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ON WEISSLER’S CONJECTURE ON THE HAMMING CUBE 1

P. IVANISVILI AND F. NAZAROV

ABSTRACT. Let 1 < p < g < oo, and let w € C. Weissler conjectured that the Hermite operator
wA

€"? is bounded as an operator from L? to L? on the Hamming cube {—1,1}" with the norm
bound independent of n if and only if

p—2—e*(g—2)| <p— g
It was proved by Bonami (1970), Beckner (1975), and Weissler (1979) in all cases except 2 <
p<g<3and3/2 <p<q <2, which stood open until now. The goal of this paper is to give a
full proof of Weissler’s conjecture in the case p = q. Several applications will be presented.

1. INTRODUCTION

1.1. Complex hypercontractivity. Given n > 1, let {—1,1}" be the Hamming cube of di-

mension n, i.e., the set of vectors = (x1,...,2y,) such that 2; =1 or —1 for all j =1,...,n.
For any f: {—1,1}" — C, define its average value Ef and its L, norm || f||,, p > 1, to be
1 1
Ef =g Y fl@) and |f],= B
ze{-1,1}"

Functions on the Hamming cube can be represented via Fourier—Walsh series. Namely, for any
f:{-1,1}" — C, we have

(1.1) f(z) = Z aswg(z), where wg(x):H:cj
Sc{1,...,n} jeSs

and ag are the Fourier coefficients of f. It follows from (1.1)) that ag = Efwg and ag = Ef. For
any z € C, the Hermiteﬂ operator T, is defined as

Tiw)= Y Mlagws(o),
Sc{1,...,n}
where |S| denotes the cardinality of the set S C {1,...,n}. Weissler [I7] made the following
Conjecture. Let 1 < p < q < oo, and let z € C. We have
sup  ||T:fllq = C(p,q,2) <0
I fllp=1,n>1

if and only if
(1.2) p—2-2%(¢-2)| <p-|z[q
Moreover, C(p,q,z) < oo implies C(p,q,z) =1, i.e., that T is contractive.

In this paper we prove Weissler’s conjecture for p = ¢q. We intend to settle the general case
in an upcoming manuscript. Our argument for the case p < ¢ requires checking the positivity
of two polynomials with large integer coefficients, which is currently hard to present in a human
verifiable way.

2010 Mathematics Subject Classification. 39B62, 42B35, 47A30.

When z = et t > 0, the traditional notation for the Hermite operator is e "** instead of T.—+. In the quantum
field literature T is called the second quantization operator of z. In computer science T is referred to as the noise
operator.
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1.2. Development of hypercontractivity in mid 70’s: Boolean and Gaussian. In 1970,
Bonami [2] considered the case z = r € R. She showed that it is enough to verify that T, is
contractive on the Hamming cube of dimension n = 1. A little bit earlier, in 1966, Nelson [14]
(independently of Bonami) showed that the Gaussian analog T of T} maps boundedly L?(d)
to LY(dy), (g > 2, r € R, d is the standard Gaussian measure on R¥) with norm independent of
k provided that r is sufficiently close to zero. Later, Glimm [6] proved that for r sufficiently close
to 0, T is in fact contractive as an operator from L?(dy) to LI(dy). In 1970, Segal [16] obtained
a result which implies that it suffices to check the boundedness of the operator 7. in dimension
k = 1. Finally, in 1973, Nelson [I5] showed that if 1 < p < ¢ < oo, then T.¢ : LP(dy) — L9(d)

. .. . 1 . -1
is contractive if and only if |r| < ‘/Z)Tl; and if |r| > Iq%l,

We should mention that Nelson’s result easily follows via the central limit theorem from
Bonami’s real hypercontractivity on the Hamming cube.

In 1975, Gross in his celebrated paper [7] gave a simple proof of the real hypercontractivity on
the Hamming cube by showing its equivalence to log-Sobolev inequalities. Inspired by works of
Nelson and Grossﬂ Beckner in [I] obtained the Hausdorff-Young inequality with sharp constants

/

by showing that it follows from the contractivity of T; 5= from L” to Ly =

then T is not even bounded.

—£-, on the
Hamming cube when p € (1,2]. At that time, the proofs of the real hypercontfactivity by
Nelson, and later by Gross, were real valued, and they could not be extended directly to complex
z. The main technical part of Beckner’s paper [1] is the proof of Bonami’s two—point inequality
when z =i\/p—1€C, g=p/, and p € (1,2].

It became an open problem under what conditions on the triples (p, g, z) with 1 <p < ¢ < oo
and z € C the operator T is bounded from LP(dvy) to L9(dy) with norm independent of the
dimension of the Euclidean space. In 1979, Coifman, Cwikel, Rochberg, Sagher, and Weiss [3]
proved that TC is a contraction from LP(dy) to LP' (dv) if z satisfies . The same year,
Weissler [I7] proved the full version of the conjecture except when 2 < p < ¢ < 3, and 3/2 <
p < g < 2. Weissler writes in his paper that he believes the theorem should be true for all
1 <p < g < oo,z € C that satisfy . The main open problem was to prove that the
two-point inequality of Bonami—Beckner

(|a+zbyq +la— zbyq>1/q - <|a+b|p +la— b]p)l/p

(1.3)

2 2

holds for all a,b € C if the triple (p,q,z) satisfies condition (L.2). In 1989, Epperson [5]
proved the Gaussian counterpart of the conjecture by showing that condition implies
|TE| Lr(dy)—Li(dy) < 1. His proof avoided the verification of difficult two-point inequalities
and, thereby, did not imply the corresponding result on the Hamming cube.

In 1990, Lieb obtained a very general theorem [11], which, in particular, implied the result
of Epperson. After the work of Lieb, in 1997, Janson [10] gave one more proof of the Gaussian
complex hypercontractivity via Ito calculus. Janson’s argument was later rewritten in terms of
heat flows by Hu [9]. Since 1979 no progress has been made on Weissler’s conjecture.

1.3. Applications. In the case p = ¢ > 1, condition (|1.2]) can be simplified to
p-2[|_ _»p ’
2¢p—1]7 2yp—1
see ([2.8)). In other words, the admissible domain for z is a lens domain, i.e., an intersection of
two disks (see Fig. [1)).
The bounding circles of these disks pass through the points z = +1, which belong to the
boundary of the lens domain. Let 7o, be the exterior angle between the two circles at the point

z = 1. We have
2 -2
ap =1+ —arctan M .
T 2v/p—1

zt1

2Apparently not knowing about Bonami.
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FiGURE 1. Lens domain.

