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Abstract

Non-human primates are our closest relatives and therefore offer valuable comparative models for human evolutionary studies
and biomedical research. As such, Japanese macaques (Macaca fuscata) have contributed to the advancement of primatology
in both field and laboratory settings. Specifically, Japanese macaques serve as an excellent model for investigating postnatal
development and seasonal breeding in primates because of their relatively prolonged juvenile period and distinct seasonal
breeding activity in adulthood. Pioneering histological studies have examined the developmental associations between their
reproductive states and spermatogenesis by morphological observation. However, a molecular histological atlas of Japanese
macaque spermatogenesis is only in its infancy, limiting our understanding of spermatogenesis ontogeny related to their
reproductive changes. Here, we performed immunofluorescence analyses of spermatogenesis in Japanese macaque testes to
determine the expression of a subset of marker proteins. The present molecular histological analyses readily specified major
spermatogonial subtypes as SALL4" A spermatogonia and Ki67*/C-KIT" B spermatogonia. The expression of DAZL, SCP1,
yH2AX, VASA, and calmegin further showed sequential changes regarding the protein expression profile and chromosomal
structures during spermatogenesis in a differentiation stage-specific manner. Accordingly, comparative analyses between
subadults and adults identified spermatogenic deficits in differentiation and synchronization in subadult testes. Our findings
provide a new diagnostic platform for dissecting spermatogenic status and reproduction in the Japanese macaques.
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Introduction

The Japanese macaque (Macaca fuscata) is the most north-
ern-living nonhuman primate species. Extensive field and
laboratory studies of this species have yielded significant
contributions to the advancement of primatology. Field
researchers have investigated the ecology and social behav-
iour of the Japanese macaque (Leca et al. 2016; Schofield
et al. 2018; Takahata et al. 1999), while life scientists, espe-
cially neuroscientists, have focused on biomedical aspects,
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such as their anatomical and physiological similarities to
humans, their high cognitive ability, and their unusually
tolerant social behaviour (Iriki and Sakura 2008; Isa et al.
2009). In addition, the Japanese macaque exhibits unique
reproductive characteristics compared to other commonly
studied model organisms, such as mice and rats. For exam-
ple, like other primates, they undergo a relatively prolonged
juvenile period (4-5 years in the Japanese macaque) before
reaching sexual maturity. They also have seasonal breeding
activity adapted to distinct annual climate changes in the
Japanese islands. Thus, the Japanese macaque is an excellent
model for investigating postnatal development and seasonal
breeding in primates.

In mammals, spermatogenesis occurs in seminiferous
tubules of adult testis. This sequential process is spatiotem-
porally regulated under a strict developmental program
(Hermo et al. 2010). Spermatogenesis originates from sper-
matogonia, which are enclosed by Sertoli cells on the base-
ment membrane of seminiferous tubules. Spermatogonia
either renew themselves by mitotic division or proceed to
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«Fig. 1 Spermatogonial subtypes in the adult Japanese macaque testis.
Testis sections from adult Japanese macaques (Mf2338, 93 months
old; Mf2348, 154 months old) were characterized by immunofluo-
rescence analyses with specific antibodies. Representative images of
each immunofluorescence staining are presented. a Immunofluores-
cence images of spermatogonia (SALL4, Ki67, C-KIT) and Sertoli
cell (vimentin, SOX9) distribution. b High-magnification images of
undifferentiated A spermatogonia (SALL4), differentiating spermato-
gonia (Ki67, C-KIT), and Sertoli cells (vimentin). ¢ High-magnifica-
tion images of spermatogonia expressing VASA and DAZL proteins.
Arrows indicate A spermatogonia, and arrowheads indicate B sper-
matogonia. Nuclei were counterstained with DAPI. Scale bar: 50 pm

meiosis to produce spermatocytes, spermatids, and finally
mature spermatozoa. The spermatogenic process becomes
active after sexual maturation. In neonates, testicular struc-
tures are still under construction, and only gonocytes, a
spermatogonia progenitor, exist in seminiferous cords. Sper-
matogenesis enters the preparatory stage in juveniles, and
full spermatogenesis is achieved in adulthood. Regarding the
Japanese macaque, pioneering studies have characterized the
morphology of spermatogenic cells by classical histological
strategies, such as hematoxylin—eosin (HE) or periodic acid-
Schiff (PAS) staining (Enomoto et al. 1994, 1995; Nagato
et al. 1994). These observations also implied the presence
of seasonal changes in spermatogenesis, which include less
spermatogenic activity (Enomoto et al. 1994) and degenera-
tion of spermatogenic cells (Enomoto et al. 1995) in the non-
mating season. However, only a few subsequent studies have
targeted precise molecular characterization of spermatogen-
esis based on cell type-specific antigens (Tokunaga et al.
1999; Yu and Takenaka 2004). Consequently, a molecular
histological atlas of Japanese macaque spermatogenesis has
not yet been established, limiting our understanding of sper-
matogenesis ontogeny and reproductive signatures in this
species.

