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Abstract. We construct a family of twisted generalized Weyl algebras which includes
Weyl–Clifford superalgebras and quotients of the enveloping algebras of gl(m|n) and
osp(m|2n). We give a condition for when a canonical representation by differential opera-
tors is faithful. Lastly, we give a description of the graded support of these algebras in
terms of pattern-avoiding vector compositions.

1. Introduction

Twisted generalized Weyl algebras (TGWAs) were introduced by Mazorchuk
and Turowska in [20], [21] in an attempt to include a wider range of examples than
Bavula’s generalized Weyl algebras (GWAs) [1]. Their structure and representa-
tions have been studied in [20], [21], [19], [24], [12], [13], [14], [15], [10]. Known
examples of TGWAs include multiparameter quantized Weyl algebras [21], [12],
[10], the Mickelsson–Zhelobenko step algebras associated to (gln+1, gln ⊕ gl1) [19]
and some primitive quotients of enveloping algebras [16].

In this paper we take a step further by proving that supersymmetric analogs
of some classical algebras are also examples of TGWAs. Specifically, we show
that Weyl–Clifford superalgebras and some quotients of the enveloping algebras
of gl(m|n) and osp(m|2n) can be realized as twisted generalized Weyl (TGW)
algebras. This suggests that much of the general representation theory from [21],
[19], [12] could be applied to the study of certain families of superalgebras. In
addition our new algebras provide a large supply of consistent but non-regular
TGW algebras (i.e., certain elements ti are zero-divisors). This motivates future
development of the theory to include such algebras.

It is also worth mentioning that, as a special case, we show that Clifford algebras
can be presented as TGW algebras. This shows that TGW algebras can be finite-
dimensional.

To summarize the contents of the present paper, in Section 2 we recall the
definition of TGW algebras from [21] which includes certain scalars µij that in our
case will be ±1. Some known results that will be used are also stated. In Section 3

DOI: 10.1007/S00031-019-09542-7

Received July 11, 2018. Accepted December 23, 2018.

Corresponding Author: Jonas T. Hartwig, e-mail: jth@iastate.edu
Published online 5, 2019.August

Transformation Groups c⃝Springer Science+Business Media New York (2019)

Vol. 2 , No. , 2020, pp. –5 4 1185 1207



we prove that the Weyl–Clifford superalgebra from [23] can be realized as a TGW
algebra.

The main object of the paper is introduced in Section 4, in which we define a
family of TGW algebras A(γ)± which depend on a certain matrix γ with integer
entries. These algebras naturally come with an algebra homomorphism ϕ from
A(γ)± to a Clifford-Weyl algebra. This is a generalization of the construction in
[16]. A sufficient condition for ϕγ to be injective is given in Section 4.2. This
condition is related to the graded support of the algebra A(γ)± which is combina-
torially characterized in Section 4.3.

Lastly, these results are applied in Section 5 to prove that for appropriate γ,
the TGW algebras A(γ)± fit into commutative diagrams involving the spinor
representation π of U(g) for g = gl(m|n) and osp(m|2n) studied by Nishiyama
[23] and Coulembier [9]. As a corollary we obtain that U(g)/J are examples
of TGW algebras for such g as well as for classical Lie algebras. These results
generalize previous realizations in [16]. We end with some open problems regarding
exceptional types.

Notation

Throughout, we work over an algebraically closed field k of characteristic zero.
Associative algebras are assumed to have a multiplicative identity. Ja, bK denotes
the set of integers x with a ≤ x ≤ b.

2. Twisted generalized Weyl algebras

We recall the definition of TGW algebras and some of their useful properties.

2.1. Definitions

Let I be a set.

Definition 1 (TGW Datum). A twisted generalized Weyl datum over k with in-
dex set I is a triple (R, σ, t) where

• R is an associative k-algebra,
• σ = (σi)i∈I is a sequence of commuting k-algebra automorphisms of R,
• t = (ti)i∈I is a sequence of central elements of R.

Let ZI denote the free abelian group on I, with basis denoted {ei}i∈I . For
g =

∑
giei ∈ ZI put σg =

∏
σgii . Then g 7→ σg defines an action of ZI on R by

k-algebra automorphisms.

Definition 2 (TGW Construction). Let

• (R, σ, t) be a TGW datum over k with index set I,
• µ be an I × I-matrix without diagonal, µ = (µij)i 6=j , with µij ∈ k \ {0}.

The twisted generalized Weyl construction associated to µ and (R, σ, t), denoted
Cµ(R, σ, t), is defined as the free R-ring on the set {Xi, Yi | i ∈ I} modulo the two-
sided ideal generated by the following elements:

Xir − σi(r)Xi, Yir − σ−1
i (r)Yi, ∀r ∈ R, i ∈ I, (1a)

YiXi − ti, XiYi − σi(ti), ∀i ∈ I, (1b)

XiYj − µijYjXi, ∀i, j ∈ I, i 6= j. (1c)
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The algebra Cµ(R, σ, t) has a ZI-gradation given by requiring degXi = ei,
deg Yi = −ei, deg r = 0 ∀r ∈ R. Let Iµ(R, σ, t) ⊆ Cµ(R, σ, t) be the sum of all
graded ideals J ⊆ Cµ(R, σ, t) such that Cµ(R, σ, t)0 ∩ J = {0}. It is easy to see
that Iµ(R, σ, t) is the unique maximal graded ideal having zero intersection with
the degree zero component.

Definition 3 (TGW Algebra). The twisted generalized Weyl algebra Aµ(R, σ, t)
associated to µ and (R, σ, t) is defined as the quotient

Aµ(R, σ, t) := Cµ(R, σ, t)/Iµ(R, σ, t).

Since Iµ(R, σ, t) is graded, Aµ(R, σ, t) inherits a ZI-gradation from Cµ(R, σ, t).
The images in Aµ(R, σ, t) of the elements Xi, Yi will also be denoted by Xi, Yi.