Recently it was shown in [4] that the angle o, plays an important role in Markov-Bernstein type
estimates on the Hamming cube. We will list a series of corollaries that automatically follow
from [4, I3] and the explicit knowledge of a,. We remind that given f : {—1,1}" — C, its
Laplacian Af is defined by Af =", D; f where

D, f(z) = flxr, ..oz, 2p) —2f(:v1,...,—:cj,...,$n)’

The operator A is linear, and Awg(x) = |S|wg(z). Also define the discrete gradient

z=(z1,...,2y) € {-1,1}".

n

IVF? = (D;f)>

Jj=1

Corollary 1.1. For each p > 1, there exist finite c1,ca,c3 > 0 depending on p such that for all
f= ZSC{l,...,n}, |S|>d ASWS and all n > d, we have

1
(1.4) e Fllp < crem ™™ pl - forall £ >0,
and hence
(1.5) IAFlp = ead® | flp-

In [13] Mendel and Naor showed that if f takes values in a K-convex Banach space X, i.e.,
ag € X for all S € {1,...,n}, then inequality holds with some a,(X) € (0,1). They asked
if a,p(X) in the inequalities and can be replaced by 1. The question is open even for
X =R and is known as the “heat smoothing conjecture” (see [§], where the case d = 1 has been
resolved, and [4], where the conjecture has been resolved for functions with“narrow” spectrum).
In [4] the first author with A. Eskenazis showed that the conclusion of Corollary holds for
p € (1,3/2) U (3,00) thanks to the theorem of Weissler [I7]. Repeating the arguments in [4]
verbatim and using the main result of this paper for p = ¢ € (3/2,3) we obtain Corollary for
all p € (1,00).

We know that the bounds and are not sharp in general; for example when p > 2 is
such that a;, > 3/2, 1., p >4+ 21/2, then better bounds are available due to Meyer.

Theorem 1.2 (Meyer [12]). For each p > 2, there exist Cp,c, > 0 such that for any f =
ZSC{L ), |S|>d ASWs and all n > d, we have

le= 2 fllp < emer ™ £, for all ¢ 20,
and hence

1A fllp = Cod' || £,
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The next corollary is due to Eskenazis—Ivanisvili [4], proved for p € (1,3/2) U (3, 00) and now
valid (by the main result of this paper) for all p € (1, 00). It naturally extends Freud’s inequalities
on the Hamming cube

Corollary 1.3. For all p > 1, there exists finite C, > 0 such that
[Afllp < 10d% [ f]]p,
Cpd®/PIn(d+ 1) fllp, p € (1,2),
IV, <37
Cpd® 2| fllp,  p € [2,00],
for all f = ZSc{l,...,n}, s|<d asws and alln > d.

1.3.1. Complex and real hypercontractivity. To illustrate the advantage of complex hypercontrac-
tivity over the real one let us outline a method described in [4] for obtaining bounds on the norms
of Fourier multipliers on spaces of functions on the Hamming cube with restricted spectrum in
a systematic way.

Let 1 < p < g, and suppose we are interested in obtaining a bound of the type

2, asws

Sc{0,...n},|S|<d

(1.6) > e(1S))asws

Sc{0,...n},|S|<d

< Cp,q,d,so

q p

where ¢ is some fixed function, which is usually called a Fourier multiplier. The complex hyper-
contractivity yields the bound

Z Z‘S‘aswg

Sc{1,..n},|S|<d

(1.7) <

Z asws

SC{1,..n},|S|<d

)

p

q

which holds true for all z € Q,,, where €, , is the domain described in (1.2)). To obtain the
bound of the type (1.6) it suffices to find a complex valued measure p on €, , such that

/ Adu(z) = p(j) forall j=0,...,d.
Q

P.q

Then the triangle inequality together with ([1.7)) gives

Yo eShasws g/ S Mlagws|| dil(z) =
SC{177n}7ISISd q Qp,q SC{l,,n}JS\Sd q
S esws)

Sc{l,..n},|S|<d »

where ||u|| stands for the total variation norm of p.

To minimize the norm of u, we may invoke the Hahn—Banach theorem together with the Riesz
representation theorem. Let P¢ C C (Qp,4) be a subspace consisting of all analytic polynomials
of degree d. Let L be a linear functional on P? such that L(z7) = ¢(j) for all 0 < j < d. Clearly
its norm ||L|| is the smallest positive constant Cp 4 4., for which

d d
> o(i)a; > a2
=0

§=0
By the Hahn-Banach theorem, there exists L € C* (€Qp,q) such that Z]pd =L, and HZHC*(%q) =
Chp,q.d,po- By the Riesz representation theorem L(h) = prq h(z)dp(z) for some complex valued

Radon measure dy on €, , such that fQM dlp(2)| = [ Lllc=(,.4) = Cp.a.de- Thus we obtain (i
with the constant C) 4 4., that solves the extremal problem (1.8]).

(1.8) < Cpg.de for all ao,...,aq € C.

C(p,q)
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If we use only the real hypercontractivity in this argument, then the space C(£2,,) on the
right hand side of |D will be replaced by C (Q;liq) where

—1 —1
QR — | — L7 L CR,

in which case one gets 1' with a constant C;lfq, do = Cp.q.d, due to the fact that ng C Qpg-
Thus we see that “the amount of improvement” the complex hypercontractivity gives over

the real one is determined by how small the norm of the functional L on P? equipped with the

C(€Qp,q) norm can be compared to the case when the norm on P4 is replaced by the C (Q;liq) one.

Some more applications of complex hypercontractivity are given in [4].

2. THE PROOF

We start with several observations (Sections —[2.5) that are well known to experts. We
decided to include them here for the reader’s convenience.

2.1. Tensor power trick and induction on dimension. In this section we show the equiva-
lence of several inequalities.

Lemma 2.1. Let 1 <p < q < oo and z € C be fizred. The following are equivalent:
() |T%fllqg < C(p,q,2)| fllp for some C(p,q,2) < oo, all f:{-1,1}" = C, and all n > 1.
(i) 1T%fllq < || fllp for all f:{-1,1}* = C and all n > 1.
Gii) [T llg < Il for all £ : {-1.1} = C.

