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Precise knowledge of the nucleon’s axial-current form factors is crucial for modeling GeV-scale
neutrino-nucleus interactions. Unfortunately, the axial form factor remains insufficiently constrained
to meet the precision requirements of upcoming long-baseline neutrino-oscillation experiments. This
work studies the nucleon’s axial and vector form factors using the light-front approach to build a
quark-diquark model of the nucleon with an explicit pion cloud. The light-front wave functions in
both the quark and pion-baryon Fock spaces are first calibrated to existing experimental information
on the nucleon’s electromagnetic form factors, and then used to predict the axial form factor. The
resulting squared charge radius of the axial pseudo-vector form factor is predicted to be r2

A =
0.29±0.03 fm2, where the small error accounts for the model’s parametric uncertainty. We use our
form factor results to explore the (quasi-)elastic scattering of neutrinos by (nuclei)nucleons, with
the result that the the widely-implemented dipole ansatz is an inadequate approximation of the full
form factor for modeling both processes. The approximation leads to a 5−10% over-estimation of the
total cross section, depending on the (anti)neutrino energy. We project over-estimations of similar
size in the flux-averaged cross sections for the upcoming DUNE long-baseline neutrino-oscillation
experiment.

I. INTRODUCTION

Modern investigations along the Intensity Frontier [1]
aim to test the Standard Model (SM) and explore the
origins of neutrino mass through a dedicated series of
neutrino-oscillation searches, which rely on the scat-
tering of high-intensity neutrino beams by nuclear tar-
gets. At the present time, the dominant limitations in
these experiments are an imperfect determination of the
the neutrino flux, and imprecision in theoretical predic-
tions for neutrino-nucleus cross sections, both of which
are necessary to extract the neutrino (dis)appearance
rates between the near- and far-detectors in long-baseline
measurements. Improving the theoretical description of
neutrino-nucleus reactions in the multiple-GeV neutrino-
energy region is therefore critical for the next-generation
long-baseline neutrino-oscillation experiments [2]. In
most theoretical frameworks [2], the neutrino-nucleon in-
teraction is the most basic input to the calculation, such
that the neutrino-nucleon scattering/reaction is the fun-
damental kernel. As such, the nucleon-level kernels must
be carefully investigated in order to understand their ac-
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curacy and potential model uncertainties, as well as to
the resulting implications for calculations of nucleus-level
scatterings/reactions. Such an understanding can then
provide guidance for further improvements. In those re-
gions of the neutrino energy (Eν) for which the neutrino-
nucleus cross section is dominated by quasi-elastic (QE)
scattering and resonance production [3], the nucleon-level
kernel requires detailed knowledge of the (in)elastic nu-
cleon form factors of the electroweak (EW) current, in-
cluding the axial-current component [4] (the axial form
factor). Unfortunately, the axial-current component of
the EW form factors remains insufficiently understood
to meet the precision objectives of the coming neutrino-
oscillation experiments [2, 5].

In principle, Lattice QCD calculations could provide
reliable results about these EW form factors [2, 6–14].
However, these calculations are restricted to a finite win-
dow of momentum transfer, Q (i.e., Q2 ∼ 1 GeV2). Be-
yond this, a systematic description of the higher-Q2,
several-GeV2 regime—a region in which the form factors
are unlikely to achieve their asymptotic Q2 dependence—
is still needed. Moreover, Lattice QCD calculations for
the axial form factor remain generally challenging, with
the inelastic form factors expected to be all the more so.

Other currently available frameworks are mainly
composed of phenomenological fits of data such as
polynomial-based fits (see, e.g., Ref. [15]), the z-

ar
X

iv
:1

91
2.

07
79

7v
3 

 [n
uc

l-t
h]

  2
8 

Se
p 

20
20

mailto:zhang.10038@osu.edu
mailto:tjhobbs@smu.edu
mailto:miller@uw.edu


2

expansion method, which entails minimal model de-
pendence [5, 16, 17], quark-hadron-duality constrained
fits [18], and recent neural-network based fits [19]. In
addition, there are dispersion analyses mixed with the
meson-dominance picture [20, 21], effective field theory
approaches focused on the low-Q2 region [4, 20, 22–
27], and various quark models [20]. In this work, we
start with the last approach, in particular, the light-
front quark model [28–38]. It is well known that pionic
degrees-of-freedom are important aspect of the dynamics
of the strong-interaction, being responsible for the long-
distance structure of the nucleon’s charge structure. For
this reason, we manifestly include contributions from the
nucleon’s pion cloud [31, 32, 35, 36, 39] in our model.
With this approach the nucleon’s wave function is gov-
erned by a mixture of contributions from a quark-diquark
core and pion cloud, the latter due to the reconfiguration
of the nucleon into pion-baryon intermediate modes [see
Eq. (1)].

In contrast to the other non-lattice approaches we
noted, our model is capable of simultaneously describ-
ing the elastic electromagnetic (EM) and axial form fac-
tors in the Q2∼ few−GeV2 range. (The framework can
also be generalized to study the inelastic form factors.)
It thus unifies these various form factors in a single ap-
proach, which is valuable considering the large amount of
experimental information for the EM elastic form factors,
which might be exploited to improve the axial form fac-
tors. To realize and demonstrate these connections, our
model, including the quark’s light-front wave function,
is first calibrated against the better-determined nucleon
elastic EM form factors, and then used to predict the
elastic axial form factors.

By evaluating the first derivative with respect to Q2

of the axial pseudo-vector form factor [F̃1N , see the defi-

nition in Eq. (3)], i.e., r2
A ≡ − 6

F̃1N

dF̃1N

dQ2 |Q2=0, we obtain

the nucleon’s axial-charge radius, r2
A = 0.29±0.03 fm2,

which should be compared to r2
A=0.46±0.16fm2 from a

combined analysis [5] of neutrino-nucleon scattering data
and the singlet muonic hydrogen capture-rate measure-
ment; and also to current Lattice QCD results, which
range from r2

A = 0.2 to 0.45 fm2. If we match our
form factor and its derivative to a dipole parameterize,
gAG̃D(Q2) ≡ gA/(1 + Q2/M2

A)2, at Q2 = 0, the single

mass-parameter, MA, is then given as
√

12/r2
A, and for

it we predict MA=1.28±0.07 GeV.

We stress, however, that such an approximation would
seriously over-estimate the (anti)neutrino-nucleon cross
sections compared to calculations based on the full ex-
pression of the form factor, by 5-10% for Eν & 0.5 GeV.
Consequently, fitting the dipole approximation to the
full form factor over a range of Q2 (MA is then not re-
lated to rA), would be expected to produce an effective
MA smaller than ∼ 1.28 GeV. Nevertheless, it will still
be larger than the central value of the recent analysis:
1.01± 0.17 GeV2, based on their r2

A results [5, 17], since
the (anti)neutrino-nucleon cross section given by the full

form factor is intermediate between the results using the
two dipole approximations with MA = 1 and 1.28 GeV
(see Fig. 10).

To further assess how these discrepancies with the
dipole approximation can be expected to impact neu-
trino cross sections, we implement the axial form fac-
tors in a simulation of neutrino-40Ar QE scattering us-
ing the GiBUU event generator [40], and compute the
flux-averaged cross sections based on the energy distri-
bution of the projected neutrino flux at DUNE [41]. Here,
we again find that the discrepancy leads to 5% overesti-
mate of the cross sections for both neutrino and antineu-
trino scatterings at Q2<0.2 GeV2—the peak location of
the flux-averaged differential cross section, dσ/dQ2—and
climb to 10−15% at larger Q2 (see Fig. 12). Meanwhile,
the over-estimation of the neutrino and antineutrino scat-
tering cross section is similar at Q2<0.5 GeV2, but still
differs at the few-percent level at larger Q2.

In the remainder of this article, we detail in Sec. II
the theory formalism for our pion-cloud-augmented light-
front quark model. Sec. III discusses the input parame-
ters for the model, while Sec. IV presents our procedure
for constraining the unknown parameters in the model
via measurements of the nucleon’s EM form factors, and
the resulting predictions for the axial-current form factor

F̃1N . In Sec. V, we first discuss these form factors’ im-
pacts on the single-nucleon cross sections, and then their
impacts on the flux-averaged cross sections for neutrino-
40Ar QE scattering. A short summary with conclusions
is provided in Sec. VI. Readers interested mainly in the
final analysis for neutrino-nucleus scattering can directly
consult Sec. V and possibly Sec. IV, which demonstrate
the success of our model in reproducing the EM form
factors. Explanations of relevant notation can be found
in Sec. II.

II. FORMALISM

A. The model

The nucleon’s wave function in the framework of the
light-front quark model [30–32, 35, 36] can be schemati-
cally written as

|p
N
, λ

N
;N〉=

√
Z|p

N
, λ

N
;N〉q⊗d

+ |p
N
, λ

N
;N〉B⊗π , (1)

with the first component being in terms of quark-diquark
(q⊗ d) degrees-of-freedom, and the second in terms
of hadronic (i.e., baryon and pion, B⊗ π) degrees-of-
freedom. In this work we simplify the quark-level de-
scription of the nucleon as consisting of a quark and
a two-body quark⊕quark spectator, known as a di-
quark [36]. The second component of Eq. (1) accounts
for contributions from the pion cloud, which is known
to accompany the nucleon and ∆ resonances [31, 32,
35, 36]. These two components are orthogonal, i.e.,

B⊗π〈pN , λN ;N |p
N
, λ

N
;N〉q⊗d = 0.
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The nucleon’s EW current form factors can be ex-
tracted from the corresponding EM and axial current
matrix elements,

〈p′
N
λ′
N

;N |JµEM (0) |p
N
, λ

N
;N〉

≡ ū(p′
N
, λ′

N
)

[
F1Nγ

µ + F2N
iσµνqν
2MN

]
u(p

N
, λ

N
) , (2)

and

〈p′
N
λ′
N

;N |JµA (0) |p
N
, λ

N
;N〉

≡ ū(p′
N
, λ′

N
)

[
F̃1Nγ

µγ5 + F̃2N
qµγ5

2MN

]
τ

2
u(p

N
, λ

N
) .(3)

Here, the momentum transfer is qν ≡
(
p′
N
− p

N

)ν
with

Q2 ≡ −qνqν , and N denotes either a proton or neutron.

The form factors F1, F2, F̃1N , and F̃2N are all functions
of Q2. We also note that the axial current, JµA, is a
vector in isospin space. In the following, we especially

focus on F̃1N , while F̃2N can be related to F̃1N via the
Goldberger-Treiman relation [4].

Relying on the methods of light-front quantization
[30, 36], the form factors can be extracted from the ma-
trix elements of Eqs. (2)-(3) by simply studying the plus-
components of the currents as

F1N =
1

2p+
N

〈p′
N
, λ′

N
=

1

2
;N |J+

EM|pN , λN =
1

2
;N〉 , (4)

F2N = −
√

2MN

qR
1

2p+
N

(5)

× 〈p′
N
, λ′

N
= −1

2
;N |J+

EM|pN , λN =
1

2
;N〉

F̃1N 〈N |
τ

2
|N〉 =

1

2p+
N

(6)

× 〈p′
N
, λ′

N
=

1

2
;N |J+

A |pN , λN =
1

2
;N〉 .

In the light-front quantization, the time and longitudinal
components of 4-vectors (such as current and momen-
tum) are now transformed to the ± components, e.g.,
for qµ, q± ≡ q0 ± qz [30]; for the transverse compo-
nents, a specific index notation is introduced [35]: e.g.,

qR ≡ −(qx + iqy)/
√

2 and qL ≡ (qx − iqy)/
√

2.

We point out that other combinations of initial/final
nucleon helicities are trivially related to those given in
the Eqs. above [35, 36].

On the basis of the wave-function decomposition in
Eq. (1), the form factor calculations—equivalent to the
above matrix-element calculations—can be represented
in terms of the diagrams shown in Fig. 1, each of which
represents a distinct contribution to the form factor
model. Diagram (I) represents the contributions from the
bare the quark-diquark configuration terms in Eq. (1),
while Diagrams (II) and (III) are from the other Fock
space components, in which the nucleon dissociates into
pion-baryon states. The external EW probe is allowed
to couple to either the intermediate baryon [in Diagram

●

(I)

●
B B'

(II)

●

B

(III)

FIG. 1. The diagrammatic representation of the form factor
calculations. In (II) and (III), B and B′ represent baryon,
which can be N or ∆. In (II), B and B′ can be different, mean-
ing that both inelastic and elastic form factors can contribute
here.