In the present study, we performed immunofluorescence
analyses of Japanese macaque testes in order to character-
ize spermatogenic cells by molecular criteria. We identified
spermatogonia subtypes and the developmental sequence
of spermatogenesis, which can help assess subadult-adult
spermatogenic status. These results provide an essential plat-
form for expanding our understanding of Japanese macaque
reproduction.

Materials and methods
Tissues and ethics

All experiments in this study were approved by the Ani-
mal Care and Use Committee of Kyoto University Pri-
mate Research Institute (KUPRI) and were performed in
accordance with the Guidelines for Care and Use of Nonhu-
man Primates (version 3, 2010) published by KUPRI. For

tissue collection, testes were obtained from four Japanese
macaques (Mf2348, 2005/5/16 birth, 2018/3/16 euthanasia;
Mf2338, 2009/6/26 birth, 2017/3/29 euthanasia; Mf2431,
2011/5/23 birth, 2017/4/11 euthanasia; Mf2433, 2011/5/26
birth, 2016/12/28 euthanasia) that were euthanized because
of other experiments, but not for this study. All four monkeys
had no history of producing offspring, because they had been
housed individually. However, they had no medical record of
diseases or accidents which might have affected their repro-
ductive growth or abilities.

Histological analyses

Each testis was fixed in 4% paraformaldehyde, dehydrated,
embedded in paraffin wax, and sectioned at 5 pm thick-
ness. Testis sectioning and HE staining were performed by
BioGate Co. (Gifu, Japan). For immunofluorescence analy-
ses, the sections were de-waxed with G-NOX (GenoStaff,
GNO04), rehydrated in a graded alcohol series, and washed
with distilled water. The sections were subjected to antigen
retrieval at 110 °C for 15 min in 1X Target Retrieval Solution
(Dako, S1699). They were then treated with 0.1% Triton-X,
blocked with 5% skimmed milk, and incubated with primary
antibodies at 4 °C overnight in a humidified chamber. The
following primary antibodies were used: rabbit anti-SALL4
(1:100, Abcam, ab29112), rat anti-Ki67 (1:100, eBiosci-
ence, 14-5698-82), mouse anti-Vimentin (1:100, Abcam,
ab8069), rabbit anti-Vimentin (1:100, Abcam, ab92547),
rabbit anti-SOX9 (1:100, Abcam, ab185966), rabbit anti-C-
KIT (1:100, Abcam, ab32363), mouse anti-DDX4 (VASA)
(1:50, Abcam, ab27591), rabbit anti-DAZL (1:150, Abcam,
ab34139), rabbit anti-SCP1 (1:100, Abcam, ab175191),
mouse anti-phospho-histone H2A.X (ser139) (YH2AX)
(1:100, Millipore, 05-636), and rabbit anti-Calmegin (1:100,
Abcam, ab171971). Secondary antibodies included Alexa
Fluor Plus 488 goat anti-mouse IgG (1:400, Invitrogen,
A32723), Alexa Fluor 488 goat anti-rat [gG (1:500, Abcam,
ab150157), and Alexa Fluor 555 goat anti-rabbit IgG (1:500,
Invitrogen, A21429). Nuclei were counterstained with 1 pg/
ml DAPI. For each experiment, a negative control was
included in which the primary antibody had been omitted.
Images were captured using a BZ-X700 fluorescence micro-
scope (Keyence).

Results

Testes from two adult Japanese macaques (Mf2338, 93
months old; Mf2348, 154 months old) were subjected to
molecular histological analyses of spermatogenesis. In
primates, spermatogonia are grouped into two major sub-
types: slowly cycling, undifferentiated A spermatogonia,
and transit-amplifying, differentiating B spermatogonia
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(Fayomi and Orwig 2018; Hermann et al. 2010). To iden-
tify the spermatogonial subtypes in the Japanese macaque,
we performed immunofluorescence analysis of spermato-
gonia (SALL4, Ki67, C-KIT) and Sertoli cells (vimentin,
SOX9) markers (Fig. 1a). SALL4 and Ki67 are molecular
indicators of undifferentiated and dividing spermatogonia,
respectively (Fayomi and Orwig 2018; Lin et al. 2015).
Both SALL4" and Ki67* spermatogonia were enclosed by
vimentin* Sertoli cells, but in a mutually exclusive manner
(Fig. 1b). Oval SALL4" spermatogonia were present on the
basement membrane and distributed sparsely, whereas larger
round Ki67* spermatogonia were located close to the base-
ment membrane with aligned distribution. The number of
Ki677 spermatogonia was approximately 2.5-fold more than
that of SALL4" spermatogonia. The Ki67" spermatogonia
co-expressed a differentiating spermatogonia marker C-KIT
(Fayomi and Orwig 2018). Almost half of the SALL4" sper-
matogonia were VASAY/DAZL™ while the Ki67*/C-KIT™*
spermatogonia were VASA/DAZL* (Fig. 1c).

