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The Magnus expansion is an efficient alternative to solving similarity renormalization group (SRG)
flow equations with high-order, memory-intensive ordinary differential equation solvers. The nu-
merical simplifications it offers for operator evolution are particularly valuable for in-medium SRG
calculations, though challenges remain for difficult problems involving intruder states. Here we
test the Magnus approach in an analogous but more accessible situation, which is the free-space
SRG treatment of the spurious bound-states arising from a leading-order chiral effective field theory
(EFT) potential with very high cutoffs. We show that the Magnus expansion passes these tests
and then use the investigations as a springboard to address various aspects of operator evolution
that have renewed relevance in the context of the scale and scheme dependence of nuclear processes.
These aspects include SRG operator flow with band- versus block-diagonal generators, universality
for chiral EFT Hamiltonians and associated operators with different regularization schemes, and
the impact of factorization arising from scale separation. Implications for short-range correlations
physics and the possibilities for reconciling high- and low-resolution treatments of nuclear structure
and reactions are discussed.

I. INTRODUCTION

Similarity renormalization group (SRG) transforma-
tions are a valuable tool for low-energy nuclear physics,
whether applied in free space to soften input Hamilto-
nians for few- and many-body calculations, or for in-
medium SRG (IMSRG) calculations that directly target
the ground state or low-lying states in a given nucleus
[1–3]. For both free-space and in-medium formulations,
it is imperative that other operators are consistently and
accurately evolved so that measurable quantities are left
invariant. In the present work, we address the robustness
of the Magnus expansion as a method to solve free-space
SRG flow equations, and examine other issues of SRG op-
erator evolution in light of the proliferation of new chiral
EFT (χEFT) interactions [4–11], the scale dependence
of short-range-correlation (SRC) physics [12–15], recent
interest in high-cutoff effective field theories (EFTs) and
renormalization [16–19], and the universality of evolved
operators [20, 21].

The SRG decouples low- and high-momentum scales in
a Hamiltonian by applying a continuous unitary trans-
formation U(s), where s = 0 → ∞ is the flow parame-
ter [22]. An evolved operator is given by

O(s) = U(s)O(0)U†(s), (1)

where O(0) is the initial operator. Because U(s) is uni-
tary, matrix elements of the operator in evolved states are
preserved. An evolved operator can be found by solving
a differential flow equation obtained by taking the deriva-
tive of Eq. (1),

dO(s)

ds
= [η(s), O(s)], (2)

where η(s) = dU(s)
ds U†(s) = −η†(s) is the anti-hermitian

SRG generator. For the free-space SRG, the generator

is typically defined as a commutator, η(s) = [G,H(s)],
where G specifies the type of flow. The choice of G de-
termines the pattern of decoupling in the Hamiltonian.

By setting G = HD(s), the diagonal of the Hamil-
tonian, the Hamiltonian is driven to band-diagonal
form [23]. In low-energy nuclear physics, G is usually
taken to be the relative kinetic energy, Trel; i.e., the di-
agonal of the potential is not included in G. In most
nuclear physics applications these two choices give the
same evolved operators. But in exceptional cases involv-
ing evolution across bound states, which we consider in
the next section, the two band-diagonal choices can have
drastically different behaviors [24, 25]. For band-diagonal
decoupling, it is convenient to define λ ≡ s−1/4, which
roughly measures the width of the band-diagonal in the
decoupled Hamiltonian [26].

For block-diagonal decoupling [27, 28], G is formed by
splitting the Hamiltonian into low- and high-momentum
sub-blocks as specified by a momentum separation scale
ΛBD,

G =

(
PH(s)P 0

0 QH(s)Q

)
≡ HBD(s). (3)

Here P and Q are low- and high-momentum projection
operators. In momentum space, the projection operators
are step functions defined by the sharp cutoff ΛBD, al-
though smoothed versions are also possible and may be
preferred in some applications to avoid numerical arti-
facts [27]. These transformations are similar to Vlow k

transformations [29–31] but keep the high-momentum
matrix elements non-zero, maintaining a unitary trans-
formation in the full space. Complete decoupling of the
blocks is in principle only reached in the s→∞ limit. In
practice it is sufficient to solve the flow equation (2) up
to some finite value of s with a high-order ODE solver
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such that the remaining “neck” between blocks is much
narrower than ΛBD.

The SRG procedure can be implemented by solving the
flow equation Eq. (2) for the evolved Hamiltonian simul-
taneously with other operators of interest. However, one
can also solve Eq. (2) exclusively for the evolved Hamilto-
nian and build the unitary transformation directly using
the eigenvectors of the evolved and initial Hamiltonians
(as is done in Sec. IV). Another approach is to solve the
following equation for the unitary transformation

dU(s)

ds
= η(s)U(s), (4)

which arises in an intermediate step in deriving Eq. (2).
This is the starting point in the Magnus expansion im-
plementation of the SRG.

The Magnus expansion gives us the capability to solve
for the SRG unitary transformation with negligible vio-
lations of unitarity from numerically solving the ODEs,1

after which it can be applied to any other operator of in-
terest [32]. By utilizing an exponential parameterization
for the transformation, U(s) = eΩ(s), Eq. (4) is recast as a
flow equation for the anti-Hermitian operator Ω(s). The
solution of the flow equation for Ω(s) permits the use of
cheap low-order ODE methods since the exponentiated
operator is still unitary even if it has accumulated non-
negligible time-step errors [32]. The Magnus expansion
also offers important advantages over the direct solution
of Eq. (4) in Fock space, where practical calculations
require operators to be truncated at the a−body level
(a < A). For instance, even if the Magnus flow equa-
tions are truncated at the two-body level, the resulting
unitary transformation contains higher-body components
from the exponentiation of Ω.2

Due to these advantages, most large-scale IMSRG
calculations now utilize the Magnus expansion. There
are still open problems though. For instance, in appli-
cations of the IMSRG to derive effective valence shell
model Hamiltonians in multi-shell valence spaces, in-
truder states, which are low-lying states whose wave
functions are dominated by high-energy configurations
outside the model space, can severely distort low-energy
properties or even prevent the flow from converging. It
is not yet fully understood how the IMSRG procedure
evolves intruder state systems, though it appears that
induced three- and higher-body operators rapidly grow
in size for such systems, destroying the cluster hierar-
chy (2N � 3N � 4N � . . .) in the evolved Hamilto-
nian [33].

1 There is a small numerical violation of unitarity in the standard
approach to solving SRG equations due to accumulated time-step
errors. With the Magnus expansion, unitarity is preserved to
much higher precision because of the form of the transformation,
as detailed in Sec. II B.

2 This is similar to the advantages of truncated Coupled Cluster
theory calculations relative to truncated Configuration Interac-
tion calculations.

Interestingly, there is an analog to the intruder state
problem in the much simpler two-nucleon problem. In
spin-triplet channels and at leading-order (LO) in χEFT,
taking the EFT cutoff to high values can result in spuri-
ous, deep-bound states due to the highly singular short-
ranged tensor force from one-pion exchange. In principle,
these deep-bound states are not a problem because they
are outside the range of the EFT. In practice, there are
subtleties analogous to the intruder state problem when
one attempts to soften such Hamiltonians with free space
SRG evolution. In Ref. [25], it was shown that band-
diagonal SRG decoupling of NN potentials in partial
waves with spurious bound states fails for the standard
G = Trel generator, as the flow forces the deep bound
state into the low-momentum sector. As a result, there
is no decoupling of high- and low-momentum physics,
and the evolved interactions become increasingly singu-
lar at low momentum. In contrast, the Wegner genera-
tor G = HD succeeds at depositing the spurious state(s)
along the diagonal in the high-momentum sector, which
is more natural as it allows a clean decoupling of high-
and low-momentum physics. Since these findings were
for the direct solution of Eq. (2), this provides a good
test case for the Magnus approach and we document its
performance in detail. More generally, there has been
renewed interest in studying chiral interactions at high
cutoffs [16]. These high-cutoff chiral potentials provide
us a laboratory to explore the effects of the SRG genera-
tor on decoupling, universality, and SRCs. These issues
also inform the behavior of standard χEFT potentials.

While interactions from χEFT have become the stan-
dard choice for ab initio calculations of nuclei, they are
not unique, even when restricted to the commonly used
Weinberg power counting, because of many choices for
regularization schemes and fitting protocols and even de-
grees of freedom (i.e., with or without Deltas). In the
early applications of χEFT potentials to nuclei, these
choices were not explored but in recent years there has
been a proliferation of nucleon-nucleon (NN) potentials
and associated three-nucleon forces (e.g., see Refs. [4–
11]). This diversification motivates us to revisit SRG
operator evolution. Past studies were limited to phe-
nomenological interactions or a single class of chiral inter-
actions (namely the non-local-regulated potentials from
Refs. [34] or [35]). Here we examine the fate of scheme
dependence for new-generation NN potentials and asso-
ciated operators as they are evolved to lower resolutions.

