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Abstract  

Experiments  have  found  substantial  morphological  differences  between  buoyancy-driven  !ames  developing  

on  the  upper  and  lower  surfaces  of  inclined  burning  plates.  These  differences  cannot  be  explained  on  the  

basis  of  existing  analytical  solutions  of  steady  semi-in"nite  !ames,  which  provide  identical  descriptions  for  

the  top  and  bottom  con"gurations.  To  investigate  the  potential  role  of  !ame  instabilities  in  the  experimentally  

observed  !ow  differences,  a  temporal  linear  stability  analysis  is  performed  here.  The  problem  is  formulated  

in  the  limit  of  in"nitely  fast  reaction,  taking  into  account  the  non-unity  Lewis  number  of  the  fuel  vapor.  The  

stability  analysis  incorporates  non-parallel  effects  of  the  base  !ow  and  considers  separately  spanwise  traveling  

waves  and  Görtler-like  streamwise  vortices.  The  solution  to  the  stability  eigenvalue  problem  determines  the  

downstream  location  at  which  the  !ow  becomes  unstable,  characterized  by  a  critical  value  of  the  relevant  

Grashof  number,  whose  value  varies  with  the  plate  inclination  angle.  The  results  for  the  !ame  formed  on  

the  underside  of  the  fuel  surface  indicate  that  instabilities  emerge  farther  downstream  than  they  do  for  a  

!ame  developing  over  the  top  of  the  fuel  surface,  in  agreement  with  experimental  observations.  Increased  

buoyancy-induced  vorticity  production  is  reasoned  to  be  responsible  for  the  augmented  instability  tendency  

of  topside  !ames.  
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Fig.  1.  Top:  steady  streamwise  streaks  and  traveling  spanwise  waves  are  shown  over  a  gas  burner  used  to  generate  a  !ame  
over  a  surface  inclined  70  ◦ from  the  vertical  with  a  very  low  ∼ 0.2  m/s  cross!ow.  Bottom:  (left)  schematic  of  wave  instability,  
(right)  schematic  of  vortex  instability,  modi"ed  from  [16]  .  

1.  Introduction  

Fires  developing  on  both  upper  and  lower  in-  

clined  surfaces  are  commonly  encountered  in  both  

the  built  and  wildland  environments.  Inclined  !ame  

spread  has  been  a  relevant  topic  of  study  in  the  con-  

text  of  "res  within  enclosed  spaces  [1]  and  larger-  

scale  wildland  "res.  While  some  work  has  investi-  

gated  !ame  spread  on  the  upper  side  of  an  inclined  

surface,  !ame  spread  along  the  lower  side  of  an  in-  

clined  surface,  relevant  to  "res  in  attics  and  inclined  

ceilings,  has  received  less  attention.  Experiments  

[2,3]  have observed that the structure of  a !ame that  

forms  on  the  topside  of  an  inclined  fuel  surface  is  

distinctly  different  from  a  !ame  that  forms  on  the  

underside  of  the  fuel  surface.  A  majority  of  stud-  

ies  on  topside  !ame  spread  have  assumed  the  !ame  

structure  to  be  essentially  two-dimensional;  how-  

ever,  recent  studies  have  shown  that  !ames  often  

form  unique  three-dimensional  structures  driven  

by  instabilities  in  the  !ow,  such  as  spanwise  waves  

and  streamwise  streaks,  which  may  contribute  to  

augmented  heat  transfer,  resulting  in  faster  !ame  

spread  [4,5]  .  Both  types  of  instabilities  are  visible  

in  the  image  of  a  !ame  developing  over  an  inclined  

burner  shown  in  Fig.  1  .  