Clearly it follows from the lemma that the conjecture will be proved once the equivalence of
the two-point inequality (iii) and the condition is verified.
Proof. Obviously (ii) implies (i). To show that (i) implies (i), consider F(x) = f(x!)--- f(2*)
where z = (z',...,2%) € {~1,1}"*. Then |\ Fll, = ||f||’;, |\T.F|, = ||Tzf||]; Therefore, (i)
implies | T.F||, < C(p,q,2)||F|, which in turn implies ||T.f|l, < (C(p,q,2))"/*| f|l,. Letting
k — oo we obtain (ii).

Obviously (ii) implies (iii). Next, we show that (iii) implies (ii). Let

(2.1) flxy,. ... ,xn) = Z agH:cj.
Sc{l,...,n} jES
Let us extend the domain of definition of f to be all R™ by considering the right hand side of
(2.1) as a multivariate polynomial of variables x1,...,x,. Then we can write
T.f(z1,...,xn) = f(z21,...,2¢,) forall (z1,...,2,) € {-1,1}".
By (iii), for any complex numbers A, B € C, we have
(2.2) Euy|A + z21B|? < (Eg, |A + 21 B[P) VP

where E;, means that we take the expectation with respect to the symmetric =1 Bernoulli
random variable x1. Since

f(zx1, 229, ..., 22y) = A(zxe, ..., 22,) + 221 B(229, . . ., 22y),

we can write

»/a (2.2)
1T fI) = (Be,, .. By [A(z22, . . ., 220) + 2201 B(272, . . ., 22)|7) <

p/q Minkowski
(E% o By (Byy|A(z22, . .o 220) + 21 B(229, . . . ,zxn)|p)q/p) <

induction

Eoy (Ba, - Eoy|A(2a, . ., 220) + 21 B(22, ..., 22,)| )P/ < E|fJP.
Notice that in the second inequality we used the condition 1 < g/p. O

In the next section we explain where the condition (1.2)) comes from.
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2.2. From global to local: the necessity part. The condition (iii) of Lemmais equivalent
to the following two-point inequality

(]1 +wz|? 4+ |1 — wz]q>1/q
2

<

(2.3)

<|1+wyp+y1—w\p>1/fo
2 Y

which should hold true for all w € C. Let us explain that condition (|1.2]) is in fact an “infinites-
imal” form of the inequality (2.3)) when w — 0. Indeed, let w = ev where v € C, |v| = 1, is fixed
and € > 0. As ¢ — 0, we have

114 wl? = (1 + 2eRv + 2|v|?)P/?
_ p 2], 12 p/p 2 2 3
=1+ 2 (2eR0+2of?) + 2 (2 1)45 (Rv)2 + O(c%)
=1+ epRo + 522 (102 + (p — 2)(Rv)2) + O().

Therefore, comparing the second order terms, we see that the two-point inequality (2.3, in
particular, implies that

(2.4) lwz? + (¢ — 2)(Rvz2)? < |vf* + (p — 2)(Rw)?  for all unit vectors v € C.

The last inequality can be rewritten as

b2 (”‘2“_’)2—@—2) (;) SN}

Multiplying by 2 and opening the parentheses, we obtain

(p—2) = (¢ 2)[z* + R[((p — 2) — (¢ = 2)2*)v*] 2 2|2|* - 2,
—R[((p—2) — (4 —2)2)0%] <p—qll?,

which, since v is an arbitrary unit vector, is equivalent to (|1.2]).

2.3. The inf representation. It will be helpful to describe the domain €, , of all z’s satisfying

in polar coordinates. Notice that if ¢ = 1, then p = 1 and, therefore, implies that

z € [—1,1]. In this case trivially holds by convexity. In what follows we assume that ¢ > 1.
Let z = ret € Qpq and v = ¢®. Then takes the form

r? (14 (¢ —2) cos®(t + ) < 1+ (p—2) cos®(B).

Dividing both sides of this inequality by 1 + (¢ — 2) cos?(t + 3) and taking the infimum over all
£ € R, we obtain

r < inf
BER

1+ (p—2)cos?(B)
14 (g —2)cos?(t+ )

Given t € R, let z = r(t)e®, r(t) > 0 be such that z lies on the boundary of €2, ,. Then

. 1+ (p—2)cos?(B)
(25) r(t) = érelﬂf% \/1 + (g —2)cos?(t+ B)°

It follows from ([2.5)) that r(¢) is an even m-periodic function.
Throughout the rest of the paper we assume that p =¢q > 1.
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2.4. Lens domain. For p = ¢ the two-point inequality (2.3) takes the form
(2.6) 14+ wz|P + 1 —wzlP <|14+wP+ |1 —w|’ forall wecC,
and (1.2 takes the form

—2
(2.7) s =2 e
p
Squaring and subtracting (1 — ]2\2)2(1’;722)2 from both sides of the inequality 1' we obtain
Ap-1) _ (p—2)° (p—2)° (2—2)°
A== > 5= (1 -2 - (1-z*)?) = = . :
p p p 7
From (2.7)) we see that |z| < 1, so taking the square root in the last inequality we obtain

-2
s P22y

V1

The last condition can be rewritten as

(2.8) z+1

p—=2[|_ _»p
2vp—1] 7 2/p—-T
The set (2.8) represents a “lens” domain, i.e., the intersection of two discs centered at points
i;'&% of radii 5 \/% whose boundary circles pass through the points 1 and —1. |
Recall that the boundary of €, is described in polar coordinates by the equation z = r(t)e".
It is easy to see from (2.8) that r(¢) is a decreasing function on [0, /2],

(2.9) r(0) =1, T(W/Q):min{\/p—l,\/l%}.

In the next section we explain that it is enough to prove the two-point inequality ([2.6)) only for
p > 2 and a certain family of points z and w.

2.5. Duality, symmetry, and convexity. Since (7.)* = Tz, and || 1% | pr—rr = [[(T2)*|| 1o 10
(as usual p’ = p%l), we may assume without loss of generality that p > 2. The reader may also
verify that the condition is invariant under the replacement of p by p'.

Next, we claim that it suffices to check for z € 02y p. Indeed, every interior point z € €2, ,

can be written as a convex combination of two boundary points 21, z2 of €1, ,. Since the function
14+ wz|P + |1 —wzP
~ 2

is convex on C, its value at z does not exceed the maximum of its values at z; and z».
In what follows, we set z = r(t)e’, t € R. Let us rewrite (2.6)) as

(2.10) \1+9)p+‘1—9\pz\1+w\p+\1—wyp.
2 z

Let
1

(2.11) c(t) = 0 € [1, Vp— 1} (recall that p > 2)

and let w = ye'® with y > 0,a € R. Notice that w/z = ¢(t)ye!"+®) = ¢(—t)ye!=*+%) Changing
the variable —t back to ¢, we can rewrite the inequality (2.10) as follows

(2.12) 1+ c(t)ye’ P + 1= c(t)ye TP > (14 ye' P + |1 — ye' P,



8 P. IVANISVILI AND F. NAZAROV

Lemma 2.2. [t is enough to check for0<a<a+t<3.

