

Surfactant desorption and scission free energies for cylindrical and spherical micelles from umbrella-sampling molecular dynamics simulations

Boyao Wen ^{a, b}, Bofeng Bai ^b and Ronald G. Larson ^{a, *}

^a Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States

^b State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China

* Author to whom correspondence should be addressed. Electronic mail: rlarson@umich.edu; Tel: +1 (734) 936-0772; Fax: +1 (734) 763-0459

Abstract

Hypothesis

The free energies associated with adsorption/desorption of individual surfactants from micelles and the fusion/scission of long micelles can be used to estimate the rate constants for micellar kinetics as functions of surfactant and salt concentration.

Experiments

We compute the escape free energies ΔG_{esc} of surfactant from micelles and the scission free energies ΔG_{sciss} of long micelles from coarse-grained molecular dynamics simulations coupled with umbrella sampling, for micelles of both sodium dodecylsulfate (SDS) in sodium chloride (NaCl) and cetyltrimethylammonium chloride (CTAC) in sodium salicylate (NaSal).

Findings

For spherical micelles, ΔG_{esc} values have maxima at certain aggregation numbers, and at salt-to-surfactant molar concentration ratios R near unity, consistent with experiments. For cylindrical micelles, SDS/NaCl shows a minimum, and CTAC/NaSal a maximum in ΔG_{esc} , both at $R \sim 0.7$, while ΔG_{sciss} of CTAC micelles also peaks at around $R \sim 0.7$ and that of SDS micelles increases monotonically with R .

We explain the non-monotonic dependence of escape and scission free energies on R

1 by a combination of electrostatic screening and the decrease of micelle radius with
2 increasing R . Transitions from predominantly spherical to cylindrical micelles, and
3 between adsorption/desorption and fusion/scission kinetics with changing salt
4 concentration can be inferred from the free energies for CTAC/NaSal.

5 **Keywords:** Surfactant micelles; Free energies; Kinetics; Coarse-grained molecular
6 dynamics; Umbrella sampling

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1 **1. Introduction**

2 Surfactant solutions self-assemble into a variety of structures, including spherical and
3 wormlike micelles, lamellar sheets, vesicles and lyotropic liquid crystals. Such
4 solutions play a significant role in daily life and many industrial applications and
5 products, such as food, detergents, personal care products, lubricants, and others [1-7].

6 The diversity of self-assembled structures greatly affects the mechanics, rheology and
7 dynamics of surfactant solutions [8-10]. As the most common and well-studied
8 structures, micelles have sizes and shapes that fluctuate in dynamical equilibrium [11],
9 and whose kinetics are influenced by their structures [12]. The kinetics depend on
10 many factors, such as molecular geometry, surfactant concentration, temperature, and
11 solvent properties including salt type, salt concentration, pH, and so on [13-16].
12 Understanding how these factors affect the micellar structures and kinetics can
13 contribute to understanding the physics of micelle solutions and provide guidance for
14 formulation of surfactant-containing products.

15 It is widely accepted that the micellar size changes are dominated by two major types
16 of kinetic processes, which for dilute spherical micelles can be separated by several
17 orders of magnitude in time [11, 17-20]. The so-called “fast” kinetic process is the
18 adsorption/desorption of individual surfactant to and from micelles, which generally
19 has an average time of the order of microseconds [11]. The “slow” kinetics is the
20 micelle fusion/scission whose average time is often on the order of milliseconds to
21 seconds [17-19]. Just above the critical micelle concentration (CMC), surfactants
22 self-assemble into spherical micelles, whose size fluctuations are mainly determined
23 by adsorption/desorption [21]. As surfactant concentration exceeds the so-called
24 “second CMC,” long thread-like or cylindrical micelles become more common,
25 whose size fluctuations are believed to be governed primarily by micelle
26 fusion/scission [22, 23]. Thus, with increasing surfactant concentration, a transition
27 occurs from predominantly adsorption/desorption to predominantly fusion/scission
28 kinetics. In addition, upon a sudden jump in temperature or salt concentration the
29 micelles can find themselves far from equilibrium, leading to a change in the

1 dominant kinetics [24].

2 Recent decades have witnessed the development of experimental technologies,

3 theoretical models and molecular simulations for investigating micellar kinetics.

4 Experimental techniques, such as temperature or pressure jump [25, 26], shock tube

5 [27], ultrasonic absorption [28], stopped-flow [29], time-resolved luminescence

6 quenching [30], nuclear magnetic resonance [31] and electron spin resonance [32],

7 have been used to detect the relaxation times of micellar kinetics. On the basis of

8 these experimental techniques, structural parameters, such as the micelle radius,

9 aggregation number, and persistence length, as well as the rheological properties of

10 micellar solutions, can be determined, and are generally consistent with values

11 obtained, or inferred, from our simulation studies presented in what follows.

12 Experimental values for rate constants for micelle kinetics are still scarce, elevating

13 the importance of estimating them computationally. Meanwhile, tracking fast micellar

14 kinetics (e.g., surfactant adsorption/desorption) with very short timescales, or

15 involving multiple components, is still difficult and needs to be further developed.

16 Theoretical modelling of micelle kinetics is a powerful additional tool that has been

17 greatly developed over the last few decades. Aniansson and Wall [33] first derived the

18 fundamental theory of micellar kinetics through stepwise adsorption/desorption of

19 individual surfactants, versions of which have been used to explain the micellar

20 kinetics of various micellar solutions [22, 34-36]. Becker and Döring [37], in

21 particular, applied the equations to the evolution of the micelle size distribution under

22 large deviations from equilibrium [38-41]. These equations, while quite general,

23 require a large number of kinetic coefficients to account for adsorption and desorption

24 rate coefficients for micelles of each size. A method for estimating these from

25 molecular information is needed if the theory is to be applied to real surfactant

26 mixtures.

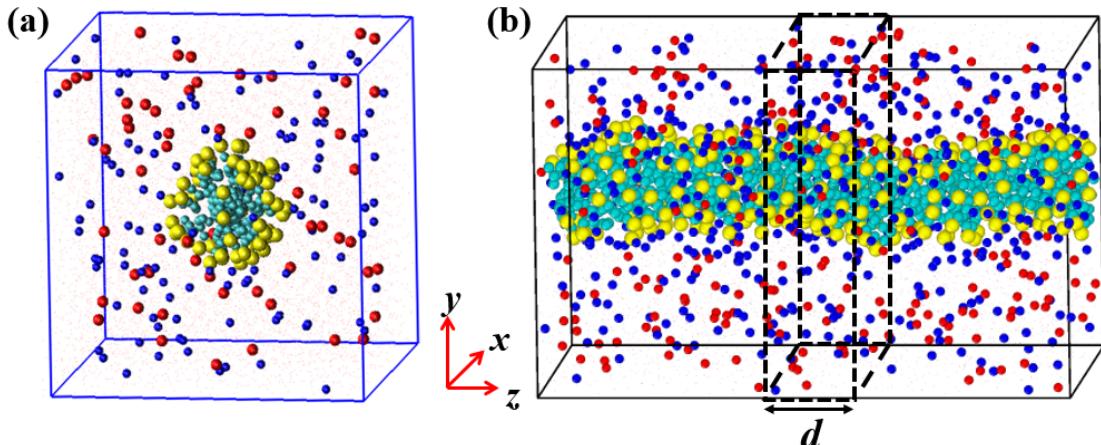
27 For long threadlike micelles, Cates [23, 42] determined the dynamics and rheology in

28 response to micelle fusion/scission kinetics only, under the assumptions that the rate

29 of micelle fusion at fixed concentration is independent of micelle length, and that

30 micelle scission occurs at a constant rate per unit length of micelle. These

1 assumptions reduce the number of rate constants to just two, related to each other by
2 thermodynamics. Shchekin *et al.* [21] avoided these assumptions and adopted the
3 generalized Smoluchowski population balance equation to describe the micelle
4 fusion/scission kinetics. Further, combining the Becker-Döring theory and the general
5 Smoluchowski equations, they obtained a description of both adsorption/desorption
6 and fusion/scission kinetics for spherical and cylindrical micelles and predicted the
7 rates of change in micelle sizes from an initial nonequilibrium size distribution to an
8 equilibrium one [24]. Although the theory of micellar kinetics is thus in principle
9 solved, how to obtain the many parameters of the general theory remains a great
10 challenge, as mentioned above. Since the many rate coefficients are not available
11 experimentally or theoretically, comparisons between such predictions and
12 experimental results have not to our knowledge been attempted so far.


13 To make further progress, we therefore turn to molecular simulations, from which one
14 can calculate molecular influences on micellar structures and dynamics [43-49],
15 possibly including the rate constants of micellar kinetic theory. Meanwhile, owing to
16 the very different time scales of the fast and slow micellar kinetics, it has become
17 more common to use a combination of simulation methods to model micellar
18 assembly kinetics on multiple scales. For example, using a back-mapping method of
19 coarse-grained to atomistic resolution, Brocos *et al.* [50] combined atomistic and
20 coarse-grained simulations to study surfactant self-assembly in atomic detail. Jusuf
21 and Panagiotopoulos [51] developed a grand canonical Monte Carlo simulation with
22 implicit solvent to speed up the simulation of surfactant micellization. Our group
23 [52-55] has adopted coarse-grained molecular dynamics simulations coupled with
24 umbrella sampling to infer free energy barriers to escape of a surfactant molecule
25 from a spherical micelle and to micelle scission/fusion. Combined with an estimate of
26 a diffusion coefficient, these free energy barriers can be used to infer kinetics of these
27 processes, which can then be compared to experimental study of these processes.

28 While measurements of surfactant escape and micelle scission free energies and their
29 dependencies on micelle size and salt concentration are experimentally difficult, we
30 show here that enhanced sampling methods in molecular simulations now allow such

1 properties to be obtained computationally. We use coarse-grained (CG) molecular
2 dynamics (MD) simulations (via the MARTINI forcefield) combined with umbrella
3 sampling to obtain the free energies of adsorption/desorption of a single surfactant
4 (i.e., the escape free energy ΔG_{esc}) and micelle scission (i.e., the scission free energy
5 ΔG_{sciss}) by using the Weighted Histogram Analysis Method (WHAM). We
6 demonstrate non-monotonic dependences of ΔG_{esc} on aggregation number N and
7 salt-to-surfactant concentration ratio R , which depend on the micelle structures
8 (spherical vs. cylindrical) and salt types (NaCl vs. NaSal). We find that ΔG_{sciss} of SDS
9 cylindrical micelles increases modestly and monotonically with R while that of CTAC
10 cylindrical micelles shows a non-monotonic dependence on R with a maximum at $R \sim$
11 0.7. Based on these free energies and related theories, we further estimate the escape
12 and breakage times, and discuss the effects of N and R on micellar kinetics.
13 We treat electrostatics using both a simple cut-off, which is typical for MARTINI CG
14 simulations, and a particle mesh Ewald (PME) summation, and find that for spherical
15 micelles the results are similar, but for cylindrical micelles, although trends are similar,
16 free energies can differ by a factor of two. While this difference has a very large
17 impact on equilibrium micelle lengths and absolute rates of change of micelle size, the
18 ratio of the rate of change by surfactant adsorption/desorption to that by micelle
19 fusion/scission is less sensitive, because both absolute rates are affected similarly by
20 the choice of electrostatic approximation. Here we provide the first practical method
21 to determining from molecular simulations the kinetic coefficients governing the
22 dynamics of micellar size changes, for both adsorption/desorption of individual
23 surfactant molecules and fusion/scission of micelles, at equilibrium or in response to a
24 change of surfactant or salt concentration. While the results obtained need to be
25 confirmed or improved by more accurate atomistic simulations or experiments, the
26 methods developed here provide a crucial next step towards obtaining the kinetic
27 coefficients of Becker-Döring and related models for the micellar kinetics of
28 experimental solutions.

