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ABSTRACT. We classify irreducible representations of finite W-algebra for the queer
Lie superalgebra Q(n) associated with the principal nilpotent coadjoint orbits. We
use this classification and our previous results to obtain a classification of irreducible
finite-dimensional representations of the super Yangian YQ(1).

1. INTRODUCTION

The main result of this paper is a classification of simple finite-dimensional mod-
ules over the super Yangian Y'Q(1) associated with the Lie superalgebra Q(1). The
Yangians of type () were introduced by Nazarov in [13] and [14]. In [15] these super
Yangians were realized as limits of certain centralizers in the universal enveloping
algebras of type (). Our approach is via finite W-algebras as in [1, 2].

In the classical case a finite W,-algebra is a quantization of the Slodowy slice to
the adjoint orbit of a nilpotent element e of a semisimple Lie algebra g. Finite-
dimensional simple W,-modules are used for classification of primitive ideals of U(g).
Losev’s work gives a new point of view on this classification, [8, 9, 10].

In the supercase the theory of the primitive ideals is even more complicated, [3]. It
is interesting to generalize Losev’s result to the supercase. One step in this direction
is to study representations of finite W-algebras for a Lie superalgebra g. In the
case when g = gl(m|n) and e is the even principal nilpotent, Brown, Brundan and
Goodwin classified irreducible representations of W, and explored the connection
with the category O for g using coinvariants functor, [1, 2].

First, we study representations of finite W-algebra for the Lie superalgebra Q(n)
associated with the principal even nilpotent coadjoint orbit. Note that the Cartan
subalgebra h of g = @Q(n) is not abelian and contains a non-trivial odd part. By
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our previous results ([17]), we realize W as a subalgebra of the universal enveloping
algebra U(h). One of the main results of the paper is a classification of simple TW-
modules given in Theorem 4.7 (they are all finite-dimensional by [17]). The technique
we use is completely different from one used in [1, 2| due to the lack of triangular
decomposition of W in our case. Instead, we can describe the restriction of simple
U(h)-modules to W and prove that any simple W-module occurs as a constituent of
this restriction.

We have shown previously in [17] that a principal W-algebra (for any n) is a
quotient of Y@Q(1). Hence a simple module over a W-algebra can be lifted to a
simple Y Q(1)-module. However, not every simple YQ(1)-module can be obtained in
this way. We prove that any simple finite-dimensional Y (1)-module is isomorphic
to the tensor product of a module lifted from a W-algebra and some one-dimensional
module (Theorem 5.14). We also obtain a formula for a generating function for
the central character of a simple module. This generating function is rational and
probably should be considered as an analogue of the Drinfeld polynomial, see [11]
chapters 3, 4.

We plan in a subsequent paper to study the coinvariants functor from the category
O for Q(n) to the category of W-modules.

As M. L. Nazarov pointed to us, it is interesting to generalize the results of [7] to
the case of Y'QQ(1) using the centralizer construction of Y'Q(n) given in [15].

2. NOTATIONS AND PRELIMINARY RESULTS

We work in the category of super vector spaces over C. All tensor products are
over C unless specified otherwise. By II we denote the functor of parity switch
I(X) = X ®C.

Recall that if X is a simple finite-dimensional A-module for some associative super-
algebra A, then End4(X) = C or End4(X) = Cl[e¢]/(¢* — 1), where the odd element
e provides an A isomorphism X — ITI(X). We say that X is of M-type in the former
case and of Q-type in the latter (see [6, 4]).

If X and Y are two simple modules over associative superalgebras A and B, we
define the A ® B-module X XY as the usual tensor product if at least one of X, Y
is of M-type and the tensor product over C[e] if both X and Y are of Q-type.

In this paper we consider the Lie superalgebra g = Q(n) defined as follows (see [5]).
Equip C"" with the odd operator ¢ such that (> = —Id. Then Q(n) is the centralizer
of ¢ in the Lie superalgebra gl(n|n). It is easy to see that ()(n) consists of matrices

B A
h C g to be the set of matrices with diagonal A and B. By n* (respectively, n™) we
denote the nilpotent subalgebras consisting of matrices with strictly upper triangular
(respectively, low triangular) A and B. The Lie superalgebra g has the triangular
decomposition g =n" @& hdnt and we set b =nt d bh.

of the form (A B where A, B are n x n-matrices. We fix the Cartan subalgebra
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2.1. Finite W-algebra for Q(n). Denote by W™ the finite IW-algebra associated
with a principal' even nilpotent element ¢ in the coadjoint representation of Q(n).
Let us recall the definition (see [19]). Let {e;;, fi; 4,7 = 1,...,n} denote the basis
consisting of elementary even and odd matrices. Choose ¢ € g* such that

w(fij) =0, leis) = i
Let I, be the left ideal in U(g) generated by z — ¢(z) for all z € n=. Let 7 : U(g) —
U(g)/1, be the natural projection. Then

W" ={n(y) € U(g)/1,]| ad(x)y € I, for all z € n™ }.

Using identification of U(g)/I, with the Whittaker module U(g)®yn-)C, ~ U(b)®C
we can consider W™ as a subalgebra of U(b). The natural projection ¢ : U(b) — U(b)
with the kernel n*U(b) is called the Harish-Chandra homomorphism. It is proven in
[17] that the restriction of ¥ to W™ is injective.

The center of U(g) is described in [21]. Set

&= (1" fis xi =& = e,
then
Uh) = Cl&, ..., &/ (&5 + &&i)icizn-

The center of U(h) coincides with C[zy,...,z,] and the image of the center of
U(g) under the Harish-Chandra homomorphism is generated by the polynomials
pe = 23" 4+ .o 4 228+ for all k € N.2 These polynomials are called Q-symmetric
polynomials.

In [17] we proved that the center Z of W coincides with the image of the center
of U(g) and hence can be also identified with the ring of Q-symmetric polynomials.

2.2. Super Yangians of type ). Recall that in [13] the Yangians Y'Q(n) associated
with Lie superalgebras Q(n) were defined. In [17] and [18] (Corollary 5.16) we have
shown the existence of the surjective homomorphism ¢, : YQ(1) — W™.