Example 1. For an index set I, the I:th Weyl algebra over k, AI = AI(k) is the
k-algebra generated by {xi, ∂i | i ∈ I} subject to defining relations

[xi, xj ] = [∂i, ∂j ] = [∂i, xj ]− δij = 0, ∀i, j ∈ I.

There is a k-algebra isomorphism Aµ(R, τ, u) → An where µij = 1 for all i 6= j,
R = k[ui | i ∈ I], τi(uj) = uj − δij , given by Xi 7→ xi, Yi 7→ ∂i, ui 7→ ∂ixi.

2.2. Regularity and consistency

Definition 4 (Reduced and monic monomials). A monic monomial in a TGW
algebra is any finite product of elements from the set {Xi}i∈I ∪{Yi}i∈I . A reduced
monomial is an element of the form Yi1 · · ·YikXj1 · · ·Xjl where {i1, . . . , ik} ∩
{j1, . . . , jl} = ∅.

Lemma 1. [12, Lem. 3.2] Aµ(R, σ, t) is generated as a left (and as a right) R-
module by the reduced monomials.

Since a TGW algebra Aµ(R, σ, t) is a quotient of an R-ring, it is an R-ring itself
with a natural map ρ : R→ Aµ(R, σ, t). By Lemma 1, the degree zero component
of Aµ(R, σ, t) (with respect to the ZI-gradation) is equal to the image of ρ.

Definition 5 (Regularity). A TGW datum (R, σ, t) is called regular if ti is regular
(i.e., not a zero-divisor) in R for all i.

Due to Relation (1b), the canonical map R → Cµ(R, σ, t) is not guaranteed to
be injective, and indeed sometimes it is not [10]. It is injective if and only if the
map R→ Aµ(R, σ, t) is injective.

Definition 6 (µ-Consistency). A TGW datum (R, σ, t) is µ-consistent if the ca-
nonical map ρ : R→ Aµ(R, σ, t) is injective.

Abusing language we say that a TGW algebra Aµ(R, σ, t) is regular (respectively
consistent) if (R, σ, t) is regular (respectively µ-consistent).

Theorem 2 ([10]). A regular TGW algebra Aµ(R, σ, t) is consistent if and only if

σiσj(titj) = µijµjiσi(ti)σj(tj), ∀i 6= j; (2a)

σiσk(tj)tj = σi(tj)σk(tj), ∀i 6= j 6= k 6= i. (2b)
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That relation (2a) is necessary for consistency of a regular TGW datum was
known already in [20], [21]. If (R, σ, t) is not regular, sufficient and necessary
conditions for µ-consistency are not known (see Problem 2). In this paper we
produce many examples of consistent but non-regular TGW algebras.

Conversely, for consistent TGW algebras one can characterize regularity as
follows:

Theorem 3 ([15, Thm. 4.3]). Let A = Aµ(R, σ, t) be a consistent TGW algebra.
Then the following are equivalent

(i) (R, σ, t) is regular.

(ii) Each monic monomial in A is non-zero and generates a free left (and
right) R-module of rank one.

(iii) A is regularly graded, i.e., for all g ∈ ZI, there exists a nonzero regular
element in Ag.

(iv) If a ∈ A is a homogeneous element such that bac = 0 for some monic
monomials b, c ∈ A, then a = 0.

2.3. Non-degeneracy of the gradation form

For a group G, any G-graded ring A =
⊕

g∈GAg can be equipped with a Z-bilinear
form γ : A×A→ Ae called the gradation form, defined by

γ(a, b) = pe(ab)

where pe is the projection A → Ae along the direct sum
⊕

g∈GAg, and e ∈ G is
the neutral element.

Theorem 4 ([15, Cor. 3.3]). The ideal Iµ(R, σ, t) is equal to the radical of the
gradation form γ of Cµ(R, σ, t) (with respect to the ZI-gradation), and thus the
gradation form on Aµ(R, σ, t) is non-degenerate.

2.4. R-rings with involution

Definition 7. Let R be a commutative ring.

(i) An involution on a ring A is a Z-linear map ∗ : A → A, a 7→ a∗ satisfying
(ab)∗ = b∗a∗, (a∗)∗ = a for all a, b ∈ A.

(ii) An R-ring with involution is a ring A equipped with a ring homomorphism
hA : R → A and an involution ∗ : A → A such that h(r)∗ = h(r) for all
r ∈ R.

(iii) If A and B are two R-rings with involution, then a map of R-rings with
involution is a ring homomorphism k : A → B such that k ◦ hA = hB and
k(a∗) = (k(a))∗ for all a ∈ A.

When R is commutative, any TGW algebra A = Aµ(R, σ, t) for which µij = µji
for all i, j, can be equipped with an involution ∗ given by X∗

i = Yi, Y
∗
i = Xi ∀i ∈ I,

r∗ = r ∀r ∈ R. Together with the canonical map ρ : R → A this turns A into an
R-ring with involution. In particular we regard the Weyl algebra AI as an R-ring
with involution in this way, where R = k[ui | i ∈ I] as in Example 1.
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3. The Clifford/Weyl superalgebras

In this section let ± ∈ {+,−} and put ∓ = −±. Let p and q be non-negative
integers and put n = p + q. We consider supersymmetric analogs A±

p|q of Clifford

and Weyl algebras and prove that they can be presented as TGW algebras.

3.1. Definition and properties

Definition 8. The Clifford/Weyl superalgebra of degree p|q, denoted A±
p|q, is de-

fined as the superalgebra with even generators xi, ∂i (i ∈ J1, pK) and odd generators
xi, ∂i (i ∈ Jp+ 1, nK) and relations

[∂i, xj ]± − δij = [xi, xj ]± = [∂i, ∂j ]± = 0 for all i, j ∈ J1, nK, (3)

where [· , ·]± denotes the super(anti-)commutator

[a, b]± = ab± (−1)p(a)p(b)ba.

Thus A+
p|q (respectively A−

p|q) is a supersymmetric analog of the Clifford (res-

pectively Weyl) algebra.
We will need the following result.