A  number  of  relevant  studies  on  topside  in-  

clined  !ame  spread  are  summarized  in  [6]  .  Pre-  

vious  numerical  studies  describe  the  !ame  shape,  

velocity  and  temperature  "elds,  and  the  mass  burn-  

ing  rate  [7,8]  .  Studies  on  upward  !ame  spread  have  

developed  simpli"ed  theoretical  models  for  steady  

laminar  vertical  !ames  [9]  .  Although  no  previous  

studies  have  addressed  the  stability  of  these  !ows,  

a  similar  problem,  the  structure  and  stability  of  the  

!ow  that  develops  over  the  topside  of  an  inclined  

heated  plate,  has  been  studied  extensively  over  the  

last  "fty  years.  Early  experiments  [10,11]  and  theo-  

retical  analyses  [12,13]  found  two  modes  of  insta-  

bility,  a  vortex  instability,  characterized  by  station-  

ary  Görtler-type  streamwise  vortices,  and  a  wave  

instability,  characterized  by  Tollmein-Schlichting  

spanwise  traveling  waves.  As  seen  for  !ames  in  

Fig.  1  ,  these  instabilities  develop  to  form  streaks  

and  waves  of  "nite  amplitude  that  interact  in  a  non-  

linear  fashion,  eventually  leading  to  a  transition  to  

turbulence.  Early  analytical  studies  [12,13]  found  

that  the  !ow  became  more  unstable  as  the  an-  

gle  of  inclination  φ was  increased  from  the  verti-  

cal.  For  small  values  of  φ below  a  critical  value  

of  φ !  14–17  ◦,  the  wave  mode  was  found  to  be  

dominant;  for  larger  angles,  the  vortex  mode  was  

found  to  be  dominant.  While  these  early  studies  

used  the  Boussinesq  approximation,  recent  analy-  

ses  have  considered  non-Boussinesq  effects  in  de-  

scribing  the  structure  [14]  and  stability  [15]  of  the  

the  !ow  over  an  inclined  heated  plate.  The  for-  

mer  [14]  found  that  the  !ows  over  the  topside  and  

underside  of  an  inclined  heated  plate  are  identi-  

cal.  The  latter  [15]  found  that,  for  the  topside  con-  

"guration,  the  !ow  becomes  increasingly  unstable  

as  the  value  of  the  plate-to-ambient  temperature  

ratio  is  increased.  When  the  ratio  is  increased  

above  1.8,  the  wave  mode  becomes  dominant  for  
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Fig.  2.  A  schematic  representation  of  the  !ame  forming  over  the  topside  or  the  underside  of  an  inclined  fuel  surface.  
The  coordinate  system  is  indicated  for  a  topside  !ame;  for  the  underside  !ame,  the  y-coordinate  points  in  the  opposite,  
downward,  direction.  

all  φ.  The  present  work  extends  these  previous  non-  

Boussinesq  studies  to  cases  in  which  density  differ-  

ences  are  due  to  a  diffusion  !ame  burning  the  fuel  

vaporized  from  a  semi-in"nite  inclined  surface  with  

the  oxygen  in  the  surrounding  air  atmosphere.  In  

particular,  we  investigate  whether  the  instabilities  in  

the  !ow  can  account  for  the  observed  experimental  

differences  between  topside  and  underside  !ames.  

2.  General  formulation  

A  description  of  a  laminar  !ame  burning  over  

a  semi-in"nite  fuel  surface  inclined  at  an  angle  φ
from  the  vertical,  shown  in  Fig.  2  ,  must  consider  

the  continuity  and  momentum  equations  

∂ρ

∂t  
+  ∇  · (ρv  )  =  0  ,  (1)  

∂v  

∂t  
+  v  · ∇v  =  −∇p  

ρ
+  

1  

ρ
∇  · [  µ(∇v  +  ∇v  T )]  +  

(
1  − ρ∞  

ρ

)
g  ,  

(2)  

where  ρ,  µ,  and  v  represent  the  dimensional  den-  

sity,  viscosity,  and  velocity  of  the  gas,  and  the  sub-  

script  ∞  denotes  ambient  air  properties.  The  !ow  

is  characterized  by  small  values  of  the  associated  

Mach  number,  so  that  the  spatial  variations  of  the  

pressure  are  much  smaller  than  the  ambient  value.  

In  (2)  ,  p  denotes  the  sum  of  the  pressure  differ-  

ence  from  the  ambient  hydrostatic  value  and  the  

isotropic  component  of  the  stress  tensor.  Cartesian  

coordinates  are  used  to  describe  the  !ow,  including  

the  streamwise  coordinate  x  ,  the  transverse  coordi-  

nate  y  ,  and  the  spanwise  coordinate  z  ,  with  corre-  

sponding  velocity  components  v  =  (v  x  ,  v  y  ,  v  z  )  .  The  

gravity  vector  is  g  =  −g  cos  φ e  x  − g  sin  φ e  y  ,  where  

g  is  the  magnitude  of  the  gravitational  accelera-  

tion  and  the  e  ’s  are  unit  vectors  in  the  subscript  

direction.  The  differences  between  the  topside  and  

underside  !ame  are  a  result  of  the  transverse  gravi-  

tational  acceleration  −g  sin  φ,  negative  on  the  top-  

side  (  φ > 0)  and  positive  on  the  underside  (  φ < 0).  

The  reaction  between  the  fuel  and  the  oxygen  in  

the  air  is  taken  to  occur  according  to  a  global  irre-  

versible  reaction  F  +  s  O  2  −→  (1  +  s  )P  +  q  ′  ,  where  

s  and  q  ′  are  the  mass  of  oxygen  consumed  and  

the  amount  of  heat  released  per  unit  mass  of  fuel  

burnt,  respectively.  These  thermochemical  param-  

eters  appear  in  the  equations  below  as  S  =  s/Y O  2  A  
and  q  =  q  ′  /  (c  p  T ∞  )  ,  where  Y O  2  A  )  0  .  232  is  the  am-  

bient  oxygen  mass  fraction,  c  p  is  the  speci"c  heat  

at  constant  pressure,  assumed  to  be  constant,  and  

T  is  the  temperature.  Values  of  S  ,  the  mass  of  air  

needed  to  burn  a  unit  mass  of  fuel  vapor,  are  of  or-  

der  S  ∼ 6  for  alcohol  fuels  and  S  ∼ 15  for  alkanes,  

while  the  ratio  q  /  S  is  approximately  q  /  S  !  7  for  all  

fuels  of  interest.  