One intriguing aspect is universality. By virtue of fit-
ting to the same data or phase shifts, different χEFT
potentials generate close to the same S-matrix in the en-
ergy range where there is a good fit; that is, the poten-
tials are phase equivalent in that range. However, ma-
trix elements of the potentials in momentum space differ
significantly based on the EFT order and the choice of
regulator function and cutoff (scale and scheme depen-
dence). Nevertheless, it has been observed that SRG
transformations drive different NN potentials toward the
same low-momentum matrix elements; in particular, this
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flow to universality is seen up to the momentum value
of phase inequivalence [20, 29, 31]. We examine whether
universality holds for modern chiral potentials but also
address universality for other operators evolving under
the corresponding SRG transformations. This has impli-
cations for the analysis of reactions at different resolution
scales [36–38].

The question of whether non-Hamiltonian operators
decouple or take universal forms has not been fully ad-
dressed in the literature.3 In fact, the decoupling of
matrix elements does not necessarily result for other
operators as it does for the Hamiltonian. In previous
work [26, 39], it was found that SRG evolution induces
low-momentum contributions in high-momentum opera-
tors and changes low-momentum operators very little, as
might be expected from general EFT considerations. We
investigate whether this is a general trend of the SRG for
a wider selection of potentials and SRG generators, ex-
plicitly analyze the nature of the evolution for representa-
tive high-momentum and low-momentum operators, and
relate these observations to the high-resolution picture of
SRCs and the role of factorization.

The plan of the paper is as follows. We first revisit
the high-cutoff problem, and test the Magnus approach
in Sec. II. We consider evolution of new-generation NN
Hamiltonians in Sec. III and then turn to other operators
in Sec. IV. Our conclusions and outlook are summarized
in Sec. V.

II. HIGH CUTOFFS AND THE MAGNUS
EXPANSION

A. High cutoffs and spurious bound states

The χEFT potentials used in most ab initio nuclear
calculations are not renormalizable in the sense that
dependence on the regulator is not suppressed by tak-
ing the momentum cutoff increasingly high (or low, if a
coordinate-space regulator). However, Nogga et al. [40]
showed that the LO version of these interactions, with
promoted counterterms in some channels, is renormaliz-
able in this sense. There is active work on renormalizable
power counting for χEFT beyond LO (see references cited
in [16]).

The LO theory at high cutoff is a useful laboratory
for testing the SRG (as well as providing insight into
the evolution of SRC physics, see Sec. IV). It features
the appearance of spurious, deeply bound states in some
channels, which is ultraviolet physics beyond the range
of the EFT, and thus does not violate EFT principles.
However, these present a major challenge to the SRG.

3 Note that if the wave functions are decoupled, it is not necessary
for the operators themselves to decouple to get decoupled matrix
elements. See examples below.

Wendt et al. studied SRG band-diagonal transformations
of high-cutoff LO potentials [25] and showed that chan-
nels with spurious deep-bound states did not automati-
cally exhibit the expected decoupling and universality of
the potential if the conventional SRG generator is used.
In particular, the spurious bound state(s) is driven from
high to low momentum in the evolved potential when ap-
plying transformations with G = Trel. The observables
remain unchanged because the transformation is still uni-
tary, but the potential and wave functions are altered
significantly by the presence of the spurious bound state
at low momentum. In contrast, if the Wegner generator
is used, the spurious state(s) is decoupled, subsequently
yielding universality in low-momentum matrix elements
of the potential.

In Fig. 1 we show SRG band- and block-diagonal evo-
lution of high-cutoff non-local potentials at LO, which
consists of one-pion exchange and a contact interaction.
We restrict our attention to the 3S1–3S1 sub-block of
the coupled 3S1–3D1 channel (note that spurious, deeply
bound states only appear in spin-triplet channels [40]).
The contact interaction is determined by fitting the as-
sociated low-energy constant to Elab = 10 MeV phase
shift data. In the diagonal matrix elements of Fig. 1, we
see a steep drop-off in the Wegner transformed potentials
around k ≈ 1.6− 1.75 fm−1. This corresponds to the de-
coupled spurious bound state (ε ≈ −2000 MeV). The
value of momentum where the spurious bound state de-
couples is a scheme-dependent quantity that is sensitive
to how momentum space is discretized (the momentum
mesh). Due to this dependence, we have been unable to
predict the value of k at which the spurious state decou-
ples. However, when the spurious state is decoupled out-
side the low-momentum part of the potential, the Wegner
evolution collapses the low-momentum matrix elements
of the different potentials to the same mesh-independent
values in accordance with universality. There is no drop-
off in the Λ = 4 fm−1 potential as it has no spurious
state.

We also see universality for the block-diagonal evolved
matrix elements as before, but there is no noticeable in-
fluence from the spurious bound state. This is due to the
band-diagonal generator locally decoupling the matrix el-
ements whereas the block-diagonal generator cleanly sep-
arates the potential into a low-momentum sub-block and
a high-momentum sub-block. In the limit λ → 0 with
ΛBD sufficiently low, the spurious deep-bound state(s) is
contained entirely in the high-momentum sub-block. We
verified this by diagonalizing the sub-blocks separately
to see which one contained the spurious bound state. We
identify ΛBD ≈ 4.5 fm−1 as the approximate value at
which the spurious bound state switches from the low-
momentum sub-block to the high-momentum sub-block.
Thus, the block-diagonal transformations decouple the
spurious state(s) at a higher value of momentum than
the Wegner transformations, which isolates the physi-
cal states more effectively. Tests with different meshes
found the same value of momentum, suggesting a scheme-
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FIG.1.Diagonalandfaroff-diagonalmatrixelementsofnon-localLOpotentialsatcutoffsΛ=4(black),9(red)and20fm−1

(blue),SRG-evolvinglefttorightundertransformationswith Wegner(solid)andblock-diagonal(dashed)generatorsinthe3S1
channel. WevarytheSRGflowparameterλfor Wegnerevolutionandfixitatλ=1.2fm−1forblock-diagonalevolution.The
decouplingscaleintheblock-diagonalgeneratorisdenotedbyΛBD.

independentresult.However,wedonothaveananalytic
understandingofthesescales.
Wecandrawalooseanalogytointruderstatescor-

ruptinglow-energyphysicsinIMSRGcalculationswith
spuriousboundstatescorruptinguniversalityinSRG-
evolvedpotentials.Fromtheanalysissofar,itisevident
thatthechoiceofSRGgeneratorisimportantinprop-
erlydecouplingthehigh-momentumspuriousstatefrom
low-momentumphysics.Itwouldbeinterestingtogen-
eralizethisconclusiontoanA-bodysystemandanalyze
howdifferentgeneratorsdealwithintruderstates.How-
ever,wemustfirstverifythatthe Magnusapproachis
thesameastheconventionalSRGapproachfordifficult
systemsbecauseofitsuseinIMSRGcalculations.Inthe
followingsub-sections,wepresenttheMagnusapproach
andcomparetotheconventionalSRGusinghigh-cutoff
potentialswithspuriousstatesasatestcase.

B. The Magnusexpansion:Formalism

WebrieflyreviewtheformalismoftheMagnusexpan-
sionanditsuseintheSRG. Mathematicallyspeaking,
theMagnusexpansionisamethodforsolvinganinitial
valueproblemassociatedwithalinearordinarydifferen-
tialequation. Formaldetailsofthe Magnusexpansion
arediscussedin[41]. WewillintroducetheMagnusex-
pansioninthecontextofSRGoperatorevolution.
WecansolveEq.(4)withasolution U(s) =eΩ(s)

whereΩ†(s)=−Ω(s),andΩ(0)=0. Ω(s)isexpanded
asapowerseriesinη(s):

Ω(s)=
∞

n=1

Ωn(s), (5)

wherethetermsoftheseriesaregivenbyintegralex-

pressionsinvolvingη(s),

Ω1(s)=
s

0

ds1η(s1),

Ω2(s)=
1

2

s

0

ds1

s1

0

ds2[η(s1),η(s2)], (6)

...

Equation(5)isreferredtoasthe Magnusexpansion.
(Again,see[41,42]forfurtherdetails.) Weavoidcom-
putingtheintegraltermsΩn(s)sinceitrequiresstoring
η(s)overarangeofsvalues,whichisimpracticalfor
large-scalecalculations. Wefocusinsteadonthederiva-
tiveofΩ(s),

dΩ(s)

ds
=
∞

k=0

Bk
k!
adkΩ(η), (7)

whereBkaretheBernoullinumbers,ad
0
Ω(η)=η(s),and

adkΩ(η)=[Ω(s),ad
k−1
Ω (η)]. Weintegratethisdifferential

equationtofindΩ(s)andevaluatetheunitarytransfor-
mation.Thentheevolvedoperatorcanbeevaluatedwith
theBaker-Cambell-Hausdorffformula[32],

O(s)=eΩ(s)O(0)e−Ω(s)=
∞

k=0

1

k!
adkΩ(O). (8)

Ask→ ∞ inbothsumsinEqs.(7)and(8),the Mag-
nustransformationmatchestheSRGtransformationex-
actly.4WeinvestigateseveraltruncationskmaxinEq.(7)
andtakemanyterms,kmax∼25,inEq.(8).

4Notethatthisequivalenceisexactonlyifbothseriesconverge
andtheODEsinEq.(7)aresolvedexactly.
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FIG.2.ComparisonofSRG-andMagnus-evolveddiagonalandfaroff-diagonalmatrixelementsofthenon-localLOpotential
(9fm−1)inthe3S1channelforseveraltruncationskmax inthe Magnussum(7). Hereweevolveinλlefttorightusingthe
Wegnergenerator G=HD
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FIG.3.SameasinFig.2butwithG=Trel.