Lemma 5. The subalgebra R of A±
p|q generated by {∂ixi | i ∈ J1, nK} is maximal

commutative.

Proof. The algebra A±
p|q has a Z

n-gradation determined by deg(xi) = ei and

deg(∂i) = −ei where {ei}
n
i=1 is a Z-basis for Z

n. We have [∓∂ixi, xj ]− = δijxj
and [∓∂ixi, ∂j ]− = −δij∂j . In other words,

{
[∓xi∂i,−]−

}n
i=1

is a set of commuting

(even) derivations on A±
p|q whose common eigenspaces coincide with the graded

homogeneous components. Thus the centralizer of R is the subalgebra A0 of A±
p|q

consisting of elements of degree 0 ∈ Z
n. Clearly R ⊆ A0. The converse inclusion

is straightforward to check using the commutation relations (3) and induction on
the length of a monomial of degree zero. �

By the defining relations, A±
p|q is a graded algebra with respect to the free

abelian group Z
n. In addition A±

p|q has an involution ∗ given by x∗i = ∂i, ∂
∗
i = xi.

Since (∂ixi)
∗ = ∂ixi, A

±
p|q is an R-ring with involution. Even though A±

p|q is not a

domain in general, the following graded regularity property still holds.

Lemma 6. Let a ∈ A±
p|q be homogeneous of degree g ∈ Z

n. If a∗ ·a = 0 then a = 0.

Proof. We give a proof for A = A−
p|q, the other case being analogous. Write a =

rx(g) where r ∈ R and x(g) = x
(g1)
1 · · ·x

(gn)
n where for s > 0, x

(s)
i = xsi , x

(−s)
i = ∂si .

By reordering the indices, we may assume that the first k elements of the tuple
(gp+1, . . . , gn) are zero, and the rest are nonzero. Put ui = ∂ixi. For i > p we have
uixi = ∂ix

2
i = 0 and ui∂i = ∂ixi∂i = (1− xi∂i)∂i = ∂i. Thus we may assume that

r lies in the subalgebra of R generated by {u1, . . . , up+k}. If a · a∗ = 0 then we
have

0 = a · a∗ = rx(g)x(−g)r = r2cb (4)

1189CLIFFORD AND WEYL SUPERALGEBRAS



where

b = x
(g1)
1 · · ·x(gp)p · x(−gp)p · · ·x

(−g1)
1

which can be written as a polynomial in ui, i ≤ p, and

c = x
(gp+k+1)
p+k+1 · · ·x(gn)n · x(−gn)n · · ·x

(−gp+k+1)
p+k+1

which can be written as a polynomial in ui, i > p. Since b is regular in A, (4)
implies r2c = 0. We have the following isomorphisms of algebras

A ≃ A−
p|0 ⊗k A

−
0|q ≃ A−

p|0 ⊗k M2q (k) ≃M2k(A
−
p|0)⊗k M2q−k(k).

Under this isomorphism, r2c is mapped to r2 ⊗ c. That this is zero implies r2 = 0.
But R is isomorphic to (k[ui | i ∈ J1, pK])2

q

which is a direct product of domains,
hence r = 0. This proves a = 0. �

3.2. Realization as TGW algebras

To realize A±
p|q as TGW algebras, consider the commutative k-algebra

R±
p|q := k

[
u1, u2, . . . , un]/J

± (5)

where J± is the ideal generated by u2i − ui for all i is such that (−1)p(i) = ±1.
There is an injective homomorphism

ι : R±
p|q → A±

p|q,

ui 7→ ∂ixi.
(6)

We will often use ι to identify R±
p|q with its image in A±

p|q. One checks that the image

of ι coincides with the degree zero subalgebra, (A±
p|q)0, of A

±
p|q with respect to the

Z
n-gradation A±

p|q =
⊕

d∈Zn(A
±
p|q)d given by deg(xi) = ei, deg(∂i) = −ei, ∀i ∈

J1, nK.

For i, j ∈ J1, nK, put

λij = ∓(−1)p(i)p(j) (7)

and for i ∈ J1, nK, define τi ∈ Autk(R
±
p|q) by

τi(uj) =

{
λii(ui − 1), if i = j,

uj , otherwise.
(8)

One checks that τi preserves the relations u2j − uj = 0 for j with (−1)p(j) = ±1.

Let τ = (τi)
n
i=1 and u = (ui)

n
i=1. Let Aλ(R

±
p|q, τ, u) be the corresponding TGW

algebra.
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Theorem 7. There is an isomorphism of k-algebras

χ : Aλ(R
±
p|q, τ, u)

∼
−→ A±

p|q,

Xi 7→ xi,

Yi 7→ ∂i.

In particular, Aλ(R
±
I , τ, u) is consistent (i.e., the natural map

ρ : R±
p|q → Aλ(R

±
p|q, τ, u)

is injective).

Proof. Put R = R±
p|q and A = A±

p|q and [· , ·] = [· , ·]±. The identities xi(∂ixi) =

(xi∂i)xi, xi∂j = λij∂jxi for i 6= j, and xi∂i = λii(∂ixi+1) imply that relations (1)
are preserved. Thus we have a map Cλ(R, τ, u) → A of R-rings given by Xi 7→ xi,
Yi 7→ ∂i. Furthermore, for each i, j ∈ J1, nK, it can be checked, using Theorem 4
that [Xi, Xj ] and [Yi, Yj ] lie in the radical of the gradation form on Cλ(R, τ, u).
For example, if i 6= j then by Lemma 1 the homogeneous component of degree
−ei − ej is equal to RYiYj + RYjYi so by symmetry it suffices to show that
γ(YiYj , [Xi, Xj ]±) = 0. For simplicity, say i, j ≤ p and that ± = −. Then we get
γ(YiYj , [Xi, Xj ]−) = YiYj(XiXj − XjXi) = λ−1

ij uiuj − τ−1
i (uj)ui = 0. The other

cases are checked similarly. In fact the elements [Xi, Xj ] and [Yi, Yj ] generate the
radical. To see this, let I′ be the ideal of Cλ(R, τ, u) generated by all [Xi, Xj ]
and [Yi, Yj ]. It suffices to show that B := Cλ(R, τ, u)/I