Proof. Denote for brevity ¢ = ¢(t), and rewrite ([2.12]) as

p/2 p/2 >

(2.13) (02y2 + 14 2cycos(a+1))" " + (02y2 +1—2cycos(a+1))

(y2 +1+2y cos(a))p/2 + (y2 +1-2y cos.(a))p/2 .

The map s — |1 + sye’T9) P is convex. Therefore the map

p/2 p/2

s+ |1sye’ TP 1 —sye' TP = (5292 11 4 2sy cos(a + 1)) "+ (s*y® + 1 — 2sy cos(a + 1))

is increasing for s > 0. Since ¢ > 1, we have
(c2y2 + 1+ 2cycos(a + t))p/2 + ( 2 4+ 1 —2cycos(a+ 15))10/2
(v + 1+2ycos(a+t))p/2+ (y* +1 —2ycos(a+t))p/2.

Also notice that since p > 2, the map s — (A+ Bs)p/2 is convex and, thereby, the map s — (A+
Bs)P/2 4 (A— Bs)P/? is increasing for s > 0 as long as A4 Bs > 0. Thus, if | cos(a+1t)| > | cos(a)],
then

(y* + 1+ 2ycos(a —|—t))p/2 + (y* + 1 —2ycos(a+ t))p/2
(y* +1+2y (:os(a))p/2 + (P +1-2y cos(a))p/ ,

i.e., inequality trivially holds whenever |cos(a + t)| > | cos(a)|.

By the 27-periodicity of cos(z) and ¢(t) we can assume that a,t € [0,27).

(i) Suppose a € [0,7/2]. The assumption |cos(a + t)| < |cos(a)| implies that a + ¢ € [a, 7 —
al U [r + a,2m — a]. Consider first the case when a +¢ € [a,m —a]. If a +t € [7/2,7 — qa],
then t* = m —t — 2a > 0. Clearly t* satisfies a + t* < 7/2, | cos(a + t)| = |cos(a + t*)|. Since
t,t +2a € [0,7] and t + a > 7/2, the inequality |7/2 —¢| < |7/2 — (2a + t)| < 7/2 holds and,
thereby, ¢(t*) = c(t+2a) < ¢(t) (we remind that ¢(s) = 1/7(s), s — r(s) is decreasing on [0, 7/2]
and r(s) = r(m — s) for s € [0,7/2], so the closer s € [0, 7] is to /2, the larger ¢(s) is). Thus
becomes stronger if we replace t by t*.

If a4+t € [a+ 7,21 — a], then we consider t* = ¢t — 7 and use the fact that ¢(t*) = ¢(t) and
|cos(a+t)| = |cos(a+t*)|. On the other hand, a +t* € [a, ™ — a], which reduces this subcase to
the previously considered one.

(ii) Suppose a € (7w/2, 7). Consider a* = 7 —a € (0,7/2) and ¢t* = 27w — ¢. Then |cos(a*)| =
| cos(a)], | cos(a* + t*)| = | cos(a +t)|, c(t) = c(t*), and the inequality reduces to case (i).

(iii) Suppose a € [, 27). Then replace a by a* = a — 7 and reduce the inequality in question
to the previous two cases. The lemma is proved. O

2.6. Proof of when p > 3 via “mock log-Sobolev inequality”. Let us give a proof
of for p > 3. This case was proved by Weissler [17]. His argument is similar to the proof
of the equivalence of the log-Sobolev inequality and the real hypercontractivity. Indeed, let us
briefly mention the connection. The real hypercontractivity is equivalent (see [2]) to the following
two-point inequality

(2.14) ‘CH_\/: } +‘a_\/q>1 ‘ (|a+b|P+|a b,p)l/p

2

forall 1 < p < ¢ < oo and all a,b € R. The factor ,/q 1 is a ratio of the values of the same

function s — v/s—1 at s = p and s = q. Therefore is equivalent to the statement that
the mapping

s P ’_ z |P
‘a—l— T*l‘ + |a T

(2.15) P 5
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is decreasing on (1,00) for all fixed a,z € R. Differentiating with respect to p, we arrive
at what is called “the log-Sobolev inequality on the two-point space” (see [7]).

Ideally, we would like to use the same idea when proving . The first obstacle is that
the factor ¢(t) does not have the desired quotient structure. Nevertheless, using and the
representation , we can fix this issue estimating c¢(t) from below as

\/1 + (p — 2) cos?(t + B) ﬁ—;a t /14 (p—2)cos?(a)
,Be]R V1+ (p—2)cos?(p) T 1+ (p-2)cos2(a+1t)

Therefore, (2.13]) with fixed p > 2 is implied by (but no longer equivalent to) the statement that
the mapping

(2.16) cft) =

(2.17) s |1+ - o+ 2z cos(s) "
1+ (p—2)cos®(s)  /1+ (p— 2)cos?(s)

s x? B 2x cos(s) o
1+ (p—2)cos®(s) /1+ (p— 2)cos®(s)

is increasing on [0, /2] for all x > 0 (and the fact that for p > 2 the left hand side of is
increasing in ¢). This statement seems to be a right substitute for the log-Sobolev inequality in
the complex contractivity case. The next lemma shows that, unfortunately, this monotonicity
holds only for p > 3.

Lemma 2.3 (“Mock log-Sobolev inequality”). Let p > 2. The map is increasing on
[0,7/2] for all fized x € R if and only if p > 3.