TherearesignificantadvantagestotheMagnusimple-
mentationinIMSRGcalculations.Intheconventional
approach,thenumericalerrorassociatedwithsolving
Eq.(2)accumulatesdirectlyintheoperatorandcandis-
torttheeigenvaluesofthetransformedHamiltonian.To
guardagainstthis,onemustuseahigh-orderODEsolver,
whichcanbecomeprohibitiveforlarge-scalecalculations
duetothememory-intensivenatureofsuchsolvers.In
the Magnusimplementation,unitarityisguaranteedby
theformofU(s).OnecansolveEq.(7)withalow-order
steppingmethodwithasubstantiallylowermemoryfoot-
print,whichneverthelesspreservestheeigenvaluesex-
actlywhilestilldecouplingasdesired. Herewedemon-

stratethisadvantagebyapplyingtheMagnusimplemen-
tationusingthefirst-orderEulerstep-method.Notethat
theexecutiontimeforMagnusappliedtofree-spaceSRG
isroughlythesameasforconventionalSRGevolution,
becausethemorecomplicatedevaluationsinEq.(7)are
offsetbythefewerevaluationsneededwithalow-order
ODEsolver.
Thesecondmajoradvantageinvolvestheevolutionof
multipleoperators.Inmanysituations,onemaybein-
terestedinevolvingseveraloperatorsatatime.Inthe
standardprocedure,wewouldhaveanothersetofcou-
pledequationsinEq.(2),drasticallyincreasing mem-
oryusage.Eachadditionaloperatorincreasesthesetof
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FIG.4.Frobeniusnormsofη(s)andΩ(s)fromMagnus-evolvingthehigh-cutoffLOpotentialsinthe3S1–
3D1coupledchannel:

Λ=4(blackdashed),9(reddash-dotted)and20fm−1(bluesolid)whereG=HD andkmax =6.

equations-sayN equations-byanotherfactorofN.
IntheMagnusapproach,oneonlyneedsΩ(s)toconsis-
tentlyevolveseveraloperatorsviaexplicitconstruction
ofU(s)=eΩ(s). Whileoperatorevolutionisnotanissue
forNNevolution,thecapabilitytocalculateU(s)di-
rectlyiscrucialinIMSRGcalculationswherethemodel
spacecanbeverylarge. Whileitispossibletosolvefor
U(s)bydirectlyintegratingEq.(4),thissuffersfromthe
samememorylimitationsasEq.(2)duetothenecessity
ofahigh-orderODEsolvertoguardagainstthelossof
unitarity.

C. The Magnusexpansion: Results

WecomparetheSRGevolutionofthenon-localLO
potentialwithcutoffat9fm−1usingtheconventional
approachandthe Magnusapproach. Atthisparticular
cutoff,thepotentialhasonespuriousboundstateinthe
3S1–

3D1coupledchannelofabout−2000 MeVinaddi-
tiontothedeuteronbound-stateenergy.Figures2and
3showthediagonalandfaroff-diagonalmatrixelements
oftheevolvingpotentialusingbothmethodsatseveral
differenttruncationskmax for Magnus-evolutionforthe
twoband-diagonalgenerators,G=HD andTrel,respec-
tively.Inbothcases,aswetakehighervaluesofkmax
the MagnusevolutionapproachestheSRGdespitethe
presenceofaspuriousboundstate. Theagreementis
ratherpoorforthelowesttruncationshown,kmax =2.
AlthoughtheobservablesfortheMagnus-evolvedpoten-
tialsarestillunalteredindependentofkmax,thepresence
ofthedecoupledspuriousboundstatehaseffectsonthe
flowtoband-diagonalform.Thatis,thereismorevari-
ationwithrespecttokmax inband-diagonaldecoupling
ofthesepotentialmatrixelements.
Wehavetestedother,softerpotentialssuchasthe

lowercutoffof4fm−1andhigher-orderchiralpotentials,
andfoundthattheMagnusimplementationalwaysworks
asintended.TheMagnusimplementationnearlymatches

theSRGresultsinallcaseswheresmalldifferencescome
fromthedifferenceinODEsolverandtruncationsinthe
Magnusapproach. Thus,weonlyshowresultsforthe
highcutoffof9fm−1.
Insomecases,η(s)growsassincreases,leadingto
convergenceissuesintheMagnusexpansion. Whenη(s)
beginsincreasing, Ω(s)growsprohibitivelylarge. In
Ref.[41]theconvergenceoftheMagnusexpansionisde-
scribedintermsoftheFrobeniusnormofη(s),stating

thatconvergenceissatisfiedif
S

0
||η(s)||ds<rcoveran

interval0<s<S,whererc=πforcalculationsinvolv-
ingrealmatrices.
InFig.4weshowtheFrobeniusnormsofη(s)andΩ(s)
forthethreehigh-cutoffpotentialstestedusingG=HD.
TheconvergenceissuearisesforΛ =20fm−1ats∼
10−4where||η(s)||andsubsequently||Ω(s)||jumpseveral
ordersofmagnitude.However,theproblemiscompletely
avoidedwhentheblock-diagonalgeneratorisused. We
havetesteddifferentMagnustruncationskmaxandEuler
methodstep-sizesandfoundthesamebehavior.
Overall,the Magnusimplementationreproducesthe
generator-dependentSRGbehaviorforhigh-cutoffpo-
tentials,wheretheuniversalityofthedifferentpotentials
isachievedwiththe Wegnergeneratorbutnottherel-
ativekineticenergygenerator. Wenotethattheblock-
diagonalgeneratordecouplesthespuriousboundstate(s)
ata muchhigher momentumvaluethanthe Wegner
band-diagonalgeneratorandstillflowstoauniversal
forminthelow-momentummatrixelements. Although
wefixedkmax inourresults,onecoulduseanadaptive
methodofselectingkmax valuesateachstepinswhere
criteriaisbasedonflowtoband-orblock-diagonalform.
OnecouldalsotruncateEq.(7)whentheFrobeniusma-
trixnormofthekthtermissignificantlysmallerthan
thematrixnormofthe0thterm(seeRef.[32]forfurther
details).
Fromtheconvergencestandpoint,theinitialinterac-
tionandgeneratorη(s)clearlyplayasignificantrole
inhowtheMagnusimplementationworks. Thisshould
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be no surprise from how η(s) is defined in terms of the
Hamiltonian. In connection to the Magnus expansion in
the IMSRG context, similar convergence issues arise for
intruder state problems [33]. At least for the NN system,
our results imply that the choice of SRG generator can
play a significant role in overcoming the issues stemming
from intruder states, though we leave this as work for a
future study.

III. SRG EVOLUTION OF NN POTENTIALS

A. Modern chiral NN potentials

Next we extend our analysis of the SRG evolution of
high-cutoff LO potentials to include higher-order chiral
potentials. In Ref. [20], the conditions under which dif-
ferent potentials are driven to universal low-momentum
matrix elements were studied. Here we apply both band-
and block-diagonal transformations to several newer chi-
ral potentials, also focusing on universality. For band-
diagonal evolution, we use the Wegner generator, G =
HD, instead of Trel, which was used in [20]. For these in-
teractions with cutoffs of order 2–3 fm−1, the two band-
diagonal choices are essentially equivalent, unlike for the
potentials considered in the previous section when the
cutoff was above 4 fm−1. We restrict our analysis in this
section and the following section to the typical SRG ap-
proach as results with the Magnus implementation and
standard SRG are indistinguishable for soft potentials.

We will consider three representative potentials: the
N4LO potential with 500 MeV cutoff from Ref. [11] (de-
noted EMN N4LO), the N4LO potential with 450 MeV
cutoff from Ref. [9] (denoted RKE N4LO), and the N2LO
potential with 1 fm cutoff from Ref. [5] (denoted Gez-
erlis N2LO). These three potentials differ in the regula-
tor functions applied to the contact and pion-exchange
terms.

The EMN N4LO interaction is a non-local poten-
tial where both contact and pion-exchange interac-
tions feature a non-local regulator function of the form
exp[−(k/Λ)2n − (k′/Λ)2n], where Λ is the momentum-
space cutoff and n is an integer. A non-local regulator
function for pion-exchange contributions can introduce
regulator artifacts by distorting the known analytic struc-
ture of the NN scattering amplitudes near threshold for
cutoffs Λ lower than the breakdown scale Λb [4]. Semi-
local chiral potentials have been introduced to reduce
regulator artifacts, such as the RKE potentials. Here,
a local regulator function is applied for the long-range
interactions in momentum space, while a non-local reg-
ulator function is used for the short-range interactions.
Non-local interactions are generally not suitable for con-
tinuum quantum Monte Carlo methods, motivating the
need for fully local chiral potentials. The Gezerlis et
al. N2LO potential is an example of a local interaction
where both the long-range and short-range terms have a
local regulator function in coordinate space.

These chiral interactions give the same low-energy
phase shifts but the matrix elements of the potential
are often completely different. We show band-diagonal
SRG evolution of the three potentials in the 3S1 channel
in Fig. 5. On the left-hand column where λ = 6 fm−1,
the three potentials differ dramatically. Further along
the SRG evolution (right-hand side), the potentials are
driven to band-diagonal form where the upper left corner
of the contours, corresponding to low-momentum matrix
elements, become close to the same.