29 **2. Methodology**

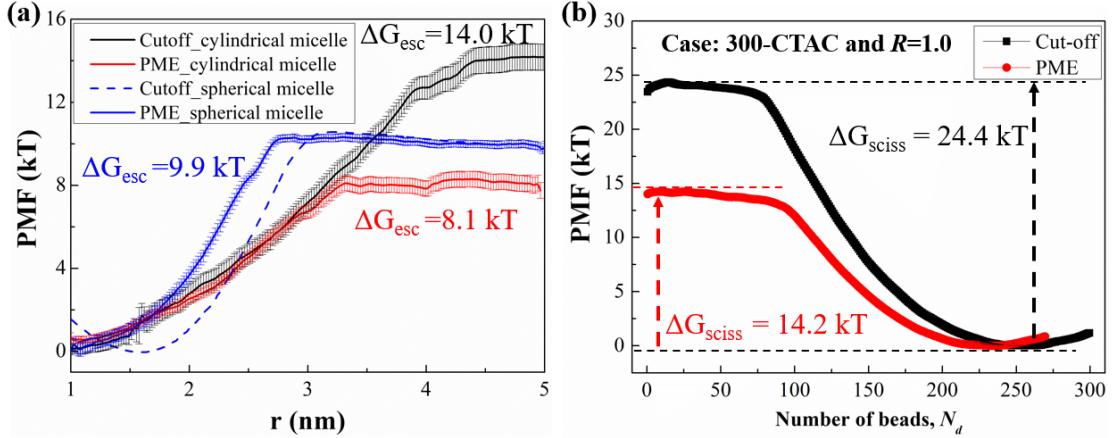
1 **Simulation setup for spherical/cylindrical micelles.** All CG MD simulations were
2 performed using the GROMACS package, version 2019.4 [56]. To reduce the
3 equilibration time and computational cost, we employed the PACKMOL package [57]
4 to generate the preassembled spherical and cylindrical micelles. Then, water beads,
5 hydrated salt ions, including counterions of the surfactant, were dissolved randomly
6 outside the micelles to form the electrically neutral initial simulation systems. Before
7 running an equilibrium simulation, an energy minimization with a steepest-descent
8 algorithm was conducted to keep the force applied on each bead below 1000
9 $\text{kJ}\cdot\text{mol}^{-1}\cdot\text{nm}^{-2}$. We consider here two simulation systems (SDS/NaCl vs. CTAC/NaSal)
10 with spherical or cylindrical micelles, which are common and well-studied in many
11 applications including detergents, body washes and personal care products. Figure 1
12 shows the typical equilibrated states of SDS/NaCl spherical and cylindrical micelles
13 at $T = 300$ K after an equilibrium simulation. Boxes are cubic with dimensions around
14 10 nm for simulations of spherical micelles, and are rectangular for periodic
15 cylindrical micelles with dimensions of around 10-14 nm perpendicular to the micelle
16 and around 18 nm parallel to the micelle. Exact dimensions depend on the simulation,
17 and are given in Table S1 in the *Supplementary Information* (SI). Our goal is to study
18 the effects of surfactant type, aggregation number and salt concentration on the
19 micelle shape and kinetics. The parameter R , which is the ratio of salt to surfactant
20 concentration, describes the effects of salt concentration. Table S2 lists the simulation
21 details and the resulting shapes of micelles after the equilibration simulations. For
22 spherical micelles, the equilibrium micelle changes gradually from spherical to
23 ellipsoidal shape with increasing aggregation number N . As N increases further, the
24 ellipsoidal micelles grow into elongated rod-like or cylindrical micelles. To study the
25 latter, we set up periodic cylindrical micelles without end-caps, that span the box. We
26 found that while, even without salt, a periodic cylindrical SDS micelle can be formed,
27 only after adding NaSal salt is this cylindrical CTAC stable against rapid breakage.
28 The box size chosen for our simulations of SDS and CTAC cylindrical micelles
29 typically corresponds to a concentration of around 0.2 and 0.13 mol/L, respectively.
30 All configurations in this study were visualized with OVITO 3.0.0 [58].

Figure 1. Typical simulation box containing (a) a spherical micelle and (b) a cylindrical micelle of SDS/NaCl at $T = 300$ K, $P = 1$ bar. The dashed lines show the scission region (width $d = 3$ nm) where the biasing potential is applied. The yellow, cyan, blue and red beads represent the surfactant head, surfactant tail, sodium and chloride, beads respectively. Water beads are transparent for clarity.

Force fields. The MARTINI force field [59] with standard coarse-grained water, which has been widely employed to study surfactants [10, 54, 55, 60-62], was used to perform the CG MD simulations of SDS and CTAC surfactant micelles. The coarse-grained representations of surfactants, salts, water and ions used are shown in Figure S1. The bead types of the SDS and CTAC surfactants are drawn from published work [15, 59, 63, 64]. For more details, one can refer to Section 1 of the SI. The short-range nonbonded interactions were implemented using a cut-off distance of 1.2 nm with the bond lengths controlled by LINCS. It is worth noting that the Coulomb potential in the standard MARTINI force field is shifted to zero between 0 and 1.2 nm with permittivity (ϵ_r) of 15. However, some studies indicate that this shifted cut-off scheme causes unphysical aggregation of multiple MARTINI SDS spherical micelles [49, 65]. As described in previous work of our group [52, 64], we therefore adopted here the PME summation [66] with $\epsilon_r = 80$ to calculate the electrostatic interactions for both SDS and CTAC micelles, since it does not show micelle aggregation. Since we only consider a single spherical or cylindrical micelle in our simulations, and thus cannot encounter this aggregation phenomenon, we also carry out more limited calculations of free energies with the shifted cut-off for both SDS and CTAC micelles using $\epsilon_r = 15$. We note that previous work in our group with

1 the shifted cut-off has given breakage free energies of cylindrical micelles consistent
2 with experiments [55]. While in principle, PME electrostatics should be superior to
3 the shifted cut-off, given the severe approximations used in CG models, including the
4 use of non-polarizable water beads, it is not a priori obvious which method will be
5 more accurate in a given situation. In our simulations, the real-space cutoff of the
6 PME method was 1.2 nm and the Fourier grid spacing was 0.2 nm.

7 **MD Simulation Details.** All CG MD simulations were performed in the NPT
8 ensemble. The temperature (300 K) was controlled using a V-rescale thermostat [67],
9 the constant pressure held at 1 bar by using the Parrinello-Rahman barostat [68], both
10 with a time constant of 1 ps. Three-dimensional periodic boundary conditions were
11 applied on the simulation box. To avoid imposing external tension or compression
12 along the axis of the periodic cylindrical micelle, isotropic pressure was imposed
13 using semi-isotropic pressure coupling, which allowed fluctuations of the box
14 dimension parallel to the micelle to be independent of those orthogonal to it. Isotropic
15 pressure coupling was employed in the simulations of spherical micelles. The
16 production simulations were run for 500 ns with a time step of 20 fs.


17 **Umbrella sampling and free energy calculation.** To determine the escape free
18 energy ΔG_{esc} of surfactant from micelles and the scission free energy ΔG_{sciss} of
19 cylindrical micelles, we used the umbrella sampling method with a reaction
20 coordinate that can sample sufficiently configurations needed to calculate the
21 potential of mean force (PMF) for each process. For surfactant escaping from micelles,
22 we used as reaction coordinate the center of mass (COM) distance r between the
23 target surfactant molecule and the micelle. For micelle scission/fusion, we adopted as
24 a reaction coordinate the number of surfactant beads (N_d) within a “scission region”
25 (width $d = 3\text{nm}$). A steered “pulling” or “scission” MD simulation was carried out to
26 generate the initial configurations for windows. For each window, a 20 ns umbrella
27 sampling simulation was run to create the output files of reaction-coordinate
28 distributions. Then, we employed the weighed histogram analysis method (WHAM)
29 [69, 70] to obtain the PMF profiles of pulling and scission processes. More details for

1 the umbrella sampling and free energy calculations are given in Section 2 of the SI.