We next examined immunohistological characteristics
from spermatocytes to spermatids. Previous morphologi-
cal observations identified short pre-pachytene and long
pachytene stages in spermatocytes (Nagato et al. 1994).
As molecular indicators of the spermatocyte stages, we
focused on two meiosis-associated chromosomal configura-
tions: synaptonemal complexes for the autosomes (Page and
Hawley 2004) and XY bodies for the sex chromosomes (de
Vries et al. 2012). Immunostaining with SCP1 and YH2AX
detected these two types of chromosomal configurations,
respectively (Fig. 2a). Interestingly, the immunostaining
patterns of SCP1 and YH2AX differed among spermatocyte
stages (Fig. 2b). The pre-pachytene spermatocytes exhib-
ited distribution of SCP1 at the nuclear margins, but did not
show YH2AX signal indicative of XY body formation. Then,
in the early pachytene spermatocytes, XY body formation
could be detected (and SCP1 was still enriched at the nuclear
margin). Synaptonemal complexes and XY bodies were both
evident in the pachytene spermatocytes.

Following from the immunostaining patterns of SCP1
and YH2AX, we characterized developmental stage-spe-
cific expression of DAZL, VASA, and calmegin proteins
(Fig. 3). A germ cell-specific RNA-binding protein DAZL
was detected from spermatogonia to the pachytene sper-
matocytes, which co-expressed YH2AX in the XY body. In
contrast, another RNA-binding protein VASA was expressed
weakly in the early pachytene spermatocytes and strongly
in the pachytene spermatocytes and round spermatids.
Calmegin, a testis-specific chaperone protein, was only
faintly detected in the early pachytene and pachytene sper-
matocytes and then yielded a more robust signal in round
spermatids.

Finally, we attempted to assess developmental changes
in spermatogenesis between subadult and adult monkeys by
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immunofluorescence analyses. Testes from two subadults
(Mf2433, 67 months old; Mf2431, 71 months old), which
lacked sperm in the seminiferous tubules, were compared
with those from two adults (Fig. 4a). In the 67-month-old
subadult testes, only a few DAZL*/VASA* and VASA*/
calmegin® spermatocytes were detected (Fig. 4b). In the
71-month-old subadult, these spermatocytes were observed
more frequently and DAZL™ round spermatids appeared,
but their distribution was uneven and spermatogenesis was
not completed. These observations were quite distinct from
those of synchronized full spermatogenesis in adults, which
depict sequential protein expression changes. Thus, immu-
nohistological kinetics can be used to evaluate spermato-
genic stages and cell distribution reflecting the reproductive
status of Japanese macaques.

Discussion

Here, we described the expression kinetics of a subset
of antigens throughout spermatogenesis in the Japanese
macaque (Fig. 5). Pioneering histological studies examined
spermatogenesis in this species via morphological observa-
tion with HE or PAS staining. These efforts provided basic
insights into seminiferous cycles (Nagato et al. 1994) and
seasonal reproductive changes (Enomoto et al. 1994, 1995).
However, classical histological methods relied largely on
the researchers’ proficiency—an approach which created dif-
ficulty in accurate validation, reproducibility, and technical
convenience. In contrast, protein expression-based molecular
dissection has enabled us to characterize the developmental
properties of spermatogenesis with precision and detail. Our
results indicate that the molecular ontogeny of the Japanese
macaque spermatogenesis is essentially similar to that of
the rhesus macaque (Fayomi and Orwig 2018; Sharma et al.
2017) and the common marmoset (Lin et al. 2015, 2012),
suggesting an evolutionarily conserved molecular foundation
for primate (haplorhine) spermatogenesis. Immunohistologi-
cal kinetics thus provide a useful new platform for investi-
gating spermatogenesis in the Japanese macaque, which is
a prerequisite for investigating their postnatal development
and seasonal reproduction.