Figure 6 shows the SRG-evolved RKE N4LO (450 MeV
cutoff) potential in the 1P1 partial wave channel for
band- and block-diagonal SRG generators on the top
and bottom rows, respectively. We continue to evolve
to band-diagonal form with respect to the parameter λ,
but for the block-diagonal generator, we label sub-plots
with the parameter ΛBD that characterizes the sharp cut-
off in decoupling the low- and high-momentum matrix
elements. For complete block-diagonal decoupling, one
should take s → ∞, which corresponds to λ → 0. This
is difficult to carry out in practice since the ODEs be-
come stiff, so we stop the evolution at λ = 1 fm−1. We
see a small non-zero width in between the sub-blocks
due to the non-zero value of λ, but when the width is
this small the sub-blocks are effectively decoupled. With
block-diagonal decoupling, one can truncate the Hamil-
tonian at the chosen value of ΛBD, separately diagonalize
each sub-block, and retain all eigenvalues to high accu-
racy. We have tested representative cases and found the
same eigenvalues to better than 0.1% for both the low-
and high-momentum sub-blocks.

In Ref. [20], it was found that shared long-distance
physics (e.g., the common pion-exchange tail) plus phase
equivalence up to some value of scattering momentum
k0 implies potential matrix element equivalence up to
the same value k0 in SRG-evolved potentials where λ,
ΛBD ≤ k0 (see Figs. 1–4 in [20]). We verify the conclusion
from [20] in the representative chiral potentials showing
the 3S1 channel as an example. Figure 7(a) shows the
NN phase shifts of EMN N4LO 500 MeV, RKE N4LO
450 MeV, and Gezerlis et al. N2LO 1 fm potentials in the
3S1 partial wave channel. Figure 7(b) shows the diago-
nal and far off-diagonal matrix elements of the evolved
potentials in the 3S1 channel on the top and bottom row,
respectively. Band- and block-diagonal evolved poten-
tials are shown on the same sub-plots indicated by solid
and dashed lines, respectively, where the color indicates
the potential. The 3S1 phase shifts agree to within 1%
for k ≤ 2 fm−1, and as we see in Fig. 7(b), universality
occurs once the potentials are SRG evolved past 2 fm−1.
The matrix elements of the potentials all begin to col-
lapse to the same line as λ and ΛBD decrease to the point
of phase equivalence. In this sense, we can think of the
SRG evolution like an attractor; the potentials evolve in
the same manner contingent on the SRG generator with
a wide variety of starting points. The two generators
collapse the potential to a different form, because the in-
duced contributions from SRG flow depend on how the
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FIG. 5. Momentum-space matrix elements of the EMN N4LO 500 MeV, RKE N4LO 450 MeV, and Gezerlis et al. N2LO 1 fm
potentials SRG-evolved in λ with the Wegner generator in the coupled 3S1–3D1 channel (only 3S1 is shown here.)

FIG. 6. Matrix elements of the RKE N4LO 450 MeV potential SRG-evolving left to right under transformations with Wegner
and block-diagonal generators in the 1P1 channel. We vary the SRG flow parameter λ for Wegner evolution and fix it at
λ = 1 fm−1 for block-diagonal evolution. The decoupling scale in the block-diagonal generator is denoted by ΛBD.

potential is decoupled, that is, the choice in G.

B. Quantifying universality

Next, to quantify universality in the potentials, we cal-
culate the Frobenius norm of the difference in potentials

in Fig. 8. Here, we use G = HD as an example for several
partial wave channels. We evolve the three default po-
tentials to λ = 6, 3, 2, 1.5, and 1 fm−1. To focus on the
region of universality, we truncate each potential matrix
up to the momentum value λ and divide the difference by
the average norm of the three truncated potentials. (This
prevents the norm from decreasing with lower λ because
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thematricesbecomesmallerindimensionduetotrunca-
tion.)Themomentumvalueofphaseequivalenceoccurs
somewhereintherangeof1–2fm−1formostofthechan-
nelsincluded. Weseeasharpdropinthematrixnorm
atλnearthisrange.

Noticethatthe3S1channeldifferssignificantlyincom-
paringGezerlisN2LOtotheothertwopotentials.This
isduetothe3S1beingdominatedbythecontactforce,
whereforGezerlisN2LOtheregulatorfunctionislocal,
whileitisnon-localfortheothertwopotentials.Asim-
ilardifferenceisseeninthe1G4channel,whichisdom-
inatedbypion-exchange,butnowforEMNN4LOcom-
paredtotheothertwo. Again,thisiscausedbythe
differenceinregulatorfunctions,whereEMNN4LOuses
anon-localregulatorandtheothertwoalocalregulator.
Thedifferenceinregulatorfunctionsbetweenthevarious
potentialsaffectstheflowtouniversalityinchannelspri-

marilyaffectedbycontactforcesorpionexchange,but
thedifferenceissmallandunnoticeableintheprevious
figures.
Wecanalsousetechniquesfromspectraldistribution
theory(SDT)toanalyzeuniversality[43].InSDTthe
expectationvalueofapotentialisdefinedas

V =
1

N
TrV, (9)

whereN isthedimensionofthematrixV. Theinner
productoftwopotentialsVandV isdefinedas,

(V,V)=(V†− V†)(V − V )

= V†V − V† V . (10)

Wecannowdefinethecorrelationcoefficient ζV,V which
givesameasureofthe“similarity”betweenthetwopo-
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tentials,

ζV,V =
(V,V)

σVσV
, (11)

whereσV isthepositivesquarerootofthevariance,

σ2V=(V,V)=V
2 − V

2
. (12)

Geometrically,wecanthinkofthepotentialsastwovec-
torswithθV,V ≡arccos(ζV,V)measuringtheanglebe-
tweenthem.Furtherdetailsoftherelevantformulasin
SDTcanbefoundinRefs.[44,45].
Althoughthesecalculationshavebeenusedtoquan-

tifythedifferencesinnuclearHamiltonians,weprovide
calculationsofθV,V insteadsincetherelativekineticen-
ergyisthesameinthethreerepresentativeHamiltonians.
AnalogoustoFig.8,weshowtheanglebetweenpairsof
thepotentialsforthesamevaluesofλinFig.9.Again,
wemakeatruncationinthepotentialmatricesuptothe
valueofλ. WithSRGevolution,θV,V →0corresponding
tostrongcorrelationsbetweenthecomparedpotentials.
Thedifferencesinthebehaviorofthevariouschannelsas
notedpreviouslyshowinFig.9aswell.

C. EvolvedwavefunctionsandSRCs

UniversalityinthepotentialsforagivenSRGgener-
atorisnaturallyreflectedinthelow-energywavefunc-
tions.InFig.10weshowtheinitialandevolveddeuteron
wavefunctionsincoordinatespaceforthethreechiral
potentials,wherethesolidlinescorrespondtotheS-
statecomponentsandthedashedlinestotheD-state
components. Thewavefunctionsareevolvedusinga
band-diagonal,λ=1.2fm−1

0 1 2 3 4

r [fm]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

d
(r
) 
[f
m
3/
2
]

=  fm 1

EMN N4LO

RKE N4LO

Gezerlis N2LO

0 1 2 3 4 5

r [fm]

=1.2 fm 1

G=HD

transformation.Theshort-
distancepartoftheS-statediffersinitiallybutflowsto
thesameform,whiletheinitialD-statealsodiffersand
becomessuppressedafterevolving.Thisreflectstheflow
touniversalityinthelow-momentum matrixelements
ofthepotentials. Despitetheschemedependenceof
theinitialUVtreatment,decouplingthelow-andhigh-
momentumphysicsmeansthestatesflowtothesame
wavefunctionatlowresolution.Furthermore,thesame

FIG.10.Deuteronwavefunctionsincoordinatespaceforthe
samethreechiralpotentialsasinFig.9underband-diagonal
SRGtransformationswithG=HD andλ=1.2fm

−1

0 1 2 3 4

r [fm]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

d
(r
) 
[f
m
3/
2
]

=  fm 1

0 1 2 3 4 5

r [fm]

=1.2 fm 1

G=HD

AV18

=4 fm 1

=9 fm 1

0 1 2

0.5

0.0

0.5

. The
solidlinescorrespondtotheS-states,andthedashedlines
correspondtotheD-states.

FIG.11.SameasFig.10butforthehigh-cutoffLOpotentials
withΛ=4and9fm−1andAV18,andλ=1.2fm−1. The
insetplotontheleftpanelshowstheinitialwavefunctions
zoomedoutonthey-axisuptor=2fm.

low-resolutionwavefunctionsresultforinitialdeuteron
wavefunctionswithharderpotentialssuchasArgonne
v18(AV18)[46]andtheLOhigh-cutoffpotentialsfrom
theprevioussection,asseeninFig.11.

