a wave instability
for which / = 0 and a vortex instability for which
k=0and w, =0.

As in previous work [15], the slow streamwise
variation of the base flow and molecular transport
effects, terms in the equations not involving Gr, are
accounted for when writing the linearized equa-
tions, as is needed for increased accuracy when the
Grashof number is not large. The introduction of
normal modes into the linearized equations leads
to the following eigenvalue problem

iGr(kU — w)p + [U/2 — (5/4)U'+DV1p+[iGrkp
— (/4510 +1Gr(Df)P,+iGrlpv. = 0, (19)

[UU/2 - G/4UYFU'V + 11p — (DU )a+iGrkp
+ [IGrp(kU—w)+U/2 — (3/4)U'+6° 2k* + 1*)]b,
+ [V D — D(O° D)}, + [iGrpU’ + k(DO%)]5,

+ kl®% 5. =0, (20)

GrDp + tan ¢ p—ikU' i—ik®° D, +[Gri(w — kU)
+i07 (K + )], +i[5(DV) — 2D(@°D)Jj,
— il©°Df. =0, @

iGrlp + k1O 9, + I(DO°)), + [iGrp(kU — w)

+ @7 (kK2 + 211)]5. + [pVD — D(®°D)Ji. = 0,
(22)

ZV - (3/4U1p — (LePr)(DZ)jr — (3/4)p Z 5
+1GrpZ'%, + [iGrp(kU — w) + pVD]Z

+ (LePr) [0 (K + I°) — D(O®°D)Z = 0, (23)
EV — (3/4)U)p — Pr-'(DE )i — (7/4)p& 5.
+1Grpg’s, + [iGrp(kU — w) + pVDIE

+ Prl[@° (k* 4+ 1) — D(©°D))§ =0, (24)

with homogeneous boundary conditions in the
farfield

p=h =0, =0.=Z=£=0 as j—> oo (25

Py=9.=£=0, (26)

(1= 2)(Vp +iGrpv,) — pV 2
4 (LepPr) ' [(0°D)Z+ZA]=0, and  (27)

a(pV +iGrpd,) + Pro'[(@°D)E +E ] =0 (28)

where the base-flow functions are evaluated at p,
and symbols immediately following D are to be
multiplied by the eigenfunction prior to differenti-
ation, as in [15].

The stability Eqs. (19)—(24), with g, /i, and Z

written as functions of & and Z using (7)—(10), are
discretized using a Chebyshev spectral collocation
method. Upon discretization, the stability equa-
tions are written as the discrete generalized eigen-
value problem Aq = wBg for the complex eigen-

value w, where g = (p, V., ¥, V-, Z. é) and 4 and B
are the discretized matrices associated with the sta-
bility equations that are dependent on k, /, Gr, and
the base flow.

6. Results of the linear stability analysis

All modes are found to be stable at sufficiently
small values of the Grashof number. Above a criti-
cal value of the Grashof number Gr¢, one of these
modes begins to exhibit a positive growth rate. The
characteristics of that mode and the Gr¢ at which it
becomes unstable determine the nature of the insta-
bility that initially develops and the position along
the inclined plate at which that development oc-
curs, for any given ¢. The numerical solution can be
simplified for the vortex mode because k = w, = 0
allows tan ¢ to be scaled out of the normal-mode
equations by setting

=(Gr¥.p.p. 2. Z.Eytang,  p = p/tang.
(29)

As a result, the vortex mode can be solved indepen-
dently of ¢ to determine the critical value Gr¢ of
Gr, which in turn provides the expression

Grc = Gre/tan ¢ (30)

for the inclination dependence of the vortex mode.
This type of simplification is unavailable for the
wave mode.

The linearized normal-mode equations are
solved for a given wave number and Grashof num-
ber to determine the growth rate of the instability.
As Gr is increased, the flame eventually becomes
unstable for one wave number; as it is further in-
creased, it becomes unstable for a larger range of
wave numbers. Figure 4 shows this trend for a ver-
tical laminar heptane flame, where the wave mode
is dominant. For low Gr, the flame is stable for all
wave numbers. At Grc = 3.9, the flame becomes
unstable for k = 0.29. As Gr is further increased,
a larger range of & becomes unstable.

The dependence on inclination angle of the crit-
ical Grashof number of the wave and vortex insta-
bility modes is shown in Fig. 5 for both the topside
(right) and underside (left) flame. The results for the
vortex mode correspond to the prediction (30), with
Gre = 3.33 and 26.48 for the topside and underside,
respectively. Since the critical value of the Grashof
number diverges as ¢ — 0, the flame for the vertical
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Fig. 4. Growth rate of the wave-mode instability for a heptane flame as a function of wave number at ¢ = 0 (vertical)
for increasing Gr. Below w; = 0, the flame is stable; for values of w; > 0, the flame is unstable for the corresponding wave

numbers.

500 ‘ '

100 ¢

Gr.