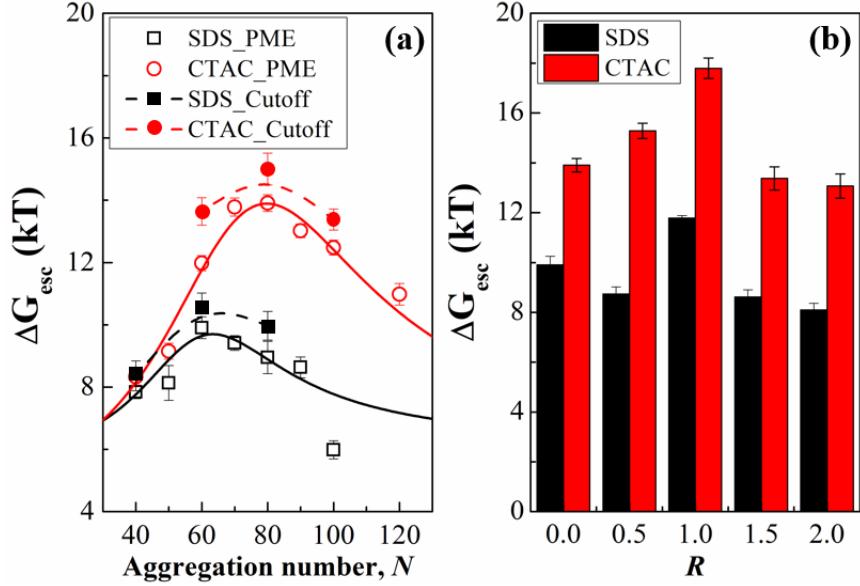
2 **3. Results and discussion**

3 **3.1 Effect of PME on the free energies**

4 Here, we compare the PMF profiles and associated free energies using both PME and
5 cut-off scheme under typical cases, as shown in [Figure 2](#). For the SDS spherical
6 micelle with $N = 60$ at $R = 0$, the height of the change in the PMF gives the surfactant
7 escape free energy ΔG_{esc} . The value of ΔG_{esc} obtained using PME (~ 9.9 kT) is
8 slightly smaller than that obtained using the shifted cut-off (~ 10.5 kT) [\[52\]](#) owing to
9 the long-range electrostatic interactions. Also, inclusion of PME shifts the PMF
10 profile toward the COM of the micelle, presumably because PME loosens the
11 interactions between the charged head groups. However, for high CTAC surfactant
12 and salt concentrations (e.g., 300 CTAC micelle with $R = 1$), the use of PME leads to
13 a significantly smaller ΔG_{esc} (~ 8.1 kT) and scission free energy ΔG_{sciss} (~ 14.2 kT) of
14 the CTAC cylindrical micelle than for the shifted cut-off. This phenomenon may be
15 due to the stronger repulsive interaction between charged surfactant head beads and
16 the long micelle it is leaving when using PME. This presumably allows surfactants to
17 more easily escape from the micelle and for the cylindrical micelle to be more readily
18 broken. Some studies also suggest that the PME scheme gives a more accurate
19 description of the interactions between charged macromolecules [\[71-73\]](#). Therefore,
20 we adopted the PME electrostatics with $\epsilon_r = 80$ in most of the following calculations
21 of free energies, but also include some results from the shifted cut-off to check
22 sensitivity to this choice. Additional studies with atomistic forcefields, and
23 comparison with experimental data, will be needed to give reliable quantitative results.
24 Nevertheless, the results presented here do demonstrate the effect of salt-to-surfactant
25 ratio and illustrate the ability of free energy methods to infer details regarding both
26 equilibrium micelle size distributions and rates of micelle size changes.

Figure 2. Effects of PME on the PMFs for surfactant escape (a) and for micelle scission (b). Blue lines indicate the result for a spherical micelle with 60 SDS molecules at $R = 0$ while the data of blue dotted line is from ref. [52]. Black and red lines are for a cylindrical micelle with 300 CTAC molecules at $R = 1$. Error bars are the standard deviations. For (b), error bars are comparable to the symbol size and hence not seen.

3.2 Spherical micelles


We computed the radius and eccentricity in shape of both CTAC/NaSal and SDS/NaCl micelles, as described in detail in Section 4.1 of the SI. In brief, the salt NaSal induces greater increases of radius and eccentricity of CTAC spherical micelles with increasing R than for is the case for SDS/NaCl micelles. This is apparently due to stronger electrostatic screening caused by stronger ion adsorption in CTAC/NaSal than is produced by SDS/NaCl micelles.

Escape free energy. To further study the dynamics of spherical micelles, we here calculate the potentials of mean force for the escape of a surfactant from the micelle using umbrella sampling and WHAM. Figure S2 shows the potential of mean force (PMF), which is similar to that shown in Figure 2a above, and representative snapshots of micelles along the reaction coordinate r for pulling a CTAC surfactant from the spherical micelle. The PMF sharply increases as the surfactant crosses the micelle surface from $r \sim 1.5$ nm to $r \sim 3.0$ nm and then starts to decrease slightly as r increases above 3.5 nm due to the increasing volume of spherical phase space at increasing r . The escape free energy ΔG_{esc} is defined as the height of PMF profile, from its minimum to its maximum value, which is the free energy barrier that the surfactant must overcome to escape from the micelle. Figure 3 shows the effects of aggregation number N and salt-to-surfactant ratio R on ΔG_{esc} of SDS and CTAC

1 surfactants pulled from spherical micelles. As in previous work [53], an empirical
2 function given in [Figure 3](#) caption was used to fit the data. As N rises, ΔG_{esc} for a
3 surfactant from the micelle increases at low N and reaches a peak at $N \sim 60$ for SDS
4 and ~ 80 for CTAC. Above this, ΔG_{esc} decreases with N . The maximum in ΔG_{esc}
5 means that the spherical micelle of around this size is the most stable near the CMC
6 and the surfactant has more difficulty escaping from spherical micelles of this size N .
7 The CTAC surfactant has larger ΔG_{esc} than does the SDS surfactant at similar N ,
8 owing to the longer hydrophobic tail of the CTAC surfactant. Also, [Figure 3b](#) shows
9 that there is a maximum in ΔG_{esc} near $R = 1.0$ for both SDS and CTAC spherical
10 micelles.

11 The initial increase in ΔG_{esc} is easily understood as the consequence of adsorption of
12 ions with opposite charge onto the micelle surface causing a decrease of the total
13 charge of the micelle, as shown in [Figure S7](#) in the SI; this screens the electrostatic
14 repulsions among surfactant head groups, making it easier to extract them from the
15 micelle. For SDS, the net remaining negative charge on the micelle reaches a
16 minimum near $R \sim 1$ (see [Figure S7](#) in the SI), which then explains the maximum in
17 ΔG_{esc} at this R seen in [Figure 3b](#). For the CTAC micelle, [Figure S7](#) shows that
18 monotonically increasing surface adsorption of salicylate ions induces a *reversal* of
19 the sign of the micelle charge at around $R \sim 1.5$, so that the absolute value of net
20 micelle charge reaches zero and then increases. Thus, pulling a CTA^+ molecule from
21 the negatively charged surface containing an excess of Sal^- should become
22 increasingly more difficult at $R > 1.5$, while the opposite is seen in [Figure 3b](#). This
23 peculiar result could be due to effects of the increase in ionic strength with increasing
24 R , and it is possible that the removal of CTA^+ from the micelle is accompanied by
25 re-arrangements of the surfactant-water interface, such as the re-arrangements of
26 adsorbed Sal^- ions, that are not readily apparent in our averaged profiles. While more
27 detailed examination of the response of the micellar interface to the removal of a
28 CTA^+ might shed light on the issue, these details may be difficult to unravel and
29 sensitive to the forcefield, and so we leave further investigation of this issue to future
30 work. Finally, we note that G_{esc} obtained using cut-off scheme follows a similar trend

1 with increasing R , but is slightly greater than that obtained using the PME, as shown
 2 in Figure 3a and discussed in Section 3.1.

3
 4 **Figure 3.** Escape free energies of surfactant from spherical micelles as a function of aggregation
 5 number N at $R = 0$ (a) and salt-to-surfactant concentration ratio R (b). The solid lines in (a) are
 6 fitted by an empirical equation $f(N) = a + b \times N / (1 + c \times N + d \times N^2)$, and the fitting parameters a ,
 7 b , c and d are given in Table S3. For (b), spherical micelles with $N = 60$ and 80 are adopted
 8 respectively for SDS and CTAC surfactants, both using PME electrostatics. Error bars indicate
 9 standard deviations.

10 *Mean first-passage time.* Using the PMF profiles of surfactant pulled from the
 11 micelles, we can obtain the mean first-passage time for a surfactant to escape from the
 12 micelle from the Smoluchowski equation which governs the diffusion of the
 13 surfactant molecule in a potential well without inertial effects, given as follows [74]

14
$$\tau(x, x_f) = \int_x^{x_f} dx' \frac{\exp[W(x')/kT]}{D(x')} \int_{x_0}^{x'} dx'' \exp[-W(x'')/kT] \quad (1)$$

15 where $\tau(x, x_f)$ is the mean time for a surfactant starting at a position x (near the COM
 16 of micelle) to reach the final position x_f . x_0 corresponds to the reflecting boundary for
 17 the Smoluchowski equation. In this study, the reaction coordinate r is the same as the
 18 position x while x_0 is taken as the smallest value of the reaction coordinate. $D(x')$ is
 19 the diffusion coefficient at the position x' . $W(x)$ is the free energy profile (i.e., PMF
 20 profile) along x (i.e., along the reaction coordinate r). Since the effects of the diffusion
 21 coefficient on the mean first-passage time are far less significant than that of free

1 energy profile, we treat the diffusion coefficient as a constant, namely 7.40×10^{-6}
2 $\text{cm}^2 \cdot \text{s}^{-1}$ for SDS [52] and $3.81 \times 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$ for CTAC [75], and we do not attempt to
3 obtain the position-dependent diffusion coefficient.

4 The resulting mean first-passage time for a surfactant to transfer from the micelle to
5 the bulk phase is shown in Figure 4a. As discussed earlier, PMF profiles are
6 maximum at a distance r of about 3.0 nm away from the COM of the micelle. Beyond
7 this distance, the mean first-passage time profile levels off. Therefore, in this study,
8 the escape time is defined as the mean time for a surfactant to travel from its initial
9 position near the bottom of the PMF well to the position where the PMF reaches a
10 maximum. We find from Figure 4a that the escape times of SDS and CTAC
11 surfactants from a micelle with aggregation number N of 60 are around $5.8 \mu\text{s}$ and
12 $32.3 \mu\text{s}$, respectively. The value for SDS is consistent with the results of atomistic
13 simulation [52] and experiments [11], which indicates that the surfactant exchange
14 between micelles and bulk solution dominates the kinetics of size change of spherical
15 micelles.

16 We next analyze the influence of N and R on the escape time of SDS and CTAC
17 surfactant, as shown in Figure 4b and 4c. With increasing N , the escape time increases
18 at low N and reaches a peak at an N corresponding to the maximum ΔG_{esc} , which in
19 this study, is $N = 60$ for SDS and $N = 80$ for CTAC. As N rises further, the escape time
20 decreases due to the elongation and reduction of stability of the spherical micelle.
21 Compared to SDS, a CTAC surfactant has a longer escape time. Moreover, the escape
22 times of both surfactants show qualitatively similar dependences on R , including a
23 pronounced maximum near $R = 1.0$, although remaining much larger for CTAC than
24 for SDS, as shown by the differing scales of the right and left axes. This means that
25 the salts significantly increase the escape time at $R \sim 1.0$ and induce the formation of
26 more stable spherical micelles, which may due to the stronger electrostatic screening
27 by the adsorption of ions onto the micelle surface.