′ has a non-degenerate
gradation form. By Lemma 1, any nonzero homogeneous component of B is a free
cyclic left R-module. If ± = −, say, then for a = (a1, . . . , an) ∈ Z

p × {−1, 0, 1}q

the monomial Z = X
(a1)
1 · · ·X

(an)
n (where X

(k)
i = (Xi)

k for k ≥ 0 and X
(k)
i =

(Yi)
|k| for k < 0) and its dual Z∗ = X

(−an)
n · · ·X

(−a1)
1 satisfy γ(Z∗, Z) = Z∗Z

which simplifies to a nonzero element of R. Since Ba = RZ this shows that γ
is nondegenerate on B. Hence the commutators generate the ideal Iλ(R, τ, u) by
Theorem 4. Since [xi, xj ] = [∂i, ∂j ] = 0 in A this shows that we have a well-defined
map χ : Aλ(R, τ, u) → A of R-rings given by Xi 7→ xi, Yi 7→ ∂i. Since xi and ∂i
generate A, the map χ is surjective. It remains to prove it is injective. Since χ is
a map of R-rings, the following diagram is commutative:

Aλ(R, τ, u) A

R

χ

ι
ρ . (9)

Since ι is injective, ρ is injective. That is, Aλ(R, τ, u) is consistent. Identifying R
with the images under ρ and ι, the map χ|R is the identity map. Both Aλ(R, τ, u)
and A are Z

n-graded algebras and χ is a graded homomorphism. Therefore J =
kerχ is a graded ideal of Aλ(R, τ, u). If J 6= 0 then, since Aλ(R, τ, u) is a consistent
TGW algebra, J ∩ R 6= 0. However that contradicts that χ|R is injective. Hence
J = 0 which completes the proof that χ is an isomorphism. �
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Remark 1. When q > 0, Theorem 7 implies that A−
p|q is a consistent TGW algebra

which is not regularly graded. Indeed, if j > p, then uj is not regular in R because
uj(uj + 1) = 0. Thus, by Theorem 3, Aλ(R, τ, u) is not regularly graded. Note
that for non-regularly graded TGW algebras, it is not known if relations (2) are
sufficient (or even necessary) for it to be consistent.

Remark 2. The algebra A−
0|q is finite-dimensional (an even Clifford algebra). Hence

Theorem 7 shows that TGW algebras can be finite-dimensional.

Remark 3. Theorem 7 suggests that the class of TGW algebras already contains
not only quantum deformations of many algebras (see, e.g., [21, Ex. 2.2.3]), but also
supersymmetric analogues of certain algebras, without modifying the definition of
TGW algebras.

4. A new family of TGW algebras A(γ)±

In this section we define a family of TGW algebras that depend on a matrix.
This construction is a supersymmetric generalization of the one in [16].

4.1. Construction via monomial maps

In this section we use the Clifford/Weyl superalgebras A±
p|q to construct new TGW

algebras denoted A(γ)±. Our method is to look for maps

ϕ : Aµ(R, σ, t) → A±
p|q

of R-rings with involution. Here R = R±
p|q. The motivation is threefold. First it

generalizes the construction from [16] which corresponds to the case A−
p|0. Second,

the TGW algebras obtained in this way automatically come with ϕ, which may
be thought of as a representation by differential operators. Thirdly we show in
Section 5 that certain quotients of enveloping algebras of Lie superalgebras are
TGW algebras of exactly this form.

As in [16] we restrict attention to monomial embeddings

ϕ(Xi) = x
(γ1i)
1 x

(γ2i)
2 · · ·x(γni)

n . (10)

Here n = p+ q, γji ∈ Z and we use the notation

x
(k)
j =

{
xkj , k ≥ 0,

∂−kj , k < 0.

In the case of [16], under mild assumptions on ϕ the form (10) was in fact
shown to be necessary. Here in our more general setting we shall be content with
showing how the assumption that ϕ is a homomorphism of R-rings with involution
such that (10) holds, naturally gives rise to conditions on γji and also specifies the
TGW datum (automorphisms σi, elements ti ∈ R and scalars µij).

First, since ϕ is supposed to be a map of rings with involution, we necessarily
have

ϕ(Yi) = ϕ(X∗
i ) = ϕ(Xi)

∗ = x(−γni)
n · · ·x

(−γ2i)
2 x

(−γ1i)
1 .
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Second, since ϕ is a map of R-rings and ti ∈ R we have

ti = ϕ(ti) = ϕ(YiXi) = ϕ(Yi)ϕ(Xi)

= x(−γni)
n · · ·x

(−γ2i)
2 x

(−γ1i)
1 · x

(γ1i)
1 x

(γ2i)
2 · · ·x(γni)

n

= x
(−γ1i)
1 x

(γ1i)
1 · x

(−γ2i)
2 x

(γ2i)
2 · · ·x(−γni)

n x(γni)
n .

In the last step we used the TGW algebra realization of A±
p|q which in particular has

τi(uj) = uj for j 6= i. To obtain an explicit formula for ti we compute x
(−γji)
j x

(γji)
j .

If γji > 0 we have

x
(−γji)
j x

(γji)
j = ∂

γji
j x

γji
j = τ

(−γji+1)
j (uj) · · · τ

−1
j (uj)uj .

Here we see that this is zero if λjj = −1 and γji > 1 because then τ−1
j (uj)uj =

τ−1
j (ujλjj(uj − 1)) = 0 due to u2j = uj in R. To avoid this scenario (having ti = 0
in a TGW algebra leads to degenerate behaviour such as Xi = Yi = 0) we make
our first assumption on γji:

|γji| ≤ 1 for all i, j such that λjj = −1. (11)

Under this assumption we can proceed and obtain the formula

x
(−γji)
j x

(γji)
j = (uj + γji − 1) · · · (uj + 1)uj .