Proof. Denote b = m € [p%l, 1] and u =

X
73 € R. We want to show that the map

2 2
bis (1 +bud(p — 2) + 2uv/1 — b)p/ + (1 +bud(p—2) — 2uv/1— b)p/

is increasing on [1%, 1]. Without loss of generality, assume u > 0. After taking the derivative
with respect to b, we end up with showing that

<1+bu2(p—2) — 2uy/T —b>”/2‘1 Cl—u(p-2VI=b
14+ bu?(p—2)+2uyv/1 -0

Ifbo= ]ﬁ, then 1D takes the form
2
=2 P .22 _
(2.19) luipl Lo p_l(p 2)>0
1+, /=2 1+u\/§%?(p—2)_

Denote u g%%:kanndp—QzaEO. If « € (0,1) and k € (0,1), then

> 0.
1+u(p—2)v1-0

(2.18)

¢ 1 —-ka
<

1—-k
2.2 .
(2:20) ' T 1+ ka

1+k

Indeed, it follows from the following general principle: if a; > 0 and the function g(z) = 1 —
D k>l arr® >0 on (—1,1), then

gz)  l—aw—3 apzk 1 —ax
9(—2) Tt aw— S pmpar(—Dfak = 1+ e’

€[0,1)

because of the inequality Y-, -, arz® > 37,55 ar(—1)"2% and the fact that the mapping s — giz

is increasing when A < B and both the numerator and the denominator are nonnegative. Note
that g(k) = (1—k)® satisfies the assumptions of this principle when « € (0, 1). Thus for p € (2, 3)
we obtain the inequality which is reverse to ([2.19)).
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Let now that p > 3. In (2.18) we can assume that u > 0 is such that 1 — u(p — 2)v/1 — b > 0,
otherwise there is nothing to prove. We have
L2
(1 —u(p—2)V1 —b)P? [1 —uy/1 _br 1—2uy/T—b+u2(1—b)

1+ ulp—2)v/I—b 1+uvI—b]  1+2u/T—b+u?(1-b)

J1- 2uv/1— b+ bu*(p —2)
T 14 2uV/1—b+bu2(p—-2)
where in the last inequality we used the above observation about the monotonicity of the mapping

S gi‘; again (note that 1 — b < b(p — 2) since b > ﬁ) The obtained inequality is the same

as (2.18]). The lemma is proved.

O

Clearly the lemma proves inequality in the case p > 3. In particular, we just reproved
the p = ¢ case of the theorem of Weissler, i.e., showed that the conjecture holds for all p > 1
except p € (3/2,2) U (2,3). The reader may think that the argument presented in this section is
different from the one of Weissler [17] because, for example, Weissler uses non-trivial estimates
for a certain implicitly defined function. Nevertheless, we should say that both arguments are
essentially the same because they use the inequality and the monotonicity expressed by
the mock log-Sobolev inequality.

Before we move to the case p € (2,3), let us explain in the next section that the monotonicity
approach we just presented cannot be adapted to that case.

2.7. Why is the case p € (2,3) difficult? Uniqueness lemma. Weissler writes in his paper
(see a remark on page 117 in [I7]) “Even though Proposition 7 is false without the condition
p > 3, one should not give hope for (3.9)”. Without going into the details, this remark says that
the reason the monotonicity argument fails when p € (2, 3) is because the estimate
was too rough. One could hope that there might be a better substitute for . However, we
will now show that this is not the case and thus one should give up on the chase for “monotone
quantities” when p € (2, 3).
Let f € C'([0,7/2]), f > 0, be such that

f(a)
(2.21) c(t)zm forall0 <a<a+t<m/2
and the map
B z? 2z cos(s) p/2 z? 2z cos(s) p/2
ez = (1 ER) (- E )

is increasing on [0, 7/2] for all x > 0. Clearly, as we have seen in the previous section, if such f
exists, then the two-point inequality (2.13)) follows.

Lemma 2.4 (Uniqueness of the mock log-Sobolev inequality). If holds and the map given
by is increasing on [0,7/2] for all x > 0, then necessarily f(s) = C\/1+ (p — 2) cos?(s)
on [0,7/2] for some constant C > 0.

In other words, the lemma says that one needs to come up with a different approach to prove
[B13) when p € (2,3).

Proof. Notice that when x &~ 0, the map (2.22)) behaves as

P+ (=2 o) 5. -
fer o Tow

P(s) =2+

Therefore, the map

(2.23) h(s) =



ON WEISSLER’S CONJECTURE ON THE HAMMING CUBE I 11

should be increasing on [0,7/2]. The latter together with (2.21]) implies that
f@) o V1t Yeo(a)
fla+t) = 1+ (p—2)cos?(a+ 1)

Next we claim that h is constant on [0,7/2]. To prove the claim, we notice that the mono-
tonicity of h, i.e., the condition hA/(s) > 0, can be written as

(2.95) T I(f(s) < - Infg(s)

where g(s) = \/1+ (p — 2) cos?(s). Integrating (2.25) over the interval [0,7/2] with respect to
s, we obtain

(2.24) c(t) >

E29) &)
1 ? f(m/2) ? g(m/2) _ 1 & r(r/2) e 1 7
co(m/2) f(0) 9(0) p—1 co(m/2)
which means that (2.25) must be an equality for all s € (0,7/2) and, thereby, f(s) = Cg(s) on
(0,7/2). The claim, and hence the lemma is proved.

O

2.8. Self-improvement and hidden invariance in the two-point inequality.
Lemma 2.5. It is enough to check for 0 <c(t)y < 1.

Proof. Assuming that the inequality (2.12)) holds with some fixed a and ¢ for all y satisfying
0 < cy < 1 where ¢ = ¢(t), we show that it also holds with the same a, ¢ for the case when cy > 1.
Fix y such that cy > 1. Dividing both sides of the inequality by (cy)?, we can rewrite (2.12)) as

P P P P
(226) i _|_ ei(t—i—a) _|_ i _ 6i(t+&) Z i + eial _|_ i _ ia}
cy cy cy c cy
. P . p P , P
Using the identities ‘é 4 eiltta) | = ‘ée’(”“) + 1‘ and ’é telall = ée“‘ + %‘ we can
rewrite (2.26]) as
P P P P
1€i(t+a)_|_1’ 4| Lgita) _1‘ S LT T
cy cy cy c cy c
To verify the latter inequality let § = C% Then cy < 1, i.e., we are in the range in which we

assumed the validity of the estimate (2.12)) for the pair ¢,y. Applying (2.12)) to ¢,y we obtain
P P
| ¥

1 . p
7ez(t+a) +1
cy

Next, we claim that

+ e —1

1 . p 1 .
ez(t-l—a)_l‘ Z’2€za+1
cy cy

2y

p
+

p
>

p p

L TR
cy c cy

Indeed, after multiplying both sides of the inequality by cP, we can rewrite the latter estimate as

ieia_l

1 ia
— 1
2y S 2y

2 2
(2.27) A+ L + 2 cos(a) v + (2 + L2 cos(a) & >
Ay oy Ay oy -

1 9 p/2 ( 1 9 >p/2
1+ — + —cos(a + {14+ —= — —cos(a .
( y? oy U) Y2y (@)