(II)] or the recoiling pion [in Diagram (III)], and both
processes contribute to the full model. A possible addi-
tional graph involving the direct coupling of the external
boson to the πN vertex is effectively included when the
pseudoscalar pion-nucleon coupling [see Eq. (29) below]
is used. This is because the isovector combination of the
γN → πN Born terms that is included in our calculation
reproduces the direct γπN coupling.

The current set of interactions is consistent with the
partially conserved axial vector current within our ap-
proximation scheme [31, 32, 36, 42]. An additional term
involving a direct aNπ coupling, with a denoting an ex-
ternal axial source, may also contribute [43]. Previous ex-
perience [31, 32, 36, 42] indicates that possible effects of
such direct terms are approximately accounted for within
the parameter variations to be discussed below.

In the following subsections, we proceed in order, re-
lying on the Diagrams (I)-(III) to compute the required
matrix elements in the light-front quantization. Thus, in
Sec. II B we first compute the bare quark-diquark contri-
butions contained in Diagram (I), and present in Sec. II C
the pion-cloud pieces from Diagrams (II) and (III).

B. Diagram (I)

The quark Fock-space wave function has two components each in spin and flavor space, and we therefore use an
SU(4) ansatz to combine these two spaces [36, 44]. For instance, for the proton, the spin-flavor wave function is

|λ
P

;P 〉q⊗d =
1√
2
|λ
P

;P 〉f.s.|λ
P

;P 〉s.s.|CM〉+
1√
2
|λ
P

;P 〉f.t.|λ
P

;P 〉s.t.|CM〉 . (7)

Here, f.s. and f.t. refer to the flavor-singlet and flavor-triplet states of the diquark system, while s.s. and s.t. represent
its spin-singlet and spin-triplet states, respectively. The degrees-of-freedom identified with the center-of-mass (CM)
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motion are manifestly factorized in this definition, such that the other components are associated with the relative
motion degrees-of-freedom. In the spectator picture, supposing the quark interacting with the current is a u-quark,
for instance, we then have

|λ
P

;P 〉f.s. =
1√
2

(|uud〉 − |udu〉) ≡ |u (ud)
s〉 (8)

|λ
P

;P 〉f.t. =
1√
6

(|uud〉+ |udu〉 − 2|duu〉) ≡
√

1

3
|u (ud)

t,0〉 −
√

2

3
|d (ud)

t,1〉 . (9)

Meanwhile, we assume the wave functions in spin space, “s.s.” and “s.t.” are associated with the scalar and axial-
vector diquark respectively [36, 45]. The diquarks have definite masses, ms and ma, and furthermore their wave
functions are independent of quark flavor. They can be written as

|p+
N
,p

N⊥, λN ;N〉s.s =

∫
dxdk⊥

16π3x(1− x)

∑
λq

φ
λ
N

λq
(x,k⊥) |x,k⊥, λq; q, d = s〉 (10)

|p+
N
,p

N⊥, λN ;N〉s.t =

∫
dxdk⊥

16π3x(1− x)

∑
λqλd

φ
λ
N

λqλd
(x,k⊥) |x,k⊥, λq, λd; q, d = a〉 . (11)

Note the normalization of a single-particle state is 〈p+′p′⊥|p+,p⊥〉 = (2π)32p+δ(p+ − p+′)δ(p⊥ − p⊥), so
the two-particle state’s normalization can be written in a fashion with the CM motion manifestly factorized
out: 〈p′1, p′2|p1, p2〉 = (2π)32P+δ(P+ − P+′)δ(P⊥ − P ′⊥)(2π)32x(1 − x)δ(x − x′)δ(k⊥ − k′⊥). Since the CM
is already factorized out in Eq. (7), the normalization of the quark-Fock-space basis for relative motion is

〈x′,k′⊥, λ′q, λ′d; q, d|x,k⊥, λq, λd; q, d〉 = 16π3x(1 − x)δ
λq
λ′q
δλdλ′d

δ (x− x′) δ (k⊥ − k′⊥). Moreover, the convention for kine-

matic variables is that the struck quark carries momentum fraction x, and transverse momentum k⊥, with the

spectator having 1 − x and −k⊥ in the CM frame. The intrinsic wave function, e.g., φ
λ
N

λqλd
, are boost-invariant and

rotational invariant (manifestly in the transverse plane), and thus independent of the nucleon momentum p
N

.

The wave functions involving scalar-diquark are

φ
λ
N

λq
= ū(k, λq)

(
ϕs1 +

MNγ
+

p+
N

ϕs2

)
u(p

N
, λ

N
) , (12)

which is the same as in Ref. [36], while the axial-diquark
is different,

φ
λ
N

λqλa
= ū(k, λq)ε̄

∗
µ(q, λa)

(
ϕa1γ

µγ5 (13)

+ ϕa2
qµ

MN
γ5

)
u(p

N
, λ

N
) .

For the axial-diquark, we use the modified vector intro-
duced in [46] for its ε̄µ. It is related to the usual defi-
nition of a polarization vector εµ (satisfying qµεµ = 0),
through ε̄µ = εµ− ε+qµ/q

+. By choosing an appropriate

frame such that qµ =
(
q+,

m2
a

q+ ,0⊥

)
, we have εµ(λa =

±1) = (0, 0, ε(±1)), εµ(λa = 0) =
(
q+

ma
,−ma

q+ ,0⊥

)
, and

thus ε̄µ(λa = ±1) = (0, 0, ε(±1)) and ε̄µ(λa = 0) =(
0,−2ma

q+ ,0⊥

)
.

The intrinsic wave functions, ϕs,a1,2, in Eqs. (12)

and (13), are scalar functions of intrinsic variables, x, k⊥

(their details are discussed in Sec. III), while φ
λ
N

λqλa
are

functions of x, k⊥ and helicities of participating DOFs in-
cluding diquarks and nucleon. The relationships between
ϕ and φ wave functions are collected in Appendix A and
Tables IV and V.

With the wave functions set up, we first define
the current matrix elements between spin states, not
worrying about flavor space for the moment, e.g.,
s.s〈λ

N
;N |J+

EM|λN ;N〉s.s, and define f1s, f2s as

f1s ≡ s.s〈1
2

;N |J+
EM|

1

2
;N〉s.s , (14)

− qR√
2MN

f2s ≡ s.s〈−1

2
;N |J+

EM|
1

2
;N〉s.s , (15)

f̃s ≡ s.s〈1
2

;N |J+
A |

1

2
;N〉s.s . (16)

and similarly for f1a, f2a, and fAa in terms of |λ
N

;N〉s.t.
In the above three equations, JµEM = q̄γµq, JµA = q̄γµγ5q,
with q fixed as the struck quark. The isospin dependence
will be discussed later. The 1/(2p+

N
) is already canceled

out by the overlap of CM motion state, as compared to
Eqs. (4)–(6). By using the Lepage-Brodsky convention
for the Dirac spinors [30], we can express these quantities
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in terms of overlap of light-front wave functions:

f1s =

∫
dµ
∑
λq

φ
1
2∗
λq

(x,k′⊥)φ
1
2

λq
(x,k⊥) (17)

f1a =

∫
dµ
∑
λq,λa

φ
1
2∗
λqλa

(x,k′⊥)φ
1
2

λqλa
(x,k⊥) (18)

f2s = −
√

2MN

qR

∫
dµ
∑
λq

φ
− 1

2∗
λq

(x,k′⊥)φ
1
2

λq
(x,k⊥) (19)

f2a = −
√

2MN

qR
(20)

×
∫
dµ
∑
λq,λa

φ
− 1

2∗
λqλa

(x,k′⊥)φ
1
2

λqλa
(x,k⊥) ,

for the EM current, while for the axial current we get,

f̃s =

∫
dµ
∑
λq

(−)λq−
1
2φ

1
2∗
λq

(x,k′⊥)φ
1
2

λq
(x,k⊥) (21)

f̃a =

∫
dµ
∑
λq,λa

(−)λq−
1
2φ

1
2∗
λqλa

(x,k′⊥)φ
1
2

λqλa
(x,k⊥). (22)

Inside these integrands, dµ ≡ dxdk⊥
16π3x(1−x) , k′⊥ = k⊥+(1−

x)q⊥, λq = ±1/2 and λa = 0,±1. It should be pointed
out that the 2nd-class axial current is zero here [47], be-
cause isospin symmetry is respected in this model. The
detailed expression of these form factors in terms of ϕs,a1,2

can be found in Appendix A.
To compute the current matrix elements with wave

functions |λ
P

;P 〉q⊗d, we need to sum up the contribu-
tions from the struck quarks (3 for nucleon) and take
into account the flavor structure of the quark-diquark
wave function and the charges of the struck quarks. We
then get the form factor from the nucleon’s bare quark-
diquark core,

F 0
1p =

3

2
euf1s +

(
1

2
eu + ed

)
f1a = f1s (23)

F 0
2p =

3

2
euf2s +

(
1

2
eu + ed

)
f2a = f2s (24)

F 0
1n =

3

2
edf1s +

(
1

2
ed + eu

)
f1a =

1

2
f1a −

1

2
f1s (25)

F 0
2n =

3

2
edf2s +

(
1

2
ed + eu

)
f2a =

1

2
f2a −

1

2
f2s (26)

F̃ 0
1p =

3

2
eAuf̃s +

(
1

2
eAu + eAd

)
f̃a =

3

2
f̃s −

1

2
f̃a(27)

F̃ 0
1n =

3

2
eAdf̃s +

(
1

2
eAd + eAu

)
f̃a = −F̃ 0

1p . (28)

In the above expressions, eq and eAq are the EM and
axial charges of the quarks with the latter eAq =±1 for
the u- and d-quark, respectively. However, since the axial
current is not conserved, the axial charge of a constituent
quark, as employed in our model, is not expected to be
exactly ±1. Therefore, the size of eAq will be adjusted

later so that our predicted nucleon axial charge, F̃1N (0),
agrees with the experimental value.

C. Pion cloud Diagram (II) and (III)

1. Preparations

To simplify the following presentations, a series of def-
initions of the EW current matrix elements and strong
interaction matrix elements, i.e., the vertices of Diagrams
(II) and (III) in Fig. 1, need to be constructed. The
calculations of those diagrams are based on the strong
interaction terms quantized on the light front:

Vint = −
∫
dx+dx⊥

[
gA
fπ
N̄γµγ5∂µπ

τ

2
N (29)

+
hA
fπ

∆̄a
µT

1,i; 1
2 ,σ

3
2 ,a

∂µπiNσ + h.c.

]
= −

∫
dx+dx⊥

[
g
πNN

N̄i γ5π · τN

+
hA
fπ

∆̄a
µT

1,i; 1
2 ,σ

3
2 ,a

∂µπiNσ + h.c.

]
.

Here N ,∆, π are the fields of the nucleon, ∆ resonance,
and pion; the pion decay constant is fπ ≈ 94 MeV, nu-
cleon’s axial charge gA = 1.27; in the N−∆−π coupling,
a, σ, i are the isospin indices for the representations of

isospin 3/2, 1/2, and 1 multiplets; T
1,i; 1

2 ,A
3
2 ,a

is the C-G

coefficients combining isovector current and isospin 1
2 to

form isospin 3/2 [48]. The pseudo-vector N − N − π
coupling is connected to the pseudo-scalar coupling for
on-shell nucleons, g

πNN
N̄iγ5πτN , and g

πNN
= MN

fπ
gA ≈

13.5 [36].

We use the second expression appearing in Eq. (29)
because g

πNN
more accurately represents the empirical

pion-nucleon coupling constant for on-mass-shell nucle-
ons relative to gA/fπ. We also emphasize that the di-
rect γNπ contact interactions are implicitly included
using the pseudoscalar Lagrangian. Moreover, among
the pion-cloud contributions, the most important piece
comes from the γπ interaction in Diagram (III) of Fig. 1.
Given that this latter graph is correctly evaluated by
keeping the pole term in which the spectator nucleon
is on its mass-shell, there is no important difference be-
tween the two forms in Eq. (29) beyond the noted choice
of coupling constant.

As noted above, a possible term involving a direct aNπ
coupling is not included. It is possible that including the
neglected term along with the effects of using a pseu-
dovector coupling could bring the computed value of gA
(to be discussed below) into better agreement with ex-
periment.