Recall that Y'Q(1) is the associative unital superalgebra over C with the countable
set of generators

Tz(;n) where m =1,2,... and i,j = +1.

The Zs-grading of the algebra YQ(1) is defined as follows:

p(T) = p(i) + p(j), where p(1) = 0 and p(—1) = 1.
To write down defining relations for these generators we employ the formal series

in YQ(1)[[u™"]]:
1) —1 2) 92
(2.1) Tyj(u) = 8- 1+ TOu™ + T w2 4
IThere is a unique open orbit in the nilpotent cone of the coadjoint representation, elements of

this orbit are called principal.
2In this paper we denote by N the set of all non-negative integers.
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Then for all possible indices 7, 7, k, [ we have the relations

(2.2) (u? — 02)[]1,],(“), Tioa(v)] - (_1)p(i)p(k)er(i)p(l)+p(k)p(l)
= (u+ 0)(Thj(w)Tig(v) = Thj(0)Tig(w))
— (1= ) (T () Ty (0) = Ty (0) T () - (=170,
where v is a formal parameter independent of u, so that (2.2) is an equality in the

algebra of formal Laurent series in !, v~! with coefficients in YQ(1).
For all indices i, j we also have the relations

(2.3) Tij(—u) =T _j(u).

Note that the relations (2.2) and (2.3) are equivalent to the following defining rela-
tions:

(2.4) ([T.(mﬂ) T(?‘*l)] _ [Ti(;ﬁ*l) Tlgj"lJrl)]) ) (_1)p(i)p(k)+p(i)P(l)+p(k)P(l) —
T(m)jﬂl(T 1) —|—T(m 1)/1“;(7) T(r_l)jjl(,;n) T]g”])ffl(;n 1)
m r—1 m— 1 m I m—1
(PO TN VT, 4 DT 30 )

2y

(2.5) T = (=17

) 2V

where m,r =1, ... and Tz(g) = 0;j.
Recall that YQ(1) is a Hopf superalgebra, see [14], with comultiplication given by
the formula

T(T ZZ i)+p(k )(p(J)+p(k))T(5) ®T}£”] s).
s=0 k

The surjective homomorphism ¢, : YQ(1) — W™ defined as follows:

SDN(TI(,kl)) = (_1)k[ Z (xil + (_1)k+1§i1) ce (xik_l - gik—l)(mik + fik)]e'UETH

1<i1<i2<...<ip<n

T =DM Y (@ + (D)) (@, — &) (@, + € loaa:

1<i1<i2<...<ip<n

Note that gon(Tl(ﬁ)) = gon(Tfkﬁl) =0if k > n.
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3. THE STRUCTURE OF W-ALGEBRA

Using Harish-Chandra homomorphism we realize W™ as a subalgebra in U(h). It
is shown in [18] that W™ has n even generators 2, ..., 2,—1 and n odd generators
b0, - - - On_1 defined as follows. For k > 0 we set

n

(3.1) Goi= & =T ),

i=1
where the matrix of T" in the standard basis &, .. .,&, has 0 on the diagonal and
(3.2) bij = { —x; if P>

For odd k£ < n — 1 we define
(33) Rk = [ Z ($i1 + <_1)k£i1) e (wlk - 51k)<xlk+1 + gikJrl )]Bvem

11<12...<if41

and for even k > 0 we set

1
(34) Zp = §[¢07¢k]

Let W§* C W™ be the subalgebra generated by zo, ..., 2,-1. By [17], Proposition
6.4, W is isomorphic to the polynomial algebra C|z, ..., z,—_1]. Furthermore there
are the following relations

(—1)"2z;4; if i+ jis even
3.5 iy Pj| — P ..
(3:5) 194 @3 {0 if 7 4+ 7is odd

Define the Z-grading on U(h) by setting the degree of & to be 1. Tt induces the
filtration on W", for every y € W" we denote by y the term of the highest degree.

Note that for even k, we have 2z, = Z;. Moreover, z; is in the image under
the Harish-Chandra map of the center of the universal enveloping algebra U(Q(n)).
Therefore by [21] 29, is a @-symmetric polynomial in Clzy, ..., z,] of degree 2p + 1.
For example,

1
wmaibe b, m= g (@) = 2.
For odd k the leading term is given by the elementary symmetric polynomial

Zk: E xi1~-~xik+1.

i1<i2<...<ik+1
Lemma 3.1. (1) gr W is isomorphic to the algebra of symmetric polynomials

Clzy, ..., 2,9 = Clz, ..., Z,_1] and the degree of 2 is 2k + 2;
(2) U(h) is a free right Wl-module of rank 2"n!.



6 ELENA POLETAEVA! AND VERA SERGANOVA?

Proof. Since %, ..., Z,_; are algebraically independent generators of Clxy, ..., z,]""

we obtain (1).

It is well-known fact that Clzy, ..., z,] is a free C[zy, ..., x,]°"-module of rank n!,
see, for example, [22] Chapter 4. Since U(h) is a free C[zy, ..., x,]-module of rank 2"
we get that U(h) is a free C[x1, . .., x,]°"-module of rank m = 2"n!. Let us choose a
homogeneous basis by, . .., b, of U(h) over C[zy, ..., z,]%". We claim that it is a basis
of U(h) as a right module over W'. Indeed, let us prove first the linear independence.

Suppose
> by =0
j=1

for some y; € WJ'. Let k = max{degy; +degb;|j = 1,...,m}. If J = {j|degy,; +
degb; = k} we have )., b;y; = 0. By above this implies §; = 0 for all j € J and we
obtain all y; = 0. On the other hand, it follows easily by induction on degree that
U(h) = >0, bjWg. The proof of (2) is complete. O

Consider U(h) as a free U(hg)-module and let W denote the free U (hy)-submodule
generated by &, ...,&,. Then W is equipped with U(hg)-valued symmetric bilinear
form B(z,y) = [z,y].