In  the  limit  of  in"nitely  fast  reaction  considered  

here,  the  !ame  appears  as  an  in"nitesimally  thin  

surface  separating  an  oxygen-free  fuel  region  from  

the  surrounding  fuel-free  air.  Following  [16,17]  the  

problem  is  formulated  in  terms  of  coupling  func-  

tions  that  account  for  non-unity  values  of  the  Lewis  

number  of  the  fuel  vapor  Le  F .  The  description  in-  

cludes  two  different  mixture  fractions  

Z  =  
SY F − Y O  +  1  

S  +  1  
and  ˜  Z  =  

SY F /  Le  F − Y O  +  1  

S/  Le  F +  1  

(3)  

and  a  modi"ed  enthalpy  

ξ =  
T /T ∞  − 1  +  (q/S)(Y O  − 1)  

T B  /T ∞  − 1 − q/S  
(4)  

with  associated  transport  equations  

ρ
∂Z  

∂t  
+  ρv  · ∇Z  =  

1  

Le  
∇  · (ρD  T ∇  ˜  Z  )  (5)  

and  

ρ
∂ξ

∂t  
+  ρv  · ∇ξ =  ∇  · (ρD  T ∇ξ )  .  (6)  
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Here  Y F and  Y O  =  Y O  2  /Y O  2  A  are,  respectively,  the  

mass  fraction  of  the  fuel  vapor  and  the  nor-  

malized  mass  fraction  of  the  oxygen,  Le  =  (S  +  

1)  /  (S/  Le  F +  1)  is  an  effective  Lewis  number,  D  T is  

the  thermal  diffusivity  of  the  gas  mixture,  and  T B  
is  the  boiling  temperature  of  the  fuel.  As  discussed  

in  [18]  ,  the  effect  of  heat  losses  by  radiation,  which  

has  been  neglected  in  writing  (6)  ,  could  be  incorpo-  

rated  approximately  in  the  description  by  lowering  

the  value  of  q  .  

The  conservation  equations  are  supplemented  

by  the  equation  of  state  written  in  the  low-Mach  

number  form  

ρ

ρ∞  

T 

T ∞  
=  

[
Y F 

(
W A  

W F 
− 1  

)
+  1  

]
,  (7)  

which  accounts  for  the  large  density  variations  as-  

sociated  with  the  presence  of  the  fuel  vapor,  with  

W F and  W A  representing  the  molecular  masses  of  

the  fuel  and  air,  respectively.  The  presumed  power  

law  

µ

µ∞  
=  

ρ

ρ∞  

D  T 

D  T,  ∞  
=  

(
T 

T ∞  

)σ

(8)  

with  σ =  0  .  7  is  used  in  the  numerical  integration  for  

the  temperature  dependence  of  the  transport  prop-  

erties.  

Vaporization  of  the  liquid  fuel  is  taken  to  occur  

at  the  boiling  temperature  of  the  fuel  with  latent  

heat  of  vaporization  L  v  .  A  dimensionless  heat  of  

vaporization  l  v  =  [  L  v  +  c  l  (T B  − T ∞  )]  /  (c  p  T ∞  )  is  in-  

troduced  to  account  for  the  energy  required  to  raise  

the  temperature  of  the  liquid  fuel,  with  speci"c  heat  

c  l  ,  from  T ∞  to  T B  .  

The  equilibrium  condition  associated  with  the  

in"nitely  fast  reaction  limit  Y F Y O  =  0  is  used  

to  solve  (1),  (2),  (5)  ,  and  (6)  supplemented  

by  (7)  and  (8)  .  Both  reactants  reach  the  !ame  with  

zero  mass  fraction,  so  that  the  !ame  values  of  the  

mixture  fraction  variables  are  Z  =  Z  S  =  1  /  (S  +  1)  

and  ˜  Z  =  ˜  Z  S  =  1  /  (S/  Le  F +  1)  .  Using  the  equilib-  

rium  condition  and  the  de"nitions  (3)  and  (4)  pro-  

vides  

Y O  =  0  ,  Y F =  
Z  − Z  S  

1  − Z  S  
=  

˜  Z  − ˜  Z  S  

1  − ˜  Z  S  
,  and  

T /T ∞  − 1  =  (  T B  /T ∞  − 1  )  ξ +  (q/S)(1  − ξ )  (9)  

on  the  fuel  side  of  the  !ame  sheet,  where  ˜  Z  ≥ ˜  Z  S  ,  

and  

Y F =  0  ,  1  − Y O  =  Z/Z  S  =  ˜  Z  /  ˜  Z  S  ,  and  

T /T ∞  − 1  =  (  T B  /T ∞  − 1  )  ξ +  (q/S)  
( ˜  Z  /  ˜  Z  S  − ξ

)

(10)  

on  the  air  side  of  the  !ame  sheet,  where  ˜  Z  ≤ ˜  Z  S  .  

Eqs.  (9)  and  (10)  give  piecewise  linear  relations  for  

the  evaluation  of  Y F ,  Y O  ,  and  Z  in  terms  of  ˜  Z  ,  and  

of  T  in  terms  of  ˜  Z  and  ξ .  

To  complete  the  problem,  boundary  conditions  

are  given  in  the  far"eld  

v  x  =  v  y  =  p  =  ˜  Z  =  ξ =  0  

as  (x  2  +  y  2  )  →  ∞  for  y  ,  =  0  (11)  

and  at  the  fuel  surface  

v  x  =  ξ − 1  =  0  

−ρD  T 
∂ξ

∂y  
=  αρv  y  

−ρD  T 
∂  ˜  Z  

∂y  
=  Le  F ρv  y  (1  − ˜  Z  )  

  
          

          

at  y  =  0  for  x  >  0  ,  

(12)  

where  α =  l  v  /  [(q/S)  +  1  − T B  /T ∞  ]  .  The  condition  

ξ =  1  corresponds  to  T =  T B  at  the  fuel  surface,  

where  Y O  =  0  .  