The matrix elements of Vint as needed in the diagram
calculations can be presented with isospin structure ex-
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plicitly factorized out:

〈λ
Nf

;Nσf , πi|Vint|λNi ;Nσi〉 ≡ g
πNN

(τi)
σi
σf
Vλ

Nf
,λ
Ni

(x,k⊥)

(30)

〈λ
∆

; ∆a, πi|Vint|λN ;Nσ〉 ≡ hA
fπ
δijT

1,j; 1
2 ,σ

3
2 ,a

Vλ
∆
,λ
N

(x,k⊥)

(31)

Note the two sets of matrix elements are Lorentz-boost
and transverse-rotation invariant; they are functions of
the intrinsic kinetic variables, x and k⊥. These ma-
trix elements, when multiplied by the appropriate energy
denominators (see, e.g., Ref. [36]), represent Fock-space

components of the nucleon wave function. We compute
these matrix elements, assuming the baryon in the fi-
nal state in the CM frame carry momentum fraction x
and transverse momentum k⊥, while the accompanying
π carrying 1− x and −k⊥. This is in parallel to the as-
signment in the quark-diquark wave function definitions
[cf. Eqs. (10) and (11]. The detailed results are gathered
in Table. VI and VII in Appendix B, where a few details
for the calculation can also be found including the con-
vention for spin 3

2 spinor. The results are consistent with
those in Ref. [35].

Moreover, we need to set up the convention for the cur-
rent matrix elements involving ∆. We use the Lorentz-
covariant basis from Ref. [49] for the EM current and the
basis from Ref. [50] for the axial current 1:

〈p∆ ; ∆a|JµEM|pN ;Nσ〉 ≡ T 1,i=0; 1
2 ,σ

3
2 ,a

ūα(p∆ , λ∆)Γαµ
γN;∆

(q, p
N

; p∆)u(p
N
, λ

N
) (32)

〈p
∆

; ∆a|J i,µA |pN ;Nσ〉 ≡ T 1,i; 1
2 ,σ

3
2 ,a

ūα(p
∆
, λ

∆
)Γαµ

AN;∆
(q, p

N
; p

∆
)u(p

N
, λ

N
) (33)

Γαµ
γN;∆

(q, p
N

; p
∆

) ≡ iFM

N∆
εαµρσp∆ρ qσ − FE

N∆

(
qαpµ

∆
− p∆ · qgαµ

)
γ5 − FC

N∆

(
qαqµ − q2gαµ

)
γ5 (34)

Γαµ
AN;∆

(q, p
N

; p∆) ≡ CA3
MN

(
gαµ/q − qαγµ

)
+
CA4
M2

N

(
p∆ · qgαµ − qαpµ∆

)
+ CA5 g

αµ +
CA6
M2

N

qαqµ (35)

Here q ≡ p
∆
−p

N
. In the expressions above, we point out the EM current’s isospin projection of i=0; in contrast, the

axial current’s isospin projection can assume values of i=±, 0, but, in the following calculations of the axial current’s
matrix elements, we always take i = 0 without loss of generality. That being said, in the eventual charge-current
calculations shown later in this analysis, it is the i=± spherical combinations of the axial isospin components which
are relevant. Our convention for the Levi-Civita tensor is ε0123 = 1 [30, 49], while the metric gµν = Diag(1,−1,−1,−1)
[30, 49]. With this convention, under light-front quantization, ε+12− = − 1

2
2. Then, hermiticity of JµEM dictates that

〈p
N

;Nσ|Jµ(q)|p
∆

; ∆a〉 = (〈p
∆

; ∆a|Jµ(−q)|p
N

;Nσ〉)∗, but with q ≡ p
N
− p

∆
.

For form factors at space-like momentum transfer, i.e., Q2 ≥ 0, we can always boost the system to a frame with
q+ = 0, where the matrix element of J+/2p+

N
(a Lorentz invariant) can be computed more easily. In the following,

the matrix elements will be defined with the isospin structure manifestly factorized out:

J (0)V
λ

∆
,λ
N

(q) ≡ ūα(p∆ , λ∆)Γαµ=+
γN;∆

(q, p
N

; p∆)u(p
N
, λ

N
)/(2p+

N
) (36)

J (0)A
λ

∆
,λ
N

(q) ≡ ūα(p
∆
, λ

∆
)Γα+

AN;∆
(q, p

N
; p

∆
)u(p

N
, λ

N
)/(2p+

N
) (37)

Note the superscript “V” for the EM current is due to the fact that only the isovector component of the EM current
participate in the N ↔ ∆ transitions. Both quantities are functions of momentum transfer q. Carrying λ

∆
, λ

N
indices

suffice to indicate they are for the inelastic transition current. The results for both J (0)V
λ

∆
,λ
N

(q) and J (0)A
λ

∆
,λ
N

(q) are

collected in Table VIII and IX.
For the EW elastic current matrix elements of the ∆-baryon, we follow the conventions in Refs. [49] and [51]:

〈p′
∆

; ∆a′ |JµEM|p∆ ; ∆a〉 ≡
(

1

2
+ t0

) a

a′
ūα
(
p′

∆
, λ′

∆

)
Γαµβ

∆;γ∆
(q, p

∆
; p′

∆
)uβ (p

∆
, λ

∆
)

〈p′
∆

; ∆a′ |J0,µ
A |p∆ ; ∆a〉 ≡

(
t0
) a
a′
ūα
(
p′

∆
, λ′

∆

)
Γαµβ

∆;A∆
(q, p∆ ; p′

∆
)uβ (p∆ , λ∆)

Γαµβ
∆;γ∆

(q, p∆ ; p′
∆

) ≡ −
(
F1∆g

αβ + F3∆
qαqβ

4M2
∆

)
γµ −

(
F2∆g

αβ + F4∆
qαqβ

4M2
∆

)
σµνiqν
2M∆

(38)

Γαµβ
∆;A∆

(q, p
∆

; p′
∆

) ≡ −
(
F̃1∆g

αβ + F̃3∆
qαqβ

4M2
∆

)
γµγ5 −

(
F̃2∆g

αβ + F̃4∆
qαqβ

4M2
∆

)
qµ

2M∆
γ5 (39)

1 a pure imaginary factor is absorbed into definition of Γαµ
γN;∆

as

compared to its definition in Ref. [49]; and a real factor
√

3/2 is
absorbed in Γαµ

AN;∆
. See discussions in Sec. III B.

2 This is different from the one mentioned Ref. [30]
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Here t0 is the isospin group generator along the 3rd direction in the isospin = 3/2 representation. Again a and b are

the isospin projection of the ∆ states. For the axial current, only the first two terms, F̃1∆ and F̃3∆, contribute in
Diagrams (II) and (III). We separate the isospin structure and define

J (0)EM
λ′

∆
,λ

∆
(q) ≡ ūα(p′

∆
, λ′

∆
)Γα+β

∆;γ∆
(q, p

∆
; p′

∆
)uβ (p

∆
, λ

∆
) /(2p+

∆
) , (40)

J (0)A
λ′

∆
,λ

∆
(q) ≡ ūα(p′

∆
, λ′

∆
)Γα+β

∆;A∆
(q, p∆ ; p′

∆
)uβ (p∆ , λ∆) /(2p+

∆
) . (41)

(42)

The corresponding matrix elements can be found in Table X and XI.

2. Previous calculations

By computing Diagrams (II) and (III) on the light front with pion-baryon intermediate states [30, 35, 36, 52], we
get their contributions to the nucleon form factors. The EM expressions have been derived in Ref. [35, 36], while the
axial current was also studied in Ref. [35]. Our results are consistent with those in Ref. [36]. Here we present them
together for a self-contained discussion and pay attention to the isospin structures.

Diagram (II) gives

F
(IIN)
1 =

[
3

2

(
F 0

1p + F 0
1n

)
δσiσf −

1

2

(
F 0

1p − F 0
1n

)
(τ0)σiσf

]
F (IIN)

11 (43)

+

[
3

2

(
F 0

2p + F 0
2n

)
δσiσf −

1

2

(
F 0

2p − F 0
2n

)
(τ0)σiσf

]
F (IIN)

12

F
(IIN)
2 =

[
3

2

(
F 0

1p + F 0
1n

)
δσiσf −

1

2

(
F 0

1p − F 0
1n

)
(τ0)σiσf

]
F (IIN)

21 (44)

+

[
3

2

(
F 0

2p + F 0
2n

)
δσiσf −

1

2

(
F 0

2p − F 0
2n

)
(τ0)σiσf

]
F (IIN)

22

with σi and σf as the isospin projection of the initial state and final state nucleon in current matrix element calcula-
tions, and

F (IIN)
11 = g2

πNN

∫
dxdk⊥

16π3x2(1− x)

[
k2
⊥ −

(1−x)2

4 Q2 + (1− x)2M2
N

]
F
πNN

(x,kf⊥)F
πNN

(x,ki⊥)[
M2

πN
(x,kf⊥)−M2

N

] [
M2

πN
(x,ki⊥)−M2

N

] (45)

F (IIN)
12 = −g2

πNN

∫
dxdk⊥
32π3x2

(1− x)Q2 F
πNN

(x,kf⊥)F
πNN

(x,ki⊥)[
M2

πN
(x,kf⊥)−M2

N

] [
M2

πN
(x,ki⊥)−M2

N

] (46)

F (IIN)
21 = −g2

πNN

∫
dxdk⊥
8π3x2

(1− x)M2
N FπNN (x,kf⊥)F

πNN
(x,ki⊥)[

M2
πN

(x,kf⊥)−M2
N

] [
M2

πN
(x,ki⊥)−M2

N

] (47)

F (IIN)
22 = g2

πNN

∫
dxdk⊥

16π3x2(1− x)

[
k2
⊥ + (1−x)2

4 Q2 − (1− x)2M2
N −

2(k⊥·q⊥)2

Q2

]
F
πNN

(x,kf⊥)F
πNN

(x,ki⊥)[
M2

πN
(x,kf⊥)−M2

N

] [
M2

πN
(x,ki⊥)−M2

N

] . (48)

In the above equations, the N -N -π interaction includes a form factor to regularize the loop integration: F
πNN

(x,k⊥) ≡

exp

(
−M

2

πN
(x,k⊥)−(MN+mπ)2

2Λ2
N

)
with M2

πN
(x,k⊥) ≡ k2

⊥+M2
N

x +
k2
⊥+M2

π

1−x ; ki⊥ ≡ k⊥− 1−x
2 q⊥, and kf⊥ ≡ k⊥+ 1−x

2 q⊥ are

the momentum carried by nucleon line—in the π-N CM frame—in the vertices on the two sides of the current vertex
[cf. Diagram (II) ].

Similarly for the isovector axial current,

F̃
(IIN)
1 = F̃ 0

1p(Q
2)(τ0)σiσf F̃

(IIN)
1 (49)

F̃ (IIN)
1 ≡ g2

πNN

∫
dxdk⊥

16π3x2(1− x)

[
k2
⊥ −

(1−x)2

4 Q2 − (1− x)2M2
N

]
F
πNN

(x,kf⊥)F
πNN

(x,ki⊥)[
M2

πN
(x,kf⊥)−M2

N

] [
M2

πN
(x,ki⊥)−M2

N

] (50)

Note in the EM and axial form factors’ definitions, the bare quark form factors from Eqs. (23)–(28) are used. The
requirement of gauge invariance is such that using form factors generates contact diagrams in addition to the “Rain-
bow” graphs—Diagram (II) and (III)—shown in Fig. 1. It has been argued [31] that the momentum dependence in
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the relevant kinematic region is relatively mild, and their effect is likely to be absorbed into the fitting parameters
developed in this analysis. That being the case, we compute with the dominant contributions from the graphs shown
in Fig. 1, and leave the more complicated calculations including these additional terms to future works.

Diagram (III) with πN intermediate states gives

F
(IIIN)
1,2 = Fπ(Q2)(τ0)σiσfF

(IIIN)
1,2 (51)

in which Fπ(Q2) represents the pion’s EM form factor (see Sec. III B) and

F (IIIN)
1 = g2

πNN

∫
dxdk⊥

8π3x2(1− x)

[
k2
⊥ − x2

4 Q
2 + (1− x)2M2

N

]
F
πNN

(x,kf⊥)F
πNN

(x,ki⊥)[
M2

πN
(x,kf⊥)−M2

N

] [
M2

πN
(x,ki⊥)−M2

N

] (52)

F (IIIN)
2 = g2

πNN

∫
dxdk⊥
4π3x

M2
NFπNN (x,kf⊥)F

πNN
(x,ki⊥)[

M2
πN

(x,kf⊥)−M2
N

] [
M2

πN
(x,ki⊥)−M2

N

] (53)

It should be emphasized that M2
πN

(x,k⊥) and F
πNN

(x,k⊥) are the same as defined for the results of Diagram (II) ,
but ki⊥ ≡ k⊥+ x

2q⊥, and kf⊥ ≡ k⊥− x
2q⊥ in the results for Diagram (III), because the external electroweak current

transfers its momentum to π instead of N . Also note that Diagram (III) does not contribute to F̃1N .