We used that τj(uj) = λjj(uj − 1), so the formula is clear when λjj = 1 while if
λjj = −1 there is at most one factor (empty product is interpreted as 1.) The case
γji < 0 is handled analogously (which is why we put absolute value in (11)).

The final formula for ti is

ti = u1iu2i · · ·uni,

uji =





(uj + γji − 1) · · · (uj + 1)uj , γji > 0,

1, γji = 0,

(uj − |γji|) · · · (uj − 2)(uj − 1), γji < 0.

(12)

Similarly σi can be deduced as follows. We have

ϕ(Xiuj) = ϕ(σi(uj)Xi).

Since ϕ is a homomorphism of R-rings, we have

ϕ(Xi)uj = σi(uj)ϕ(Xi).

Substituting (10) we immediately obtain the sufficient condition

σi = τγ1i1 τγ2i2 · · · τγni
n . (13)
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What remains is to ensure that for i 6= j,

XiYj = µijYjXi

holds for appropriate scalars µij , under suitable assumptions on γkl. We have

ϕ(Xi)ϕ(Yj) = x
(γ1i)
1 · · ·x(γni)

n · x(−γnj)
n · · ·x

(−γ1j)
1 .

First we observe that if there exists k ∈ {1, 2, . . . , n} with λkk = −1 and
γkiγkj < 0 then ϕ(Xi)ϕ(Yj) = 0 = ϕ(Yj)ϕ(Xi). If no such k exists we want

to move all factors on the right x
(−γlj)
l to the left of all factors x

(γki)
k . The only

problem is when k = l. A natural assumption for it to be possible is that actually
γkiγkj ≤ 0, because then the two factors are either both powers of xk or both
powers of ∂k.

To summarize, we make the following second assumption on γji:

∀i 6= j : Either γkiγkj < 0 for some k with λkk = −1, or γkiγkj ≤ 0 for all k.

Under this assumption we then have for all k, l:

x
(γki)
k x

(γlj)
l = λ

γkiγlj
kl x

(γlj)
l x

(γki)
k .

Thus we finally obtain that

ϕ(Xi)ϕ(Yj) = µijϕ(Yj)ϕ(Xi)

holds, provided

µij =
∏

1≤k,l≤n

λ
γkiγlj
kl .

Using that λkl = (∓1)(−1)p(k)p(l) this can be written

µij = µ±
ij = (∓1)p

′(i)p′(j) · (−1)p(i)p(j), (14)

where the parities are defined by

p(i) =

n∑

k=1

γ̄kip(k), (15)

p′(i) =
n∑

k=1

γ̄ki (16)

(x̄ ∈ Z/2Z is the image of x ∈ Z under the canonical projection).
Note that (15) expresses that the matrix γ, when regarded as a Z-module map

Z
m → Z

n, is an even map, with respect to the parity p(a1, . . . , an) =
∑
k ākp(k).

Theorem 8. Let p, q,m be non-negative integers, put n = p+ q. Let γ = (γji) be
a n×m-matrix with integer entries satisfying the following two conditions:
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(i) |γji| ≤ 1 whenever λii = −1,
(ii) ∀i 6= j: either γkiγkj < 0 for some k with λkk = −1, or γkiγkj ≤ 0 for all k.

Then there exist a TGW algebra A(γ)± = Aµ(R, σ, t) with index set J1,mK, and a
homomorphism of R-rings with involution

ϕ : Aµ(R, σ, t) → A±
p|q. (17)

The homomorphism is uniquely determined by the condition

ϕ(Xi) = x
(γ1i)
1 x

(γ2i)
2 · · ·x(γni)

n ,

and the TGW algebra is given by the following data:

R = R±
p|q = k[u1, . . . , un]/(u

2
i − ui | λii = −1), (18)

where λij = ∓(−1)p(i)p(j) and t = (t1, . . . , tm) where

ti = u1iu2i · · ·uni

uji =





(uj + γji − 1) · · · (uj + 1)uj , γji > 0,

1, γji = 0,

(uj − |γji|) · · · (uj − 2)(uj − 1), γji < 0.

(19)

Lastly, σ = (σ1, . . . , σm), where

σi = τγ1i1 τγ2i2 · · · τγni
n (20)

where

τi(uj) =

{
λii(ui − 1), if i = j,

uj , otherwise,
(21)

and µ = (µij)1≤i,j≤m where

µij = (∓1)p
′(i)p′(j) · (−1)p(i)p(j)

where p(i) and p′(i) were defined in (15)–(16).

Proof. The discussion preceding the theorem proves that there exists a homomor-
phism of R-rings with involution

ϕ′ : C = Cµ(R, σ, t) → A±
p|q.

All that remains is to show that ϕ′(I) = 0 where I is the unique maximal Zm-graded
ideal trivially intersecting the degree zero component of C. If a is a homogeneous
element of I then a∗ · a = 0 hence, ϕ′(a)∗ · ϕ′(a) = 0. By Lemma 6, it follows that
ϕ(a) = 0. �
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Remark 4. Theorem 8 provides a large family of consistent non-regular TGW
algebras.

Remark 5. Let p = 3, q = 2, m = 4 and

γ =




1
−1 1

−1 1
−1 1

−1



.

(The dashed line separates even from odd rows.) The corresponding TGW algebra
A(γ)− is a quotient of U

(
gl(3|2)

)
(see Section 5).

4.2. Injectivity of ϕ

We prove a theorem which gives equivalent conditions for ϕ defined in (17) to be
injective. This result will be used in Section 5.

Lemma 9 (Weak injectivity of ϕ). If g ∈ Z
m and a∈A(γ)±g , a 6=0, then ϕ(a) 6=0.

Proof. Suppose a 6= 0. Then, by the non-degeneracy of the gradation form of a
TGW algebra, ba 6= 0 for some b ∈ A(γ)±−g. Applying ϕ we get ϕ(ba) 6= 0 since
ϕ|RE

is injective. Hence ϕ(b)ϕ(a) 6= 0, so in particular ϕ(a) 6= 0. �

Let ∗ : A±
p|q → A±

p|q, a 7→ a∗, be the unique k-linear map satisfying (a∗)∗ =

a, (ab)∗ = b∗a∗ for all a, b ∈ A±
p|q, and x

∗
i = ∂i for all i.