ConsidertheseresultsfromtheperspectiveofSRC
phenomenology[12–15].InFig.11,thedipatsmallr
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in ψd(r) in the initial S-states reflects a strong repulsive
core in the initial potential (with the node for Λ = 9 fm−1

because of the spurious deep-bound state for that po-
tential) while the D-wave strength at short distance is
from a strong tensor force. These are the signatures of
the SRC proton-neutron pair in the deuteron; there will
be corresponding intermediate-momentum (D-state) and
high-momentum (S-state) signatures in the momentum
wave functions. Note the qualitative similarity of AV18
and the chiral Λ = 4 fm−1 wave functions, which demon-
strates that even though the LO chiral potential is only
adjusted to fit very low energy phase shifts, the same SRC
structure is found because of the common iterated-pion-
exchange and similar regularization scale in the respec-
tive Hamiltonians. (This suggests that one is unlikely
to explore fine details of the NN interaction from SRC
physics.) The higher momenta extend well beyond the
chiral EFT breakdown scale of about 3 fm−1, where UV
physics is incorrect.

The scale and scheme dependence of SRCs is mani-
fest in these two figures. But by shifting the resolu-
tion scale through SRG evolution, the SRC physics is
dissolved as the deuteron state becomes decoupled from
high-energy contributions. All physical observables will
be preserved with these uncorrelated wave functions if
the corresponding operators are also SRG evolved. The
purely high-momentum contributions removed from the
wave function are compensated in the evolved operator
as smeared contact operators, as illustrated in the fol-
lowing section. This reflects a natural factorization of
the short-distance physics for low-energy states, which
will be the same in all nuclei (with 1S0 contributions as
well for A > 2). This factorization accounts for the short-
distance or high-momentum pair distributions for a fixed
high-resolution Hamiltonian being the same as well (so
they are universal in a difference sense than we have been
considering) [26, 39].

The flow to universality in the wave functions for a
well-specified SRG scheme suggests that the lower reso-
lution scales for nuclear structure from soft potentials and
the shell model can be matched by a well-specified reac-
tion operator structure [38]. The S-state versus D-state
probabilities of the deuteron can be viewed as spectro-
scopic factors for single-particle strengths [47]. If one an-
alyzed scattering from the deuteron S-state with a high-
resolution reaction model but the low-resolution wave
function, the reduced D-state component would lead one
to conclude that the ratio of experiment to theory cross
sections was less than one. This is the analog of what is
found in knock-out experiments analyzed with an eikonal
reaction model and shell model wave functions [48]. The
flow to universal structure may provide a controlled res-
olution of these discrepancies.

In summary, we have examined the flow to universality
of several recently developed χEFT potentials. We ver-
ified that the general conclusions of Ref. [20] still hold,
namely that potential matrix elements collapse to sim-
ilar values in regions of phase equivalence. We quan-

tified this collapse using both Frobenius norm and the
SDT angle θV,V ′ , which highlight the differences in the
three representative potentials from the regulator func-
tions. Lastly, we illustrated the consequence of this uni-
versality for low-energy wave functions of the potentials
by applying transformations to the deuteron.

IV. EVOLUTION OF OTHER OPERATORS

A. SRG for representative operators

In this section, we analyze SRG operator evolution us-
ing the radius squared operator r2 and the momentum
projection operator a†qaq, where q is the relative momen-
tum. These serve as examples of long-distance operators
(r2) and low- and high-momentum operators (by specify-
ing different q in a†qaq). We look to whether the observa-
tions on universality for SRG-evolved Hamiltonians can
be generalized to universality for any SRG-evolved oper-
ator and contrast the evolution for different generators.
In evolving these operators, we build the SRG unitary
transformations explicitly using the eigenvectors of the
bare and evolved Hamiltonians, that is,

U(s) =
N∑
α=1

|ψα(s)〉 〈ψα(0)| , (13)

where α indexes the states of the Hamiltonian. Then to
evolve the operator, we apply U(s) as in Eq. (1).

We start by considering the relative momentum pro-
jection operator, a†qaq, which works in a very simple way

in the two-body system. The expectation value of a†qaq
in some state |ψ〉 gives the momentum distribution eval-

uated at q, that is, 〈ψ|a†qaq|ψ〉 = |ψ(q)|2. Hence, the
k, k′ matrix element of this operator is proportional to
two delta functions: δ(k − q)δ(k′ − q). In the simplest
discretization, this corresponds to a matrix of zeros at
every point in k and k′ except where k = k′ = q, which
makes the SRG-induced contributions quite clear. More
generally, we can use smeared delta functions with non-
zero entries, appropriately weighted to integrate to one,
for the matrix elements near k = k′ = q. In Figs. 12
and 13 we show two different sets of SRG-evolved mo-
mentum projection operators (for q = 0.3 and 3 fm−1)
with the Wegner and block-diagonal generators using a
slightly smeared operator. For large λ and ΛBD values in
both figures, we see the initial regularized delta functions
as a dark red dot where k = k′ = q, which persists with
SRG evolution. (See Figs. 3 and 4 in Ref. [26] for similar
visualizations with the simplest discretization.)

In Fig. 12 where q = 0.3 fm−1, the most evident in-
duced contributions are non-zero bands for k = q or
k′ = q and then smooth induced contributions eventu-
ally become visible at k, k′ < 2 fm−1. These features are
independent of the smearing of the delta function and
matrix elements in the deuteron are the same up to small
discretization artifacts. We can understand the bands by
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FIG. 12. Momentum projection operator 〈k|a†qaq|k′〉 for q = 0.3 fm−1 under SRG transformations using the RKE N4LO 450
MeV potential, evolving with Wegner (HD) and block-diagonal (HBD) generators in the 3S1 channel. The SRG flow parameter
λ is varied for G = HD evolution and fixed at λ = 1 fm−1 for G = HBD evolution. The decoupling scale for G = HBD is ΛBD.

FIG. 13. Same as Fig. 12 but for q = 3 fm−1.

taking one infinitestimal step ∆s in the SRG evolution
in Eq. (2) and taking k, k′ matrix elements,

〈k|∆a†qaq(s)|k′〉 = 〈k|[η, a†qaq(0)]|k′〉∆s. (14)

After inserting an intermediate integration, a†qaq(0) will
evaluate to two (smeared) delta functions, one of which
survives each term as δ(k − q) or δ(k′ − q). These delta
function contributions persist throughout the evolution
and therefore show up as (smeared) bands. For the Weg-
ner generator the low-momentum induced contributions
are much larger than in the case of the block-diagonal
generator. This reflects that the Hamiltonian is being
modified more at high momentum by the band-diagonal
evolution. Consequently the block-diagonal transforma-
tion roughly keeps the same low-k wave function (assum-
ing a low-energy state), therefore a low-momentum op-

erator will change less under block-diagonal transforma-
tions. This is analyzed further in Sec. IV B.

Figure 13 shows SRG evolution of 〈k|a†qaq|k′〉 again

but for q = 3 fm−1. The band-diagonal SRG transfor-
mation induces low-momentum contributions where the
initial operator was entirely zero. A similar change hap-
pens for the block-diagonal transformation except the
induced contributions at low momentum sharply drop
to zero at the block-diagonal cutoff ΛBD. The smooth
low-momentum contributions are what is expected from
an EFT perspective, as they can be expanded as regu-
lated (smeared) contact operators that absorb the high-
momentum contributions to low-energy states that are
decoupled by the evolution. These features are indepen-
dent of the mesh and the discretization of the delta func-
tions. This is an example of an operator product expan-
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FIG. 14. Visualization of the r2 operator in momentum space,
〈k|r2|k′〉, regulated only by the coordinate and momentum
meshes. The integration factors of k and k′ are included.

FIG. 15. Same as Fig. 14 but with a coordinate-space regu-

lator function e−r2/a2

where a = 6 fm.

sion factorization [26, 39], which is reviewed in Sec. IV C.
Next, we consider the r2 operator, relying on Ref. [26]

for formulas and some basic results. In the absence of an
explicit regulator for large r, the meshes used to create
the r2 matrix in coordinate space and then Fourier trans-
form to momentum will act as regulators. Visualizations
of the bare r2 operator will then be highly mesh depen-
dent, even though expectation values of r2 will be stable
for sufficiently large cutoff in r or small mesh spacing in
k. With this in mind, we show visualizations of 〈k|r2|k′〉
in Figs. 14 and 15, where the latter has an added regu-
larization to illustrate the strong regulator dependence.
(The r2 operator in Figs. 14 and 15 include integration
factors k and k′ such that evaluating 〈ψ|r2|ψ〉 in momen-
tum space with wave functions equipped with additional
factors k or k′ will give the correct integration.) As evi-
dent in both figures, there is strength near the diagonal
for all k, so the contribution to the r2 expectation value
for a particular state will be dictated by its momentum
wave function.

The SRG evolution of the regulated r2 operator is
barely noticeable in contour plots (e.g., see Ref. [26]),
so we focus instead on the induced changes in the op-
erator when evolving to low momentum. We use block-
diagonal evolution for clarity and split the contribution to
r2 according to its origin in different blocks of momentum

space defined by P = θ(ΛBD − k) and Q = θ(k − ΛBD)
projection operators. In particular, the four contribu-
tions to the evolved r2 operator (designated r2(ΛBD)) in
the low-momentum block is decomposed as:

Pr2(ΛBD)P = PU(ΛBD)Pr2(∞)PU†(ΛBD)P

+ PU(ΛBD)Pr2(∞)QU†(ΛBD)P

+ PU(ΛBD)Qr2(∞)PU†(ΛBD)P

+ PU(ΛBD)Qr2(∞)QU†(ΛBD)P. (15)

In Fig. 16 we show a representative set of these contri-
butions for the RKE N4LO 450 MeV potential, labeled
by their origin before the block-diagonal unitary trans-
formations.