3. Delta contribution

Diagram (II) with N-current-∆ configuration gives

〈
J+

EM,A

2p+
Ni

〉 ≡ 4

3

(
τ0
)σi
σf
J V,A(IIN∆) (q)λ

Nf
,λ
Ni

J V,A(IIN∆) (q)λ
Nf

,λ
Ni
≡ g

πNN
hA

fπ

∫
dµ

∑
λ

∆
,λ
N

V† (x,kf⊥)λ
Nf

,λ
∆
J (0)V,A (q)λ

∆
,λ
N
V (x,ki⊥)λ

N
,λ
Ni
F
πN∆

(x,kf⊥)F
πNN

(x,ki⊥)[
M2

π∆
(x,kf⊥)−M2

N

] [
M2

πN
(x,ki⊥)−M2

N

] . (54)

Meanwhile, Diagram (II) with the ∆-current-N configuration yields

〈
J+

EM,A

2p+
Ni

〉 =
4

3

(
τ0
)σi
σf
J V,A(II∆N) (q)λ

Nf
,λ
Ni

J V,A(II∆N) (q)λ
Nf

,λ
Ni
≡ g

πNN
hA

fπ

∫
dµ

∑
λ

∆
,λ
N

V† (x,kf⊥)λ
Nf

,λ
N
J (0)V,A† (−q)λ

N
λ

∆
V (x,ki⊥)λ

∆
,λ
Ni
F
πNN

(x,kf⊥)F
πN∆

(x,ki⊥)[
M2

πN
(x,kf⊥)−M2

N

] [
M2

π∆
(x,ki⊥)−M2

N

] (55)

In the two results above, another form factor for the N -∆-π interaction has been introduced: F
πN∆

(x,k⊥) ≡

exp

(
−M

2

π∆
(x,k⊥)−(M∆+mπ)2

2Λ2
∆

)
with M2

π∆
(x,k⊥) ≡ k2

⊥+M2
∆

x +
k2
⊥+M2

π

1−x . Moreover, F
πNN

, ki⊥ ≡ k⊥ − 1−x
2 q⊥, and

kf⊥ ≡ k⊥ + 1−x
2 q⊥, are the same as those for Diagram (II) with the N -current-N configuration. Now let’s define

quantities with the isospin structure factorized away,

F (IIN∆)
1 = J V(IIN∆) (q) 1

2 ,
1
2

+ J V(II∆N) (q) 1
2 ,

1
2
, (56)

F (IIN∆)
2 = (−)

√
2MN

qR

[
J V(IIN∆) (q)− 1

2 ,
1
2

+ J V(II∆N) (q)− 1
2 ,

1
2

]
, (57)

F̃ (IIN∆)
1 = J A(IIN∆) (q) 1

2 ,
1
2

+ J A(II∆N) (q) 1
2 ,

1
2
. (58)

Then Diagram (II) with both the N∆ and ∆N configurations contributes to the nucleon form factors as

F
(IIN∆)
1,2 =

4

3

(
τ0
)σi
σf
F (IIN∆)

1,2 , (59)

F̃
(IIN∆)
1 =

8

3

(
τ0
)σi
σf
F̃ (IIN∆)

1 . (60)
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Now for Diagram (II) with the ∆-current-∆ configuration, the matrix elements are

〈
J+

EM

2p+
Ni

〉 =

(
δ σiσf +

5

3

(
τ0
)σi
σf

)
J EM

(II∆∆) (q)λ
Nf

,λ
Ni

J EM
(II∆∆) (q)λ

Nf
,λ
Ni
≡
(
hA
fπ

)2 ∫
dµ

∑
λ

∆
,λ′

∆

V† (x,kf⊥)λ
Nf

,λ′
∆

J (0)EM (q)λ′
∆
,λ

∆
V (x,ki⊥)λ

∆
,λ
Ni
F
πN∆

(x,kf⊥)F
πN∆

(x,ki⊥)[
M2

π∆
(x,kf⊥)−M2

N

] [
M2

π∆
(x,ki⊥)−M2

N

] , (61)

for the EM current and

〈
J+
A

2p+
Ni

〉 =
5

3

(
τ0
)σi
σf
J A(II∆∆) (q)λ

Nf
,λ
Ni

J A(II∆∆) (q)λ
Nf

,λ
Ni
≡
(
hA
fπ

)2 ∫
dµ

∑
λ

∆
,λ′

∆

V† (x,kf⊥)λ
Nf

,λ′
∆

J (0)A (q)λ′
∆
,λ

∆
V (x,ki⊥)λ

∆
,λ
Ni
F
πN∆

(x,kf⊥)F
πN∆

(x,ki⊥)[
M2

π∆
(x,kf⊥)−M2

N

] [
M2

π∆
(x,ki⊥)−M2

N

] , (62)

for the axial current. The definition of F
πN∆

, ki⊥ ≡ k⊥ − 1−x
2 q⊥, and kf⊥ ≡ k⊥ + 1−x

2 q⊥, are the same as those for
Diagram (II) with the N-current-∆ configuration. After defining

F (II∆∆)
1 = J EM

(II∆∆) (q) 1
2 ,

1
2
, (63)

F (II∆∆)
2 = (−)

√
2MN

qR
J EM

(II∆∆) (q)− 1
2 ,

1
2
, (64)

F̃ (II∆∆)
1 = J A(II∆∆) (q) 1

2 ,
1
2
, (65)

the contribution of Diagram (II) with the ∆∆ configuration to the form factors can be written as

F
(II∆∆)
1,2 =

(
δ σiσf +

5

3

(
τ0
)σi
σf

)
F (II∆∆)

1,2 , (66)

F̃
(II∆∆)
1 =

10

3

(
τ0
)σi
σf
F̃ (II∆∆)

1 . (67)

For Diagram (III) with a ∆-baryon in the intermediate state,

〈
J+

EM

2p+
Ni

〉 = −2

3

(
τ0
)σi
σf
Fπ(Q2)J V(III∆) (q)λ

Nf
,λ
Ni

, (68)

J V(III∆) (q)λ
Nf

,λ
Ni
≡
(
hA
fπ

)2 ∫
dµ

∑
λ

∆
V† (x,kf⊥)λ

Nf
,λ

∆
V (x,ki⊥)λ

∆
,λ
Ni
F
πN∆

(x,kf⊥)F
πN∆

(x,ki⊥)[
M2

π∆
(x,kf⊥)−M2

N

] [
M2

π∆
(x,ki⊥)−M2

N

] . (69)

Here, M2
π∆

(x,k⊥) and F
πN∆

(x,k⊥) as for the Diagram (II) results, but ki⊥ ≡ k⊥ + x
2q⊥, and kf⊥ ≡ k⊥ − x

2q⊥ are
different. We can then define

F (III∆)
1 = J V(III∆) (q) 1

2 ,
1
2
, (70)

F (III∆)
2 = (−)

√
2MN

qR
J V(III∆) (q)− 1

2 ,
1
2
. (71)

Diagram (III)in the ∆-current-∆ configuration contributes to the nucleon form factors as

F
(III∆)
1,2 = −2

3

(
τ0
)σi
σf
Fπ(Q2)F (III∆)

1,2 (72)

Note this diagram doesn’t contribute to the axial current form factor.
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After summing over all the diagrams, we have

F1p = ZF 0
1p +

(
F 0

1p + 2F 0
1n

)
F (IIN)

11 +
(
F 0

2p + 2F 0
2n

)
F (IIN)

12 + Fπ F (IIIN)
1 +

4

3
F (IIN∆)

1 +
8

3
F (II∆∆)

1 − 2

3
Fπ F (III∆)

1 ,

F1n = ZF 0
1n +

(
F 0

1n + 2F 0
1p

)
F (IIN)

11 +
(
F 0

2n + 2F 0
2p

)
F (IIN)

12 − Fπ F (IIIN)
1 − 4

3
F (IIN∆)

1 − 2

3
F (II∆∆)

1 +
2

3
Fπ F (III∆)

1 ,

F2p = ZF 0
2p +

(
F 0

1p + 2F 0
1n

)
F (IIN)

21 +
(
F 0

2p + 2F 0
2n

)
F (IIN)

22 + Fπ F (IIIN)
2 +

4

3
F (IIN∆)

2 +
8

3
F (II∆∆)

2 − 2

3
Fπ F (III∆)

2 ,

F2n = ZF 0
2n +

(
F 0

1n + 2F 0
1p

)
F (IIN)

21 +
(
F 0

2n + 2F 0
2p

)
F (IIN)

22 − Fπ F (IIIN)
2 − 4

3
F (IIN∆)

2 − 2

3
F (II∆∆)

2 +
2

3
Fπ F (III∆)

2 ,

F̃1p = ZF̃ 0
1p + F̃ 0

1pF̃
(IIN)
1 +

8

3
F̃ (IIN∆)

1 +
10

3
F̃ (II∆∆)

1 ,

F̃1n = −F̃1p . (73)

III. MODEL INPUTS

This section summarizes the inputs we used for various
components in our model, including for quark-diquark
Fock space wave functions and for Baryon-π Fock space
wave functions.

A. The quark-diquark wave function

We consider the quark-diquark wave functions
[cf. Eqs. 12 and 13 ] depending only on the invariant
mass of the quark-diquark system, through a modified
Gaussian form [30],

ϕsi =

[
csi0 + csi1

M2
qs − (mq +ms)

2

M2
N

]
exp

[
−
M2
qs − (mq +ms)

2

β2
si

]
(74)

ϕai =

[
cai0 + cai1

M2
qa − (mq +ma)2

M2
N

]
exp

[
−
M2
qa − (mq +ma)2

β2
ai

]
(75)

with i = 1, 2 and

M2
qs ≡

k2
⊥ +m2

q

x
+
k2
⊥ +m2

s

1− x
(76)

M2
qa ≡

k2
⊥ +m2

q

x
+
k2
⊥ +m2

a

1− x
(77)

Note we can always pull out the overall normalization
factor such that cs10 = ca10 = 1; the normalization factors
are not shown explicitly here but always implemented
in our numerical calculation. Naively, we consider the
dimensionful quantities, such as mq, ms, and ma, βs1,2,
and βa1,2 to be at typical hadronic scale, i.e., O(GeV),
while dimensionless parameters, including cs,a1,1, cs,a2,0, and

cs,a2,1, to be O(1).

B. Pion-cloud contributions

In the pion-cloud contributions, as shown in Eqs. (73),
Diagram (II) with nucleon and pion intermediate
states depend on nucleon bare form factors constructed
from nucleon’s quark-diquark wave functions. Diagram
(III) with either nucleon or ∆ intermediate states, which
only contribute to the EM form factors, is proportional

to the pion’s EM form factors, Fπ(Q2). For this quan-

tity, we chose Fπ(Q2) =
(
1 +Q2/Λ2

π

)−1
, as done in

Ref. [36], which successfully used the same form, taking
Λ2
π = 0.5 GeV2 as also done here. This selection provides

a robust description of the pion form factor in the kine-
matical region of greatest relevance to the present study
(Q2 ≤ 1 GeV2) while similarly agreeing with a range of
experimental data at both low [53, 54] and somewhat
higher [55–57] values of Q2, all of which favor values of
Λ2
π similar to our choice of 0.5 GeV2.
For Diagram (II) with ∆(s) in the intermediate state,

the same type of quark-diquark wave functions in prin-
ciple can be constructed for the ∆, which dictates its
bare N → ∆ inelastic and elastic form factors. However,
to simplify the current work, we instead use the physi-
cal form factors to approximately take into account their
contributions. Since the ∆ contribution plays a minor
role in the full form factors, we expect its error to be less
relevant than the error due to the uncertainty in the nu-
cleon’s quark wave function. A full and consistent study
of this will be left for the future investigation. Inside ∆’s

contribution, e.g., J V,AIIN∆ and J V,AII∆N (cf. Eqs. (54) and
(55) and Tables VIII and IX), we need inputs for tran-
sition form factors FE

N∆
, FM

N∆
, and FC

N∆
to compute the

diagram’s contribution to the nucleon EM current, and
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M1 E2 C2

gα 3 0.0637 0.124

βα(GeV−2) 0.0095 -0.0206 0.120

γα(GeV−2) 0.23 0.16 0.23

dα 0 0 4.9

TABLE I. Parameter values used for the Ash form factors
from Ref. [58].