Lemma 10. Let γ be a matrix satisfying the conditions of Theorem 8 and let
A(γ)± be the corresponding TGW algebra. Let a ∈ A(γ)± be a homogeneous
element of degree g ∈ Z

m. If a∗ · a = 0 then a = 0.

Proof. Suppose a 6= 0. By Lemma 9, ϕ(a) 6= 0. So, by Lemma 6, ϕ(a)∗ · ϕ(a) 6= 0.
Since ϕ is a map of rings with involution, ϕ(a∗ · a) 6= 0. Hence a∗ · a 6= 0. �

Remark 6. If λii = 1 for all i then R±
p|q defined in (18) is a domain. Then, by [10,

Prop. 2.9], A(γ)± is also a domain. Hence Lemma 10 holds trivially in this case.
For a ZI-graded algebra A =

⊕
g∈ZI Ag we define the (graded) support of A to

be Supp(A) :=
{
g ∈ ZI | Ag 6= {0}

}
.

Lemma 11. Let A(γ)± be a TGW algebra as constructed in Theorem 8. Let S± ⊆
Z
m be the support of A(γ)±. Then, regarding γ as a Z-linear map from Z

m to Z
n

we have
γ(S+) ⊆ {−1, 0, 1}p × Z

q,

γ(S−) ⊆ Z
p × {−1, 0, 1}q.

Proof. We consider the case S−. The other case is analogous. Let g ∈ S−. Since
any TGW algebra is generated as a left R module by the reduced monomials
(Lemma 1), there exist sequences (i1, i2, . . . , ik) and (j1, j2, . . . , jl) of elements
from {1, 2, . . . ,m} with {i1, i2, . . . , ik} ∩ {j1, j2, . . . , jl} = ∅ such that

a = Yi1Yi2 · · ·Yik ·Xj1Xj2 · · ·Xjl
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is a nonzero element in A(γ)−g . By Lemma 9, ϕ(a) 6= 0. We have

ϕ(a) =
m∏

r=1

x
(−γri1 )
r · · ·x

(−γrik )
r · x

(γrj1 )
r · · ·x

(γrjl )
r .

For r > p, a product of the form

x
(−γri1 )
r · · ·x

(−γrik )
r · x

(γrj1 )
r · · ·x

(γrjl )
r

can only be nonzero if the factors x
(β)
r alternate between xr and ∂r (ignoring factors

where β = 0). In particular, the number of xr’s must differ from the number of
∂r’s by at most one. �

To prove that homomorphisms from TGW algebras are injective, the following
result is useful.

Theorem 12 ([15, Thm. 3.6]). If A = Aµ(R, σ, t) is consistent, then the centra-
lizer CA(R) of R in A is an essential subalgebra of A, in the sense that J∩CA(R) 6=
{0} for any nonzero ideal J of A.

Theorem 13. Let γ be a matrix as in Theorem 8 and A = A(γ)± be the corres-
ponding TGW algebra. Put R = R±

p|q. The following statements are equivalent.

(i) R is a maximal commutative subalgebra of A.
(ii) If g ∈ Supp(A) is such that σg :=

∏m
i=1 σ

gi
i = IdR, then g = 0.

(iii) Put

Z
p|q
− = Z

p × (Z/2Z)q, Z
p|q
+ = (Z/2Z)p × Z

q.

Then the composition

Supp(A) → Z
m γ

−→ Z
n = Z

p × Z
q P
−→ Z

p|q
±

is injective (the first map is inclusion and the last is canonical projection).
(iv) The restriction of γ : Zm → Z

n to Supp(A) is injective.
(v) The map ϕ defined in (17) is injective.

Proof. (i)⇒(ii): Suppose g ∈ Supp(A) with σg = IdR. Then for any a ∈ Ag and
r ∈ R we have ar = σg(r)a = ra which means that Ag ⊆ CA(R). But CA(R) = R
by (i). Thus, since Ag 6= {0}, this means that g must be 0 and Ag = R.

(ii)⇒(iii): Suppose P ◦ γ(g) = 0 in Z
p|q
± for some g ∈ Supp(A). Then σg =

∏n
r=1 τ

γ(g)r
r = IdR because τ2r = IdR for r > p when ± = − and for r ≤ p when

± = +. By (ii) this implies g = 0.
(iii)⇒(i): For simplicity we assume ± = −. The other case is symmetric. Suppose

a ∈ CA(R), a 6= 0. Since CA(R) is a graded subalgebra of A we may without loss
of generality suppose there exists g ∈ Z

m such that a ∈ Ag ∩ CA(R). Since a 6= 0,
this implies g ∈ Supp(A). For all r ∈ R we have (σg(r)−r)a = ar−ra = 0. Taking
r = uj we get

0 = (σg(uj)−uj)a = (τ
γ(g)j
j (uj)−uj)a =





−γ(g)ja, j ≤ p,

0, j > p, γ(g)j = 0 in Z/2Z,

(1− 2uj)a, j > p, γ(g)j = 1 + 2Z.
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Since a 6= 0, we get γ(g)j = 0 for all j ≤ p. Suppose j > p and γ(g)j = 1 + 2Z,
then 0 = uj(1− 2uj)a = −uja since u2j = uj . Combining this with (1− 2uj)a = 0
we get a = 0, a contradiction. Therefore, for j > p we must have γ(g)j = 0 in
Z/2Z. This proves that γ(g) = 0 in Z

p ⊕ (Z/2Z)q.
(iii)⇒ (iv): Trivial.
(iv)⇒ (iii): Suppose P ◦ γ(g) = 0 for some g ∈ Supp(A). By Lemma 11 we get

γ(g) = 0 so by (iv), g = 0.
(i)⇒(v): Let K = ker(ϕ). If K 6= {0}, then by Theorem 12, K ∩ CA(R) 6= {0}.