The Q–Q panel in Fig. 16 is very similar to the cor-
responding P–P block for the evolved high-momentum
a†qaq shown in Fig. 13. This is not a coincidence: these
smooth low-momentum contributions have the same ori-
gin and same understanding from EFT and OPE fac-
torization. The P–Q block is roughly constant in k′ for
the same reason, while the k dependence is associated
with the bare operator, and therefore with the regular-
ization (here as in Fig. 14), as is the full contribution
in the P–P block (likewise for the Q–P block, swap-
ping k′ and k). The implications for matrix elements
in the deuteron are given in the next section. We dis-
cuss how the behavior in each panel of Fig. 16 follows
from factorization in Sec. IV C. The decomposition for
other potentials or other choices for ΛBD is qualitatively
similar, with the Q–Q contribution scaling with the hard-
ness of the interaction, which reflects the extent of initial
high-momentum components (i.e., the short-range corre-
lations).

B. Connecting to wave function evolution

SRG transformations are unitary, meaning that the
matrix elements of the evolved operator are preserved.
Therefore, the changes in the operator must be accounted
for in the evolved wave functions. We can examine the
evolved wave functions to understand the differences in
band- and block-diagonal evolution of operators.

Figure 17 shows initial and evolved momentum dis-
tributions for the deuteron and a high-energy state at
ε ≈ 300 MeV using the RKE N4LO 450 MeV potential.
For the deuteron, the strength of the wave function is
shifted to lower momentum with the band-diagonal gen-
erator. With the block-diagonal generators, the wave
function is nearly the same up to the value of the cut-
off ΛBD. For the high-energy state, the band-diagonal
generator keeps the strength of the wave function near
the spike at k ≈ 2.7 fm−1. However, in the case of
the block-diagonal generator, the wave function changes
in different ways depending on the cutoff ΛBD. For
ΛBD = 2 fm−1, we see the evolved distribution roughly
matching the initial one for k > ΛBD, and vice versa for
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FIG.16. SRGcontributionstoPr2Pinmomentumspace,splittingPU(ΛBD)r
2(∞)U†(ΛBD)Pintofourcomponentsasin

Eq.(15).FortheP–Pcontribution,theunevolvedoperatorPr2Pissubtractedout. Weapplyablock-diagonaltransformation
fromRKEN4LO450MeVinthe3S1channelwithΛBD=2fm
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FIG.17. Momentumdistributionsfromdeuteron(a)andahigh-energystate(b)withtheRKEN4LO450MeVpotential.Here,
wecompareSRG-evolveddistributions,G=HD (redsolid),G=HBD atΛBD=2fm

−1(bluedash-dotted),andG=HBD at
ΛBD =3fm

−1(greendash-dotted)eachwithλ=1.5fm−1,totheinitialdistribution(blackdotted). Also,ε≈300 MeVfor
thehigh-energystatein(b).

ΛBD=3fm
−1.Recallthatinblock-diagonalSRGdecou-

plingtheHamiltonianissplitintoalow-momentumsub-
block,PHP,andahigh-momentumsub-block,QHQ.
WhenΛBD =2fm

−1,theε≈300 MeVstateiscon-
tainedinQHQ,whereasforΛBD=3fm

−1itiscontained
inPHP. Notethatthedeuteron,beingthelowesten-
ergystate,isalsocontainedinPHP,whichisconsistent
withwhatisseeninFig.17(a).Ablock-diagonal-evolved
wavefunctionremainsapproximatelyunchangedinthe
sub-blockwherethestateresideswiththerestofthe
wavefunctiondroppingtozero.

Generallyspeaking,SRGtransformationschangeoper-
atorsbasedonhowthetransformationschangethewave
functions,whichdependsonthetypeofdecoupling.Con-
siderthemomentumprojectionoperatorwithq=3fm−1

andablock-diagonaltransformationwithΛBD=2fm
−1.

Weseetheevolvedwavefunctionsforthedeuteronand
thehigh-energystateareoppositeinthesensethatthe
evolveddeuteronwavefunctionmatchestheinitialwave
functionfork <ΛBD andthehigh-energystatewave

functionmatchesfork>ΛBD.

Wecanusethemomentumprojectionoperator a†qaq
tounderstandthecontrastingbehaviorinthewavefunc-
tions. With ψ(0)|a†qaq(0)|ψ(0)= ψ(s)|a†qaq(s)|ψ(s)
fromunitarity,howdoestheevolvedprojectionoper-
atorforq=3fm−1andΛBD =2fm

−1makesense
giventhesechangestotheexamplewavefunctions?For
thedeuteronwavefunction,theexpectationvaluetakes
strengthfromtheinducedlow-momentumcontributions
intheevolvedoperatorwheretheevolveddeuteronwave
functionisstrongest(k<2fm−1).Forthehigh-energy
state,theexpectationvaluedependsmoreontherem-
nantsofthedeltafunctionsfromtheinitialoperatorbe-
causethestrengthofthewavefunctionisathighmo-
mentum.Ineachcase,theexpectationvalueremains
thesame.

TheSRGdoesnotdecoupleeveryoperatorinthesense
thatitdecouplesmatrixelementsasintheHamiltonian,
butinsteadreflectsthechangesmadetothewavefunc-
tions.InFigs.18and19weshowtheevolutionofthein-
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FIG. 18. Integrand of 〈ψd|a†qaq|ψd〉 in momentum space where ψd is the deuteron wave function and q = 3 fm−1. Here, we
SRG-evolve the operator and wave function where each successive column indicates further evolution under the Wegner and
block-diagonal generators with the RKE N4LO 450 MeV potential. We vary the SRG flow parameter λ for Wegner evolution
and fix it at λ = 1 fm−1 for block-diagonal evolution. The decoupling scale in the block-diagonal generator is denoted by ΛBD.

FIG. 19. Same as Fig. 18 but with a high-energy state ψε where ε ≈ 300 MeV.

tegrand of the expectation value 〈ψ|a†qaq|ψ〉 for deuteron
and a high-energy state ε ≈ 300 MeV, respectively, where
q = 3 fm−1. Both the wave function and operator are
SRG evolved so the total strength is preserved.

In Fig. 18, the SRG transformations shift the strength
in the integrand to lower momentum, matching the
changes in the SRG-evolved deuteron wave function. The
band-diagonal transformation in the top row smoothly
approaches lower and lower momentum, eliminating the
delta functions, while the block-diagonal shows similar
behavior but roughly sets an upper limit ΛBD on the
intermediate integrations. The low-momentum contri-
butions in the expectation value are relatively constant
as the fall off of the wave function ψ(k) largely cancels

out with the integration factors k2 and k′2. In Fig. 19,
band-diagonal evolution locally decouples the expecta-
tion value at high momentum. Block-diagonal evolution
sharply isolates the expectation value to low- or high-
momentum sub-blocks depending on the value of ΛBD.
In the first two columns with block-diagonal decoupling,
the expectation value resides in the low-momentum sub-
block, but then switches to the high-momentum sub-
block in the last two columns with lower ΛBD.

The expectation value 〈ψd|r2|ψd〉 shows little variation
with SRG evolution as the strength of initial operator re-
sides predominantly at low momentum. Thus, softening
the high-momentum tail of the deuteron wave function
leads to only a small change in the expectation value with
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TABLEI.SRGcontributionsto ψd|Pr
2P|ψd splittingPU(ΛBD)r

2(∞)U†(ΛBD)PintofourcomponentsasinEq.(15)where
P–QandQ–Parecombined.FortheP–Pcontribution,theunevolved ψd|Pr

2P|ψd valueissubtracted. Weapplyblock-
diagonaltransformationsfromRKEN4LO450 MeVandAV18inthe3S1channelwithΛBD =2fm

−1.Forcomparison,we
alsoshowresultsfora†qaqwithq=3fm

−1.

ψd|Pr
2P|ψd [fm

2] ψd|Pa
†
qaqP|ψd [fm

3]

Potential P–P P–Q+Q–P Q–Q P–P P–Q+Q–P Q–Q

RKEN4LO450MeV −2.90×10−2 −3.22×10−1 1.66×10−1 0.0 0.0 5.05×10−4

AV18 −4.83×10−2 −4.33×10−1 2.33×10−1 0.0 0.0 1.61×10−3

0 2 4 6

kmax [fm
1]

10 4

10 3

10 2

10 1

100

r

AV18

AV18

RKE

RKE

FIG.20. Relativeerrorofthedeuteronrmsradiusfrom
AV18(black)andRKEN4LO450MeV(red)truncatingthe
momentum-spacecalculation ψd|r

2|ψd atkmax.Solidlines
indicatethefullyunevolvedcalculationanddashedlinesin-
dicatetheSRG-evolvedcalculationwhereλ=1.5fm−1.

r2.InFig.20thecontributionsfromdifferentregionsin
ktotheunevolveddeuteron matrixelementofr2are
shownfortheAV18andRKEN4LO450MeVpotentials
byplottingtherelativeerrormadebyintegratingonly
uptokmax. Onlyabout1%oftheexpectationvalue
comesfromabove2fm−1intheinitialwavefunction
foreitherpotentialandthereisnegligiblecontribution
above2fm−1oncetheyareevolvedtoλ=1.5fm−1.Ta-
bleIshowsthecontributionsfromtheblocksinFig.16
tothedeuteron. Incontrasttotheentriesfora†qaq
withq=3fm−1,whichcomeentirelyfromthehigh-
momentumQ–Qblock,thefourblockseachcontribute
totheinducedr2expectationvalues.Thisimpliesthat
attemptstoestimatethehigh-resolutionSRCcontribu-
tiontothelow-resolutionradiusinschematicmodels,as
inRef.[49],arerathersubtle. Wehavecheckedthatcon-
tributionsto ψd|Pr

2P|ψd withtransformationsfrom
otherpotentialsareconsistentwiththeresultsinTableI.