CA3,4,5 to the axial form factor.
For FE

N∆
, FM

N∆
, and FC

N∆
, we use information extracted

from the measurements of electroproduction and photo-
production of pions [58]:

FM

N∆
=

3

2MNQ+

[
GM

N∆
−GE

N∆

]
(78)

FC

N∆
=

3

2MNQ+

[
4M2

∆

Q2
−
GE

N∆
+
Q2 +M2

N −M2
∆

Q2
−

GC

N∆

]
FE

N∆
=

3

2MNQ+

[
2(Q2 +M2

N −M2
∆)

Q2
−

GE

N∆
− 2Q2

Q2
−
GC

N∆

]
,

with Q± ≡
√
Q2 + (M∆ ±MN)

2
; we also use the

parametrization of the Ash form factors in Ref. [58],

GE(M)

N∆
= g

E(M)∆

(
1 + β

E(M)
Q2
)
e
−γ

E(M)
Q2

GD(Q2) (79)

GC

N∆
= g

C∆

1 + β
C
Q2

1 + d
C

Q2

4M2
N

4M2
∆

M2
∆ −M2

N

e−γCQ
2

GD(Q2).

The coefficients involved in the parametrizations are

given in Table I 3; GD(Q2) ≡
[
1 +Q2/(0.71GeV2)

]−2
.

For the axial-transition form factors, the Adler
parametrization appearing in Ref. [50] is used,

CA3 (Q2) = 0 ,

CA5 (Q2) =

√
3

2

[
1.17

(
1− 0.25Q2

(0.04 +Q2)

)(
1 +

Q2

0.952

)−2
]
,

CA4 (Q2) = −C
A
5 (Q2)

4
. (80)

The factor
√

3
2 is due to the definition of the isospin

structure in Eq. (33).
For the ∆ elastic form factors needed in the calculation

of Diagram (III) (see Eqs. (61) and (62), and Tables X
and XI), information is limited. The results from existing

3 Our definition of FM
N∆

, FC
N∆

, FE
N∆

differ from the corresponding

ones in Ref. [49] by absorbing the factor
3(MN+M∆)

2MNQ
2
+

into these

form factors.

LQCD calculations [59] are implemented:

F1∆ =
GE0

∆∆

τ + 1
−

2GE2
∆∆
τ

3(τ + 1)
+
GM1

∆∆
τ

τ + 1
−

4GM3
∆∆
τ2

5(τ + 1)
(81)

F2∆ = −
GE0

∆∆

τ + 1
+

2τGE2
∆∆

3(τ + 1)
+
GM1

∆∆

τ + 1
−

4τGM3
∆∆

5(τ + 1)
(82)

F3∆ =
2GE0

∆∆

(τ + 1)2
−

2(2τ + 3)GE2
∆∆

3(τ + 1)2
+

2τGM1
∆∆

(τ + 1)2

−
2τ(4τ + 5)GM3

∆∆

5(τ + 1)2
(83)

F4∆ = −
2GE0

∆∆

(τ + 1)2
+

2(2τ + 3)GE2
∆∆

3(τ + 1)2
+

2GM1
∆∆

(τ + 1)2

−
2(4τ + 5)GM3

∆∆

5(τ + 1)2
(84)

with τ ≡ Q2

4M2
N

. We set GE2
∆∆

= GM3
∆∆

= 0, and

GE0
∆∆

=

(
1 +

Q2

1.0652

)−2

(85)

GM1
∆∆

= 3.12 exp

(
− Q2

0.92352

)
(86)

The above parametrizations are the fits to the mπ = 353
MeV results in Ref. [59]. For the ∆’s axial elastic form
factors, we use the given parametrizations for the “mπ =
0.411 GeV with Quenched Wilson fermions” results in
Ref. [51] (see Table III and VI therein),

F̃1∆ =
(0.40 + 1.98Q2)

(Q2 + 0.942)
3 , (87)

F̃3∆ = F̃1∆
3.8

Q2 + 0.12
. (88)

Finally, all the pion-cloud diagrams involve strong-
interaction form factors (cf. the definitions in Sec. II C):

F
πNN

(x,k⊥) = exp

(
−
M2

πN
− (MN +mπ)2

2Λ2
N

)
(89)

F
πN∆

(x,k⊥) = exp

(
−
M2

π∆
− (M∆ +mπ)2

2Λ2
∆

)
(90)

with unknown ΛN,∆.
In short summary, we have 15 unknown parameters,

including mq, ms, ma, cs11, βs1, cs20, cs21, βs2, ca11, βa1,
ca20, ca21, βa2, ΛN , and Λ∆, which need to be calibrated
against experiment data.

IV. MODEL CALIBRATIONS AND
PREDICTIONS

To calibrate our model, we rely on a recent analysis of
the nucleon’s elastic EM form factors in Ref. [60]. The
study applied the z-expansion approach to parametrize
the form factors’ Q2 dependence with minimal model as-
sumptions, and then fitted them to the existing measure-
ments. The predicted form factors and their error bars
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FIG.2. Protonelectricand magneticformfactors. The
greenbandis1-σerrorbandoftheresultsfromRef.[60]with
itscentralvaluesomewhereinthemiddleoftheband. The
threeredsolidcurvesarethecentralvalueanderrorbandof
ourmodelresults.

cs11 βs1 cs20 cs21 βs2

0.29+0.67−1.00 0.47+0.05−0.05 −0.32+0.06−0.07 −3.5+0.5−0.4 0.352+0.008−0.007

ca11 βa1 ca20 ca21 βa2

0.072+0.24−0.32 0.52+0.03−0.04 6.4+1.6−1.7 0.5+2.2−2.6 0.51+0.04−0.05

mq ms ma ΛN Λ∆

0.32+0.01−0.01 0.14+0.02−0.02 0.35+0.03−0.05 0.49+0.03−0.04 0.43+0.02−0.02

TABLEII. Parametermeanvaluesandtheirerrorbarscor-
respondingto68%degreeofbelief.

areusedas“data”toconstraintheaforementionedmodel
parameters.Specifically,wepick16differentQ2values
foreachofnucleon’sfourEMformfactors,

GEp,n(Q
2)≡F1p,n−τF2p,n (91)

GMp,n(Q
2)≡F1p,n+F2p,n. (92)

Eightofthemareevenlydistributedinthe0.01≤Q2≤
1.5GeV2region,withtheothereightalsoevenlydis-
tributedin1.5<Q2≤10GeV2.
TheBayesianinference[61
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captionofFig.2

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Q2(GeV2)

μ
p
G
Ep
/G
Mp

Z-exp. fit(2018)

LFQM

fortheillustrationsofthelegendsusedhere.

FIG.4. Theratiobetweenproton’selectricandmagnetic
formfactors.ThelegendisthesameasthatinFig.2.

vectorg,giventheexisting“data”D,ourtheoryT,
andpriorinformationI. AccordingtotheBayes’the-
orem[61],thedesiredPDFisrelatedtothelikelihood
functionthrough

pr(g|D;T;I)=pr(D|g;T;I)pr(g|I). (93)

Thefirsttermontherightsideisproportionaltothe
likelihood:

lnpr(D|g;T;I)=c−
N

j=1

F(g;Q2j)−Dj
2

2σ2j
, (94)
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where F (g;Q2
j ) is the form factor prediction at Q2

j of the
jth data point Dj , and σj is the statistical uncertainty
associated with Dj . The constant c ensures pr (g|D;T ; I)
at the right side is properly normalized. The second term
in the right side of Eq. (93), pr (g|I), is the prior for all
the parameters g. It is separable: the priors for cs,a1,1, cs,a2,0,

and cs,a2,1 are Gaussian distributions centered at 0 and with
width equal to 5, while the priors for other parameters
are uniform distributions requiring all the βs between 0
and 2 GeV, 0.1 ≤ mq ≤ 0.6 GeV, ms and ma between 0
and MN, ΛN and Λ∆ between 0 and 1.5 GeV. It should
be pointed out that in this work, the errors of “data” at
our picked Q2 values are treated as uncorrelated, con-
sidering the correlation information for the “data” are
not available in public. This simplification needs to be
further improved in a future study.

The Markov Chain Monte Carlo method is then em-
ployed to sample the posterior PDF in the 15 dimension
space. The particular sampling algorithm is the so-called
emcee sampler [62] coupled with parallel tempering [63].
The sampler has been extensively used in e.g., astron-
omy for the same purpose [62, 63]. The detailed 2-dim
and 1-dim projections of this PDF can be seen in Fig. 13.
The central values and 68% degrees-of-belief error bars of
the model parameters can be found in Table II. The cs,a1,1,

cs,a2,0, and cs,a2,1 parameters are constrained to regions with
widths at most about half of the Gaussian prior widths,
while the other parameters are very localized within the
windows of their uniform priors. Therefore, enlarging the
prior windows for these parameters will not significantly
modify the posterior PDF, pr (g|D;T ; I). It is also in-
teresting to note that the preferred parameter values are
consistent with the naive expectation raised in the pre-
vious section.

With the samples of the posterior PDF, we can com-
pute the central value and error bar for any quantity as a
function of g. Figs. 2, 3, and 4 plot our error bands (the
red curves) for the nucleon EM form factors—normalized
against the GD(Q2)—and proton’s form factor ratio, to
be compared with the results (the green bands) from
Ref. [60]. Note the normalizations for magnetic form
factors µp = 2.793 and µn = −1.913 are from the sup-
plementary material of Ref. [60]. The model results are
in good agreement with the “data”. In particular, the
GpE-GpM ratio as shown in Fig. 4 agrees very well with
the extraction from Ref. [60] in the shown Q2 window,
which is an improvement over the previous calculations
using similar approach [31, 52]. However, the difference
between our GnE result and the “data”, as shown in Fig. 3,
shows that our model prefer smaller values for GnE at mo-

mentum transfer above 4 GeV2. Moreover, our error bars
are consistently smaller than those from Ref. [60]. Pos-
sible reasons include missing correlation between “data”
in our inference, and/or the absence of theoretical uncer-
tainty of our quark-diquark model.

Turning to the axial form factor F̃1N : the 1-dim poste-

rior PDFs for F̃1N (Q2 = 0) and the MA value extracted

from the first derivative of F̃1N at Q2 = 0 are plotted in

Fig. 5. Our prediction for F̃1N (Q2 = 0) is 1.06 ± 0.04,
which is somewhat smaller than gA = 1.27; r2

A = 0.29±
0.03 fm2 and the associated MA = 1.28± 0.07 GeV. The
r2
A is smaller than r2

A = 0.46 ± 0.16 fm2 from a recent

analysis [5] (the associatedMA = 1.01±0.17 GeV2) based
on existing neutrino-nucleon scattering and muon weak
capture data, and closer to current Lattice QCD results
having r2

A ranging from 0.2 to 0.45 fm2. Although our
r2
A is within the 1-σ band of the recent analysis [5], the

uncertainty assigned for our r2
A prediction is too small

to cover the latter’s central value. However our error bar
only accounts for that within our model parameter space,
while the theoretical uncertainty of the current model is
difficult to estimate and not included in the error bar.

The F̃1N (Q2)’s central value and its 1-σ lower and

upper bounds are shown in Fig. 6, re-scaled by G̃D ≡
(1 + Q2/M2

A)−2 with MA = 1 GeV (panel (a)) and
MA = 1.28 GeV (panel (b)). The latter MA-value is
the central value of our analysis. Panel (a) shows two
sets of curves: the “LFQM” (red curves) are our predic-
tions while each of the “LFQM′” (blue curves) re-scale
the corresponding “LFQM” curves by a constant such
that the Q2 = 0 value agrees with gA = 1.27. The global
rescaling is equivalent to treating the size of quark axial
charge eAq as a fitting parameter, because the contribu-
tions from both bare quark and pion cloud originate from
quark’s axial charge. (As pointed out in Sec. III B, the
contributions from diagram (III) with ∆ in the loop
are normalized by eAq, although they are approximated
by the physical inelastic form factors.) In the following
calculations of cross sections, the rescaled axial form fac-
tors are always implicitly assumed. In panel (b), only
the corresponding “LFQM′” results are plotted. We do
see a significantly different Q2 dependence from G̃D with

MA = 1 GeV; and more importantly that our F̃1N differ
from its dipole approximation by about 10% at Q2 be-
tween 1 and 2 GeV2. The latter suggests the necessity
of using the full form factor instead of a simple dipole
approximation for modeling neutrino-nucleus QE scat-
terings in the coming neutrino-oscillation experiments.