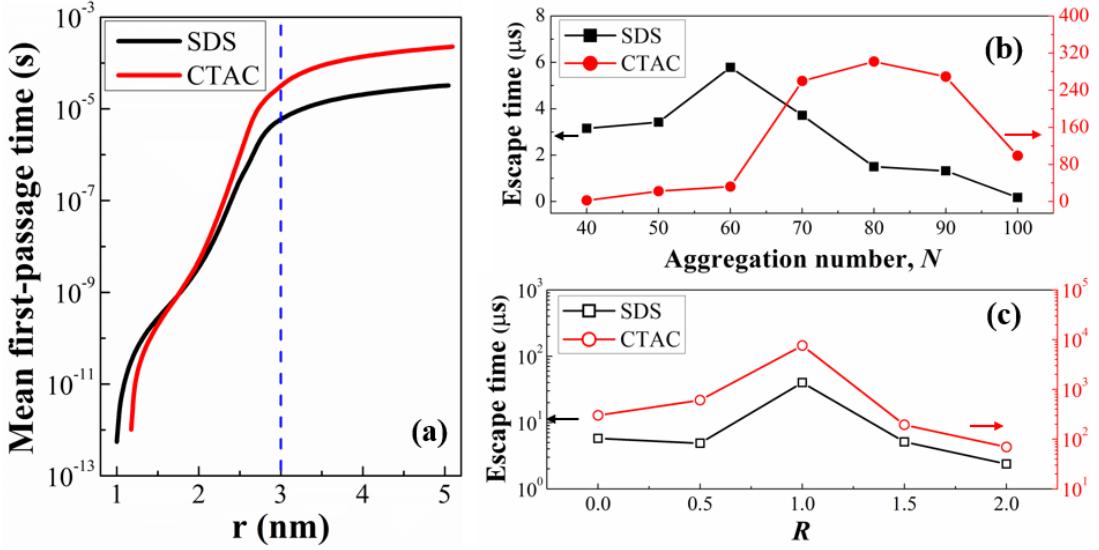
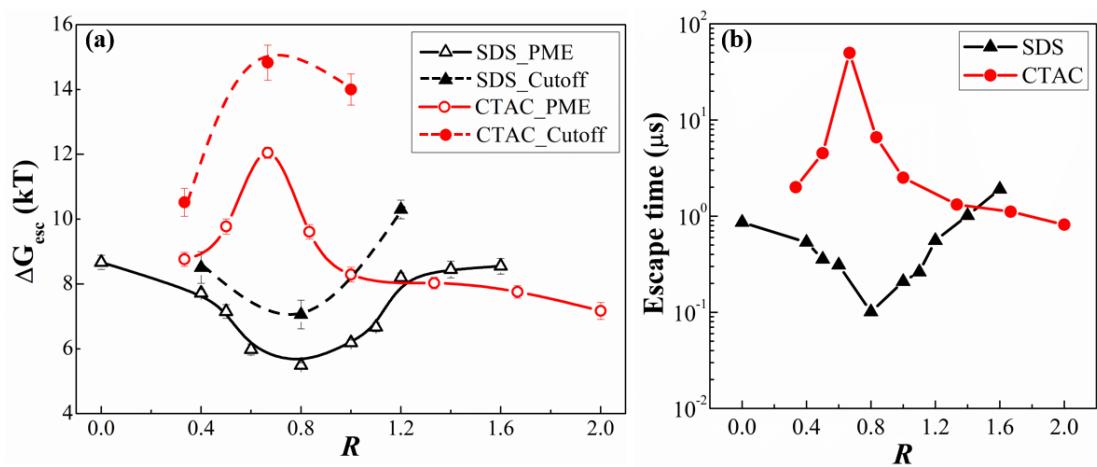


Figure 4. (a) Mean first-passage time for SDS and CTAC surfactants to escape from their spherical micelles at aggregation number N of 60. The blue dotted line represents the position ($r \sim 3.0$ nm) of maximum PMF values, which is adopted to calculate the escape times as functions of N for $R = 0$ (b) and as functions of R for spherical micelles of optimal size (c).

3.3 Cylindrical micelles

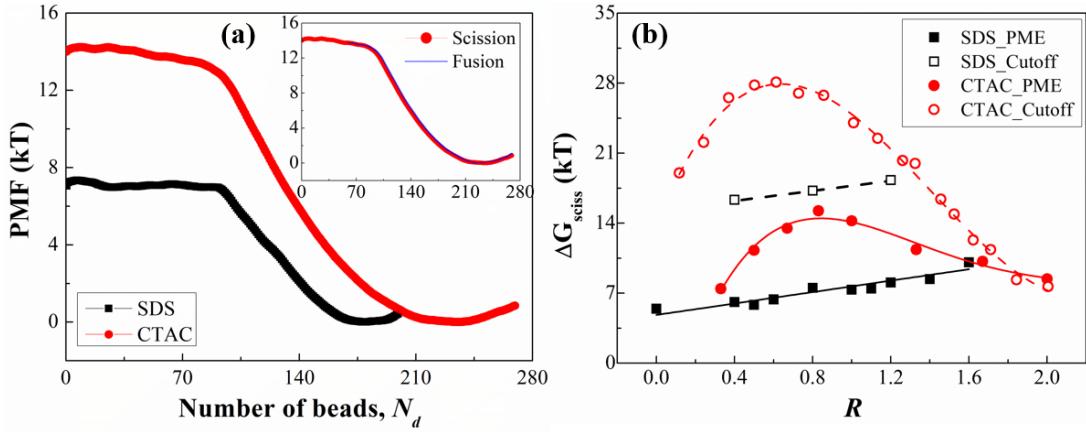

For cylindrical micelles, the strong adsorption of relatively large salicylate ions results in thinner and longer cylindrical CTAC micelles due to the electrostatic screening. Details of this can be found in Section 4.2 (Figure S13) of the SI.

Escape free energy and escape time. As we did for spherical micelles, we here calculate the escape free energy ΔG_{esc} of surfactant from a cylindrical micelle using umbrella sampling and WHAM. Figure 5a shows that ΔG_{esc} is non-monotonic in R , and dependent on the surfactant and ion type. While ΔG_{esc} of SDS from a spherical micelle is maximum at $R \sim 1.0$ (see Figure 3b), for a cylindrical micelle ΔG_{esc} decreases to a minimum at $R \sim 0.75$, followed by an increase at higher R . For CTAC micelles, ΔG_{esc} depends similarly on R for both spherical and cylindrical micelles; compare Figure 5a with Figure 3b; both have maxima, which is around 12 kT at $R \sim 0.67$ for a cylindrical micelle, and around 18 kT at $R \sim 1.0$ for a spherical one. Both for SDS and CTAC cylindrical micelles, the cut-off electrostatics gives greater values of ΔG_{esc} than does the PME electrostatics, although ΔG_{esc} shows a similar dependence on the R . Mandal and Larson showed that the radius of a cylindrical micelle influences ΔG_{esc} [54], suggesting that the nonlinear dependence of ΔG_{esc} on R arises

1 from a combination of electrostatic screening by adsorbed oppositely charged ions
2 and the dependence of micelle radius on salt concentration. For ΔG_{esc} of a CTAC
3 surfactant from a cylindrical micelle, the adsorption of salicylate ions on the micelle
4 surface screens the electrostatic interaction between surfactant charged head groups
5 making it harder for charged surfactants to escape the micelle, since there is less
6 electrostatic repulsion. This can account for the increase in ΔG_{esc} with R at $R < 1$. If
7 we ignore the effect of micelle radius, we might expect ΔG_{esc} to reach a maximum at
8 $R \sim 1.0$, where the micelle is effectively charge neutral and has smallest electrostatic
9 repulsion between surfactant head groups owing to the strong adsorption of salicylate
10 ions. However, ΔG_{esc} shows a maximum at a smaller $R \sim 0.67$, perhaps because the
11 cylindrical micelle becomes thinner with R increasing, which reduces ΔG_{esc} . Thus, the
12 combination of micelle charge neutralization and reduced micelle radius might
13 explain the shift in the maximum ΔG_{esc} to $R < 1$.

14 We find much less adsorption of simple sodium ions onto the SDS cylindrical micelle
15 surface at low R than is the case for the hydrophobic salicylate ions onto the CTAC
16 micelle surface. (See [Figure S11](#) in the SI) Thus, the electrostatic screening of ions is
17 weaker for SDS/NaCl micelles and the micelle radius changes less than for
18 CTAC/NaSal micelles. More sodium ions locate outside the micelle surface (See
19 [Figure S9\(a\)](#) in the SI). By integrating the radial dependence of the number density of
20 salt ions around the SDS head group ([Figure S10](#)) we find that the fraction of salt ions
21 “bound” to the surfactant head group decreases greatly when the surfactant escapes
22 from the micelle ([Table S4](#)). However, the average number of sodium ions bound to
23 the escaped surfactant is maximum at $R = 0.8$ for the cylindrical SDS micelle but not
24 for the spherical micelle (see [Table S5](#)). This value of $R = 0.8$ is the same as that for
25 which the peculiar minimum in ΔG_{esc} occurs for the cylindrical SDS micelle but not
26 for the spherical micelle, as mentioned above, suggesting a correlation between the
27 two. With R increasing above 0.8, significant numbers of sodium ions adsorb onto the
28 micelle surface, screening the electrostatic repulsion between head groups, and
29 allowing them to pack more tightly (see [Figure S12](#)). This may explain the increase in
30 ΔG_{esc} at higher R , but further work is required to provide a convincing explanation of

1 the peculiar dependence of ΔG_{esc} on R for cylindrical SDS micelles.
2 Combining the PMF profiles for surfactant escaping from the cylindrical micelle with
3 Equation 1 for the mean first-passage time, we can obtain the escape time of
4 surfactant from cylindrical micelles, as shown in Figure 5b, assuming that the
5 diffusion coefficients of SDS and CTAC surfactants are the same as those used for
6 spherical micelle. For CTAC cylindrical micelles, a peak in escape time for CTAC
7 surfactant occurs at $R \sim 0.67$, which corresponds to the maximum ΔG_{esc} . This peak is
8 about one order of magnitude larger than those at other R values. For SDS cylindrical
9 micelles, there is a minimum of ΔG_{esc} at $R \sim 0.8$. The escape time for different R for
10 SDS/NaCl is in the range of 0.1-1 μs , which means that the effect of NaCl on the
11 escape time of an SDS surfactant is not as significant as the corresponding effect of
12 NaSal on the CTAC escape time. Compared to the spherical micelles, the much
13 smaller escape times of both SDS and CTAC surfactants from their cylindrical
14 micelles indicates that the surfactant exchange between micelles and the bulk solution
15 is faster for cylindrical than for spherical micelles. We note that the much smaller
16 escape time of surfactant from cylindrical micelles relative to spherical ones is likely
17 due to the stronger electrostatic repulsions between surfactant heads on the micelle
18 surface, arising from the greater aggregation numbers and the smaller surface
19 area-volume ratios of the former.



21 **Figure 5.** (a) Escape free energies and (b) escape times of SDS and CTAC surfactants from
22 cylindrical micelle as a function of R .