Next, notice that

1 1 (2 =1)(c*y*-1)
2
A+ — 1+ ) = >0,
2y < Y2 22
where we have used the fact that ¢ > 1 and cy > 1. Therefore (2.27)) follows from the fact
that the mapping s — (s + A)P/2 4 (s — A)P/2 is increasing on [A, o). Thus (2.12)) holds for all
y > 0. U
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2.9. From multiplicativity to additivity: chasing the fourth order terms. Let p € (2, 3).
We only need to verify in the regime when 0 < a <a+t < § and 0 < cy < 1 where
¢ = c(t). Indeed, assuming that is proved for such a,t,y, Lemma allows us to extend
the range of y to [0, +00) keeping the restriction on a,t only. On the other hand Lemma says
that if holds for some y > 0 and all a,¢ such that 0 < a < a + ¢ < m/2 then it holds for
the same y and all a,t.

We would like to prove the inequality

(2.28) (14 Py? + 2cycos(a+1))* + (1 + *y? — 2cy cos(a + t))°
(1 + 9%+ 2ycos(a))® + (1 +y* — 2y cos(a))®.

where

(2.29) s:p€<1,2>, c:c(t):ie[l,\/ﬁ].

2 r(t)
Dividing both sides of ([2.28) by 2(1 +y?)* and expanding both sides into power series, we can

rewrite (2.28) as
2 9\ S 20 00 20
1+cy Z 2cy cos(a +t) s > Z 2y cos(a) s
1+9y2 — 1+ c2y? 20 —~\ 1+ y? 20

We can estimate the left hand side as

LHS — 1+ 2y%\° Z 2cy cos(a + t) s
1+y? ) = 142y
1+ 2 s+ 1+ 22 2cy cos(a + t) 2cy cos(a + t) 2 /s S
1+ g2 1+ g2 1+ c%y? T 20) —
1+ c%y? 8+ 1+ cy? 2cy cos(a + t) 2ycos(a+t) ]
14 y? 14 y? 1+ ?y? 1+ y? 20)°

In the first inequality we used the fact that 1;‘; g > 1 and (%) > 0. In the second inequality we
used the fact that
cy y yle =11 - cy?)

1+c22 1+42 (1+c2y?)(1+y2) —
which is true because 0 < cy <1 and ¢ > 1.
The right hand side can be rewritten as

2y cos(a)\” (s > /2y cos(a)\¥ [ s
RHS =1 it M 29 2O '
+< 1+ y2 > 2 +€_2 1+ 92 20
Thus, it suffices to prove the inequality
(2.30) LCZZP ’ + 1+ 2\ (2cycos(a+t)\? (s 1 2y cos(a) 2 /s
. 1+y2 1—|—y2 1+c2y2 9 1+y2 9
& 2y 20 <
-2 <1+y2> (cos™(a) — cos”(a+1)) (26)’

2.10. Contribution of the infinite series. In this section we prove the following key lemma
which gives the upper bound for the infinite series on the right hand side of (2.30).

Lemma 2.6. We have
o0 2y 20 s
20 20
_ <
EQ (1 +y2> (cos (a) — cos (a+t)> <2€> <

\/3'8(8—1)(8—2)(5—3) ( 2y
1+ y?

) " sin(t)
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forall0<a<a+t<w/2,y>0, and s € (1,3/2).

Proof. Let us denote w = 135 = =vi-w® Vul]_wQ

(292>2y =(1-V1-w?)?=2-21-w?—w —22

, and therefore

()

where aj = 2 ‘ (1,{;2)‘ for k > 2. Clearly as = % and

Af+1 o }(;—{—21)‘ - k’—%

ar ‘(142)’ k41

Thus it suffices to show that

i (Cosy(a) —cos”(a+t)) (285>w2£ < \4f s(s— 1)(82— 2)(s — Sm Zagw

(=2

We have

T

att g a+t
COS2€(U/) o COS2£(CL + t) — / _di Cos2e(l‘)daj — 26/ COS2£71($) Sln(x)dl‘

By Lemma proved below, the right hand side can be estimated from above by

2¢ sup (coszé*l(a;) sin(a:)) -sin(t) = V20 (%2;1> - -sin(t).

zeR

Therefore

Z (cos%(a) — cos*(a + t)) <2S€> w? <
(=2
o 2% -1\ T o0
- _ SN, 20 _ 20
sin(t) ;; V2e ( 57 > <2€> w*" = sin(t) ; bew

where by = /20 (%)%T_1 (235) for £ > 2. We have

by VEEED(38) T Ghe) 15T r-seer1-s (33)
be IN=N - 0 20+ 1D)(2042)  jae L
‘ @(%)2 (5) REFDEEF2) 2%

We claim that bgl < £+1 Indeed, /1 <1+ lz and, since the mapping n + (1 — 1/n)"1
2041

decreasing for n > 1, we have (M) < (%51) . Next, we notice that (20—s)(20+1—3s) <

2042
(2¢ — 1)2¢. Finally, combining these three estimates, we obtain that

2041
Y 2
bepr  [(+1 (20—5)(20+1—5) (3) <<1 1) 20-120 -1
(

by V¢ (20+1)(20+2) '(2@7_1)2@—1— 20) (20+1)(20+2)  (+1°
20

Telescoping the product of b’““ ak“ (k=2,...,¢), we obtain

b 3\2 (s s(s—D(s—2)(s—3) V3
b£+1§ae+1£=az+18 <4) <4>:az+1 ( ) 5 ) ).4.

Njw
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Therefore
) = % _ . s(s—1)(s—2)(s—3) \f >
< . -
sm(t)Zbgw < sin(t) 5 1 Z
=2 =
2
sin(t) - s(s—=1)(s—2)(s—3) ﬁ 2y S
2 4 1+ g2

Thus it remains to prove the following lemma. O

Lemma 2.7. For all0 <a<a+t<7F and all £ > 2, we have

/:th cos?71(z) sin(z)dz < sup (cos%_l(az) sin(x)) - sin(t).

zeR

Proof. First, we need the following

Lemma 2.8 (Cap lemma). Let f and g be two continuous unimodal nonnegative real valued
functions defined on R such that f = 0 on R\ (a,b), and g = 0 on R\ (d’,V"). Assume that
ad <a<b <bandxy € (a,V) is the point of the common global mazimum of f and g with
f(zo) (o). Suppose also that there exists ¢ € (x0,b') such that g(x) > f(x) on [d,c] and

=49
g(z) < f(z) on [c,b] (see Fig.[9).