Fig. 7 compares our F̃1N with the z-expansion-based
fit from Ref. [17]. The comparison in the low-Q2 re-
gion is consistent with the discussion above concerning
r2
A, whereas for Q2 beyond 0.5 GeV2, our form factor

becomes increasingly larger than that obtained using the
z-expansion of Ref. [17]. As a compelling extension of this
work, it would be interesting to investigate the theoret-
ical description of previous neutrino-deuteron scattering
measurements (cf. Refs. [5, 17]), by combining the LFQM
calculations in this analysis with a systematic treatment
of deuteron-structure effects and the subtleties associated
with these experiments [17]. We reserve such an under-
taking to future efforts.

We can also parameterize our F̃1N (Q2)/F̃1N (0) by
employing the z-expansion form from Ref. [17]. With
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k = 0 1 2 3 4 5

0.299145 −1.18966 1.16692 0.763023 −0.39146 −2.45022

6 7 8 9 10 11

−8.74781 23.8158 48.8291 −126.237 −103.061 259.714

TABLE III. The fitted values for ak as used in the
z-parametrization in Eq. (96) for the central value of

F̃1N (Q2)/F̃1N (0).

0.8 1.0 1.2 1.4 1.6
0
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F

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FIG. 5. 1-dim PDFs for MA (blue curve in the unit of GeV)

and F̃1N (0) (red curve) from our Bayesian inference.

tcut = 9m2
π, t0 = −1.19263 GeV2, and

z(Q2) ≡
√
tcut +Q2 −

√
tcut − t0√

tcut +Q2 +
√
tcut − t0

, (95)

the central value of our axial form factor can be
parametrized as

F̃1N (Q2)

F̃1N (0)
=

11∑
k=0

akz
k(Q2) . (96)

This parametrization reproduces the full F̃1N (Q2) with
better than 0.1% error for Q2 between 0 and 10 GeV2.
The numerical values of the ak coefficients can be found
in Table III.

V. IMPACTS

In order to quantify the impact of the difference be-

tween our full F̃1N and the commonly used dipole ap-
proximation, we first calculate the cross sections for the
charged-current (CC) (anti)neutrino–nucleon scattering
and then the (anti)neutrino–40Ar QE scatterings relevant
for the coming DUNE experiment.

A. The single-nucleon cross section

The single-nucleon scattering cross section differenti-
ated against Q2 at given neutrino energy Eν can be writ-
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FIG. 6. The model prediction of F̃1N and its error band.
Panel (a) normalizes form factor against G̃D with MA = 1
GeV, while panel (b) uses MA = 1.28 MeV. Panel (a) shows
two sets of curves: “LFQM” (red curves) are the model’s
original prediction, and the “LFQM′” (blue curves) re-scale
the curves such that the Q2 = 0 value agrees with gA =
1.27. The inset in panel (b) demonstrates that when Q2 ∼
0, the full form factor is close to the corresponding dipole
parametrization.

ten as [64]

dσν(ν̄)

dQ2
≡ G2

F cos2 θcM
2
N

8πE2
ν

[
A∓Bs− u

M2
N

(97)

+ C
(s− u)

2

M4
N

]
with GF as Fermi constant, θc as Cabibbo angle; mµ as
the charged lepton mass; s−u = 4EνMN−Q2−m2

µ; the
sign of B: (−) for the neutrino scattering and (+) for the
antineutrino scattering; and

A =

(
m2
µ +Q2

)
M2

N

{
− (1− τ)F 2

1V + 4τF1V F2V

+(1− τ)τF 2
2V + (1 + τ)F̃ 2

1N

−
m2
µ

4M2
N

[
(F1V + F2V )2 + (F̃1N + F̃2N )2 − F̃ 2

2N (1 + τ)
]}

B = 4τF̃1N (F1V + F2V )

C =
1

4
(F̃ 2

1N + F 2
1V + τF 2

2V ) .
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FIG.7. ComparisonbetweenLFQM F1N(Q
2)andthe

sameformfactorfittedbasedonthez-expansionapproach
ofRef.[17].

Here,F1V ≡F1p−F1n,F2V ≡F2p−F2naretheform
factorfortheisovectorcomponentintheEMcurrent.
Whenintegratingthedifferentialcrosssectionoverthe
Q2togetthetotalcrosssection,therangeofQ2depends
onneutrinoLabenergyEν;itslowerandupperlimitsare

2E2ν

1+2EνMN



R+1∓ (R−1)2−
m2µ
E2ν



−m2µ (98)

withR≡
m2µ

2MNEν
. Meanwhile,thethresholdforEνis

Eν≥mµ+
m2µ
2MN

. (99)

Figs.8and9comparesdifferentialcrosssectiondue
tothreedifferentaxialformfactorintheCC-induced
(anti)neutrinoscatterings. TwodifferentEν=0.5and
2 GeVarechosen. WeseeevenhavingMA =1.28
GeVsuchthatthedipoleparametrizationagreeswith
thefullformfactoratQ2∼0,theircrosssectionresults
candifferupto5-10%inthedominatingQ2regions.
Fig.10showsthetotalcrosssectionsvsEνbasedon
thoseformfactors:thedifferencebetweenthefull-form-
factorbasedcalculationsandthedipole-parametrization
based(MA=1.28GeV)increasestoaround5%atabout
Eν∼0.5GeVandmildlyincreasetoalittlebelow8%
withEν=10GeV.ThisEνrangecoversthedominating
regionoftheDUNE’sneutrinospectra.Assuch,wecon-
cludethatcontrollingtheseeffectswithintheQEcross
sectionwillbecriticallyimportanttofurtherstrength-
eningtheinterpretationofresultsfromtheupcoming
DUNEprogram. Ofcourse,thedifferencebetweenthe
fullcalculationandtheMA=1GeVoneismuchlarger
thanthepreviousones,reachingto20%above1GeV
neutrinoenergy. Noteinallthefigures,theEMform
factorsarethefullformfactorfromourmodel.

B. Neutrino-nucleuscrosssections

Tostudytheformfactor’simpactontheneutrino-
nucleuscrosssectionsrelevantforthe DUNEexperi-
ment[41],weusetheGiBUUpackagetocomputethe
ν(̄ν)–40ArinclusiveQEscattering[40,65]. Theinitial
statenucleareffects,includingFermimotion,areauto-
maticallytakenintoaccount,whilethefinalstateinter-
actionisnotrelevantandthusturnedoffinthesimula-
tions.Thetwo-particle-two-holeprocess,resonanceand
pionproductions,anddeepinelasticscatteringsarenot
studiedhere. Theneutrinofluxes(seeFig.11)inour
calculationaretheso-called“Reference,204x4mDP”
fromRef.[41]. Notethatinthecalculationshere,we
simplyusethevectorcurrentformfactors[18]nativeto
theGiBUUpackage.
Panel(a)and(b)inFig.12showtheDUNEflux-
averageddifferentialcrosssectionvsQ2forbothneutrino
andantineutrinoscatterings.Panel(c)showstheratios
betweenthefull-axial-form-factorbasedandthedipole-
parametrization-based(withMA =1.28GeV)calcula-
tions.Indeedthedifferenceisabout5%inthedominant
Q2regionaround0.2GeV2andincreasestoabout10%at
Q2∼1GeV2andbeyond.Thewigglesinthetailsofthe
ratioplotisduetothediminishingsimulationstatistics
inthelargeQ2region.Itisworthnotingthat,inpanel
(c),forQ2below0.5GeV2,thedifferencesbetweenthe
twocalculationsinbothneutrinoandantineutrinoscat-
teringsarealmostthesame,butthendifferatafew
percentlevelwithQ2alittleabove0.5GeV2.

VI. SUMMARY

Inthiswork,thelight-frontquark modelwithpion
cloudisemployedtocorrelatethenucleon’sEMformfac-
torswithitsaxialformfactors.Themodeliscalibrated
totheEMformfactors’measurements,andthenusedto

predicttheaxialformfactorF1N. Wefoundourform
factor’sr2A=0.29±0.03fm

2;itscentralvalueissmaller
thantheoneresultedfromarecentanalysis[5]neutrino-
nucleonscatteringdataandthesingletmuonichydro-
gencaptureratemeasurement,r2A=0.46±0.16fm

2,al-
thoughtheformer’scentralvalueiswithinthelatter’s1-σ
errorbar. Meanwhile,ourvalueisclosertothecurrent
LatticeQCDresultsfrom0.2−0.45fm2,althoughthese
Latticecalculationsstillhaveroomtobeimproved[5].
NotethecorrespondingMA =1.28±0.07 MeV(based
ontheformfactor’sQ2derivativeatzero)islargerthan
MA=1.01±0.17GeV

2fromRef.[5,17]).
Moreimportantly,wefoundthewidelyuseddipole

approximationto ourfull F1N over-estimatesthe
(anti)neutrinoscatteringcrosssections,ascompared
tothecalculationusingthefullexpression,byabout
5%atneutrinoenergyaround0.5 GeVandreaches
about10%at10GeV.ByusingtheGiBUUsimulation
package,westudiedhowthisdiscrepancycouldimpact
the(anti)neutrinoinclusiveQEcrosssections(without
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FIG. 8. Differential cross section for neutrino scattering at Eν = 0.5 and 2 GeV. In the upper panels, three different calculations
are plotted with different axial form factor, while the lower panels show the ratio between the result using our full form factor
and the one using gAG̃D with MA = 1.28 GeV.
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FIG. 9. Differential cross section for anti-neutrino scattering at Eν = 0.5 and 2 GeV. See the caption of Fig. 8 for the
illustrations of the legends.

short-range-correlation’s contribution and pion produc-
tion mechanisms) for the coming DUNE experiment. The
flux-averaged differential cross section vs Q2 could get
over-estimated by 5% at the Q2 ∼ 0.2 GeV2 and reaches
around 10% at 1 GeV2. The difference between the over-
estimation in the neutrino scattering and that in the an-
tineutrino scattering increases to a few percent level when
Q2 goes above 0.5 GeV2, which could be relevant for the
neutrino-oscillation measurements interested in the dif-
ference between neutrino and antineutrino.

In the current work, fitting model parameters was sim-
plified by using the results of the data analysis (based on
the z-expansion) from Ref. [60]. For simplicity, the corre-

lations between their extracted form factors—not avail-
able in public—are ignored in our model calibration. In
the future, our model calibration can be improved either
by directly using the experimental cross section measure-
ments or by including the correlations among the form-
factor errors at different Q2 from Ref. [60]. Moreover, the
theoretical uncertainty of our quark model is not fully
explored, even though we have used a somewhat flexible
parametrization of the quark-diquark wave functions.

In the pion-cloud calculation, the ∆ resonance’s con-
tribution is computed by using its form factors either
from Lattice QCD calculations or experimental measure-
ments. However a more consistent approach would be
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FIG. 10. Total cross section for CC-induced neutrino and antineutrino scattering off nucleon. In the upper panels, three
different calculations are plotted with different axial form factor, while the lower panels show the ratios between the results

using the full F̃1N and the one using gAG̃D and MA = 1.28 GeV (red dotted curve) and with the results using gAG̃D and
MA = 1 GeV.
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FIG. 11. . The νµ and ν̄µ fluxes in neutrino and antineutrino
mode in the DUNE experiment’s near detector [41]. The
units are irrelevant in this work.

to base the inelastic form factor used in the pion-cloud
calculations on the ∆’s light-front wave functions. This
will also allow studying the axial inelastic form factors,
which are also poorly constrained but important for un-
derstanding the pion productions in the coming neutrino
experiments, within the same framework.
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Appendix A: quark wave functions

The scalar-diquark wave functions have already been
computed in Ref. [36], but we present them here for
the sake of completeness. We note that the notation
used here is somewhat different from that in Ref. [36].
Our choices for the metric and Dirac spinors follow the
Lepage-Brodsky conventions in Ref. [30]. The expres-
sion for the bare-quark form factors (cf. Eqs. (14), (15),
and (16)) in terms of the quark light-front wave function,
are
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FIG. 12. The DUNE-flux averaged ν(ν̄)–40Ar scattering differential cross section. The lower panel again shows the ratio
between the result using our model form factor and the one using its dipole approximation with MA = 1.28 GeV.
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Note the expressions in these form factor involving ϕa2 are different, as well as the ϕa

′

1 ϕ
a
1 . The former is because

we use a different wave function for ϕa2 , while the latter is because we use ε̄ instead of ε in defining wave functions
involving axial diquark (cf. discussion in Sec. II B). To simplify the presentation, the quark wave functions’ dependence

on the integration variables are implicit: ϕs1 ≡ ϕs1(x,ki⊥) and ϕs
′

1 ≡ ϕs1(x,kf⊥) with kf⊥ ≡ k⊥ − 1−x
2 q⊥ and

kf⊥ ≡ k⊥ + 1−x
2 q⊥. Here the integration variable k⊥ is shifted from the k⊥ in Eqs. (17)-(22) by − 1−x

2 q⊥. In these
expressions, mq, ms, and ma are the masses of the quark, scalar and axial-vector diquarks.