3.  Self-similar  formulation  for  steady  !ames  

Interest  here  lies  in  the  slender  boundary  layer  

that  develops  over  the  fuel  surface  at  distances  

from  the  plate  leading  edge  x  that  are  large  com-  

pared  with  the  size  δNS  =  [  ν2  
∞  /  (g  cos  φ)]  of  the  

so-called  Navier-Stokes  region  [14]  .  An  order-of-  

magnitude  analysis  of  the  continuity  and  mo-  

mentum  equations  provides  the  estimates  δ =  

(ν2  
∞  x  )  1  /  4  (g  cos  φ)  −1  /  4  ,  u  c  =  (xg  cos  φ)  1  /  2  ,  and  v  c  =  

(ν2  
∞  g  cos  φ/x  )  1  /  4  for the variation with x of  the  

boundary-layer  thickness  δ and  the  associated  

streamwise  and  transverse  velocity  components,  u  c  
and  v  c  .  These  values  are  used  in  writing  dimension-  

less  conservation  equations  for  the  base  !ow.  The  

solution  is  expressed  in  terms  of  the  self-similar  

coordinate  η =  y  (ν2  
∞  x/g  cos  φ)  −1  /  4  ,  the  dimension-  

less  temperature  *(η)  =  T /T ∞  ,  and  the  stream  

function  ψ  =  ρ∞  (ν2  
∞  x  3  g  cos  φ)  1  /  4  F (η)  related  to  

velocity  by  

U  =  v  x  /  (xg  cos  φ)  1  /  2  =  F ′  /  ̄ρ (13)  

V =  v  y  /  (ν2  
∞  g  cos  φ/x  )  1  /  4  =  1  

4  (ηF ′  − 3  F )  /  ̄ρ (14)  

where  ρ̄ =  ρ/ρ∞  and  the  prime  is  used  to  denote  

differentiation  with  respect  to  η.  The  problem  re-  

duces  to  the  integration  of  (2)  ,  (5)  ,  and  (6)  written  

in  the  self-similar  form  

[*σ (F ′  /  ̄ρ )  ′  ]  ′  +  3  
4  F (F ′  /  ̄ρ )  ′  − 1  

2  (F ′  )  2  /  ̄ρ +  1  − ρ̄ =  0  

(15)  

(*σ ˜  Z  ′  )  ′  +  3  
4  Le  Pr  F Z  ′  =  0  (16)  

(*σ ξ ′  )  ′  +  3  
4  Pr  F ξ ′  =  0  (17)  

with  boundary  conditions  F ′  =  ˜  Z  =  ξ =  0  as  

η →  ∞  and  F ′  =  ξ − 1  =  0  and  3  /  4  Pr  *−σ
B  F =  

ξ ′  /α =  ˜  Z  ′  [  Le  F (1  − ˜  Z  )]  −1  at  η =  0  ,  corresponding  

to  (11)  and  (12)  .  
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Table  1  
Fuel  properties  used  in  numerical  integration.  

W  F /W  A  l  v  θB  Le  F q  /  S  S  

Methanol  1.1  2.87  1.12  1.2  7.7  6.47  
Ethanol  1.59  2.29  1.17  1.4  7.35  8.98  
Heptane  3.46  1.14  1.24  1.8  7.0  15.2  

Fig.  3.  From  top  to  bottom:  dimensionless  measures  of  
streamwise  and  transverse  velocity,  following  (13)  and  
(14),  dimensionless  temperature,  and  dimensionless  den-  
sity  as  a  function  of  η.  

The  solution  to  (15)  –(17)  ,  independent  of  the  

inclination  angle,  is  complicated  by  discontinuities  

in  the  derivatives  of  the  density  and  temperature  

at  the  !ame.  In  order  to  overcome  this  dif"culty,  

the  problem  is  split  into  two  domains  separated  by  

the  !ame  surface  η =  ηs  .  In  each  domain,  the  sys-  

tem  of  ordinary  differential  equations  is  solved  us-  

ing  a  Chebyshev  spectral  collocation  method.  The  

split  domain  introduces  unknown  boundary  condi-  

tions  at  ηs  ,  which  are  solved  iteratively  using  a  stan-  

dard  Newton-Raphson  algorithm.  The  self-similar  

base  !ow  was  solved  using  the  transport,  thermo-  

chemical,  and  vaporization  properties  of  methanol,  

ethanol,  and  heptane,  given  in  Table  1  .  

4.  Solution  for  the  steady  base  !ow  

Results  for  the  base  !ow,  including  dimension-  

less  pro"les  of  velocity,  temperature,  and  density,  

are  shown  in  Fig.  3  .  The  pro"les,  which  differ  con-  

siderably  from  those  obtained  previously  for  the  

heated  plate  [14]  ,  exhibit  discontinuities  in  slope  at  

the  !ame,  which  is  located  at  ηs  =  6.9,  7.3,  and  8.5  

for  methanol,  ethanol,  and  heptane,  respectively.  