23 *Scission free energy.* For long cylindrical micelles, the dynamics of micelle size

1 change are believed to be controlled by micelle fusion/scission, rather than by
2 adsorption/desorption of individual surfactants. Here, we obtain PMFs and the
3 scission free energies ΔG_{sciss} of periodic cylindrical micelles by umbrella sampling
4 with WHAM, where the reaction coordinate is the number N_d of surfactant beads in
5 the scission region ($d = 3$ nm), as discussed in the Methodology section. Typical
6 PMFs for SDS and CTAC micelles, with $R = 1$, are shown in [Figure 6a](#). As N_d
7 decreases, the PMF gradually rises to a plateau that is reached when N_d drops to less
8 than around 100. At large N_d , the PMF has a minimum, which corresponds to the
9 average number of beads in the scission region at equilibrium. ΔG_{sciss} is then the
10 difference between the plateau and the minimum of the PMF. At $R = 1$, ΔG_{sciss} of the
11 CTAC micelle is larger than that of SDS micelle, mainly owing to the larger micelle
12 radius of the former. The inset of [Figure 6a](#) shows that the PMF of micelle scission
13 and its reverse, micelle fusion, are the same, implying that the PMF is reversible, and
14 hence is a thermodynamic quantity, giving an equilibrium free energy of scission.
15 [Figure 6b](#) shows a weak linear increase in ΔG_{sciss} with R for an SDS cylindrical
16 micelle, while for CTAC, ΔG_{sciss} has a local maximum whose magnitude increases
17 and corresponding value of R decreases, when a simple electrostatic cut-off is used as
18 opposed to long-range PME electrostatics. For SDS, since the micelle diameter is
19 nearly independent of R (see [Figure S13\(b\)](#)), we infer that ΔG_{sciss} is mainly governed
20 by electrostatic interactions. As R rises, the weak adsorption of sodium ions onto the
21 micelle surface screens the electrostatic repulsion between surfactant head groups,
22 which presumably produces the weak increase in ΔG_{sciss} with R . For CTAC micelles,
23 ΔG_{sciss} is expected to be strongly affected by both the electrostatics and the micelle
24 radius. At low R (< 0.8), with increasing R , the micelle radius is roughly constant (see
25 [Figure S13\(b\)](#)), so that the strongly increasing electrostatic screening by the
26 adsorption of salicylate ions, induces an increase of ΔG_{sciss} . At high R (> 0.8), the
27 adsorption of salicylate ions on the micelle surface gradually reaches saturation (see
28 [Figure S11](#)) and the electrostatic screening begins to saturate. Hence, the reduction of
29 ΔG_{sciss} with increasing R at large R is expected to be dominated by the distinct
30 decrease of micelle radius with increasing R that one finds at large R in [Figure S13\(b\)](#).

1 While the dependences of PMF on R for the PME and the shifted-cutoff electrostatics
 2 are qualitatively similar, the use of PME causes a shift of the peak in ΔG_{sciss} from $R \sim$
 3 0.62 to $R \sim 0.8$ and a significant reduction in height, relative to the curve for the
 4 shifted cut-off. The latter change is likely due to the longer-range electrostatic
 5 interactions with PME, which makes it easier to break the micelle. Since at low R , the
 6 electrostatics has a more important effect on ΔG_{sciss} , the difference of ΔG_{sciss} between
 7 PME and shifted cut-off is greater there than at large R , where ΔG_{sciss} is mainly
 8 controlled by the micelle radius. Since the adsorption of salicylate ions on micelle
 9 surface is saturated at large R , the elongation of cylindrical micelle gradually reaches
 10 a limit. The difference in micelle radius obtained using either PME or the cut-off
 11 scheme is small; thus the ΔG_{sciss} values for the two cases converge at large R .

12 **Figure 6.** (a) PMFs as functions of the surfactant bead number N in the scission region at $R=1$ for
 13 SDS and CTAC cylindrical micelles. The inset shows the PMFs for scission and fusion processes.
 14 Error bars are standard deviations, which are of the order of the symbol size and therefore not
 15 visible. (b) Scission free energies of SDS and CTAC cylindrical micelles as functions of R , where
 16 for CTAC results using an electrostatic cut-off rather than PME, from ref. [54], are also shown.
 17 The surfactant concentration in our work (0.13 mol/L) differs slightly from that in ref. [54] (0.15
 18 mol/L), but this difference should not be significant.
 19

20 3.4 Micellar equilibrium and kinetics

21 *Spherical micelle CMC.* For spherical micelles, we can estimate the mole fraction
 22 X_{CMC} of surfactants at the critical micelle concentration (CMC), defined as the
 23 concentration at which the number of surfactants in spherical micelles equals the
 24 number that remain isolated in solution, by the following equation, which is based on
 25 ideal mixing of isolated surfactant molecules and micelles in solvent [13, 52],

$$1 \quad X_{CMC} = \exp(-\Delta G_{esc}^0 / kT) \quad (2)$$

2 here ΔG_{esc}^0 represents the standard state chemical potential for the transfer of a
 3 surfactant molecule from solution to a micelle at the CMC, which in this study, we
 4 estimate by the surfactant escape free energy ΔG_{esc} determined by umbrella sampling.
 5 After obtaining X_{CMC} , we can estimate the CMC in units of molarity, by using $CMC =$
 6 $X_{CMC} \times 55.5 \text{ mol/L}$. Since ΔG_{esc} depends on micelle aggregation number N as shown
 7 in [Figure 3\(a\)](#), we use the fitted maximum values of ΔG_{esc} ($\sim 9.7 \text{ kT}$ and $\sim 13.9 \text{ kT}$) to
 8 estimate the CMC since this represents the most stable, and most probable, micelle
 9 size, which is around 63 and 80, for SDS and CTAC micelles, respectively. The
 10 corresponding CMC, based on ΔG_{esc} for these sizes, is around 3.4 mM and 0.1 mM
 11 for SDS and CTAC micelles, which are smaller by factors of 2.5 and 13, respectively,
 12 than the measured CMCs, which are 8.2 mM [\[76\]](#) for SDS and 1.3 mM [\[77\]](#) for
 13 CTAC. We attribute these underestimates to inaccuracies ΔG_{esc} resulting from the
 14 MARTINI forcefield either with PME ($\Delta G_{esc} \sim 9.7 \text{ kT}$) or with the shifted cut-off
 15 ($\Delta G_{esc} \sim 10.5 \text{ kT}$) since a PMF from atomistic simulation gives a lower ΔG_{esc} (~ 9.0
 16 kT) [\[52\]](#). The calculated CMC ($\sim 6.8 \text{ mM}$) from atomistic simulation is much closer to
 17 the experimental value, suggesting that the deviations in our work are due to the
 18 coarse-grained force field. We note in passing that from the dependence of ΔG_{esc} on N ,
 19 one can estimate the entire micelle size distribution as a function of surfactant
 20 concentration, as described by Yuan and Larson [\[53\]](#).

21 *Transition in cylindrical micellar kinetics.* For cylindrical micelles, the micellar
 22 kinetics may be regulated by the adsorption/desorption (a/d) of individual surfactant
 23 molecules or by micelle scission/fusion (f/s), or by a combination of both. To
 24 determine which mechanism dominates at a particular salt or surfactant concentration,
 25 we compare the rate at which a cylindrical micelle changes its size by roughly a factor
 26 two by f/s or by a/d. The rates of a/d and f/s kinetics are controlled by the time
 27 constants τ_{esc} and τ_{br} , which are the average escape time of a typical surfactant
 28 molecule from the micelle and the breakage time of a cylindrical micelle, respectively.
 29 For growth or shrinkage of a micelle of aggregation number N by a/d kinetics, a *net*

1 addition or subtraction of order $\sim N$ surfactants events must occur. Since τ_{esc} is the
2 mean time for a typical surfactant molecule to escape the micelle, the mean time
3 between single surfactant desorption or adsorption events is $\Delta t_1 = \tau_{esc}/N$. Addition and
4 subtraction events, if taken to be uncorrelated, cancel each other out except for
5 Gaussian drift, and so N^2 such events must occur for the micelle to experience a net
6 change of N surfactants. Thus, the time for micelle growth/shrinkage by stepwise a/d
7 is $\tau_N \sim N^2 \Delta t_1 \sim \tau_{esc} N$.

8 For scission/fusion of a micelle of size N , the average breakage time τ_{br} is the time for
9 the micelle scission/fusion to roughly halve/double the micelle size, which can be
10 estimated by using the micelle scission energy via the following equation [54]

$$\tau_{br} = \tau_0 \exp(E'_{sci} / kT) \quad (3)$$

12 where $E'_{sci} = E_{sci}^0 - \mathbf{F} \cdot d\mathbf{r}$ is the effective scission energy under an external tension \mathbf{F}
13 along the micelle and τ_0 is a constant that represents the “attempt” time for micelle
14 breakage. Because there is no external force acting on cylindrical micelle in this study,
15 we set F to zero and the effective scission energy then equals the scission free energy
16 ΔG_{sciss} of a cylindrical micelle, as we mentioned before. In ref. [54], the constant τ_0
17 was found to have a value on the order of ~ 1 ns, which was obtained by calculating
18 from MD simulations the breakage time and effective scission free energy at a series
19 of applied values of external force, needed to accelerate breakage to bring it within
20 the time frame of molecular dynamics simulations.

21 Assuming that τ_0 and $d\mathbf{r}$ are independent of salt concentration, we estimate the
22 constant τ_0 by calculating the breakage time of a cylindrical micelle with low values
23 of $R = 0$ and 0.33 , for SDS and CTAC cylindrical micelles, respectively under several
24 applied values of external force. The external force is applied by decreasing the
25 pressure along the z direction (the micelle axis) while the pressures along the x and y
26 direction are set to 1 bar. Based on Equation 3, the natural logarithm of τ_{br} should be
27 linear with the \mathbf{F} (see Figure S14). Extrapolating these linear fits to zero \mathbf{F} , we can
28 obtain the average breakage time τ_{br} of a cylindrical micelle under no external force.
29 Combined with the scission free energy, the constant τ_0 thus can be determined, which

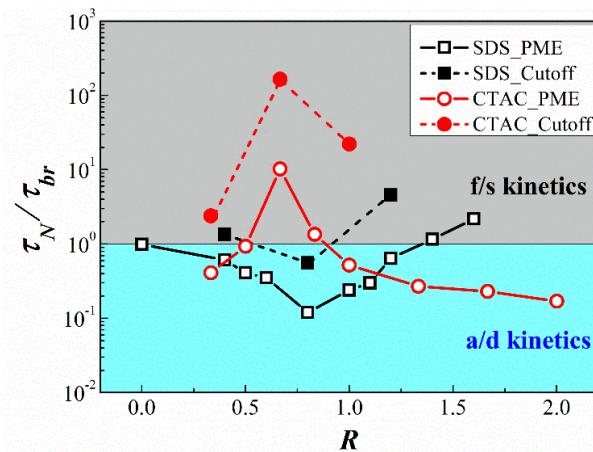
1 is about 0.28 ns and 0.65 ns for SDS and CTAC cylindrical micelles, respectively, in
2 our simulations.