Sn

Lemma 3.2. Let p(xy,...,%,) := [[,.;(zi + x;) and T denotes the Gram matrix
B(¢s,¢;). Then detT' = cp*xy - - - x,, where ¢ is a non-zero constant.

Proof. Recall that ¢, = T*¢y. Since the matrix of the form B in the basis &, ..., &,
is the diagonal matrix C' = diag(zy,...,x,), then I' = Y!CY, where Y is the square
matrix such that ¢; = 2?21 yii&;. Hence det T = x---x,det Y2 Since B(¢;, ¢;)
is a symmetric polynomial in zq,...,x,, the determinant of I' is also a symmetric
polynomial. The degree of this polynomial is n?. Therefore it suffices to prove that
(x1 + 22)? divides det T, or equivalently z; + x5 divides detY. In other words, we

have to show that if ;1 = —x5, then ¢y, ..., ¢,_1 are linearly dependent. Indeed, one
can easily see from the form of 7" that the first and the second coordinates of T% ¢,
coincide, hence ¢g, T'¢y, . .., T" ‘¢ are linearly dependent. 0
We also will use another generators in W™ introduced in [18], Corollary 5.15:
(B6) wO:=[ D (ot D) (an — G @+ G leven,
1<i1<i2<...<ip<n
uk(1> = [ Z (xil + <_1)k+1£i1) e ('rikfl - fik&)(xik + f%)]odd'

1< <ia <. <ip<n

For convenience we assume uy(0) = ug(1) = 0 for k > n.

Let i + 7 = n. We have the natural embedding of the Lie superalgebras Q(i) &
Q(j) < Q(n). If b, denotes the Cartan subalgebra of Q(r), the above embedding
induces the isomorphism

(3.7) Uh) ~ U(h:) @ U(b;).
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The following lemma implies that we have also the embedding of W-algebras.
Lemma 3.3. Let i+j = n. Then W™ is a subalgebra in the tensor product W@ W4,

Proof. Introduce generators in W and W7:

(38) u;(()) : [ Z (xh + (_1)k+1§i1) e (xikfl - gik—l)('rik + gik)]even7

1< <in<...<ip <i

“z(m = [ Z (xil + (_1)k+1€i1) e (xikq - gik71)<xik + &k)]odd'

1< <9< <1, <t

(39) w(0):=[ > (w+ (DM (i, — &) @i+ &) evens

i+1<i) <ip<...<ix<n

[ Z (i, + (=1 &) - (i, — &Gipy) (@i + &) ]oda-

i+1<i) <ip<...<ip<n

Then for d,e, f € 7/27 we have
(3.10) ur(d) =Y > (DPuf (e (f),

e+f=d a+b=k

u, (1)

Here we assume ug (0) = 1 and ui (1) = 0. O
Corollary 3.4. If iy + - -+ + 14, = n, then W™ is a subalgebra in W% @ --- @ W.

It is easy to see the following commutative diagram:
A
YQ() —25 YQ() © YQ()
(311> Cpm—o—nl @nL@@nJ/
Wm+n \ Wm ® Wn
where the bottom horizontal arrow is the composition of the flip W™ @ W™ —
W™ @ W™ with the map W™ — W"® W™ defined in Lemma 3.3. The appearance

of the flip is due to the fact that the flip is used in the identification of U(h) C U(Q(1))
with U(Q(1))%!, see the formula before Theorem 5.8 and Theorem 5.14 in [18].

4. IRREDUCIBLE REPRESENTATIONS OF W™

4.1. Representations of U(h). Let s = (s1,...,s,) € C*. We call s regularif s; # 0
for all 7 < n and typical if s, +s; # 0 for all i # j, ¢,7 < n.

It follows from the representation theory of Clifford algebras that all irreducible
representations of U(h) up to change of parity can be parameterized by s € C".
Indeed, let M be an irreducible representation of U(h). By Schur’s lemma every x;
acts on M as a scalar operator s;Id. Let I denote the ideal in U(h) generated by
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x; — S;, then the quotient algebra U(h)/Is is isomorphic to the Clifford superalgebra
Cys 3 associated with the quadratic form:

Bs(&i, &) = 0i52s;.
Then M is a simple Cs-module.

The radical Rg of Cy is generated by the kernel of the form Bs. Let m(s) be
the number of non-zero coordinates of s, then Cgs/Rs is isomorphic to the matrix
superalgebra M (2% 71|25 1) for even m and to the superalgebra M (2”7 )@ Cle] /(e2—
1) for odd m.

Therefore Cs has one (up to isomorphism) simple Zy-graded module V (s) of type Q
for odd m(s), and two simple modules V' (s) and IIV (s) of type M for even m(s) (see
[12]). In the case when s is regular, the form By is non-degenerate and the dimension
of V(s) equals 2, where k = [n/2]. In general, dim V (s) = 2[m)/21,

Consider the embedding Q(p) ® Q(q) — Q(n) for p + ¢ = n and the isomorphism
(3.7). It induces an isomorphism of U(h)-modules

(4.1) V(s) = V(s1,...,sp) MV (sps1,...,5n).

4.2. Restriction from U(h) to W". We denote by the same symbol V(s) the re-
striction to W of the U(h)-module V(s).

Proposition 4.1. Let S be a simple W"-module. Then S is a simple constituent of
V(s) for some s € C".

Proof. Since W' is commutative and S is finite-dimensional (see [17]), there exists
one dimensional W-submodule C, C S with character v. Therefore S is a quotient
of Ind%ﬁ C,. On the other hand, the embedding W™ < U(h) induces the embedding

IndMW/OZ C, — Ind%/((?) C,. Thus, S is a simple constituent of Resy» Indgv(;) C,. By

Lemma 3.1, Ind%,(oﬂ) C, is finite-dimensional, and hence has simple U (h)-constituents

isomorphic to V(s) for some s. Hence S must appear as a simple W"-constituent of
some V(s). O

4.3. Typical representations.
Theorem 4.2. If's is typical, then V (s) is a simple W™-module.

Proof. First, we assume that s is regular, i.e. s; # 0 for all ¢ = 1,...,n. The
specialization z; — s; induces an injective homomorphism 605 : W /(I N W™) — Cq
and a specialization of the quadratic form B +— Bs. By Lemma 3.2 detI'(s) #
0. Therefore Bs is non-degenerate and fg is an isomorphism. Thus, V(s) remains
irreducible when restricted to W".