Perhaps  unexpectedly,  differences  in  !ame  location  

between  different  fuels  remain  relatively  small,  a  re-  

sult  that  can  be  attributed  to  cancellation  of  com-  

peting  effects.  The  large  Le  F of  heptane  indicates  

that  it  is  less  diffusive  than  the  alcohols,  which  

would  result  in  a  !ame  that  lies  closer  to  the  plate.  

On  the  other  hand,  the  amount  of  air  needed  to  ox-  

idize  a  unit  mass  of  heptane  S  is  much  larger  than  

the  corresponding  values  for  methanol  or  ethanol  

(shown  in  Table  1  ),  which  would  cause  the  hep-  

tane  !ame  to  lie  farther  from  the  plate  than  the  al-  

cohol  !ames.  The  two  effects  tend  to  cancel  each  

other,  with  the  result  that  the  heptane  !ame  lies  

only  slightly  farther  from  the  plate  than  do  the  al-  

cohol  !ames.  The  most  signi"cant  differences  be-  

tween  the  base  !ow  of  the  heptane  and  alcohol  

!ames  are  found  in  the  density  pro"les,  with  the  

heptane  !ame  exhibiting  larger  density  differences  

than  the  alcohol  !ames,  a  result  of  the  disparities  

in  molecular  weight.  Although  radiation  is  gener-  

ally  found  to  be  small  in  comparison  to  convection  

for  small-scale  laminar  !ames  [19,20]  ,  future  work  

should  consider  the  effects  of  radiation,  which  may  

be  larger  for  heptane.  The  selection  of  a  smaller  

value  of  the  heat  release  parameter  q  may  lead  to  

lower  and  more  realistic  !ame  temperatures  [18]  .  

5.  Formulation  of  the  linear  stability  analysis  

The  temporal  linear  stability  of  the  !ow  to  

wave  and  vortex  modes  is  investigated  by  intro-  

ducing  perturbations  into  (1),  (2),  (5)  ,  and  (6)  at  

a  point  x  =  x  0  some  distance  from  the  leading  

edge  of  the  plate,  such  that  x  0  - δNS  .  The  char-  

acteristic  values  δ0  =  [(ν2  
∞  x  0  )  /  (g  cos  φ)]  1  /  4  and  u  0  =  

(x  0  g  cos  φ)  1  /  2  are  used as  length and  velocity scales  

to  nondimensionalize  the  problem  with  δ0  /u  0  cor-  

respondingly  used  as  the  time  scale.  Density  and  

transport  properties  are  scaled  with  their  relevant  

ambient  values.  The  self-similar  pro"les  and  their  

corresponding  derivatives  (denoted  by  a  prime)  

will  be  used  to  evaluate  the  base  !ow.  The  ratio  

of  the  streamwise  distance  to  the  local  boundary-  

layer  thickness  de"nes  the  Grashof  number  Gr  =  

x  0  /δ0  =  (x  3  
0  g  cos  φ)  1  /  4  ν−1  /  2  

∞  - 1  ,  the  relevant  bifur-  

cation  parameter  in  the  stability  study.  The  lin-  

earized  equations  for  the  quasi-parallel  !ow  are  ex-  

pressed  in  terms  of  normal-mode  perturbations  

e  i(k  ̃  x  +  l  ̃  z  −ω  ̃  t  )  
[  

ˆ  ρ,  ˆ  µ,  ˆ  p  ,  ˆ  v  x  ,  ˆ  v  y  ,  ˆ  v  z  ,  ˆ  Z  ,  
ˆ  ˜  Z,  ˆ  ξ

]  

(  ̃  y  )  ,  (18)  

involving  the  dimensionless  variables  ˜  x  =  (x  −
x  0  )  /δ0  ,  ˜  y  =  y/δ0  ,  ˜  z  =  z/δ0  ,  and  ˜  t  =  t/  (δ0  /u  0  )  .  The  

coef"cients  k  and  l  in  the  exponential  factor  are  the  

dimensionless  streamwise  and  spanwise  wave  num-  

bers,  while  ω  =  ω  r  +  iω  i  de"nes  the  frequency  ω  r  
and  the  growth  rate  ω  i  of  the  perturbations.  We  an-  
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ticipate  two  modes  of  instability,  a  wave  instability  

for  which  l  =  0  and  a  vortex  instability  for  which  

k  =  0  and  ω  r  =  0  .  

As  in  previous  work  [15]  ,  the  slow  streamwise  

variation  of  the  base  !ow  and  molecular  transport  

effects,  terms  in  the  equations  not  involving  Gr  ,  are  

accounted  for  when  writing  the  linearized  equa-  

tions,  as  is  needed  for  increased  accuracy  when  the  

Grashof  number  is  not  large.  The  introduction  of  

normal  modes  into  the  linearized  equations  leads  

to  the  following  eigenvalue  problem  

i  Gr  (kU  − ω)  ̂  ρ +  [  U/  2  − (  ̃  y  /  4)  U  ′  +  D  V ]  ̂  ρ+  [i  Grk  ̄ρ

−(  ̃  y  /  4)  ̄ρ ′  ]  ̂  v  x  +  i  G  r  (D  ̄ρ)  ̂  v  y  +  i  G  rl  ρ̄ ˆ  v  z  =  0  ,  (19)  

[  U  (U/  2  − (  ̃  y  /  4)  U  ′  )  +  U  ′  V +  1]  ̂  ρ − (D  U  ′  )  ̂  µ+  i  Grk  ̂  p  