Appendix B: Hadronic interaction and electroweak
current matrix elements

The results for N -N -π interaction vertices can be
found in Table VI. The assignment of intrinsic kinetic
variables has been discussed in Sec. II C 1. The met-
ric and Dirac spinor convention used again follows the
Lepage-Brodsky in Ref. [30].

To calculate matrices elements for N -∆-π interac-
tion, we need a convention for spin-3/2 Rarita-Schwinger
spinors:
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)
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Here the spin projections/helicity projections are labeled
as the numbers in parenthesis. Note the vector εµ is dif-
ferent from the one used in axial-diquark wave function:
it satisfies pµ

∆
εµ = 0 [35]. The results are collected in

Table VII. To compute the current matrix elements, we
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− i
√

2kR√
x
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2
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TABLE VI. Vλ
Nf

,λ
Ni

using helicity basis. Note

V−λ
Nf

,−λ
Ni

(x, kx, ky) = −Vλ
Nf

,λ
Ni

(x,−kx, ky). Changing

the sign of kx leads to kL ↔ kR. This property can be used
to infer the matrix elements with positive λNi based on given
matrix elements with negative λNi .

always choose a frame with q+ = 0. The results in Ta-
bles VIII,IX, X, and XI are of course boost and rotation
invariant (in the transverse plane). To reduce space for
presentations, only subset of the matrix elements men-
tioned here are shown, while the others can be inferred
using the mirror transformation (w.r.t. to the y-z plane)
of these elements (i.e., parity transformation multiplied
by proper rotation). See the captions of the tables for
the details.



20

λN

λ∆ − 1
2

− 3
2

ix−3/2kR(M∆ +MNx)

− 1
2
− ix

−3/2
√

6M∆

[
(MNx−M∆)(M∆ +MNx)2−2kLkR(2M∆+MNx)

]
1
2

ikLx−3/2
√

3M∆

[
2kLkR − (MNx− 2M∆)(M∆ +MNx)

]
3
2

i
√

2x3/2
(
kL
)2

TABLE VII. Vλ
∆
,λ
N

using helicity basis. Note

V−λ
∆
,−λ

N
(x, kx, ky) = +Vλ

∆
,λ
N

(x,−kx, ky). Changing the

sign of kx leads to kL ↔ kR. This property can be used to
infer the matrix elements with positive λN based on given
matrix elements with negative λN .

λN

λ∆ − 1
2

− 3
2

− q
R

2

[
FE
N∆

(MN −M∆) + FM
N∆

(MN +M∆)
]

− 1
2

qLqR√
6M∆

[
(FE

N∆
− FM

N∆
)M∆ + 2FC

N∆
(MN −M∆)

]
1
2
− qL

2
√

3M∆

[
FE
N∆

M∆(MN−M∆)−FM
N∆

M∆(MN+M∆)+4FC
N∆

qLqR
]

3
2

(qL)2

√
2

(FE
N∆

+ FM
N∆

)

TABLE VIII. J (0)V
λ

∆
,λ
N

(q) ≡
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Changing the sign of qx leads to qL ↔ qR. This property can
be used to infer the matrix elements with positive λN based
on given matrix elements with negative λN
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FIG. 13. The 2-dim and 1-dim projection of the 15-dim PDF, as computed through Bayesian inference.



23

[1] S. Ritz et al. (HEPAP Subcommittee), (2014), par-
ticle physics projects prioritization panel report at
https://science.energy.gov/~/media/hep/hepap/

pdf/May-2014/FINAL_P5_Exec_Sum_Interactive_

060214.pdf.
[2] L. Alvarez-Ruso et al., Prog. Part. Nucl. Phys. 100, 1

(2018), arXiv:1706.03621 [hep-ph].
[3] J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84,

1307 (2012), arXiv:1305.7513 [hep-ex].
[4] V. Bernard, L. Elouadrhiri, and U.-G. Meissner, J. Phys.

G28, R1 (2002), arXiv:hep-ph/0107088 [hep-ph].
[5] R. J. Hill, P. Kammel, W. J. Marciano, and A. Sirlin,

Rept. Prog. Phys. 81, 096301 (2018), arXiv:1708.08462
[hep-ph].

[6] A. S. Kronfeld, D. G. Richards, W. Detmold, R. Gupta,
H.-W. Lin, K.-F. Liu, A. S. Meyer, R. Sufian, and
S. Syritsin (USQCD), (2019), arXiv:1904.09931 [hep-
lat].

[7] J. Green, N. Hasan, S. Meinel, M. Engelhardt, S. Krieg,
J. Laeuchli, J. Negele, K. Orginos, A. Pochinsky,
and S. Syritsyn, Phys. Rev. D95, 114502 (2017),
arXiv:1703.06703 [hep-lat].

[8] R. Gupta, Y.-C. Jang, H.-W. Lin, B. Yoon, and
T. Bhattacharya, Phys. Rev. D96, 114503 (2017),
arXiv:1705.06834 [hep-lat].

[9] S. Capitani, M. Della Morte, D. Djukanovic, G. M. von
Hippel, J. Hua, B. Jger, P. M. Junnarkar, H. B. Meyer,
T. D. Rae, and H. Wittig, Int. J. Mod. Phys. A34,
1950009 (2019), arXiv:1705.06186 [hep-lat].

[10] Y.-C. Jang, T. Bhattacharya, R. Gupta, H.-W. Lin, and
B. Yoon, Proceedings, 35th International Symposium on
Lattice Field Theory (Lattice 2017): Granada, Spain,
June 18-24, 2017, EPJ Web Conf. 175, 06033 (2018),
arXiv:1801.01635 [hep-lat].

[11] K.-I. Ishikawa, Y. Kuramashi, S. Sasaki, N. Tsukamoto,
A. Ukawa, and T. Yamazaki (PACS), Phys. Rev. D98,
074510 (2018), arXiv:1807.03974 [hep-lat].

[12] G. S. Bali, S. Collins, M. Gruber, A. Schfer,
P. Wein, and T. Wurm, Phys. Lett. B789, 666 (2019),
arXiv:1810.05569 [hep-lat].

[13] E. Shintani, K.-I. Ishikawa, Y. Kuramashi, S. Sasaki,
and T. Yamazaki, Phys. Rev. D99, 014510 (2019),
arXiv:1811.07292 [hep-lat].

[14] Y.-C. Jang, T. Bhattacharya, R. Gupta, H.-W. Lin,
and B. Yoon (PNDME), Proceedings, 36th International
Symposium on Lattice Field Theory (Lattice 2018): East
Lansing, MI, United States, July 22-28, 2018, PoS LAT-
TICE2018, 123 (2018), arXiv:1901.00060 [hep-lat].

[15] J. J. Kelly, Phys. Rev. C70, 068202 (2004).
[16] B. Bhattacharya, R. J. Hill, and G. Paz, Phys. Rev.

D84, 073006 (2011), arXiv:1108.0423 [hep-ph].
[17] A. S. Meyer, M. Betancourt, R. Gran, and R. J. Hill,

Phys. Rev. D93, 113015 (2016), arXiv:1603.03048 [hep-
ph].

[18] A. Bodek, S. Avvakumov, R. Bradford, and H. S. Budd,
Eur. Phys. J. C 53, 349 (2008), arXiv:0708.1946 [hep-ex].

[19] L. Alvarez-Ruso, K. M. Graczyk, and E. Saul-Sala, Phys.
Rev. C 99, 025204 (2019), arXiv:1805.00905 [hep-ph].

[20] C. Perdrisat, V. Punjabi, and M. Vanderhaeghen,
Prog.Part.Nucl.Phys. 59, 694 (2007), arXiv:hep-
ph/0612014 [hep-ph].

[21] S. Pacetti, R. Baldini Ferroli, and E. Tomasi-Gustafsson,
Phys. Rept. 550-551, 1 (2015).

[22] V. Bernard, H. W. Fearing, T. R. Hemmert, and
U. G. Meissner, Nucl. Phys. A 635, 121 (1998), [Er-
ratum: Nucl.Phys.A 642, 563–563 (1998)], arXiv:hep-
ph/9801297.

[23] M. Schindler, T. Fuchs, J. Gegelia, and S. Scherer, Phys.
Rev. C 75, 025202 (2007), arXiv:nucl-th/0611083.

[24] M. R. Schindler and S. Scherer, Proceedings, 3rd Inter-
national Workshop on From parity violation to hadronic
structure and more (PAVI 2006): Milos, Greece, May
16-20, 2006, Eur. Phys. J. A32, 429 (2007), [,59(2006)],
arXiv:hep-ph/0608325 [hep-ph].

[25] S.-i. Ando and H. W. Fearing, Phys. Rev. D 75, 014025
(2007), arXiv:hep-ph/0608195.

[26] S. Scherer, Prog. Part. Nucl. Phys. 64, 1 (2010),
arXiv:0908.3425 [hep-ph].

[27] D.-L. Yao, L. Alvarez-Ruso, and M. J. Vicente-Vacas,
Phys. Rev. D 96, 116022 (2017), arXiv:1708.08776 [hep-
ph].

[28] P. L. Chung and F. Coester, Phys. Rev. D44, 229 (1991).
[29] F. Cardarelli, E. Pace, G. Salme, and S. Simula, Phys.

Lett. B357, 267 (1995), arXiv:nucl-th/9507037 [nucl-th].
[30] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept.

301, 299 (1998), arXiv:hep-ph/9705477 [hep-ph].
[31] G. A. Miller, Phys. Rev. C66, 032201 (2002), arXiv:nucl-

th/0207007 [nucl-th].
[32] G. A. Miller and M. R. Frank, Phys. Rev. C65, 065205

(2002), arXiv:nucl-th/0201021 [nucl-th].
[33] B.-Q. Ma, D. Qing, and I. Schmidt, Phys. Rev. C65,

035205 (2002), arXiv:hep-ph/0202015 [hep-ph].
[34] B.-Q. Ma, D. Qing, and I. Schmidt, Phys. Rev. C66,

048201 (2002), arXiv:hep-ph/0204082 [hep-ph].
[35] B. Pasquini and S. Boffi, Phys. Rev. D76, 074011 (2007),

arXiv:0707.2897 [hep-ph].
[36] I. C. Cloet and G. A. Miller, Phys.Rev.C 86, 015208

(2012), arXiv:1204.4422 [nucl-th].
[37] V. Punjabi, C. F. Perdrisat, M. K. Jones, E. J. Brash,

and C. E. Carlson, Eur. Phys. J. A51, 79 (2015),
arXiv:1503.01452 [nucl-ex].

[38] S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and
J. Erlich, Phys. Rept. 584, 1 (2015), arXiv:1407.8131
[hep-ph].

[39] A. W. Thomas, S. Theberge, and G. A. Miller, Phys.
Rev. D24, 216 (1981).

[40] O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees,
M. Kaskulov, O. Lalakulich, A. B. Larionov, T. Leit-
ner, J. Weil, and U. Mosel, Phys. Rept. 512, 1 (2012),
arXiv:1106.1344 [hep-ph].

[41] R. Acciarri et al. (DUNE), (2015), arXiv:1512.06148
[physics.ins-det].

[42] M. A. Morgan, G. A. Miller and A. W. Thomas, Phys.
Rev. D 33, 817 (1986) doi:10.1103/PhysRevD.33.817

[43] R. J. Hill and O. Tomalak, Phys. Lett. B 805,
135466 (2020) doi:10.1016/j.physletb.2020.135466
[arXiv:1911.01493 [hep-ph]].

[44] H. Meyer and P. J. Mulders, Nucl. Phys. A528, 589
(1991).