Underside, Topside

,
vortex mode
wave mode

-60  -40  -20

-80

0
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Fig. 5. Variation of Gr¢ with inclination angle for the wave mode and vortex mode for a topside heptane flame and an
underside heptane flame. For the vortex mode, Gre = 3.33 and 26.48 for the topside and underside, respectively.

orientation is subject only to the wave-mode insta-
bility, with Gr¢ = 3.9 for ¢ = 0°. The vortex mode
curves are plotted only for angles below ¢ = 80°,
above which the surface is near-horizontal. For the
flame in the horizontal orientation, the pressure
differences across the boundary layer, negligi-
ble in the self-similar inclined analysis, become
significant.

For the topside flame, the wave-mode results can
be calculated only as far as ¢ = 47.22°, for which
Gr¢ becomes exactly Gre = 1. For larger values of
¢, the numerical analysis was unable to find sta-
ble conditions, regardless of the value of Gr. This
breakdown is attributed to the limitations of the
slender-flow analysis, in that, for Gr < 1, the terms
of order Gr=* and higher that were discarded in

writing the stability problem become larger than
those retained.

Figure 5 indicates that the underside flame is
clearly more stable than the topside flame, for both
instability modes. The wave mode is the first bifur-
cation for the topside and also for most values of
¢ of the underside. While Gr¢ decreases monoton-
ically with increasing |¢| for the vortex mode, the
value of Grc for the wave mode decreases for the
topside flames, but increases for underside flames.
Unlike previous work on the inclined heated plate
[15], the topside flame exhibits no crossover angle,
at which the dominant instability switches modes.
A crossover angle does occur, however, for the un-
derside flame at ¢ = —60°; at angles closer to the
horizontal, the vortex mode dominates.
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7. Discussion

The results presented for the stability of the
flame may be compared with the results for the sta-
bility of the flow over an inclined heated plate [15].
In that analysis, the flow is found to become in-
creasingly unstable as the plate temperature in-
creases. For example, at an inclination angle of
10° from the vertical, as the plate-to-ambient tem-
perature ratio was increased from 1.03 to 3.0, the
Gre dropped from approximately 75 to 15. The
study did not consider larger temperature ratios.
Nonetheless, the trend indicates that the Gr¢ for
larger temperature ratios would be of the same or-
der of magnitude as that found here for the stability
of the inclined topside flame.

The differences in the stability of the flame
forming on the topside as opposed to the under-
side of an inclined fuel surface can be investigated
by considering the physical mechanisms governing
the growth of instabilities. The vortex mode insta-
bility is similar to the Rayleigh-Bénard instability;
the flame becomes unstable because of perturba-
tions resulting from density differences. This effect
is larger on the topside than on the underside be-
cause above the flame there is a large unstable re-
gion, similar to the situation found for the hot plate,
while the flame on the underside possesses only a
thin unstable region, confined between the flame
and the fuel surface.

The wave instability is associated with
vorticity production in the spanwise direc-
tion resulting from either buoyancy-induced
or baroclinic-torque effects. The magnitude of the
vorticity production and whether it enhances or
suppresses a perturbation influences the stability
of the flame. The equation for the vorticity pertur-
bation 2, has two production terms, the baroclinic
torque I'y = —V(1/p) x Vp, and the buoyancy-
induced torque I'y = —V(p/p?) x (& + tan ¢é,),
where & and e, are the unit vectors in the
x and y directions, respectively. In normal
mode form, the vorticity can be written as
Q, = —kv, —D9V,, and the production terms
as [y =—(1/p%)(kp' p+ Gr'yp'Dp/4)  and
Iy = —(Gr™'/p>)[(ik tan ¢ + 25'/5)p — Dp]. The
effects of buoyancy-induced vorticity are domi-
nated by the sign of tan¢. As the fuel surface is
tilted from the vertical, the topside becomes incre-
mentally less stable, while the underside stabilizes.
The stabilizing and de-stabilizing contributions
of both baroclinic and buoyancy-induced torque
should be analyzed in future work following the
method presented in [21].

8. Conclusions and future work

The results of the linear stability analysis indi-
cate that instabilities in the flame may contribute to

some of the morphological differences observed be-
tween flames forming on the topside and the under-
side of an inclined fuel surface. The underside flame
is seen to be more stable than the topside flame,
which is consistent with experimental observations.
Nonetheless, the quantitative results must be taken
with caution because of the resulting order-unity
values of Grc¢ obtained for the topside flame. For a
more accurate quantification of the flame stability,
a model would need to take into account the spatial
development of the instabilities. The present anal-
ysis is a first step in understanding the differences
between topside and underside flames. Future work
will compare results from the theoretical analysis
with experiments to test the predictions and assess
the validity of the underlying assumptions. New ex-
periments are in progress because of the paucity of
experimental results. It is possible that the instabil-
ity may help to trigger liftoff of the flame from the
top surface of the plate, a phenomenon that has
been seen experimentally. Comparisons of instabil-
ity predictions with experimentally measured liftoff
conditions can ultimately indicate how helpful the
stability analyses can be in estimating when liftoff
may occur.
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