If s is typical non-regular, there is exactly one 7 such that s, = 0. Let s’ =
(81,5 8i-1,Si+1,- - - Sn). Note that (0s(&;)) is a nilpotent ideal of Cs and hence &; acts

3We consider Clifford algebras as superalgebras with the natural Z,-grading.
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by zero on V(s). Then V(s) is a simple module over the quotient Cy ~ Cs/(65(&;)).
Recall Y from the proof of Lemma 3.2 and let Y’ denote the minor of Y obtained by
removing the i-th column and the i-th row. Then

Ok =Y yh;&mod (&).
JF
Hence 05(¢y), - .., 0s(¢n—1) generate Cy ~ Cs/(05(&;)) and the statement follows from
the regular case for n — 1. O

4.4. Simple W"-modules for n = 2. Let n = 2, then by Theorem 4.2 V(s) is
simple as W"-module if s; # —s,. The action of U(h) in V (s, s9) is given by the
following formulas in a suitable basis:

Note that W™ is generated by ¢q, ¢1, 29 and z;. Using

G0 =& + &, 01 =126 — 1182, 20 = X1 + T2, 21 = 1172 — §1&2

we obtain the following formulas for the generators of W":
(4.2)

o (s S O v (g VR,

5182 + /51591 0
(4.3) 20— (s1+s2)ld, 21— < 0 5189 — slsgi) '

Assume that s; = —sg. If 51,82 = 0 then V(s) is isomorphic to C @ IIC, where C is
the trivial module. If s; # 0, we choose /51, \/s2 so that /sy = /s;i. Note that the
choice of sign controls the choice of the parity of V'(s). The following exact sequence
easily follows from (4.2) and (4.3):

(4.4) 0= Ml 2 = V(s) > T_z_, =0,

where T'; is the simple module of dimension (1]|0) on which ¢g, ¢; and zy act by zero
and z; acts by the scalar t. The sequence splits only in the case s; = 0, when I'y ~ C
is trivial. Thus, using Proposition 4.1, Theorem 4.2, and (4.4) we obtain

Lemma 4.3. If n = 2, then every simple W"-module is isomorphic to one of the
following

(1) V(s1,89) or 1TV (s1, $2) for s1 # —S$a, $1, 82 # 0;
(2) V(s,0) if s # 0;
(3) Ft or Hrt
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4.5. Invariance under permutations.

Theorem 4.4. Let s’ = o(s) for some permutation of coordinates.

(1) If s is typical, then V(s) is isomorphic to V(s') as a W"-module.

(2) If s is arbitrary, then [V (s)] = [V (8')] or [IIV(8')], where [X] denotes the class of
X in the Grothendieck group.

Proof. First, we will prove the statement for n = 2. Assume first that sy # —s;. In
this case V(s1, $2) is a (1|1)-dimensional simple W"-module.

Let
D— /82 + /511 0
- 0 V814 /821 )

Then by direct computation we have

L 0 NCEN
pan = (g e 0T

and

Do = v (e L V0

Therefore D defines an isomorphism between V' (s1, s2) and V(sq, s1).

Now consider the case s; = —ss. Then the structure of V(sy, —s;) is given by the
sequence (4.4). Let V(s') = V(—s1, 1), then analogously we have the exact sequence

(4.5) 0 =T e, = V() =Tz, —0.

The statement (2) now follows directly from comparison of (4.4) and (4.5). Now we
will prove the statement for all n. Note that it suffices to consider the case of the
adjacent transposition o = (7,7 + 1).

The embedding of Q(i—1)®Q(2) ®Q(n—i—1) into (n) provides the isomorphism

Uh) ~Uh )2 U®BY) @ Um*),

where h~, h? and T are the Cartan subalgebras of Q(i — 1), Q(2) and Q(n —i — 1)
respectively. Using twice the isomorphism (4.1) we obtain the following isomorphism
of U(h)-modules

V(S) ~ (V(Sl, ey Si—l) X V(Si, Si—i—l)) X V(SH_Q, ce 73n)-

Suppose that s; # —s;41. Let D; ;41 = 1® D ® 1. By Corollary 3.4 we have that
W™ is a subalgebra in Wit @ W2 @ W"~! and hence D, ;; defines an isomorphism
of W"-modules V(s) and V(s').

If s, = —s;41, then the statement follows from (4.4) and (4.5). This completes the

proof of the theorem.
O
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4.6. Construction of simple W"-modules. Now we give a general construction
of a simple W™-module. Let r,p,¢ € Nand r+2p+q =n, t = (t1,...,t,) € CP,
t, ..ty 0, and A = (Aq,..., ) € C4 Ay, ..., A, # 0, such that \; + \; # 0 for
any 1 < ¢ # j < ¢q. Recall that by Corollary 3.4 we have an embedding W" —»
Wr e (W2 @ W, Set
S, ) =CXIy, X--- XTIy V(A

where the first term C in the tensor product denotes the trivial W"-module. For
g = 0 we use the notation S(t,0) and set V(\) = C.

Remark 4.5. The dimension of S(t,\) equals 23 for even ¢ and 2% for odd q.
Furthermore, S(t, A) is isomorphic to I1S(t, A) if and only if ¢ is odd.

Lemma 4.6. All ui(1) act by zero on S(t,0). The action of u(0) is given by the
formula

0 for odd k, and for k > 2p,
ug(0) =

og(tl, ..., t,) for even k,
where o, denote the elementary symmetric polynomials, 0 < a < p.
Proof. The first assertion is trivial. We prove the second assertion by induction on p.
For p =1 it is a consequence of the definition of I'; for Q(2). For p > 1 we consider
the embedding Q(n — 2) ® Q(2) — Q(n). The formula (3.10) degenerates to

up(0) = 1 (0) @ 1+ u)f (0) ® 20 + uff ,(0) @ 2.