+  [i  Gr  ̄ρ(kU  −ω)  +  U/  2  − (  ̃  y  /  4)  U  ′  +  *σ (2  k  2  +  l  2  )]  ̂  v  x  

+  [  ̄ρV D  − D(*σ D)]  ̂  v  x  +  [i  Gr  ̄ρU  ′  +  k(D*σ )]  ̂  v  y  

+  kl*σ ˆ  v  z  =  0  ,  (20)  

Gr  D  ̂  p  +  tan  φ ˆ  ρ−i  kU  ′  ˆ  µ−i  k*σ D  ̂  v  x  +  [  Gr  ̄ρ(ω  − kU  )  

+  i*σ (k  2  +  l  2  )]  ̂  v  y  +  i[  ̄ρ(D  V )  − 2D(*σ D)]  ̂  v  y  

− i  l*σ D  ̂  v  z  =  0  ,  (21)  

i  Grl  ˆ  p  +  kl*σ ˆ  v  x  +  l (D*σ )  ̂  v  y  +  [i  Gr  ̄ρ(kU  − ω)  

+  *σ (k  2  +  2  l  2  )]  ̂  v  z  +  [  ̄ρV D  − D(*σ D)]  ̂  v  z  =  0  ,  

(22)  

Z  
′  
[  V − (  ̃  y  /  4)  U  ]  ̂  ρ − (  Le  Pr  )  −1  (D  ˜  Z  ′  )  ̂  µ − (  ̃  y  /  4)  ̄ρZ  ′  ̂  v  x  

+  i  G  r  ̄ρZ  ′  ̂  v  y  +  [i  G  r  ̄ρ(kU  − ω)  +  ρ̄V D]  ˆ  Z  

+  (  Le  Pr  )  −1  [*σ (k  2  +  l  2  )  − D(*σ D)]  
ˆ  ˜  Z  =  0  ,  (23)  

ξ
′  
[  V − (  ̃  y  /  4)  U  ]  ̂  ρ − Pr  −1  (D  ξ

′  
)  ̂  µ − (  ̃  y  /  4)  ̄ρξ ′  ̂  v  x  

+  i  G  r  ̄ρξ ′  ̂  v  y  +  [i  G  r  ̄ρ(kU  − ω)  +  ρ̄V D]  ̂  ξ

+  Pr  −1  [*σ (k  2  +  l  2  )  − D(*σ D)]  ̂  ξ =  0  ,  (24)  

with  homogeneous  boundary  conditions  in  the  

far"eld  

ˆ  p  =  ˆ  v  x  =  ˆ  v  y  =  ˆ  v  z  =  
ˆ  ˜  Z  =  ˆ  ξ =  0  as  ˜  y  →  ∞  (25)  

and  on  the  vaporizing  surface  ˜  y  =  0  

ˆ  v  x  =  ˆ  v  z  =  ˆ  ξ =  0  ,  (26)  

(1  − ˜  Z  )(V ˆ  ρ +  i  Gr  ̄ρ ˆ  v  y  )  − ρ̄V 
ˆ  ˜  Z  

+  (  Le  F Pr  )  −1  [(*σ D)  
ˆ  ˜  Z  +  ˜  Z  

′  
ˆ  µ]  =  0  ,  and  (27)  

α(  ̂  ρV +  i  Gr  ̄ρ ˆ  v  y  )  +  Pr  −1  [(*σ D)  ̂  ξ +  ξ
′  
ˆ  µ]  =  0  (28)  

where  the  base-!ow  functions  are  evaluated  at  ˜  y  ,  

and  symbols  immediately  following  D  are  to  be  

multiplied  by  the  eigenfunction  prior  to  differenti-  

ation,  as  in  [15]  .  

The  stability  Eqs.  (19)  –(24)  ,  with  ˆ  ρ,  ˆ  µ,  and  ˆ  Z  

written  as  functions  of  ˆ  ξ and  
ˆ  ˜  Z using  (7)  –(10)  ,  are  

discretized  using  a  Chebyshev  spectral  collocation  

method.  Upon  discretization,  the  stability  equa-  

tions  are  written  as  the  discrete  generalized  eigen-  

value  problem  Aq  =  ωBq  for  the  complex  eigen-  

value  ω,  where  q  =  (  ̂  p  ,  ˆ  v  x  ,  ˆ  v  y  ,  ˆ  v  z  ,  
ˆ  ˜  Z,  ˆ  ξ )  and  A  and  B  

are  the  discretized  matrices  associated  with  the  sta-  

bility  equations  that  are  dependent  on  k,  l,  Gr  ,  and  

the  base  !ow.  

6.  Results  of  the  linear  stability  analysis  

All  modes  are  found  to  be  stable  at  suf"ciently  

small  values  of  the  Grashof  number.  Above  a  criti-  

cal  value  of  the  Grashof  number  Gr  C  ,  one  of  these  

modes  begins  to  exhibit  a  positive  growth  rate.  The  

characteristics  of  that  mode  and  the  Gr  C  at  which  it  

becomes  unstable  determine  the  nature  of  the  insta-  

bility  that  initially  develops  and  the  position  along  

the  inclined  plate  at  which  that  development  oc-  

curs,  for  any  given  φ.  The  numerical  solution  can  be  

simpli"ed  for  the  vortex  mode  because  k  =  ω  r  =  0  

allows  tan  φ to  be  scaled  out  of  the  normal-mode  

equations  by  setting  

(  Ǧr  ,  ̌v  ,  ρ̌,  µ̌,  Ž  ,  
ˇ̃  Z,  ξ̌ )  

=  (Gr,  ̂  v  ,  ˆ  ρ,  ˆ  µ,  ˆ  Z  ,  
ˆ  ˜  Z,  ˆ  ξ )  tan  φ,  p̌  =  ˆ  p  /  tan  φ.  