Subtypes of primate spermatogonia have received much
attention in studies of reproductive biology. Hematoxylin
staining revealed two subcategories of primate type ‘A’ sper-
matogonia: Ay, and A, (Clermont and Leblond 1959).
Based on in vivo labelling of mitotic cells, Ay, and Ay,
were considered as reserve stem cells and active progenitors,
respectively (Clermont 1969; Ehmcke and Schlatt 2006).
However, recent studies argued that these two subtypes are
identical cells at different cell cycle phases (Fayomi and
Orwig 2018; Hermann et al. 2010). In the present study, we
observed VASA* and VASA™ A spermatogonia at nearly
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Fig.2 Chromosome configuration-based classification of sper-
matocytes in the adult Japanese macaque. Testis sections from adult
Japanese macaques (Mf2338, 93 months old; Mf2348, 154 months
old) were characterized by immunofluorescence analyses with spe-
cific antibodies. Representative images of each immunofluorescence
staining are presented. a Nuclear localization of YH2AX and SCP1
proteins in XY bodies and synaptonemal complexes, respectively. b
Three spermatocyte stages represented by YH2AX and SCP1 immu-
nostaining. The pre-pachytene spermatocytes (closed arrowheads)

exhibited prominent localization of SCP1 at the nuclear margins, but
no XY body formation of YH2AX. The early pachytene spermato-
cytes (open arrowheads) exhibited formation of XY bodies, as well as
continued signal of SCP1 at the nuclear margins. The pachytene sper-
matocytes (arrows) exhibited synaptonemal complexes of SCP1 and
XY bodies. The upper images show a section of seminiferous tubule
including both the pre-pachytene and pachytene spermatocytes.
Nuclei were counterstained with DAPI. Scale bar: 50 pm
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Fig.3 Stage-specific expression of spermatogenesis-associated pro-
teins in the adult Japanese macaque testis. Testis sections from adult
Japanese macaques (Mf2338, 93 months old; Mf2348, 154 months
old) were characterized by immunofluorescence analyses with spe-

the same frequency (Fig. 1c). Considering that the numbers
of Ay, and A, subtypes are likewise balanced (Marshall
and Plant 1996), the VASA* and VASA™ distinction is likely
to be a simple reflection of these underlying subtypes, as

@ Springer

cific antibodies against spermatogenesis-associated proteins (DAZL,
VASA, SCPI1, yH2AX, calmegin). Representative images of each
immunofluorescence staining are presented. Nuclei were counter-
stained with DAPI. Scale bar: 50 pm

previously demonstrated by immunostaining with PGP9.5
protein (Tokunaga et al. 1999). In addition, while VASA™ A
spermatogonia were DAZL™, it remains to be seen whether
VASA™ A spermatogonia express DAZL (not determined
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Fig.4 Immunohistological differences in subadult-adult spermato-
genic status. Testis sections from subadult (Mf2433, 67 months old;
Mf2431, 71 months old) and adult (Mf2338, 93 months old; Mf2348,
154 months old) Japanese macaques. Representative images are pre-
sented. a HE staining of the subadult and adult Japanese macaque tes-

here due to limited availability of antibodies). This is needed
to further elucidate the correspondence between the earlier
classification and current molecular configuration for charac-
terizing spermatogonial subtypes in the Japanese macaque.

The immunohistological atlas identified here broadens the
molecular histological platform for future studies of post-
natal development and seasonal breeding in the Japanese
macaque. Indeed, comparative analyses between subadults
and adults highlighted differences in their spermatogene-
sis status (Fig. 4), indicating that spermatogenic arrest in
subadult testis is attributable to (1) restricted differentia-
tion of spermatocytes and round spermatids, and (2) lack
of synchronization of related processes in the seminifer-
ous tubules. Previous studies have measured changes in

tes. Scale bars: 50 pm. b Immunofluorescence analyses of subadult
and adult Japanese macaque testes with anti-DAZL, anti-VASA, and
anti-calmegin antibodies. Nuclei were counterstained with DAPI.
Scale bars: 50 pm

endocrine factors associated with testicular development
in the Japanese macaque (Hamada et al. 2005; Itoh et al.
2003; Matsubayashi et al. 1991; Sato et al. 2007). Combined
analyses of molecular histology and endocrinology are thus
likely to uncover associated spermatogenic characteristics
in postnatal development and seasonal reproduction. Newer
technologies such as small RNA profiling (Hirano et al.
2014; Yan et al. 2009) and mRNA-seq (Ramaswamy et al.
2017; Suzuki et al. 2019) will also greatly accelerate stud-
ies of the reproductive biology of the Japanese macaque, as
well as open in vitro approaches to culture spermatogenic
cells (Lin et al. 2016) or produce germ cells from stem cells
(Imamura et al. 2014; Nakai et al. 2018) for this biomedi-
cally important species.
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Fig.5 Immunohistological dynamics throughout Japanese macaque
spermatogenesis. Schematic representation of immunohistological
characteristics in adult Japanese macaque spermatogenesis from sper-
matogonia to spermatids. Within the pink ‘SCP1’' bar, NM and SC
stand for nuclear marginal localization and synaptonemal complexes
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