By (i), CA(R) = R. Hence K ∩R 6= {0}. But by Theorem 8, ϕ is a map of R-rings
with involution and thus in particular ϕ|R = IdR (where we used the injective
maps ρ and ι to identify R with its image in A and AE(k) respectively). This
contradiction shows that K = {0}.

(v)⇒(i): If a ∈ CA(R) then ϕ(a) ∈ CA±
p|q

(R) which equals R by Lemma 5. By

(v) this implies a ∈ R. �

Example 2. Let p, q be non-negative integers and n = p + q > 0. Consider the
matrices

α =




1
−1 1

−1
. . . 1

−1



, β =




1
−1 1

−1
. . . 1

−1 1



,

γ =




1
−1 1

−1
. . . 1

−1 2



.

These are n ×m matrices (where m = n − 1 in the case of α and m = n for
β, γ) and define Z-linear maps Zm → Z

n. In each case the top p rows are defined
to be even and the remaining q rows are odd. It is easy to see that these maps are
injective, hence by Theorem 13(iv)⇒(v), the homomorphism ϕ : A(ζ)± → A±

p|q is

injective for ζ = α, β, γ.

4.3. A description of the graded support of A(γ)−

Although sufficient for the application to Lie superalgebras, the characterization
in Theorem 13 of the injectivity of the map (17) is not completely satisfactory
because we lack a good description of the support of A(γ)±. In this section we give
a combinatorial description of the support of A(γ)− in terms of certain pattern-
avoiding vector compositions of the columns of γ. A similar analysis applies to
A(γ)+. This allows us to compute the support in the certain cases. In addition,
it shows that that this is a non-trivial problem for a general (non-regular) TGW
algebra.

Put W = Z
d. A d-dimensional vector composition of w ∈ W is a tuple c =

(c1, c2, . . . , cℓ) ∈ W ℓ such that c1 + c2 + · · · + cℓ = w. The non-negative integer
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ℓ is the length of c. The ci are called the parts of the composition c. A given
vector u ∈W appears with multiplicity m (in c) if cj = u for exactly m choices of
j ∈ J1, ℓK.

Example 3.





1
1
1


,



3
0
−1


,



0
−1
1


,



3
0
−1




 is a 3-dimensional vector composition of



7
0
0


.

Theorem 14. Let A = A(γ)− be a TGW algebra constructed as in Theorem 8.
The following are equivalent for g ∈ Z

m:

(i) g ∈ Supp(A).
(ii) There exists an n-dimensional vector composition of γ(g) of length |g| =∑

i∈V |gi| such that
(a) each part is of the form sgn(gi)γ(ei) for i ∈ V which appears with

multiplicity |gi|,
(b) for each r > p the sequence

(
sgn(gi1)γri1 , . . . , sgn(gi|g|)γri|g|

)
contains

no consecutive subsequence of the form

(1, 0, . . . , 0, 1) or (−1, 0, . . . , 0,−1)

where there are zero or more 0’s.

Proof. By Lemma 1, g ∈ Supp(A) if and only if Ag contains a reduced monomial
a = Zi1Zi2 · · ·Zi|g| (where each Zik ∈

⋃
j∈V {Xj , Yj}) such that a 6= 0, which by

Lemma 9 is equivalent to ϕ(a) 6= 0. Put εk = sgn(gik). We have

ϕ(a) = ϕ(Zi1) · · ·ϕ(Zi|g|) = ±
∏

r∈E

x
(ε1γri1 )
r · · ·x

(ε|g|γri|g| )

r

which is nonzero if and only if property (b) in the theorem holds. �

Example 4. If q = 0 then Supp
(
A(γ)−

)
= Z

m because condition (b) is void.

Example 5. Let m = 3, p = 1, q = 2 and γ =



1 3 0
1 0 −1
1 −1 1


. Example 3 shows

that (1, 2, 1) belongs to the graded support of the TGW algebra A(γ)−. On the
other hand (2, 1, 0) does not, because there is no vector composition of length 3

with two parts equal to



1
1
1


 and one part equal to




3
0
−1


 which avoids the pattern

(1, 0, . . . , 0, 1) in the second row.

Example 6. Let m = 2, p = 0, q = 1 and γ =
[
1 −1

]
. Then

Supp
(
A(γ)

)
= {(g1, g2) ∈ Z

2 | |g1 − g2| ≤ 1}.

Example 7. Let m = 2, p = 0, q = 2, γ =

[
1 0
1 −1

]
, then

Supp
(
A(γ)

)
= {(0, 0),±(0, 1),±(1, 0),±(1, 1),±(1, 2)}.
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5. Relation to gl(m|n) and osp(m|2n)

Irreducible completely pointed weight modules have been classified and realized
by differential operators in the case of simple finite-dimensional complex Lie al-
gebras g in [6], [4] and over Uq(sln) in [11]. In [9, Sect. 6], Coulembier classified all
irreducible completely pointed highest weight modules over the orthosymplectic
Lie superalgebras osp(m|2n), and realized them by differential operators on super-
symmetric Grassmann algebras. See also [23] for a uniform treatment of spinor
representations of orthosymplectic Lie superalgebras. In this section we show that,
analogously to the Lie algebra case [16], the realization of osp(m|2n) by differential
operators factors through a corresponding twisted generalized Weyl algebra of the
form A(α).

Recall that the Lie superalgebra gl(m|n) is the Lie superalgebra of all linear
transformations of (m|n)-dimensional vector superspace, and osp(m|2n) is the
subalgebra of gl(m|2n) preserving a non-degenerate even symmetric bilinear form
on an (m|2n)-dimensional vector superspace or, equivalently, the subalgebra of
gl(2n|m) preserving a non-degenerate even skew-symmetric bilinear form on an
(2n|m)-dimensional vector superspace. The even part of osp(m|2n) is the direct
sum so(m)⊕sp(2n). The Lie superalgebras gl(m|n) and osp(m|2n) are Kac–Moody
superalgebras and can be described by Chevally generators and relations; see [17],
as follows. Let p, q be nonnegative integers, n = p+q > 0. The Chevalley generators
of gl(p|q) are e1, . . . , en−1, h1, . . . , hn, f1, . . . , fn−1, with the convention that ep, fp
are odd and all other generators are even. They satisfy the relations

[hi, hj ] = 0, [hi, ej ] = δi,jej − δi,j+1ej , [hi, fj ] = −δi,jfj + δi,j+1fj ,

[ei, fj ] = δi,j(hi − (−1)δiphi+1).