C. Factorization

InRefs.[26,50]itwasshownthatwhenthereisascale
separationinitsmomentumarguments,theSRGuni-
tarytransformationshouldfactorizeintoseparatefunc-
tionsoflowandhigh momentum,thatis,U(k,q)→
Klo(k)Khi(q)fork <λ q.5 Thisisexpectedfrom
generalconsiderationsoftheoperatorproductexpan-
sion[26,39]. Atestoffactorizationforthreechiral
EFTpotentialsisshowninFig.21byplottingtheratio
|U(ki,q)/U(k0,q)|versusqwithk0=0.1fm

−1forsev-
eraldifferentki.Ingeneralthisratioshouldvarywidely
withqbutshouldreduceto|Klo(ki)/Klo(k0)|,whichis
independentofq,whentheconditionsforfactorization
aresatisfied.Thisisvalidatedinthefigureasplateausof
theUratiointheexpectedregioninqforki<λ.Fur-
thermore,theseplateausareclosetooneandvaryslowly
withki,sothesameistrueofKlo(k). Weshowonlythe
3S1channelinFig.21buthaveverifiedfactorizationin
otherchannelsaswell.
Considertheconsequencesofthisfactorizationfor
block-diagonalSRGevolutionofanunevolvedhigh-
momentumoperator,whichwedefineasonewithsup-
portonlyintheQ–QblockasinSec.IVA:

[OQ]∞ =Q[OQ]∞Q. (16)

Thisincludesa†qaqforqinQandQr
2(∞)Qin(15).In

thelow-momentumblock,theevolvedoperatorbecomes

P[OQ]ΛBDP=PU(ΛBD)Q[OQ]∞QU
†(ΛBD)P

≈PKloKhi[OQ]∞KhiKloP (17)

or,fork,kintheP–Pblock,

k|[OQ]ΛBD|k ≈Klo(k)Klo(k)

×
∞

ΛBD

d̃q
∞

ΛBD

d̃qKhi(q)[OQ]∞(q,q)Khi(q),

(18)

whered̃k≡ 2
πk
2dk.Asallofthek,kdependencecomes

fromthesmoothfunctionsKlo(k)Klo(k),thisuniversal

5InRef.[26],KlowasdenotedK andKhiwasdenotedQ. We
switchnotationheretoavoidconfusionwiththeprojectionop-
eratorQ.
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FIG.21. Numericaltestsoffactorizationoftheunitarytransformationbyplottingratiosof|U(k,q)|inthe3S1channelasa
functionofqforfixedk=k0inthedenominatorandseveralvaluesofkiinthenumerator.Plateausinqindicatefactorization
U(k,q)≈Klo(k)Khi(q),whichisexpectedforq λ(outsideshadedbox)andk <λ. Theunitarytransformationsare
generatedineachpanelforadifferentchiralEFTpotential,allevolvedtoλ=2fm−1withG=HD.

resultdirectlyexplainstheparticularcasesoftheP–P
blockbehaviorinFig.13andtheQ–QpanelofFig.16.
Thesameanalysisgoesthroughwiththeband-diagonal
SRG,butwithΛBD → λandtheboundariesnotso
sharplydefined.
Notethatinthenon-Q–QpanelsofFig.16atleastone

ofthetwoSRGtransformationsdoesnotfactorizeand
isfullyinthelow-momentumPsub-space.Forinstance,
intheP–Qpanel,wehaveoneintegraloverlow mo-
mentumandanotheroverhighmomentum.Thisyields
oscillatorybehaviorinkfromtheformofthebarer2op-
erator(whichisschemedependent)andlittlevariation
inkbecausethefactorizedfunctionKlo(k)isconstant
atleadingorder.
IfweapplyEq.(18)tomatrixelementsofOQ forthe

sameHamiltonianbutindifferentnuclei,theintegrations
intheQ–Qblockwillbethesame,somatrix-element
ratioswillbedeterminedbysoft(“mean-field”)physics
andbeindependentofhigh-momentumdetails[26](up
tohigher-ordercorrectionsbeyond(18)). Thisexplains
whythehigh-momentumorshort-distancebehaviorof
momentumdistributionsisuniversalinnuclei[14,26,
39,51].
Wecanalsouse(18)tomakecomparisonsforthesame

nucleusbutwithdifferentpotentials. Weusea†qaqwith
q λorΛBDasanexample,so

q|[OQ]∞|q →δ(q−q)δ(q−q) (19)

andtheratiofortwodifferentpotentialsAandBis

R[a†qaq(k,k)]≡
k|a†qaq

A

λ
|k

k|a†qaq
B

λ
|k

≈
KAlo(k)K

A
lo(k)K

A
hi(q)

2

KBlo(k)K
B
lo(k)K

B
hi(q)

2
. (20)

FromFig.21weverifythattheKlofunctionsshouldbe
approximatelythesameforseveralchiralEFTpotentials,
sothisratioshouldberoughlyconstantfork,k<λand

q λ.ThisisillustratedinFig.22forthesesamepoten-
tialsinthe3S1channelforq=3fm

−1. Afterevolution
toλ q,theratioRisquiteflatintheunshadedregion.
Thevalueoftheratioatqiswellapproximatedatlower
λby

|ψA∞(q)|
2

|ψB∞(q)|
2
=
ψAλ a†qaq

A

λ
ψAλ

ψBλ a†qaq
B

λ
ψBλ

≈
KAhi(q)

2

KBhi(q)
2
≡f(q),

(21)

whereψdenotesthevariousdeuteronwavefunctions,
whichsharethesamelow-momentumstructuresothat
theKlodependenceroughlycancels.
Thehigh-momentumfunctionf(q)isdependentonthe
differencesintheUVbehaviorofeachoftherepresen-
tativepotentials. Thisdoesnot mean,however,that
oneofthepotentialsiscorrectandtheothersarewrong.
Indeed,matrixelementsoftherepresentativeoperators
consideredinthissection,a†qaqandr

2,cannotbeabso-
lutelymeasuredbythemselvesinexperiments.Torelate
themtomeasurablequantities,onemustbuildandcal-
ibratetheinitialoperatorsforparticularexperimental
observables,asdonewithEFTs.Arecentexampleisthe
precisioncalculationofthedeuteronstructureradiusin
Ref.[52],whichrequirestheinclusionoftwo-bodycur-
rentsthatwillhavescaleandschemedependentcontri-
butionstomatchthemeasuredchargeformfactor.Only
aftertheconsistentconstructionoftheHamiltonianand
currentoperators,withanassessmentofuncertainties
fromtheorydiscrepancies(suchasEFTtruncationer-
rors),canonereliablycomparepredictions.
Forvisualinsightintofactorization,weconsiderthe
SRGtransformationdirectly. WecanwritetheSRGuni-
tarytransformationas

U(s)=1+δU(s), (22)

whereδU(s)isresponsiblefortheinducedchangesin
transformedoperators. InFig.23weshowcontours
ofδU(s)in momentumspaceinthe3S1channelfor
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FIG.22.RatioofevolvedmatrixelementsR[a†qaq(k,k)](diagonal)andR[a
†
qaq(k,0)](fulloff-diagonal)asdefinedin(20)inthe

3S1channelforq=3fm
−1.ThreepotentialsarecomparedtoRKEN4LOafterevolutiontoseveralvaluesofλwithG=HD.

Thedottedlinesindicatethevalueof|ψA∞(q)|
2/|ψB∞(q)|

2.

FIG.23. MatrixelementsofδU(k,k)withtheEMNN4LO500MeV,RKEN4LO450MeV,andGezerlisetal.N2LO1fm
potentialswith Wegnerandblock-diagonalgeneratorsinthe3S1channel.Herewesetλ=1.5fm

−1forband-diagonalevolution,
andΛBD=2andλ=1fm

−1forblock-diagonalevolution.

thethreerepresentativepotentialsallevolvedtoλ=
1.5fm−1withG=HD inthetoprow,andtoλ=1
andΛBD =2fm

−1withG=HBD inthebottomrow.
Figure23depictsfactorizationinthefollowingsense.By
fixingktoavaluemuchhigherthanλorΛBD,wecan
takeverticallinesuptok=λorΛBDandseelittleto

novariationinthetransformation. Thetransformation
approximatelydependsonlyonafunctionofhighmo-
mentumKhi(k)intheseregions,hencethesameshade
ofcolor. Onecanverifyfactorizationintheopposite
blockbyfixingk λandtakinghorizontallinesupto
k=λ.
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FIG. 24. Matrix elements of δU(k, k′) with the high-cutoff LO potentials with Wegner and block-diagonal generators in the
3S1 channel. Here we set λ = 1.2 fm−1 for band-diagonal evolution, and ΛBD = 2 and λ = 1 fm−1 for block-diagonal evolution.