FI1GURE 2. The functions f and g.

At last assume that

(2.31) /:g > /x: f-

Then for all t € [0,b — a], we have

(2.32) max /f < max /g.
[I|=¢ I [1|=t I

IC[a,b] is an interval ICR is an interval

Proof. Tt follows from the unimodality of f that the maximum on the left hand side of (2.32)) is
attained when I = [a, 8] with a < xg and 3 > . Consider two cases. If § € [xg, |, then there
is nothing to prove because f < g on I. If § > ¢, then we have

/Ifz/joﬂ/jfg/jog+/xff=/Ig+/x:<f—g>+/f<f—g>
S/Ig+/x:(f—g)+/cb(f—g)—/Ig+/x:(f—g)/Ig-

The second inequality follows from the fact that f > g on [3,b]. Lemma is proved. O

Next, fix any integer ¢ > 2. Take a = 0, b = %, f(z) = cos®*"!(z)sin(z), =y = arcsin \/—127.

Redefine f to be 0 outside [0,7/2]. To construct an appropriate g, we calculate the derivatives
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of f. For x € (0,7/2), we have
f(z) = —(20 — 1) cos®2(z) sin?(z) + cos®(z) = —(20 — 1) cos*2(z) + 20 cos*(z);
F(x) = (20— 1)(20 — 2) cos® 3 (z) sin(z) — 402 cos® ! (z) sin(x)
(2.33) = f(z) <(2e 658)2((25) 2) —4€2> :
In particular, we see that f”/f is increasing on [0,7/2]. We have
f(@o) _ (20-1)(2¢-2)
flzo) — 1- 5
This suggests that we should take
| f(=o) cos(2Vil(xo — ), = < o,
9(=) = {f(xo) cos(Ag(x — 20)), @ > 0,
W = 1. Next, let a’ < xy be the largest number such that g( "y =0,

ie.,ad =x9— W Let b’ > x¢ be the smallest number such that g(b') =0, i.e., b/ = Az + x.

Redeﬁne g to be zero outside (da/, ).
Note that by the choice of Ay, g is equimeasurable with the mapping s — f(z¢) cos(s), s €
[0,7/2], i.e.,

— 4% = 4.

where Ay satisfies -

Hzx eR : g(x) > A} = [{s€[0,7/2] : f(zo)cos(s) > A}
for all A > 0. Thereby, for every t € (0,7/2), we have

2.34 max / g < max / g= max f(xo) cos(s)ds
( ) [7]=t I |E|=t E |E'|=t, E'C[0,7/2] J E (o) cos(s)
I is an interval FE is measurable E’ is measurable

t
= / f(zg) cos(s)ds = f(xo)sin(t).
0
Lemma 2.9. Functions f and g satisfy the conditions of the cap lemma.

Proof. Clearly both f and g are unimodal functions, zg is the point of the global maximum
for f and g, and f(x ) = g(x0). Since arcsin(s) < §s for every s € (0,1), we conclude that

a = arcsin(z%/z) -5 2\[ < 0. The choice of Ay implies that b’ —a’ = /2. Thereby ¢’ < 0 =

a<zo<l <m/2=0.
Next, we need to check that

3 1 1 /2—1\"7 1
- N 1- 2 )>
/xog fleo) g, 26( 20 ) ( 2@)‘

w/2

zo

i.e., that 1 — 2\[ \/; 1-— 26, which is indeed true even for ¢ > 1.

In order to show that g(x) > f(z) for x € [d/, x¢], it suffices to check the claim g(z) > f(z) on
[0, zo]. The claim follows from the fact that f(x¢) = g(zo) > 0, f'(z0) = ¢'(x0) = 0, and fﬂ < g?”
on [0,zp). Indeed, we calculate

lim ¢"(t) = f"(xz0) = —4Lf(z0);

(to calculate f"”'(xg) quickly, use (2.33]) and the fact that f’(z¢) = 0). Therefore g(z) > f(x)
when = € (z¢ — €, z9) provided that ¢ > 0 is sufficiently small. It follows from the piece-wise
analyticity of f and g that the equation f(x) = g(z) can have only finite number of solutions on

> 0= lim ¢"(¢)

t—xy
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(0,29). Let x1 € (0,z0) be the largest point (if it exists) such that g > f on (x1,20) and g < f
on (z1 — d,z1) for a sufficiently small § > 0. Clearly f(z1) = g(z1) and ¢'(z1) > f'(z1), so we

have
(5o

which is a contradiction. Thus there is no such x;, which implies that g > f on (0,z¢) and we
are done.

Next, we show that there exists ¢ € (zg,b) such that g > f on (z9,¢) and g < f on (¢, ) (on
[b/,m/2) we clearly have g = 0 < f). Note that

0<(f'g—fg)5e Z/x0

z1

. " 2 46 1
tLH%Q (t) = —f(z0) A f(xO)(g\/Z, e > —Alf(zo) = f"(x0)

for £ > 2. Thus g > f on (xg,x0 + €) provided that € > 0 is sufficiently small. By the piece-wise
analyticity of f and g, the equation f(z) = g(x) has finite number of solutions on [zg,b"). Let
x1 > xo be the smallest number such that g > f on (z¢,z1) and g < f on (1,21 + ) for a
sufficiently small § > 0. If there were no such point, we would have g > f on (z¢, /] and, in
particular, 0 = g(b') > f(¥') > 0, which is a contradiction.

If the inequality g < f is violated on [x1,V], there exists a point x9 € (x1,0’) such that g < f
on (z1,x2) and g > f on (2,22 + ') for some sufficiently small ' > 0.

Note that f(z1) = g(z1) and f'(z1) > ¢'(z1), so

os(f’g—fg’w;—/l(@—gg)fg,

whence fTH - %ﬂ > 0 somewhere on [zg,x1] and, thereby, fTN - %” > 0 on (z1,z2) (since f/f is
strictly increasing and ¢”/g is constant). On the other hand, we have f(z2) = g(z2), f'(z2) <

g'(z2) and therefore
2 1 1
oz (o= [ (F-5) o

e \J
which is a contradiction. Thus we can take ¢ = 7. O
Lemma [2.7] is now completely proved. O

2.11. Sharpening Bernoulli. Combining Lemma and inequality ([2.30]), we see that it suf-
fices to prove the inequality

(235) (M) " <11++sz§2>8 (20‘1}1?823@; t)>2 <2> o (W)Q <2> -
RETLIEC Y T R
4 2 1+ 2

foral 0<y<1 0<a<a+t<n/2, s€(1,3/2), where ¢ = ¢(t) is defined by (2.29).
Let us estimate the left hand side from below. We have

LHS = <1+6222>5 . (3> (14_623;2>s—1 4c2y2200252(a+t2) _ <3) M(th)—k
1ty 2/ \ 14y A+ 1+ \2) 0+

s 2
<2> (1:1_%2)2 (cos?(a +t) — cos*(a)) .