3 We note that the breakage time is inversely proportional to the length (or aggregation
4 number) of the micelle, since each part of a micelle has an equal and independent
5 chance, per unit length, to break. Thus, if we assume that the constant τ_0 is
6 independent of salt concentration and inversely proportional to N we can set $\tau_0 = \tau_{00}/N$
7 with $\tau_{00} \sim 68$ ns and ~ 195 ns for SDS and CTAC cylindrical micelles respectively to
8 calculate the average breakage time for micelles of different lengths. Actually, this
9 constant is likely affected by the type and concentration of salts, and more precise
10 values deserve to be further investigated, which we leave to our future work. We note
11 that the average aggregation number \bar{N} of a cylindrical micelle is related to the
12 scission free energy ΔG_{sciss} roughly by [23]

$$13 \quad \bar{N} \approx 2X_{\text{tot}}^{1/2} \exp(\Delta G_{\text{sciss}} / 2kT) \quad (4)$$

14 where X_{tot} is the total mole fraction of all surfactant molecules in the solution. (An
15 alternative expression for ideal volumetric mixing entropy produces the same
16 expression except with $\Phi^{1/2}$ replacing $2X_{\text{tot}}^{1/2}$, where Φ is the total volume fraction of
17 surfactant [23].)

18 We now adopt the ratio τ_N/τ_{br} , the ratio of the time for the micelle to double in size by
19 a/d to the time for micelle size doubling via f/s, to estimate which of the two
20 processes is dominant. If the ratio is smaller than unity, the micelle size change will
21 be mainly controlled by the stepwise surfactant adsorption/desorption; otherwise,
22 scission/fusion dominates. Using Figure 5 and $\tau_N \sim \tau_{\text{esc}} \bar{N}$ to compute τ_N , and Figure
23 6b to obtain ΔG_{sciss} , with $\tau_{br} = (\tau_{00}/\bar{N}) \exp(\Delta G_{\text{sciss}}/kT)$, we plot in Figure 7 the ratio
24 $\tau_N/\tau_{br} = (\tau_{\text{esc}}/\tau_{00}) \bar{N}^2 \exp(-\Delta G_{\text{sciss}}/kT)$ as a function of R for SDS and CTAC cylindrical


25 micelles. To calculate the average aggregation number \bar{N} in this calculation, we use
26 Equation 4 and take mole fractions $X_{\text{tot}} = 0.02$ and 0.01 for SDS and CTAC micelles,
27 respectively, giving the values listed in Table S6 in the SI. PME gives unrealistically
28 short cylindrical micelles; i.e., with a maximum no higher than ~ 400 for CTAC

1 micelles at $R = 0.83$, corresponding to micelles only around 25 nm long, and with
2 SDS micelles being too short even to be cylindrical; see [Table S6](#). We therefore also
3 use the shifted cut-off free energies to calculate micelle lengths, and obtain lengths of
4 CTAC micelles ranging from 4 to 14 μm as R increases from 0.33 to 0.50, while SDS
5 micelle length ranges from 0.069 to 0.185 μm , or 69 to 185 nm, for R increasing from
6 0.4 to 1.2 (see [Table S7](#)). These values from the shifted cut-off are more consistent
7 with experiments [\[78-81\]](#). We took the same constant τ_{00} for both PME and cut-off
8 electrostatics. The ratios τ_N/τ_{br} in [Figure 7](#) derived from these aggregation numbers
9 show a non-monotonic dependence on R , which are different for SDS and CTAC
10 cylindrical micelles. The ratio τ_N/τ_{br} has a minimum at $R = 0.8$ for SDS cylindrical
11 micelles while that for CTAC cylindrical micelle shows a maximum at $R = 0.67$, near
12 the value at which the scission free energy has a maximum.

13 The ratios τ_N/τ_{br} for SDS cylindrical micelles, using either shifted cut-off or PME, are
14 between 0.1 and 10, meaning that the size change of SDS cylindrical micelles is
15 governed by a combination of the adsorption/desorption (a/d) kinetics and micelle
16 fusion/scission (f/s) kinetics. The a/d kinetics plays a dominant role at around $R \sim 0.8$,
17 at which a smaller escape time of an SDS surfactant from a cylindrical micelle occurs
18 apparently due to the binding of sodium ions to the escape surfactant. Both a/d and f/s
19 kinetics are important for SDS cylindrical micelles, because these micelles are
20 relatively short, no longer than 185 nm, and so not drastically different from spherical
21 micelles, for which a/d dynamics is dominant.

22 For the longer CTAC cylindrical micelles, using either PME or shifted cut-off
23 electrostatics, we find that an increase in NaSal concentration can induce a transition
24 from a mixture of a/d and f/s (at $R = 0.33$) to predominantly f/s kinetics (at $R = 0.67$).
25 The higher scission free energies obtained using the electrostatic cut-off method give
26 orders of magnitude longer cylindrical micelles, and therefore much faster scission
27 kinetics, but the trends noted above remain qualitatively the same for both cut-off and
28 PME electrostatics, in particular the transition from a/d to f/s dynamics with
29 increasing salt, up to where the micelle length is maximum. The differences between
30 cut-off and PME electrostatics in the a/d to f/s transitions are not as great as one might

1 expect, given the exponential dependences of micelle breakage time and surfactant
 2 escape time on the breakage and escape free energies. This is because the difference
 3 in each of these free energies between cut-off and PME electrostatics are in the same
 4 direction, and so compensate each other to some degree. That is, the much slower
 5 breakage time implied by cut-off electrostatics, relative to PME, is compensated by
 6 the much slower escape time of a surfactant, so that the transition from a/d to f/s is not
 7 affected by the treatment of electrostatics as much as might otherwise be the case. The
 8 prediction of absolute rates of micelle transitions will be affected to a much great
 9 extent, however, which should motivate efforts to carry out free energy simulations
 10 for either atomistically resolved molecules, or for improved coarse-grained
 11 treatments.

12
 13 **Figure 7.** The ratio τ_N/τ_{br} as a function of R for cylindrical micelles with micelle aggregation
 14 numbers determined from Eq. 4 and tabulated in Table S6 for PME and cut-off electrostatics. The
 15 cyan and gray zone represent the micelle size change dominated by a/d kinetics and f/s kinetics,
 16 respectively.

17 3.5 Consistency of free energy calculations

18 A cylindrical micelle of a given size can be built up by either fusing together two
 19 micelles of half that size, at a rate controlled by ΔG_{sciss} , or by doubling a micelle of
 20 half that size by successive addition of individual surfactants, at a rate controlled by
 21 ΔG_{esc} . Since the micelle size distribution is set by thermodynamics, there must
 22 therefore be an identity relating ΔG_{sciss} to the ΔG_{esc} values for escape of a surfactant
 23 from micelles of all sizes up to that of a cylindrical micelle. The detailed derivation of
 24 the identity is given in Section 6 of the SI, but the most relevant result is given here:

$$1 \quad \Delta\mu_{cyl}^0 \approx \frac{1}{m-1} \sum_{n=2}^m \Delta\mu_n^0 = \Delta\bar{\mu}_n^0 \quad (5)$$

2 where $\Delta\bar{\mu}_n^0$ is the average value of $\Delta\mu_n^0$ over the distribution of spherical micelles,
 3 and m is the largest aggregation number of a spherical micelle, with larger micelles
 4 considered to be “cylindrical.” Note that $\Delta\mu_{cyl}^0$ and $\Delta\bar{\mu}_n^0$, respectively, correspond to
 5 the escape free energy ΔG_{esc} from cylindrical and spherical micelles in this work.
 6 Since the above identity requires knowing the escape free energies of all micelle sizes
 7 at a given salt concentration, the only case for which we have in this paper obtained
 8 the data needed to check this identity is that of SDS spherical and cylindrical micelles
 9 with $R=0$. The average value of the escape free energy for SDS spherical micelles
 10 with $R=0$ is found to be 8.41 kT while the escape free energy of a surfactant from SDS
 11 cylindrical micelle with $R=0$ is 8.67 kT. The near equality of these two values
 12 confirms the consistency of the free energies we have obtained by umbrella sampling
 13 from MD simulations.

14 4. Conclusion

15 We here developed the first practical method for obtaining the free energies and
 16 kinetic coefficients of micellar size transitions from molecular simulations. This
 17 provides a crucial next step towards supplying the micelle-size-dependent rate
 18 constants needed to make the Becker-Döring [37] and related models [24] applicable
 19 to predictions of micellar kinetics in experiments. Determination of these rate
 20 constants allows us to estimate for the first time the degree to which changes in
 21 micelle size occur by adsorption/desorption of individual surfactant molecules or by
 22 fusion/scission of micelles. To obtain these rate constants, we applied umbrella
 23 sampling simulation methods [52-55] to spherical and cylindrical micelles of sodium
 24 dodecylsulfate (SDS) in NaCl solutions and of cetyltrimethylammonium chloride
 25 (CTAC) in NaSal solutions for various aggregation numbers (N) and salt-to-surfactant
 26 molar ratios (R). We found a non-monotonic dependence of the surfactant escape free
 27 energy ΔG_{esc} on N and R , with a peak at $N = 60$ and 80 for SDS and CTAC,

1 respectively. At this N , a maximum ΔG_{esc} is achieved at $R = 1$, apparently because the
2 micelle is effectively charge neutralized by salt ions at this value of R . Using the
3 Smoluchowski equation with the computed values of ΔG_{esc} , we obtained the escape
4 time of a surfactant from a micelle as a function of N and R , with results consistent
5 with the literature [11, 52]. In addition, by using ΔG_{esc} and ideal mixture theory, we
6 estimated the CMC of a spherical micelle, which was lower for CTAC surfactants
7 than for SDS ones [77], because of the longer hydrophobic tails of the former.

8 For cylindrical micelles, our simulations predict non-monotonic dependences of ΔG_{esc}
9 and escape time τ_{esc} of surfactant as functions of R . For CTAC micelles, this
10 non-monotonic behavior is attributed to the electrostatic screening induced by ion
11 adsorption and the reduction of radius with increasing R . The maximum ΔG_{esc} and τ_{esc}
12 occur at $R \sim 0.67$. The scission free energy ΔG_{sciss} of a cylindrical micelle increases
13 slightly with R for SDS micelles, while for CTAC micelles a local maximum in ΔG_{sciss}
14 as a function of R is found, which seems to be set by a combination of electrostatic
15 screening and the salt-dependence of the micelle radius [54]. The use of Particle Mesh
16 Ewald (PME) electrostatics rather than a simple electrostatic cut-off produces a
17 smaller ΔG_{sciss} and a shift of the peak in ΔG_{sciss} from $R \sim 0.62$ [54, 55] to $R \sim 0.8$.