As 2 acts by zero on I'y, the statement now follows from the obvious identity

Ug(tl, .. tp) = O'g(tl, .. .tpfl) —|-lfp0'g_1<t1, .. .tpfl).

Theorem 4.7. (1) S(t,\) is a simple W"-module;
(2) Every simple W™-module is isomorphic to S(t, \) up to change of parity.

Proof. Let u, (d), d € Z/2Z,1 < k < n be as in (3.9) where indices are taken in the
interval [n — ¢+ 1,n]. If ¢ = 0 we set u, (0) = 1 and u, (1) = 0. Using Lemma 4.6
and formula (3.10) we can easily write the action of ui(d) in S(t, \) in terms of u,, (d)
after identifying S(t, \) with V(\):

(4.6) up(d) = Y aa(ty,. . ) (d),

2a+j=k

From these formulas we see that u, (d) and ui(d) generate the same subalgebra in
End¢(V(A)). By Theorem 4.2 this proves irreducibility of S(t, \).

To show (2) we use Proposition 4.1. Every simple W"-module is a subquotient of
V(s). By Theorem 4.4 (2) we may assume that sy = --- =5, =0, s; # 0 for ¢ > r,
Syl = —Spi2y .-y Sriop 1 = —Spi2p. We can compute W @ (W?)®P @ Wi-simple
constituents of V(s). They are S(t, ) (up to change of parity) with t; = —s2, %5,
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and \; = S,42,+; (We can assume that all s; # £1). By (1) S(t,\) remains simple
when restricted to W"™. Hence the statement. O

Remark 4.8. Ty ~ CX C as W?-modules (r =2, p=¢ = 0).

4.7. Central characters. Recall that the center of U(Q(n)) coincides with the cen-
ter Z of W™, see Section 2. Every s defines the central character ys : Z — C. Further-
more, Theorem 4.7 (2) implies that every simple W"-module admits central character
Xs for some s. For every s = (s1,...,5,) we define the core ¢(s) = (s;,,...,S;,) as
a subsequence obtained from s by removing all s; = 0 and all pairs (s;,s;) such
that s; +s; = 0. Up to a permutation this result does not depend on the order of
removing. Thus, the core is well defined up to permutation. We call m the length of
the core. The notion of core is very useful for describing the blocks in the category
of finite-dimensional @)(n)-modules, see [16] and [20].

Example 4.9. Let s = (1,0,3,—1,—1), then ¢(s) = (3, —1).
The following is a reformulation of the central character description in [21].

Lemma 4.10. Let s,s’ € C". Then xs = x if and only if s and s’ have the same
core (up to permutation).

It follows from Lemma 4.10 that the core depends only on the central character
Xs, we denote it ¢(x). By Theorem 4.4 we obtain the following.

Corollary 4.11. Let x : Z — C be a central character with core c(x) of length m.
Then W™-module V (c(x)) is well-defined. From now on we denote it by V(x) and
call it the core representation.

The category W™ —mod of finite dimensional W"-modules decomposes into direct
sum @(W™)X—mod, where (W™)X—mod is the full subcategory of modules admitting
generalized central character y.

Lemma 4.12. A simple W™-module S belongs to (W")X —mod if and only if it is
isomorphic (up to change of parity) to S(t,\) with A = ¢(x).

Proof. We have to compute the central character of S(t,\). For a Q-symmetric
polynomial p, = 22! ... 22541 we have pp(t, \) = A2F ... 4 AZFHL Since py
generate the center of W™ the statement follows. O

Proposition 4.13. Two simple modules S(t,\) and S(t', \') are isomorphic (up to
change of parity) if and only if p’ = p, ¢ = ¢, t' = o(t) and X' = 7(\) for some o € S,
and T € S,.

Proof. First, (4.6) and Theorem 4.4 imply the “if” statement. To prove the “only
if” statement, assume that S(t,\) and S(t’, \') are isomorphic. Then these modules
admit the same central character. Therefore by Lemma 4.12 X' = 7(\) for some
T € S,. Hence without loss of generality we may assume that ¢ = ¢ and X' = .
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Denote by trx and tr' z the trace of z € W™ in S(t, A\) and S(t’, \) respectively.
Then we must have
trug(0) = tr' ug(0).
Using the formula (4.6) we get

trug(0) = > oalts, ..., tp) tryey uj (0),

2a+j=k

tr’ ug (0) = Z Oa(ty, - ty) try oy uj (0).
2a+j=k
Let b; := try () u; (0). Without loss of generality we may assume that p > p'. Then
we can rewrite our formula with p = p’ assuming ¢, = 0 for p > ¢ > p’. Then the
above implies

0'a<t1, Ce ,tp)bo + O'afl(tl, Ce ,tp)bg + - —|— O'O(tl, e ,tp>bga =

ooty t)bo + Ta 1 (ty, ... 1) ba + -+ 0o(ty, ..., 1,)b2a,
where we assume b; = 0 for ¢ > ¢. Since by = dim V() # 0 the above equations
imply o4(t1,...,tp) = 04(t),..., 1) for alla =1,...,p. Therefore t' = o(t) for some
o € S, and in particular, p’ = p. O

We denote by P! the subcategory of W!-modules which admit trivial generalized
central character.

Lemma 4.14. Let x : Z — C be a central character with core ¢(x) of length m.
Then the functor W"~™ —mod — W" —mod defined by * F(M) = Resy«(M @V (X))
restricts to the functor ® : P*~™ — (W™)X—mod. Furthermore, ® is an exact functor
which sends a simple object to a simple object.

Proof. The first assertion is immediate consequence of Lemma 4.12 and the second
follows from the construction of S(t, A). O]

Conjecture 4.15. The functor ® : P"~™ — (W")X — mod defines an equivalence of
categories.

5. REPRESENTATIONS OF THE SUPER YANGIAN OF TYPE (1)

In this section we classify irreducible finite-dimensional representations of Y'Q(1)
and explore their connections with irreducible representations of W™.