Consider the map

hz)=a®—1+pz°"', z>1,

where p € [0,1). Clearly h"(z) = (s — 1)z*3(sz + p(s — 2)) > 0 when x > 1. Therefore h
is convex on [1,00) and hence h(x) > p+ (s + p(s — 1))(x — 1) there. Let us apply the latter
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inequality to the case when =z =

142
1+y

3/2-1/2 2cy 2y

7; > 1 and

s\ 4cy? cos?(a +t)
pP= 2)(

1+ cy?)(1+9?)

Then we can estimate

3

2

. -C- t) < =v2<1.
5 T 22 1142 c-cos (a+)78\f

LHS > < )( y?cos?®(a +t)

1+ %y

4y? cos? a+t
2 (1+y?)?

A+ )

(o)are

Qﬁ; 1) (S F(s—1) (;) éiy;;ozs;((fj ;2))) B

cosQ(a +1t) — cos2(a)) —

8y2(02 —1) N <s> [(1 s 1)y2(02 — 1)) (402y2 cos’(a+1) 4y cos2(a+t)] N

1+ g2 2

L+y? ) (14?1 +y?) (14y?)?

<;) (41/22 (cos?(a + 1) — cos?(a)) =

1+y?)

2 ()

9 24y cos?(a+1t)(c? —1)  4y*cos®(a +t)(c? —1)]

(1+c2y?) (1 +y?)? (1+c2y?) (1 +y?)?

<;> (41/22 (cos?(a + 1) — cos*(a)) =

1+y?)

sy2(02 —1) N (;) {((3_ Dy?e? 1 1) 4y? cos?(a +t)(c? — 1)} N

1+ 92

(1 +c2y?) (1 +y?)?

s 2
<2> (43/2)2 (cos®(a+t) — cos?*(a)) =

14y

2 1+ c2y?

SM {1 P (s=1)((s— Dy*c* +1) 40082(a+t)}
)

4y2

20 Vg

2

(cos®(a +t) — cos*(a)) =

2
2( ! > x{i(é—n (1+2(s = 1) cos*(a+1)) — (s — 1)(cos(a) — cos*(a+1))

1+ 92

1
+ 5(c2 — 1)y (1

2(s —1)(2 —

s)c? cos?(a +t)
1+ c2y? > }

Combining the obtained lower bound and inequality ([2.35), we see that it suffices to show that

(2.36) %(CQ S 1) (1+2s

%(62 — 1)y’ <1 -~

—1)cos*(a+1)) — (s — 1)(cos*(a) — cos®(a +t))+

(s = 1)(s —2)(s — 3)y?sin(t)

2(s —1)(2 — 5)c? cos?(a + t)) S V3

1+ 292 =4

forall 0<y<210<a<a+t<Z andse(1,3/2).

— 2

2.12. Moving to the boundary and factoring: an interplay between Analysis and
Algebra. We denote ¢ = C' > 1. We multiply both sides of inequality (2.36) by 2 and estimate
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the factor —ﬁ on the left hand side of 1' from below by —1. After rearranging the terms,
we see that it suffices to show the inequality

(2.37) (C—1)(1+2(s—1)cos’(a+1)) — 2(s — 1)(cos*(a) — cos*(a + t))+

y? x {(C -1 (1-2(s—1)(2— S)OCOSQ(CL—I—t)) — \gg

(s=1)(s—2)(s—3) sin(t)} > 0.
The left hand side of 1} is linear in u = 32 € [0, l]. If y? = 0, the inequality reduces to

2(s — 1)(cos?(a) — cos®(a + 1))
C-1z 1+2(s—1)cos?(a+t)

which, after adding 1 to both sides, reduces to (2.16]). Therefore, by linearity it suffices to consider
the case y? = % After substituting y? = %, we can rewrite the left hand side of the inequality

"
(C—1)(1+2(s—1)cos*(a+1)) —2(s — 1)(cos®(a) — cos®(a + t))+
(C-1) <é —2(s—1)(2 —s)cos’(a + t)> ;/Cg (s —1)(s—2)(s — 3)sin(t) =
1 2 2
(Cc-1) <1 + C’) +2(C = 1)(s — 1)*cos®(a + t) — 2(s — 1)(cos*(a) — cos®(a + 1))
V3 :
~ %0 (s —=1)(s—2)(s —3)sin(t) >
(Cc-1) (1 + é) —2(s — 1)(cos*(a) — cos®(a + t)) — ;/Cg (s —1)(s —2)(s — 3)sin(t).

Next, notice that cos?(a) — cos?(a +t) = sin(t) sin(2a + t) < sin(t). Therefore it suffices to show
the inequality

(2.38) (€ —1) (1 + é) (2 + ;/g (s —2)(s — 3)) (s — 1)sin(t).

It follows from (22.8) and the cosine theorem (see Fig. [1)) that

r(t)? + (‘H)Q or(t) e L sin(t) = —
V2s—1 V2s—1 25 —1°

Using the equality C' = e )2, we obtain

1— r(t)2\/ﬁ _(C-1)v2s—1

—1)si = = 1,2s -1
(5= Dsin(t) = 51V ol cepa-
Therefore, inequality (2.38|) simplifies to
1 V3
Ve Lt ) 2 |14 56-2(s-3) | Vas—1, Cell2s—1], se[1,3/2]

Since vC (1 + %) > \@% =2, é <1, and /2s — 1 < s, it suffices to show that

2>

1+ \{F(s —2)(s — 3)] 5.
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Subtracting s from both sides of this inequality and dividing by (2 — s), we get 1 > 435(3 —3s),

: 2 4 _ 312 4 _9 : : 16
Le., s —3s+ == (s —3)°+ (ﬁ — 2) >0 to prove. It remains to notice that v/3 < 32, i.e.,
256
<

2. =2,
(2.39) 3< 4
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