(29)  

As  a  result,  the  vortex  mode  can  be  solved  indepen-  

dently  of  φ to  determine  the  critical  value  Ǧr  C  of  

Ǧr  ,  which  in  turn  provides  the  expression  

Gr  C  =  Ǧr  C  /  tan  φ (30)  

for  the  inclination  dependence  of  the  vortex  mode.  

This  type  of  simpli"cation  is  unavailable  for  the  

wave  mode.  

The  linearized  normal-mode  equations  are  

solved  for  a  given  wave  number  and  Grashof  num-  

ber  to  determine  the  growth  rate  of  the  instability.  

As  Gr  is  increased,  the  !ame  eventually  becomes  

unstable  for  one  wave  number;  as  it  is  further  in-  

creased,  it  becomes  unstable  for  a  larger  range  of  

wave  numbers.  Figure  4  shows  this  trend  for  a  ver-  

tical  laminar  heptane  !ame,  where  the  wave  mode  

is  dominant.  For  low  Gr  ,  the  !ame  is  stable  for  all  

wave  numbers.  At  Gr  C  =  3  .  9  ,  the  !ame  becomes  

unstable  for  k  =  0  .  29  .  As  Gr  is  further  increased,  

a  larger  range  of  k  becomes  unstable.  

The  dependence  on  inclination  angle  of  the  crit-  

ical  Grashof  number  of  the  wave  and  vortex  insta-  

bility  modes  is  shown  in  Fig.  5  for  both  the  topside  

(right)  and  underside  (left)  !ame.  The  results  for  the  

vortex  mode  correspond  to  the  prediction  (30)  ,  with  

Ǧr  C  =  3.33  and  26.48  for  the  topside  and  underside,  

respectively.  Since  the  critical  value  of  the  Grashof  

number  diverges  as  φ →  0,  the  !ame  for  the  vertical  
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Fig.  4.  Growth  rate  of  the  wave-mode  instability  for  a  heptane  !ame  as  a  function  of  wave  number  at  φ =  0  (vertical)  
for  increasing  Gr  .  Below  ω  i  =  0  ,  the  !ame  is  stable;  for  values  of  ω  i  >  0,  the  !ame  is  unstable  for  the  corresponding  wave  
numbers.  

Fig.  5.  Variation  of  Gr  C  with  inclination  angle  for  the  wave  mode  and  vortex  mode  for  a  topside  heptane  !ame  and  an  

underside  heptane  !ame.  For  the  vortex  mode,  Ǧr  C  =  3  .  33  and  26.48  for  the  topside  and  underside,  respectively.  

orientation  is  subject  only  to  the  wave-mode  insta-  

bility,  with  Gr  C  =  3  .  9  for  φ =  0  ◦.  The  vortex  mode  

curves  are  plotted  only  for  angles  below  φ =  80  ◦,  

above  which  the  surface  is  near-horizontal.  For  the  

!ame  in  the  horizontal  orientation,  the  pressure  

differences  across  the  boundary  layer,  negligi-  

ble  in  the  self-similar  inclined  analysis,  become  

signi"cant.  

For  the  topside  !ame,  the  wave-mode  results  can  

be  calculated  only  as  far  as  φ =  47  .  22  ◦,  for  which  

Gr  C  becomes  exactly  Gr  C  =  1  .  For  larger  values  of  

φ,  the  numerical  analysis  was  unable  to  "nd  sta-  

ble  conditions,  regardless  of  the  value  of  Gr  .  This  

breakdown  is  attributed  to  the  limitations  of  the  

slender-!ow  analysis,  in  that,  for  Gr  <  1,  the  terms  

of  order  Gr  
−2  and  higher  that  were  discarded  in  

writing  the  stability  problem  become  larger  than  

those  retained.  

Figure  5  indicates  that  the  underside  !ame  is  

clearly  more  stable  than  the  topside  !ame,  for  both  

instability  modes.  The  wave  mode  is  the  "rst  bifur-  

cation  for  the  topside  and  also  for  most  values  of  

φ of  the  underside.  While  Gr  C  decreases  monoton-  

ically  with  increasing  |  φ|  for  the  vortex  mode,  the  

value  of  Gr  C  for  the  wave  mode  decreases  for  the  

topside  !ames,  but  increases  for  underside  !ames.  

Unlike  previous  work  on  the  inclined  heated  plate  

[15]  ,  the  topside  !ame  exhibits  no  crossover  angle,  

at  which  the  dominant  instability  switches  modes.  

A  crossover  angle  does  occur,  however,  for  the  un-  

derside  !ame  at  φ =  −60  ◦;  at  angles  closer  to  the  

horizontal,  the  vortex  mode  dominates.  
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7.  Discussion  

The  results  presented  for  the  stability  of  the  

!ame  may  be  compared  with  the  results  for  the  sta-  

bility  of  the  !ow  over  an  inclined  heated  plate  [15]  .  