Lemma 5.1. Let
1 1

it (2 1
(5.1) m=(=5) ad T, Zoi = Slio. i)

“We consider here the usual exterior tensor product in contrast with X.
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(1) The following analogue of relation (3.5) holds:

(=1)2Z;,; ifi—+ jiseven
[, m5] = e :
0 if 1+ j is odd
(2) The elements {Zy; | i € N} are algebraically independent generators of the
center of YQ(1).
(3) The elements 1, and {Tl(?f) | i € N} generate YQ(1).
Remark 5.2. We have the following correspondence between generators of Y'Q(1) and
W’ﬂ
on(mi) = Gi,  On(Z2i) = 225, 0<i<n—1

Proof. 1t follows from the similar statements for W™ for all n and the fact that
MNnen Ker ¢, = 0. O

Let M be a simple YQ(1)-module. Then M admits the central character y. We
set Xor = x(Za2x) and consider the generating function

) = 3 ot
1=0

Lemma 5.3. Let M be a finite-dimensional simple Y Q)(1)-module admitting central
apu" o tag_gu 2t
i+c1u*2+~~?+lcqu*2q :

character x. Then x(u) is a rational function of the form

Proof. Let C C YQ(1) denote the unital subalgebra generated by {n; | i € N}. Let
C, denote the quotient of C by the ideal ({Z;—x2; | © € N}). Then the relations (3.5)
imply that C, is isomorphic to the infinite-dimensional Clifford algebra Cliff(V, B, )
on the space V' with basis {7, | ¢ € N} and the symmetric form B, defined by the
formula

(5.2) By (mismj) = {

(—=1)"2x44; if i+ jis even
0 if i 4 jis odd
Note that M by definition restricts to a certain C,-module. On the other hand,
Cliff(V, B,)) admits a finite-dimensional representation if and only if B, has a finite
rank. Look at the infinite symmetric matrix of B, in the basis {n;}. Then every
column of this matrix is a linear combination of the first k£ columns for some k. The
formula (5.2) implies that for some integer ¢ > 0 and the coefficients ¢y, ..., ¢, we
have a recurrence relation
q

(5-3) Xem = ) ~CiXam—i, for allm > gq.

i=1

This condition is equivalent to the rationality of x(u). O
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Recall the W™-module V(s) constructed in Section 4. Using the homomorphism
©n we equip V(s) with a Y@Q(1)-module structure. Our next goal is to compute
the central character of V(s). For this we need to compute the {z;} in terms of
symmetric polynomials. Recall the notations of Section 3. Note that for any n the
elements {zy;} of the center can be expressed in terms of symmetric polynomials of
x1,...,T, and this expression stabilizes as n — oco. Thus, 29; is a particular element
in the ring of symmetric functions of degree 27 + 1.

Lemma 5.4. We have the following expression

k
(5.4) Zop = — E 09iZok—2i + O2k 11,
i=1
where o), = >, _ . <iy Tiy - - Tiy, IS the elementary symmetric function.

Proof. We proved in [17], Lemma 5.5 that for W the characteristic polynomial
det(AId —T') of T equals A" + Z}Z{ﬁ TN Ag

Zou(T1, .., xy) = 2y, .., xn TP, 1]

the Hamilton—Cayley identity implies that for 2k > n we have

k
Zop(T1, ..oy ) = — Z O9izok—2i(T1, - oy Tp)-
i=1
Since the degree of 2o is 2k + 1 it is a polynomial of oy,...,09;11. Therefore it
suffices to prove (5.4) for n = 2k 4+ 1. We do it by induction on k using the fact that
2ok (T1, .. ., Topt1) is @-symmetric. Indeed, we already know that
k
sz(xl, . ,$2k) = - Z ‘721'321@721‘(1’17 . 75521@)7
i=1

therefore from substituting zo;11 = 0 we get

k
sz(ﬂﬂl, ce ,$2k+1) = - Z 021'221@721'(561, .- ,$2k+1) + A02k+1($1, e ,952k+1)-
i=1

It remains to find the coefficient A. By Q-symmetry

Zop (X1, .o Tag—1) = 2ok (X1, . .., Tog—1,t, —1).
This leads to the identity

k
2ok (X1, .o Top—1) = — Z O2i%ok—2i(T1, - . ., Top—1)+
=1

k

2 2
+t E O2i—2%9k—2i(T1, - - ., Togp—1) — At“oop_1(x1, ..., Top—1).
i=1
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Furthermore, by induction assumption we have

k
E 021—22214—2@(951, <. 7l’2k—1) =
i=1
k
Z2k—2(9€1, - ,$2kz—1) + E 022'—22%—21'(961, . ,$2kz—1) = 02k—1(I1, . 7$2k—1)
i=2
Hence A = 1. O

Corollary 5.5. YQ(1)-module V (s) admits central character x where

X(U) _ 220 0'21'+1(S)u_2i_1
L4372 onis)u=2"

Corollary 5.6. The elements {zo | k = 0,..., %]} and {oo, | k = 1,..., 2]}

form an algebraically independent set of generators in the ring of symmetric polyno-
mials in n variables.

Proposition 5.7. For any rational x(u) there exist n and s such that V(s) admits
central character .

Proof. 1t follows immediately from Corollary 5.5. Indeed, by Lemma 5.3
aut o agqu 2t
l+cu24--+cu20’
Let n = 2¢g and assume that a; = 0 for ¢ > ¢, ¢; = 0 for j > ¢. One can choose
s = (81,...,5,) so that oox(s1,...,5,) = ¢x and oop11(S1,. .+, Sn) = Q. O

x(u) =

Corollary 5.8. Any simple finite-dimensional C-module is either trivial or isomor-
phic to V (s) or 11V (s) for some typical regular s.