18 By comparing the scission time estimated from ΔG_{sciss} with the surfactant escape time
19 τ_{esc} , we find that for CTAC/NaSal cylindrical micelles, with increasing R micelle
20 kinetics transition from a mixture of surfactant adsorption/desorption and micelle
21 fusion/scission to predominantly fusion/scission, and then back again, with
22 fusion/scission dominating near $R \sim 0.67$, approximately where the micelle length is
23 greatest. For SDS/NaCl cylindrical micelles, the micelle length is much less sensitive
24 to NaCl concentration, and a reverse transition towards greater dominance of
25 adsorption/desorption is found near $R \sim 0.8$, due to faster surfactant escape from the
26 micelle at this value of R . An identity relating the scission free energy to the escape
27 free energies of a surfactant from spherical micelles of all sizes and from a cylindrical
28 micelle is verified using our calculated free energies.

29 While the accuracy of the results presented here is limited by our use of
30 coarse-grained force fields, the methods pioneered here can in the future be

1 implemented with atomistic forcefields, which should improve on their accuracy and
2 allow more quantitative comparisons with experimental results.

3

4 **CRediT authorship contribution statement**

5 **Boyao Wen**: Conceptualization, Methodology, Software, Validation, Formal analysis,
6 Investigation, Writing - original draft, Visualization. **Bofeng Bai**: Writing - review &
7 editing, Funding acquisition. **Ronald G. Larson**: Conceptualization, Resources,
8 Writing - review & editing, Supervision, Funding acquisition.

9

10 **Declaration of Competing Interest**

11 The authors declare that they have no known competing financial interests or personal
12 relationships that could have appeared to influence the work reported in this paper.

13

14 **Acknowledgement**

15 We are grateful for financial support from the National Science Foundation under
16 grant CBET 1907517. Any opinions, findings, and conclusions or recommendations
17 in this material are those of the authors and do not necessarily reflect the views of
18 NSF. Boyao Wen is supported by the National Natural Science Foundation of China
19 (No.51888103), as well as by the China Scholarship Council. Computational
20 resources and services were provided by Advanced Research Computing at the
21 University of Michigan, Ann Arbor.

22

23 **Appendix A. Supplementary material**

24 Supplementary material to this article can be found online at https://doi.org/*****.

25

1 Reference

- 2 1. S. Dhakal, R. Sureshkumar, Topology, length scales, and energetics of surfactant micelles, *The Journal of Chemical Physics* 143 (2) (2015) 024905, <https://doi.org/10.1063/1.4926422>.
- 3 2. T. Imae, R. Kamiya, S. Ikeda, Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions, *Journal of Colloid and Interface Science* 108 (1) (1985) 215-225, [https://doi.org/10.1016/0021-9797\(85\)90253-X](https://doi.org/10.1016/0021-9797(85)90253-X).
- 4 3. F. Lequeux, Structure and rheology of wormlike micelles, *Current Opinion in Colloid & Interface Science* 3 (1) (1996) 341-344, [https://doi.org/10.1016/S1359-0294\(96\)80130-0](https://doi.org/10.1016/S1359-0294(96)80130-0).
- 5 4. D. Danino, Y. Talmon, H. Levy, G. Beinert, R. Zana, Branched threadlike micelles in an aqueous solution of a trimeric surfactant, *Science* 269 (5229) (1995) 1420-1421, <https://doi.org/10.1126/science.269.5229.1420>.
- 6 5. A. S. Poulos, M. Nania, P. Lapham, R. M. Miller, A. J. Smith, H. Tantawy, J. Caragay, J. r. M. Gummel, O. Ces, E. S. Robles, Microfluidic SAXS study of lamellar and multilamellar vesicle phases of linear sodium alkylbenzenesulfonate surfactant with intrinsic isomeric distribution, *Langmuir* 32 (23) (2016) 5852-5861, <https://doi.org/10.1021/acs.langmuir.6b01240>.
- 7 6. Q. Li, J. Wang, N. Lei, M. Yan, X. Chen, X. Yue, Phase behaviours of a cationic surfactant in deep eutectic solvents: from micelles to lyotropic liquid crystals, *Physical Chemistry Chemical Physics* 20 (17) (2018) 12175-12181, <https://doi.org/10.1039/C8CP00001H>.
- 8 7. S. Ezrahi, E. Tuval, A. Aserin, Properties, main applications and perspectives of worm micelles, *Advances in Colloid and Interface Science* 128 (2006) 77-102, <https://doi.org/10.1016/j.cis.2006.11.017>.
- 9 8. J. P. Rothstein, H. Mohammadigoushki, Complex flows of viscoelastic wormlike micelle solutions, *Journal of Non-Newtonian Fluid Mechanics* 285 (2020) 104382, <https://doi.org/10.1016/j.jnnfm.2020.104382>.
- 10 9. J. Larsson, A. Sanchez-Fernandez, A. E. Leung, R. Schweins, B. Wu, T. Nylander, S. Ulvenlund, M. Wahlgren, Molecular structure of maltoside surfactants controls micelle formation and rheological behavior, *Journal of Colloid and Interface Science* 581 (Pt B) (2020) 895-904, <https://doi.org/10.1016/j.jcis.2020.08.116>.
- 11 10. A. Sambasivam, A. V. Sangwai, R. Sureshkumar, Dynamics and scission of rodlike cationic surfactant micelles in shear flow, *Physical Review Letters* 114 (15) (2015) 158302, <https://doi.org/10.1103/PhysRevLett.114.158302>.
- 12 11. R. Zana, *Dynamics of surfactant self-assemblies: micelles, microemulsions, vesicles and lyotropic phases*, CRC Press, 2005.
- 13 12. M. Graciani Mdel, A. Rodriguez, V. I. Martin, G. Fernandez, M. L. Moya, Concentration and medium micellar kinetic effects caused by morphological transitions, *Langmuir* 26 (24) (2010) 18659-18668, <https://doi.org/10.1021/la102857d>.
- 14 13. J. N. Israelachvili, *Intermolecular and surface forces*, Academic Press, 2011.
- 15 14. M. Amann, L. Willner, J. Stellbrink, A. Radulescu, D. Richter, Studying the concentration dependence of the aggregation number of a micellar model system by SANS, *Soft Matter* 11 (21) (2015) 4208-4217, <https://doi.org/10.1039/C5SM00469A>.
- 16 15. A. V. Sangwai, R. Sureshkumar, Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles, *Langmuir* 27 (11) (2011) 6628-6638, <https://doi.org/10.1021/la200900k>.

1 doi.org/10.1021/la2006315.

2 16. V. Patel, N. Dharaiya, D. Ray, V. K. Aswal, P. Bahadur, pH controlled size/shape in CTAB
3 micelles with solubilized polar additives: a viscometry, scattering and spectral evaluation,
4 *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 455 (2014) 67-75,
5 <https://doi.org/10.1016/j.colsurfa.2014.04.025>.

6 17. A. Patist, J. R. Kanicky, P. K. Shukla, D. O. Shah, Importance of micellar kinetics in relation
7 to technological processes, *Journal of Colloid and Interface Science* 245 (1) (2002) 1-15,
8 <https://doi.org/10.1006/jcis.2001.7955>.

9 18. A. Patist, B. Jha, S. Oh, D. Shah, Importance of micellar relaxation time on detergent
10 properties, *Journal of Surfactants and Detergents* 2 (3) (1999) 317-324, <https://doi.org/10.1007/s11743-999-0083-6>.

11 19. S. Oh, D. Shah, Micellar lifetime: Its relevance to various technological processes, *Journal of
12 Dispersion Science and Technology* 15 (3) (1994) 297-316, <https://doi.org/10.1080/01932699408943559>.

13 20. R. Leung, D. Shah, Dynamic properties of micellar solutions: I. Effects of short-chain
14 alcohols and polymers on micellar stability, *Journal of Colloid and Interface Science* 113 (2)
15 (1986) 484-499, [https://doi.org/10.1016/0021-9797\(86\)90183-9](https://doi.org/10.1016/0021-9797(86)90183-9).

16 21. A. K. Shchekin, I. A. Babintsev, L. T. Adzhemyan, Full-time kinetics of self-assembly and
17 disassembly in micellar solution via the generalized Smoluchowski equation with fusion and
18 fission of surfactant aggregates, *The Journal of Chemical Physics* 145 (17) (2016) 174105,
19 <https://doi.org/10.1063/1.4966233>.

20 22. G. Waton, Kinetics associated with the change of the number density of micelles in solution,
21 *The Journal of Physical Chemistry B* 101 (47) (1997) 9727-9731, <https://doi.org/10.1021/jp972480v>.

22 23. M. Cates, S. Candau, Statics and dynamics of worm-like surfactant micelles, *Journal of
24 Physics: Condensed Matter* 2 (33) (1990) 6869, <https://doi.org/10.1088/0953-8984/2/33/001>.

23 24. A. K. Shchekin, L. T. Adzhemyan, I. A. Babintsev, N. A. Volkov, Kinetics of aggregation and
25 relaxation in micellar surfactant solutions, *Colloid Journal* 80 (2) (2018) 107-140, <https://doi.org/10.1134/S1061933X18020084>.

26 25. N. Muller, Kinetics of micelle dissociation by temperature-jump techniques. Reinterpretation,
27 *The Journal of Physical Chemistry* 76 (21) (1972) 3017-3020, <https://doi.org/10.1021/j100665a017>.

28 26. P. Huibers, S. Oh, D. Shah, *Pressure Jump Studies on Micellar Relaxation Time and its Effect
29 on Various Technological Processes*, Surfactant Sci. Series, 1996.

30 27. J. Lang, C. Tondre, R. Zana, R. Bauer, H. Hoffmann, W. Ulbricht, Chemical relaxation
31 studies of micellar equilibria, *The Journal of Physical Chemistry* 79 (3) (1975) 276-283,
32 <https://doi.org/10.1021/j100570a017>.

33 28. M. Frindi, B. Michels, H. Levy, R. Zana, Alkanediyl- α,ω -bis (dimethylalkylammonium
34 bromide) surfactants. 4. Ultrasonic absorption studies of amphiphile exchange between
35 micelles and bulk phase in aqueous micellar solution, *Langmuir* 10 (4) (1994) 1140-1145,
36 <https://doi.org/10.1021/la00016a028>.

37 29. J. Zhang, Z. Ge, X. Jiang, P. Hassan, S. Liu, Stopped-flow kinetic studies of sphere-to-rod
38 transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, *Journal of Colloid
39 and Interface Science* 316 (2) (2007) 796-802, <https://doi.org/10.1016/j.jcis.2007.08.067>.

1 30. M. H. Gehlen, F. C. De Schryver, Time-resolved fluorescence quenching in micellar
2 assemblies, *Chemical Reviews* 93 (1) (1993) 199-221, <https://doi.org/10.1021/cr00017a010>.