[45] S. J. Brodsky, J. R. Hiller, D. S. Hwang, and V. A.
Karmanov, Phys. Rev. D69, 076001 (2004), arXiv:hep-
ph/0311218 [hep-ph].

https://science.energy.gov/~/media/hep/hepap/pdf/May-2014/FINAL_P5_Exec_Sum_Interactive_060214.pdf
https://science.energy.gov/~/media/hep/hepap/pdf/May-2014/FINAL_P5_Exec_Sum_Interactive_060214.pdf
https://science.energy.gov/~/media/hep/hepap/pdf/May-2014/FINAL_P5_Exec_Sum_Interactive_060214.pdf
https://science.energy.gov/~/media/hep/hepap/pdf/May-2014/FINAL_P5_Exec_Sum_Interactive_060214.pdf
http://dx.doi.org/10.1016/j.ppnp.2018.01.006
http://dx.doi.org/10.1016/j.ppnp.2018.01.006
http://arxiv.org/abs/1706.03621
http://dx.doi.org/10.1103/RevModPhys.84.1307
http://dx.doi.org/10.1103/RevModPhys.84.1307
http://arxiv.org/abs/1305.7513
http://dx.doi.org/10.1088/0954-3899/28/1/201
http://dx.doi.org/10.1088/0954-3899/28/1/201
http://arxiv.org/abs/hep-ph/0107088
http://dx.doi.org/10.1088/1361-6633/aac190
http://arxiv.org/abs/1708.08462
http://arxiv.org/abs/1708.08462
http://arxiv.org/abs/1904.09931
http://arxiv.org/abs/1904.09931
http://dx.doi.org/10.1103/PhysRevD.95.114502
http://arxiv.org/abs/1703.06703
http://dx.doi.org/ 10.1103/PhysRevD.96.114503
http://arxiv.org/abs/1705.06834
http://dx.doi.org/ 10.1142/S0217751X1950009X
http://dx.doi.org/ 10.1142/S0217751X1950009X
http://arxiv.org/abs/1705.06186
http://dx.doi.org/10.1051/epjconf/201817506033
http://arxiv.org/abs/1801.01635
http://dx.doi.org/10.1103/PhysRevD.98.074510
http://dx.doi.org/10.1103/PhysRevD.98.074510
http://arxiv.org/abs/1807.03974
http://dx.doi.org/ 10.1016/j.physletb.2018.12.053
http://arxiv.org/abs/1810.05569
http://dx.doi.org/ 10.1103/PhysRevD.99.014510
http://arxiv.org/abs/1811.07292
http://dx.doi.org/10.22323/1.334.0123
http://dx.doi.org/10.22323/1.334.0123
http://arxiv.org/abs/1901.00060
http://dx.doi.org/10.1103/PhysRevC.70.068202
http://dx.doi.org/10.1103/PhysRevD.84.073006
http://dx.doi.org/10.1103/PhysRevD.84.073006
http://arxiv.org/abs/1108.0423
http://dx.doi.org/ 10.1103/PhysRevD.93.113015
http://arxiv.org/abs/1603.03048
http://arxiv.org/abs/1603.03048
http://dx.doi.org/10.1140/epjc/s10052-007-0491-4
http://arxiv.org/abs/0708.1946
http://dx.doi.org/10.1103/PhysRevC.99.025204
http://dx.doi.org/10.1103/PhysRevC.99.025204
http://arxiv.org/abs/1805.00905
http://dx.doi.org/10.1016/j.ppnp.2007.05.001
http://arxiv.org/abs/hep-ph/0612014
http://arxiv.org/abs/hep-ph/0612014
http://dx.doi.org/10.1016/j.physrep.2014.09.005
http://dx.doi.org/10.1016/S0375-9474(98)00175-4
http://arxiv.org/abs/hep-ph/9801297
http://arxiv.org/abs/hep-ph/9801297
http://dx.doi.org/10.1103/PhysRevC.75.025202
http://dx.doi.org/10.1103/PhysRevC.75.025202
http://arxiv.org/abs/nucl-th/0611083
http://dx.doi.org/10.1007/978-3-540-74413-9_10, 10.1140/epja/i2006-10403-3
http://arxiv.org/abs/hep-ph/0608325
http://dx.doi.org/10.1103/PhysRevD.75.014025
http://dx.doi.org/10.1103/PhysRevD.75.014025
http://arxiv.org/abs/hep-ph/0608195
http://dx.doi.org/10.1016/j.ppnp.2009.08.002
http://arxiv.org/abs/0908.3425
http://dx.doi.org/10.1103/PhysRevD.96.116022
http://arxiv.org/abs/1708.08776
http://arxiv.org/abs/1708.08776
http://dx.doi.org/10.1103/PhysRevD.44.229
http://dx.doi.org/ 10.1016/0370-2693(95)00921-7
http://dx.doi.org/ 10.1016/0370-2693(95)00921-7
http://arxiv.org/abs/nucl-th/9507037
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://arxiv.org/abs/hep-ph/9705477
http://dx.doi.org/10.1103/PhysRevC.66.032201
http://arxiv.org/abs/nucl-th/0207007
http://arxiv.org/abs/nucl-th/0207007
http://dx.doi.org/10.1103/PhysRevC.65.065205
http://dx.doi.org/10.1103/PhysRevC.65.065205
http://arxiv.org/abs/nucl-th/0201021
http://dx.doi.org/10.1103/PhysRevC.65.035205
http://dx.doi.org/10.1103/PhysRevC.65.035205
http://arxiv.org/abs/hep-ph/0202015
http://dx.doi.org/10.1103/PhysRevC.66.048201
http://dx.doi.org/10.1103/PhysRevC.66.048201
http://arxiv.org/abs/hep-ph/0204082
http://dx.doi.org/10.1103/PhysRevD.76.074011
http://arxiv.org/abs/0707.2897
http://dx.doi.org/10.1103/PhysRevC.86.015208
http://dx.doi.org/10.1103/PhysRevC.86.015208
http://arxiv.org/abs/1204.4422
http://dx.doi.org/10.1140/epja/i2015-15079-x
http://arxiv.org/abs/1503.01452
http://dx.doi.org/10.1016/j.physrep.2015.05.001
http://arxiv.org/abs/1407.8131
http://arxiv.org/abs/1407.8131
http://dx.doi.org/10.1103/PhysRevD.24.216
http://dx.doi.org/10.1103/PhysRevD.24.216
http://dx.doi.org/10.1016/j.physrep.2011.12.001
http://arxiv.org/abs/1106.1344
http://arxiv.org/abs/1512.06148
http://arxiv.org/abs/1512.06148
http://dx.doi.org/10.1016/0375-9474(91)90252-2
http://dx.doi.org/10.1016/0375-9474(91)90252-2
http://dx.doi.org/10.1103/PhysRevD.69.076001
http://arxiv.org/abs/hep-ph/0311218
http://arxiv.org/abs/hep-ph/0311218


24

[46] T.-M. Yan, Phys. Rev. D7, 1780 (1973).
[47] S. Weinberg, The quantum theory of fields. Vol. 2: Mod-

ern applications (Cambridge University Press, 2013).
[48] B. D. Serot and X. Zhang, Phys. Rev. C86, 015501

(2012), arXiv:1206.3812 [nucl-th].
[49] V. Pascalutsa, M. Vanderhaeghen, and S. N. Yang, Phys.

Rept. 437, 125 (2007), arXiv:hep-ph/0609004 [hep-ph].
[50] T. Leitner, O. Buss, L. Alvarez-Ruso, and U. Mosel,

Phys. Rev. C79, 034601 (2009), arXiv:0812.0587 [nucl-
th].

[51] C. Alexandrou, E. B. Gregory, T. Korzec, G. Koutsou,
J. W. Negele, T. Sato, and A. Tsapalis, Phys. Rev. D87,
114513 (2013), arXiv:1304.4614 [hep-lat].

[52] H. H. Matevosyan, G. A. Miller, and A. W. Thomas,
Phys. Rev. C71, 055204 (2005), arXiv:nucl-th/0501044
[nucl-th].

[53] S. Amendolia et al., Phys. Lett. B 146, 116 (1984).
[54] S. Amendolia et al. (NA7), Nucl. Phys. B 277, 168

(1986).
[55] T. Horn et al. (Jefferson Lab F(pi)-2), Phys. Rev. Lett.

97, 192001 (2006), arXiv:nucl-ex/0607005.
[56] H. Blok et al. (Jefferson Lab), Phys. Rev. C 78, 045202

(2008), arXiv:0809.3161 [nucl-ex].

[57] G. Huber et al. (Jefferson Lab), Phys. Rev. C 78, 045203
(2008), arXiv:0809.3052 [nucl-ex].

[58] L. Tiator, D. Drechsel, S. S. Kamalov, and M. Van-
derhaeghen, Eur. Phys. J. ST 198, 141 (2011),
arXiv:1109.6745 [nucl-th].

[59] C. Alexandrou, T. Korzec, G. Koutsou, T. Leontiou,
C. Lorce, J. W. Negele, V. Pascalutsa, A. Tsapalis,
and M. Vanderhaeghen, Phys. Rev. D79, 014507 (2009),
arXiv:0810.3976 [hep-lat].

[60] Z. Ye, J. Arrington, R. J. Hill, and G. Lee, Phys. Lett.
B777, 8 (2018), arXiv:1707.09063 [nucl-ex].

[61] D. Sivia, Data Analysis: A Bayesian Tutorial (Oxford
University Press, New York, 1996).

[62] D. Foreman-Mackey, D. W. Hogg, D. Lang, and
J. Goodman, Pub. Astron. Soc. Pac. 125, 306 (2013),
arXiv:1202.3665 [astro-ph.IM].

[63] W. D. Vousden, W. M. Farr, and I. Mandel, MNRAS
455, 1919 (2016), arXiv:1501.05823 [astro-ph.IM].

[64] C. H. Llewellyn Smith, Gauge Theories and Neutrino
Physics, Jacob, 1978:0175, Phys. Rept. 3, 261 (1972).

[65] U. Mosel, Ann. Rev. Nucl. Part. Sci. 66, 171 (2016),
arXiv:1602.00696 [nucl-th].

http://dx.doi.org/10.1103/PhysRevD.7.1780
http://dx.doi.org/10.1103/PhysRevC.86.015501
http://dx.doi.org/10.1103/PhysRevC.86.015501
http://arxiv.org/abs/1206.3812
http://dx.doi.org/10.1016/j.physrep.2006.09.006
http://dx.doi.org/10.1016/j.physrep.2006.09.006
http://arxiv.org/abs/hep-ph/0609004
http://dx.doi.org/10.1103/PhysRevC.79.034601
http://arxiv.org/abs/0812.0587
http://arxiv.org/abs/0812.0587
http://dx.doi.org/ 10.1103/PhysRevD.87.114513
http://dx.doi.org/ 10.1103/PhysRevD.87.114513
http://arxiv.org/abs/1304.4614
http://dx.doi.org/10.1103/PhysRevC.71.055204
http://arxiv.org/abs/nucl-th/0501044
http://arxiv.org/abs/nucl-th/0501044
http://dx.doi.org/10.1016/0370-2693(84)90655-5
http://dx.doi.org/10.1016/0550-3213(86)90437-2
http://dx.doi.org/10.1016/0550-3213(86)90437-2
http://dx.doi.org/10.1103/PhysRevLett.97.192001
http://dx.doi.org/10.1103/PhysRevLett.97.192001
http://arxiv.org/abs/nucl-ex/0607005
http://dx.doi.org/10.1103/PhysRevC.78.045202
http://dx.doi.org/10.1103/PhysRevC.78.045202
http://arxiv.org/abs/0809.3161
http://dx.doi.org/10.1103/PhysRevC.78.045203
http://dx.doi.org/10.1103/PhysRevC.78.045203
http://arxiv.org/abs/0809.3052
http://dx.doi.org/10.1140/epjst/e2011-01488-9
http://arxiv.org/abs/1109.6745
http://dx.doi.org/ 10.1103/PhysRevD.79.014507
http://arxiv.org/abs/0810.3976
http://dx.doi.org/ 10.1016/j.physletb.2017.11.023
http://dx.doi.org/ 10.1016/j.physletb.2017.11.023
http://arxiv.org/abs/1707.09063
http://dx.doi.org/10.1086/670067
http://arxiv.org/abs/1202.3665
http://dx.doi.org/10.1093/mnras/stv2422
http://dx.doi.org/10.1093/mnras/stv2422
http://arxiv.org/abs/1501.05823
http://dx.doi.org/ 10.1016/0370-1573(72)90010-5
http://dx.doi.org/10.1146/annurev-nucl-102115-044720
http://arxiv.org/abs/1602.00696

	Unified model of nucleon elastic form factors and implications for neutrino-oscillation experiments
	Abstract
	I  Introduction
	II  Formalism 
	A  The model 
	B  Diagram (I)
	C  Pion cloud Diagram (II) and (III)
	1 Preparations 
	2 Previous calculations
	3 Delta contribution


	III  Model inputs 
	A The quark-diquark wave function
	B Pion-cloud contributions

	IV  Model calibrations and predictions
	V Impacts
	A The single-nucleon cross section
	B Neutrino-nucleus cross sections

	VI Summary
	 Acknowledgments
	A quark wave functions
	B Hadronic interaction and electroweak current matrix elements
	 References