Proof. Recall the notations of Section 4. Consider a homomorphism C — Cy defined
as the composition

CoYQ() £uwr =,
This homomorphism is surjective if s is typical regular, see Theorem 4.2. For any

central character y there exists one up to isomorphism and parity change simple
C,-module. By Proposition 5.7 it must be isomorphic to V(s). O]

Remark 5.9. If s = (s1,...,s,) and s’ = (s1,..., 5y, s, —s) then V(s) and V (s’) admit
the same central character. We can see it now from the formula

Z;’io 02i+1(s’)u—2i—1 _ (1 — 32u—2)<2?i0 Tait1 (S)u—%—l)
1+ 37 oni(shu 2 (1—s2u2)(1+ 37, oni(s)u2)’
Lemma 5.10. We have the following expression

(5:5) [T ) = [T ) = (0 ) + 20, i > 2,

)

2k 2k 2k 2k+1 2k 2k
T ) =21, [ ) = 2 — [ )+ 21 .
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Proof. Note that according to (6.4) and (6.5) from [17]
T 2] = 1+ ()97
Hence [T; fik), Tl(jl_)l] = 2T1(2_ki Note also that

Y

(5.6) (3, M) = 2P

(5.7) 3, M) = 21 421, — 2T
Using (6.9) from [17] we have that [T1(,21)7T1(,1 )] = 0. Hence
109 m] = () ad 7. 1)) = S aar ).

Next,
ad' T3 (1) = ad™ T ({7, 7)) = ad™ T @1V + 21 — 21312 ).
Furthermore,

2ad™ TI(T1Y) = 2ad > T (117, T5Y)) =

dad"” QTﬁ (T = (=12 12 i,

2ad™ T () = (=2 (113, mia),
—2ad ' TTOTY, = —21(7 ad ™ T (1(Y,) = —217 ((-2) 'nia) = (—-2)'T
Thus

k i— 2k+2 i— k 7
T ] = — (2 T3 ) = 27T ] + 2T, ),

=5
which gives (5.5). O

Corollary 5.11. Let A be the commutative subalgebra in Y Q(1) generated by Tl(?lk)
for k> 0. Then YQ(1) = CA = AC.

Proof. We will show that CA C AC. (The proof of the opposite inclusion is similar.)
Let D; denote the span of n; for j < 7. By Lemma 5.10 for ¢ > 2 we have that
771‘T1(,21k) = Tl(?lk)ni modulo D;A + AD;. Therefore, it suffices to show that n,A € AC
for i = 0, 1. Furthermore, the relations in the second line of (5.5) imply that it suffices
to show that Tl(nj)l € CA N AC. This can be done by induction on m. The case

m =1 is trivial as 79 = Tl(”f)l For the step of induction if m is even we employ (5.6)
and if m is odd (5.7) and the relation

Ti?.clcc.
Finally, since A and C generate YQ(1) we get YQ(1) = CA = AC.

2k
1 )771 1-
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Recall that for any Hopf superalgebra R the ideal (R;) generated by all odd ele-
ments is a Hopf ideal and the quotient R/(R;) is a Hopf algebra.

Lemma 5.12. The quotient YQ(1)/(YQ(1);) is isomorphic to A ~ (C[Tl(ik)}bo with
comultiplication

AT171(U_2) = TLl(u—2) & T171(U_2),
where Ty 1 (u™?) =3 Tl(ik)u_%.

Proof. Since all n; generate (YQ(1);), Lemma 5.1 implies YQ(1) = A + (YQ(1)1).
Therefore there exists a surjective homomorphism

A= YQ)/(YQ(1)).

To prove that it is injective we need to show that A N (YQ(1);) = {0}. It suffices
to check that for any y € A there exists a one-dimensional Y'Q(1)-module I" such
that yI' # 0. Let y = P(T1(,21) . .Tl(?lk)) for some polynomial P and consider the
module I' = 5(t,0) as in Lemma 4.6. Then y acts on I" by P(oy(t),...,0x(t)). By a
suitable choice of t we can get P(oy(t),...,0x(t)) # 0. The comultiplication formula
is straightforward as all Tl(?lkﬂ) € (YQ(1)y). O

Let f(u) =1+ >, fasu™?*. We denote by T'y the one-dimensional A-module,
where the action of T} ;(u™?) is given by the generating function f(u).

Lemma 5.13. The isomorphism classes of one-dimensional Y ()(1)-modules are in
bijection with the set {I'y}. Furthermore, we have the identity I'f @ I'y >~ I'y,.

Proof. Lemma 5.12 reduces the statement to classification of one-dimensional A-
modules which is straightforward. OJ

Theorem 5.14. Any simple finite-dimensional Y Q)(1)-module is isomorphic to V (s)®
Ty or IV (s) @ I'y for some regular typical s and f(u) =1+ >, foxu™2*. Further-
more, V(s) ® I'y and V (s') ® ', are isomorphic up to change of parity if and only if
s’ is obtained from s by permutation of coordinates and f(u) = g(u).

Proof. We start with regular typical s and identify V(s) with V(s)®T';. Let x be the
central character of V (s) and consider only simple modules with central character .
We denote by YQ(1)X the quotient of Y'Q(1) by the ideal generated by Ker x. Note
that YQ(1)X = C,A.

Note that the central characters of V(s) and V(s) ® I'y are the same and they
are isomorphic as C,-modules. For any finite-dimensional Y'(Q)(1)-module M and
O(u) =14 O;u~? set

M’ = (U Ker(1Z - 0)™).

k>0 m>0
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Clearly, we have an isomorphism of A-modules

for some finite set P(M). Furthermore, we have the following obvious relations
(5.8) PIM®T;)=PM)f, (MaT) =M oT;.

This implies that P(V(s) ® I'y) = P(V(s) ® I'y) if and only if f = g. Therefore we
obtain the second assertion of the theorem.
Consider the natural homomorphism

F 1 YQ(LX — [ Endc(V(s) @ T).
f

Lemma 5.15. Let J, = KerF),. Then
(1) Jy = AR, = R, A, where R, = Annc, V(s) is the Jacobson radical of C,;
(2) J, acts by zero on any simple finite-dimensional Y ()(1)X-module.