3 31. H. Nery, O. Soederman, D. Canet, H. Walderhaug, B. Lindman, Surfactant dynamics in
4 spherical and nonspherical micelles. A nuclear magnetic resonance study, *The Journal of
5 Physical Chemistry* 90 (22) (1986) 5802-5808, <https://doi.org/10.1021/j100280a066>.

6 32. M. A. Bahri, M. Hoebeke, A. Grammenos, L. Delanaye, N. Vandewalle, A. Seret,
7 Investigation of SDS, DTAB and CTAB micelle microviscosities by electron spin resonance,
8 *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 290 (1-3) (2006)
9 206-212, <https://doi.org/10.1016/j.colsurfa.2006.05.021>.

10 33. E. Aniansson, S. Wall, Kinetics of step-wise micelle association, *The Journal of Physical
11 Chemistry* 78 (10) (1974) 1024-1030, <https://doi.org/10.1021/j100603a016>.

12 34. E. Aniansson, S. Wall, Kinetics of step-wise micelle association. Correction and
13 improvement, *The Journal of Physical Chemistry* 79 (8) (1975) 857-858, <https://doi.org/10.1021/j100575a019>.

15 35. E. Aniansson, S. Wall, M. Almgren, H. Hoffmann, I. Kielmann, W. Ulbricht, R. Zana, J. Lang,
16 C. Tondre, Theory of the kinetics of micellar equilibria and quantitative interpretation of
17 chemical relaxation studies of micellar solutions of ionic surfactants, *The Journal of Physical
18 Chemistry* 80 (9) (1976) 905-922, <https://doi.org/10.1021/j100550a001>.

19 36. S. Wall, G. Aniansson, Numerical calculations on the kinetics of stepwise micelle association,
20 *The Journal of Physical Chemistry* 84 (7) (1980) 727-736, <https://doi.org/10.1021/j100444a009>.

22 37. R. Becker, W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen,
23 *Annalen der Physik* 416 (8) (1935) 719-752, <https://doi.org/10.1002/andp.19354160806>.

24 38. M. Kshevetskii, A. Shchekin, F. Kuni, Kinetics of slow relaxation upon the competition
25 between globular and small spherocylindrical micelles, *Colloid Journal* 70 (4) (2008)
26 455-461, <https://doi.org/10.1134/S1061933X0804008X>.

27 39. M. Kshevetskiy, A. Shchekin, Nonlinear kinetics of fast relaxation in solutions with short and
28 lengthy micelles, *The Journal of Chemical Physics* 131 (7) (2009) 074114, <https://doi.org/10.1063/1.3204699>.

30 40. I. Babintsev, L. Adzhemyan, A. Shchekin, Micellization and relaxation in solution with
31 spherical micelles via the discrete Becker-Doring equations at different total surfactant
32 concentrations, *The Journal of Chemical Physics* 137 (4) (2012) 044902, <https://doi.org/10.1063/1.4737130>.

34 41. I. A. Babintsev, L. Adzhemyan, A. Shchekin, Kinetics of micellisation and relaxation of
35 cylindrical micelles described by the difference Becker-Doring equation, *Soft Matter* 10 (15)
36 (2014) 2619-2631, <https://doi.org/10.1039/C3SM52460D>.

37 42. M. Cates, Reptation of living polymers: Dynamics of entangled polymers in the presence of
38 reversible chain-scission reactions, *Macromolecules* 20 (9) (1987) 2289-2296, <https://doi.org/10.1021/ma00175a038>.

40 43. R. Pool, P. G. Bolhuis, Prediction of an autocatalytic replication mechanism for micelle
41 formation, *Physical Review Letters* 97 (1) (2006) 018302, <https://doi.org/10.1103/PhysRevLett.97.018302>.

43 44. M. Sammalkorpi, M. Karttunen, M. Haataja, Micelle fission through surface instability and
44 formation of an interdigitating stalk, *Journal of the American Chemical Society* 130 (52)

1 (2008) 17977-17980, <https://doi.org/10.1021/ja8077413>.

2 45. J. Gao, S. Li, X. Zhang, W. Wang, Computer simulations of micelle fission, *Physical*
3 *Chemistry Chemical Physics* 12 (13) (2010) 3219-3228, <https://doi.org/10.1039/B918449J>.

4 46. Y. Rharbi, M. Karrouche, P. Richardson, Fusion and fission inhibited by the same mechanism
5 in electrostatically charged surfactant micelles, *Langmuir* 30 (27) (2014) 7947-7952,
6 <https://doi.org/10.1021/la501465v>.

7 47. B. Aoun, V. Sharma, E. Pellegrini, S. Mitra, M. Johnson, R. Mukhopadhyay, Structure and
8 dynamics of ionic micelles: MD simulation and neutron scattering study, *The Journal of*
9 *Physical Chemistry B* 119 (15) (2015) 5079-5086, <https://doi.org/10.1021/acs.jpcb.5b00020>.

10 48. A. Jusufi, A. Hynninen, A. Z. Panagiotopoulos, Implicit solvent models for micellization of
11 ionic surfactants, *The Journal of Physical Chemistry B* 112 (44) (2008) 13783-13792, <https://doi.org/10.1021/jp8043225>.

12 49. X. Tang, P. H. Koenig, R. G. Larson, Molecular dynamics simulations of sodium dodecyl
13 sulfate micelles in water-the effect of the force field, *The Journal of Physical Chemistry B*
14 118 (14) (2014) 3864-3880, <https://doi.org/10.1021/jp410689m>.

15 50. P. Brocos, P. Mendoza-Espinosa, R. Castillo, J. Mas-Oliva, Á. Pineiro, Multiscale molecular
16 dynamics simulations of micelles: coarse-grain for self-assembly and atomic resolution for
17 finer details, *Soft Matter* 8 (34) (2012) 9005-9014, <https://doi.org/10.1039/C2SM25877C>.

18 51. A. Jusufi, A. Z. Panagiotopoulos, Explicit- and implicit-solvent simulations of micellization
19 in surfactant solutions, *Langmuir* 31 (11) (2015) 3283-3292, <https://doi.org/10.1021/la502227v>.

20 52. F. Yuan, S. Wang, R. G. Larson, Potentials of mean force and escape times of surfactants
21 from micelles and hydrophobic surfaces using molecular dynamics simulations, *Langmuir* 31
22 (4) (2015) 1336-1343, <https://doi.org/10.1021/la5044393>.

23 53. F. Yuan, R. G. Larson, Multiscale molecular dynamics simulations of model hydrophobically
24 modified ethylene oxide urethane micelles, *The Journal of Physical Chemistry B* 119 (38)
25 (2015) 12540-12551, <https://doi.org/10.1021/acs.jpcb.5b04895>.

26 54. T. Mandal, R. G. Larson, Stretch and breakage of wormlike micelles under uniaxial strain: A
27 simulation study and comparison with experimental results, *Langmuir* 34 (42) (2018)
28 12600-12608, <https://doi.org/10.1021/acs.langmuir.8b02421>.

29 55. T. Mandal, P. H. Koenig, R. G. Larson, Nonmonotonic scission and branching free energies
30 as functions of hydrotrope concentration for charged micelles, *Physical Review Letters* 121
31 (3) (2018) 038001, <https://doi.org/10.1103/PhysRevLett.121.038001>.

32 56. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, GROMACS:
33 High performance molecular simulations through multi-level parallelism from laptops to
34 supercomputers, *SoftwareX* 1 (2015) 19-25, <https://doi.org/10.1016/j.softx.2015.06.001>.

35 57. L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, PACKMOL: A package for building
36 initial configurations for molecular dynamics simulations, *Journal of Computational*
37 *Chemistry* 30 (13) (2009) 2157-2164, <https://doi.org/10.1002/jcc.21224>.

38 58. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the open
39 visualization tool, *Modelling and Simulation in Materials Science and Engineering* 18 (1)
40 (2009) 015012, <https://doi.org/10.1088/0965-0393/18/1/015012>.

41 59. S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. D. Vries, The MARTINI
42 force field: Coarse grained model for biomolecular simulations, *Journal of Physical*

1 unbinding of the avidin-biotin complex, *Biophysical Journal* 72 (4) (1997) 1568-1581,
2 [https://doi.org/10.1016/S0006-3495\(97\)78804-0](https://doi.org/10.1016/S0006-3495(97)78804-0).

3 75. A. M. Khan, S. Khizar, S. A. Khan, S. Ali, A. Shah, M. F. Nazar, F. J. Iftikhar, F. Shah, R. A.
4 Khan, A. R. Khan, Investigation of counterion effects of transition metal cations (Fe^{3+} , Cu^{2+} ,
5 Zn^{2+}) on cetrimonium bromide using cyclic voltammetry, *Journal of Molecular Liquids* 313
6 (2020) 113599, <https://doi.org/10.1016/j.molliq.2020.113599>.

7 76. P. H. Elworthy, K. J. Mysels, The surface tension of sodium dodecylsulfate solutions and the
8 phase separation model of micelle formation, *Journal of Colloid and Interface Science* 21 (3)
9 (1966) 331-347, [https://doi.org/10.1016/0095-8522\(66\)90017-1](https://doi.org/10.1016/0095-8522(66)90017-1).

10 77. A. Ralston, D. Eggenberger, H. Harwood, P. D. Brow, The electrical conductivities of
11 long-chain quaternary ammonium chlorides containing hydroxyalkyl groups, *Journal of the
12 American Chemical Society* 69 (9) (1947) 2095-2097, <https://doi.org/10.1021/ja01201a004>.

13 78. L. Magid, Z. Li, P. Butler, Flexibility of elongated sodium dodecyl sulfate micelles in
14 aqueous sodium chloride: a small-angle neutron scattering study, *Langmuir* 16 (26) (2000)
15 10028-10036, <https://doi.org/10.1021/la0006216>.

16 79. M. E. Helgeson, T. K. Hodgdon, E. W. Kaler, N. J. Wagner, A systematic study of equilibrium
17 structure, thermodynamics, and rheology of aqueous CTAB/NaNO₃ wormlike micelles,
18 *Journal of Colloid and Interface Science* 349 (1) (2010) 1-12, <https://doi.org/10.1016/j.jcis.2010.05.045>.

20 80. J. Galvan-Miyoshi, J. Delgado, R. Castillo, Diffusing wave spectroscopy in Maxwellian
21 fluids, *The European Physical Journal. E, Soft Matter* 26 (4) (2008) 369-377, <https://doi.org/10.1140/epje/i2007-10335-8>.

23 81. L. Arleth, M. Bergström, J. S. Pedersen, Small-angle neutron scattering study of the growth
24 behavior, flexibility, and intermicellar interactions of wormlike SDS micelles in NaBr
25 aqueous solutions, *Langmuir* 18 (14) (2002) 5343-5353, <https://doi.org/10.1021/la015693r>.

26

27