The difference in regulator functions between the three
representative potentials is apparent in these figures. For
instance, in the EMN N4LO case, the non-local regula-
tor kills off the high-momentum matrix elements of δU(s)
because U(s) is expressed in terms of the SRG generator
η(s) which contains the potential V (k, k′). In the subse-
quent panels, the local momentum dependence of RKE
N4LO (semi-local) and Gezerlis N2LO (local) is seen in
non-zero matrix elements at higher momentum values.

Figure 24 shows matrix elements of δU(s) for the high-
cutoff LO potentials. These potentials still exhibit fac-
torization of the SRG transformation, although the func-
tion of high momentum Khi(q) will have much different
behavior than the softer chiral potentials. Furthermore,
we see the appearance of positive, horizontal bands for
the band-diagonal transformations. In the first column,
the band corresponds to the region in which the high-
momentum contributions of the initial potential accumu-
late up to the momentum space cutoff Λ = 4 fm−1. For
Λ = 9 and 20 fm−1, the large and positive band corre-
sponds to the decoupled spurious bound state. This piece
of the transformation decouples the spurious bound state
along the diagonal in the evolved potential. Otherwise,
the low-momentum matrix elements are quite similar to
the softer transformations in Fig. 23, with larger contri-
butions at high momentum due to the high momentum-
space cutoffs.

In this section, we examined the characteristics of SRG
evolution for representative operators a†qaq and r2, ex-
tending the treatment in Ref. [26]. The SRG changes
in the operator do not lead to any complications that
would offset the desired features in the decoupled NN
potential. Corresponding wave functions are decoupled
in momentum space, either collapsing locally to one re-

gion with band-diagonal evolution, or cleanly cut off from
low- or high-momentum sub-spaces with block-diagonal
evolution (depending on the energy of the state). The
matrix elements of expectation values using the evolved
operators and states show how one can take advantage of
scale and scheme dependence to calculate consistent ob-
servable quantities at lower resolution. We used factor-
ization to show that high-momentum operators exhibit
universal scaling dependent only on the high-momentum
physics of the underlying NN potential. That is, the high-
momentum (short-distance) physics in the initial wave
function appears in the evolved operator.

While the results of operator evolution generally have
the same behavior for different potentials, the under-
lying scheme dependence is apparent. The induced
high-momentum (short-distance) contributions in non-
Hamiltonian operators are dependent on the UV scheme
of the NN potential. Furthermore, the remaining SRG
components of non-Hamiltonian operators reflect the
scheme dependence of the bare operator. For example,
contrasting smeared delta functions to the single-point
delta functions in a†qaq from [26] gives differing behavior
in the SRG-evolved matrix elements at k, k′ = q. Lastly,
we demonstrated that the characteristics of operator evo-
lution are the same for band- and block-diagonal SRG
schemes, but the evolved matrix elements are different
and reflect the SRG decoupling scheme.

V. SUMMARY AND OUTLOOK

Operator evolution is a critical aspect of SRG evolu-
tion in free-space and in-medium implementations. Our
initial focus here was on a technical aspect of this evolu-
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tion: the efficacy and robustness of the Magnus expan-
sion, which we evaluated in a difficult test environment
with large cutoffs and spurious states. But this study
led us to reconsider and expand past studies of operator
evolution in light of scheme dependencies arising both
from different SRG generators and from different regula-
tors of recent chiral EFT Hamiltonians. The flow to low
resolutions leads to universality (in the sense of indepen-
dence from initial scheme dependence) in Hamiltonians
and low-energy wave functions. The constraint of uni-
tarity then has implications for the corresponding flow
of operators, while the scale separation from decoupling
leads to consequences from factorization. Each of these
aspects can be exploited in future analyses of nuclear re-
actions that account for scale and scheme dependence.

We first used high-cutoff EFTs to verify that the Mag-
nus expansion offers an improved variant of the stan-
dard SRG solution methods. The Magnus implemen-
tation performs SRG transformations to exact unitarity
which allows one to solve the flow equation (2) using
simple, efficient methods. In Fock space, the benefits of
the Magnus expansion are especially important as evo-
lution of several operators simultaneously can be quite
difficult for many-body systems, hence the prominence
of the Magnus expansion in IMSRG calculations. Here
we showed that the Magnus implementation works effec-
tively for a difficult free-space test problem in decoupling
bound states using LO chiral potentials at high cutoffs.
The Magnus expansion reproduces the generator depen-
dence seen in Ref. [25] and obtains eigen-energies to high
accuracy. In carrying out this test, we also showed that
the block-diagonal generator decouples spurious, deeply
bound states cleanly in the high-momentum sub-block
but at higher momentum values than the band-diagonal
generators and without apparent dependence on the dis-
cretization mesh. However, the Magnus expansion does
not converge in some cases, which is similar to a related
issue in IMSRG calculations involving intruder states.
The NN convergence problem is related to the interac-
tion and can be avoided in at least some cases by a careful
selection of generator G.

The initial high-cutoff LO Hamiltonians and the con-
trasting evolution with band- and block-diagonal genera-
tors represent extremes of scale and scheme dependence.
Recently introduced chiral EFT Hamiltonians are char-
acterized by a different type of scheme dependence in
the use of qualitatively distinct regulators. In compar-
ing their flows to low resolution, we confirmed that the
momentum-space matrix elements of this new generation
of χEFT Hamiltonians flow to a universal form when
the decoupling scale is below the region of phase equiv-
alence. This happens for either band or block diagonal
generators, but the universal form is not the same [20].
We found small deviations from universality in channels
dominated by one-pion exchange or only contact forces,
which are attributed to the difference in regulator func-
tions. This was examined quantitatively using the Frobe-
nius norm and SDT correlation coefficient and angle θV,V ′

as measures of the differences in the evolved potentials.

The flow to near-universality for potentials leads to
almost perfect universality of deuteron wave functions.
Dramatically different initial wave functions in both
their S-wave and D-wave characteristics collapse to near-
indistinguishable low-resolution versions. We expect a
similar collapse, if not as extreme, for the lowest-energy
states in other nuclei. This is encouraging for our goal of
a controlled understanding of how spectroscopic factors
are quenched in terms of a mismatch of high-resolution
reaction models and low-resolution structure. With uni-
versal wave functions at low resolution, we expect to iden-
tify universal features in the evolved reaction operators.

This goal led us to revisit the SRG evolution of non-
Hamiltonian operators first studied in [26, 39] (see also
[53, 54]). We first extended our SRG analysis to mo-
mentum projection operators at low and high momen-
tum. Evolution of the momentum projection operator
exemplifies the benefits that arise from SRG-transformed
operators. In particular, with decoupling at lower reso-
lution there is a shift of strength to low momentum in
matrix element of low-energy wave functions through in-
duced two-body contributions (and smaller higher-body
contributions that do not contribute to the deuteron).
This induced structure is very smooth and does not ex-
hibit artifacts from the discretization of the operator.
The smoothness and universal properties are well under-
stood from the factorization of the unitary transforma-
tions for well-separated momentum arguments. The ra-
tios of the same hard operators for different potentials
scale with the high momentum and differ in magnitude
as expected from differences in the ultraviolet content
of the potentials. (Note that to get the same matrix
elements, the operators themselves would have to be ap-
propriately matched for the experimental observable in
question.) This suggests that a reliable theoretical under-
standing of high-energy reactions is possible using low-
energy structure components (the initial wave function)
with no insurmountable complications from the evolved
operators.

Another representative operator is r2, which is sensi-
tive to the long-distance wave-function structure in co-
ordinate space. In momentum space, this operator has
strength at all momentum scales and its visual form is
highly sensitive to the momentum discretization scheme.
The two-body induced contributions from this operator
to a low-energy state like the deuteron are small (see
Ref. [54] for results on induced three-body contribution).
We isolated four types of contribution to the induced op-
erator (see Fig. 16). The part originating fully from the
high-momentum sector takes the same smooth form as
the induced two-body operator for the high-q momentum
projection operator, and is explained in the same way by
factorization. However while the qualitative behavior of
the other pieces is still explained by factorization, the
numerical contributions are scheme dependent (see Ta-
ble I). This implies that even roughly estimating the net
contribution, as in Ref. [49], may be difficult.



21

The features highlighted here and in work on the elec-
trodisintegration of the deuteron [37, 38] on the interplay
of structure (wave functions) and reaction (operators)
are promising for a cleaner theoretical understanding of
FRIB-type knock-out reactions [55]. By exploiting the
unitary invariance of measured observables, we can shift
the focus from correcting many-body wave functions to
the computationally simpler RG flow of the operators.
The long-standing and well-documented mismatch of ex-
perimental and theoretical cross sections for knock-out
reactions (see Ref. [48] and references therein) can be
understood at least in part as a failure to do consis-
tent matching of resolution scales. That is, the over-
prediction of cross sections with (low resolution) shell
model wave functions should be understood as arising
because a high-resolution reaction mechanism is used in
the analysis. Exploiting the flow to universal soft wave
functions and the corresponding consistent operators can
open the door to process-independent analyses of these

reactions.
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