Proof. Let us prove (1). Note that Tl(ik) acts on V(s) @ I'y as Zf:o Tl(?li) ® Tl(?lk*%)
and 7o acts as T} 1(’121 ® 1. Therefore by (5.1) n; acts as n; ® 1 for all ¢ > 0 and hence
every ¢ € C acts as ( ® 1. This implies R, C J,. Assume

k
X=> ¢y e, GeC,
i=0
Set f =1+ u"?*. Then since X annihilates both V(s) and V(s) ® 'y and X acts on
the latter module as X ® 1+ (, ® 1 we obtain that (; € R,. Repeating this argument
we obtain that all ; € R,. Thus, J, = R, A. The equality AR, = R, A follows from
AC, = C, A by symmetry.

To prove (2) note that J, = AR, annihilates the induced module YQ(1)*®c, V (s)
and hence any its quotient. On the other hand, up to switch of parity, any simple
finite-dimensional Y@ (1)X-module is a quotient of this induced module. Hence the
statement. 0J

Lemma 5.16. Let A be an associative subalgebra in the superalgebra [ [, ; A; where
all A; are isomorphic to the matrix superalgebra M (n|n). If M is a simple A-module
then dim M < 2n.

Proof. We use the fact that Ag satisfies the Amitsur-Levitzki idenitity
(5.9) Z sgn(0)Teq) - - - Ton) = 0,
oc€San

for any z1,...,29, € Ap. Let M be a simple A-module. If Ends(M) = C then
A — Endc(M) is surjective by the Jacobson density theorem. Let dim M > 2n
then dim My > n or dim M; > n, hence one can find zi,...,z9, € Ay which do
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not satisfy (5.9). If Ends(M) = Q(1), then dim My = dim M;. The image A —
Endc(M) coincides with Q(k) where k& = dim M, and the map Ay — Endc (M) is
surjective. Assume dim M > 2n, then one can find z1,..., %2, € Ag which do not
satisfy (5.9). O

Corollary 5.17. Let M be a finite-dimensional simple Y Q(1)X-module. Then M is
isomorphic to V(s) or 11V (s) for a regular typical s as a module over C,.

Proof. The algebra Y(Q(1)X/J, is a subalgebra in the product of matrix algebras
End¢(V(s)). Hence by Lemma 5.16 dim M < dim V (s). Since R, annihilates M, the
module M is isomorphic to a direct sum of several copies of V(s) and IV (s) as a
module over C,.. This implies the statement. Il

Remark 5.18. By Corollary 5.8, C, /R, ~ Cs. Furthermore, J, N C, = R,.

Denote by 1 the function #(u) = 1 and assume that M is a simple finite-dimensional
Y Q(1)*-module such that Mj # 0. Then M is a quotient of the induced module

I'=(YQ()X/Jy) @aln.
Note that
dim ] < dim(C,/Ry)
but we will see later that the equality takes place.

Lemma 5.19. Let M be a simple Y Q(1)X-module such that M} # 0 and M remains
simple after restriction to C,. Then there exists a quotient U of I with all simple
subquotients isomorphic to M and length equal to dim Mj .

Proof. Let U = M ®(Mg)*. Tt obviously has a filtration with all quotients isomorphic
to M and hence it satisfies the desired property. It remains to construct a surjective
map I — U. By Frobenius reciprocity we have a canonical isomorphism

HomyQ(l)(I, U) >~ HomA(Fl, U) >~ HOHIA<F1, Ml & (Mol)*)

Consider the identity map in Homga (T'y, M* ® (M})*) and denote by ~ the corre-
sponding map in Homygny(Z,U). Let us prove that v is surjective. First, observe
that any y € C acts on M ® (M)* as y ® 1 by the same argument as in the proof
of Lemma 5.15. Choose a basis {vy,...,v,.} in M} and let {wy,...,w,} be the cor-
responding dual basis in (MjJ)*. By construction > v; ® w; € Imy. Since M is a
simple C,-module, by the Jacobson density theorem for every ¢ = 1,...r there exists
y; € C, such that y;v; = 6; u1. This implies v; ® w; € Imy for all 4 and hence
M ® w; € Im~ for all 7. The surjectivity of v follows immediately. O

Now let us prove the first assertion of the theorem. Consider first the case s =
(51,...,8,) when n is even. Then dim V (s) = 2"/2, V(s) is not isomorphic to IV (s)
and dim(C,/R,) = 2". By Lemma 5.19 and (5.8) for every # € P(V(s)) we have

[1:V(s)®Tg1] >dimV(s)), [I:T1V(s)®Ty-1] > dimV(s).
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On the other hand, dim/ < dim(C,/R,). Hence any simple subquotient of I is
isomorphic to V(s) ® I'y-1 or IV (s) @ ['y-1 and dim/ = dim(C,/R,). Therefore
every simple Y Q(1)X-module M with 1 € P(M) is isomorphic to V(s) ® I'y-1 or
V(s) @ Lp-1. If f € P(M) then M is isomorphic to V(s) ® I'sg-1 or IV (s) @ I'p-1.
This implies the statement.

Let us consider the case of odd n. Then dim V(s) = 2"*1/2_ V(s) is isomorphic
to IV (s) and dim(C,/R,) = 2". By Lemma 5.19 and (5.8) for every 8 € P(V (s))
we have

[[:V(s) ®Ty1] > dimV(s)) = dim V(s)f.
By counting dimensions we again obtain that every simple subquotient of I is iso-
morphic to V(s) ® I'p-1. The end of the proof is the same as in the previous case. [

Let us conclude by stating the relation between W"-modules and Y @Q(1)-modules.

Proposition 5.20. The simple Y (Q)(1)-module V(s) ® I'; is lifted from some W™*"-
module if and only if f € Clu™?]. Moreover, the smallest m is equal to the degree of
the polynomial f.

Remark 5.21. Note that m = 2p is even. Then Theorem 4.7 and the diagram (3.11)
imply S(t1,...,%p, A) = V(X)) ® I'y where

p
f=TJa+tu™).
i=1
Proof. Immediately follows from Theorem 4.7. 0J
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