In  that  analysis,  the  !ow  is  found  to  become  in-  

creasingly  unstable  as  the  plate  temperature  in-  

creases.  For  example,  at  an  inclination  angle  of  

10  ◦ from  the  vertical,  as  the  plate-to-ambient  tem-  

perature  ratio  was  increased  from  1.03  to  3.0,  the  

Gr  C  dropped  from  approximately  75  to  15.  The  

study  did  not  consider  larger  temperature  ratios.  

Nonetheless,  the  trend  indicates  that  the  Gr  C  for  

larger  temperature  ratios  would  be  of  the  same  or-  

der  of  magnitude  as  that  found  here  for  the  stability  

of  the  inclined  topside  !ame.  

The  differences  in  the  stability  of  the  !ame  

forming  on  the  topside  as  opposed  to  the  under-  

side  of  an  inclined  fuel  surface  can  be  investigated  

by  considering  the  physical  mechanisms  governing  

the  growth  of  instabilities.  The  vortex  mode  insta-  

bility  is  similar  to  the  Rayleigh-Bénard  instability;  

the  !ame  becomes  unstable  because  of  perturba-  

tions  resulting  from  density  differences.  This  effect  

is  larger  on  the  topside  than  on  the  underside  be-  

cause  above  the  !ame  there  is  a  large  unstable  re-  

gion,  similar  to  the  situation  found  for  the  hot  plate,  

while  the  !ame  on  the  underside  possesses  only  a  

thin  unstable  region,  con"ned  between  the  !ame  

and  the  fuel  surface.  

The  wave  instability  is  associated  with  

vorticity  production  in  the  spanwise  direc-  

tion  resulting  from  either  buoyancy-induced  

or  baroclinic-torque  effects.  The  magnitude  of  the  

vorticity  production  and  whether  it  enhances  or  

suppresses  a  perturbation  in!uences  the  stability  

of  the  !ame.  The  equation  for  the  vorticity  pertur-  

bation  .z  has  two  production  terms,  the  baroclinic  

torque  /b  =  −∇(1  /  ̄ρ )  × ∇p,  and  the  buoyancy-  

induced  torque  /g  =  −∇(ρ/  ̄ρ2  )  × (  ̄e  x  +  tan  φē  y  )  ,  

where  ē  x  and  ē  y  are  the  unit  vectors  in  the  

x  and  y  directions,  respectively.  In  normal  

mode  form,  the  vorticity  can  be  written  as  
ˆ  .z  =  −k  ̂  v  y  − D  ̂  v  x  ,  and  the  production  terms  

as  ˆ  /b  =  −(1  /  ̄ρ2  )(i  k  ̄ρ ′  ˆ  p  +  Gr  
−1  ̃  y  ̄ρ ′  D  ̂  p  /  4)  and  

ˆ  /g  =  −(  Gr  
−1  /  ̄ρ2  )[(i  k  tan  φ +  2  ̄ρ ′  /  ̄ρ )  ̂  ρ − D  ̂  ρ]  .  The  

effects  of  buoyancy-induced  vorticity  are  domi-  

nated  by  the  sign  of  tan  φ.  As  the  fuel  surface  is  

tilted  from  the  vertical,  the  topside  becomes  incre-  

mentally  less  stable,  while  the  underside  stabilizes.  

The  stabilizing  and  de-stabilizing  contributions  

of  both  baroclinic  and  buoyancy-induced  torque  

should  be  analyzed  in  future  work  following  the  

method  presented  in  [21]  .  

8.  Conclusions  and  future  work  

The  results  of  the  linear  stability  analysis  indi-  

cate  that  instabilities  in  the  !ame  may  contribute  to  

some  of  the  morphological  differences  observed  be-  

tween  !ames  forming  on  the  topside  and  the  under-  

side  of  an  inclined  fuel  surface.  The  underside  !ame  

is  seen  to  be  more  stable  than  the  topside  !ame,  

which  is  consistent  with  experimental  observations.  

Nonetheless,  the  quantitative  results  must  be  taken  

with  caution  because  of  the  resulting  order-unity  

values  of  Gr  C  obtained  for  the  topside  !ame.  For  a  

more  accurate  quanti"cation  of  the  !ame  stability,  

a  model  would  need  to  take  into  account  the  spatial  

development  of  the  instabilities.  The  present  anal-  

ysis  is  a  "rst  step  in  understanding  the  differences  

between  topside  and  underside  !ames.  Future  work  

will  compare  results  from  the  theoretical  analysis  

with  experiments  to  test  the  predictions  and  assess  

the  validity  of  the  underlying  assumptions.  New  ex-  

periments  are  in  progress  because  of  the  paucity  of  

experimental  results.  It  is  possible  that  the  instabil-  

ity  may  help  to  trigger  liftoff  of  the  !ame  from  the  

top  surface  of  the  plate,  a  phenomenon  that  has  

been  seen  experimentally.  Comparisons  of  instabil-  

ity  predictions  with  experimentally  measured  liftoff  

conditions  can  ultimately  indicate  how  helpful  the  

stability  analyses  can  be  in  estimating  when  liftoff  

may  occur.  
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