The Lie superalgebra gl(p|q) is the quotient of the infinite-dimensional Lie algebra
with the above relations by the maximal ideal which intersects trivially the Cartan
subalgebra generated by h1, . . . , hn. The Chevalley generators of osp(2p+1|2q) are
obtained from those for gl(p|q) by adding odd generators en, fn and relations

[hi, en] = δi,nen, [hi, fn] = −δi,nfn, [en, fn] = hn,

[ei, fn] = [en, fi] = 0 if n 6= i.

The Chevalley generators of osp(2p|2q) are obtained from those for gl(p|q) by
adding even generators e2n, f

2
n. From the above description it is not difficult to see

that we have an embedding of Lie superalgebras

gl(p|q) ⊂ osp(2p|2q) ⊂ osp(2p+ 1|2q).

5.1. Weyl superalgebra and osp(2p|2q)

Let V be a vector superspace equipped with even skew-symmetric form ω : V × V
→ k. We define the Weyl superalgebra W (V, ω) as the quotient of the tensor
superalgebra T (V ) by the relations

v ⊗ w − (−1)p(v)p(w)w ⊗ v = ω(v, w).
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Lemma 15. Let g denote the span of the elements of the form vw+(−1)p(v)p(w)wv
for all v, w ∈ V . Then g is closed under the supercommutator and the adjoint action
of g on V preserves the form ω.

Proof. Note that
vw + (−1)p(v)p(w)wv = 2vw − ω(v, w)

and

[vw, u] = v[w, u] + (−1)p(w)p(u)[v, u]w = ω(w, u)v + (−1)p(w)p(u)ω(v, u)w.

The super Jacobi identity ensures that ω is advw-invariant. Indeed,

ω([vw, u1], u2) + (−1)p(vw)p(u1)ω(u1, [vw, u2])

= [[vw, u1], u2] + (−1)p(vw)p(u1)[u1, [vw, u2]] = [vw, [u1, u2]] = 0.

Finally, g is closed under supercommutator as

[vw, xz] = [vw, x]z + (−1)p(vw)p(x)x[vw, z] = [vw, x]z + (−1)p(vw)p(xz)[vw, z]x. �

Corollary 16. If ω is non-degenerate then g constructed in the previous lemma
is isomorphic to osp(r|s) where r = dimV1 and s = dimV0.

Let us assume that the ω is non-degenerate and both r and s are even. Set
r = 2p, s = 2q and n = p+ q. Choose basis x1, . . . , xn, y1, . . . , yn in V such that

ω(xi, xj) = ω(yi, yj) = 0, ω(yi, xj) = δi,j .

The parity is defined by

p(xi) = p(yi) =

{
1 if i ≤ p

0 if i > p.

In this case the Weyl algebra is isomorphic to A−
q|p since the defining relations are

xixj − (−1)p(i)p(j)xjxi = yiyj − (−1)p(i)p(j)yjyi = 0,

yixj − (−1)p(i)p(j)xjyi = δij .

Let g = gl(p|q), or osp(2p|2q) and identify Z
m with the root lattice of g with

basis consisting of the distinguished simple roots of g. Let ζ : Zm → Z
n be the

Z-linear maps given by the matrices




1
−1 1

−1
. . . 1

−1



,




1
−1 1

−1
. . . 1

−1 2




respectively. Let A−
q|p be the Weyl superalgebra.
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Theorem 17. Let p, q be nonnegative integers, n = p+ q > 0. Let g = gl(p|q), or
osp(2p|2q) and let ζ be as above. Then there is a commutative triangle of associative
algebras with involution

U
(
g
)

A−
q|p

A(ζ)−

π

ψ ϕ
(22)

where ϕ is given by Theorem 8, ψ(ei) = Xi, ψ(fi) = Yi, ψ(hii) = λii(ui − 1), and

π(ei) =

{
xi∂i+1, i < n,

x2n, i = n,
π(fi) = π(ei)

∗, π(hi) = xi∂i + (−1)p(i) 12 .

Proof. First, the existence of π follows from Corollary 16. We need to check that
π̃(j) = 0. This follows immediately from the fact that π̃(h) is the self-centralizing
subalgebra of π̃(g̃). Therefore we have a map π̃ : g → A−

q|p which extends to

the homomorphism π : U(g) → A−
q|p of associative algebras. By Theorem 13, ϕ is

injective. Moreover, the image of ϕ coincides with the image of π. This immediately
proves the existence of a unique map ψ such that the diagram commutes. �

5.2. Clifford superalgebra and osp(2p + 1|2q)

Let V be a vector superspace equipped with even symmetric form β : V × V →
k. We define the Clifford superalgebra Cliff(V, β) as the quotient of the tensor
superalgebra T (V ) by the relations

v ⊗ w + (−1)p(v)p(w)w ⊗ v = β(v, w).

Note that Cliff(V, β) is finite-dimensional iff V is purely even. As any associative
superalgebra Cliff(V, β) has the associated Lie superalgebra structure defined by
[x, y] = xy−(−1)p(x)p(y)yx. Let g denote the Lie subalgebra of Cliff(V, β) generated
by V .

Lemma 18. We have the decomposition g = V ⊕ [V, V ] such that [[V, V ], V ] ⊂
V . As a vector space [V, V ] is isomorphic to Λ2V and concides with the span of
2vw − β(v, w) for all v, w ∈ V .

Proof. First, we compute the commutator

[v, w] = vw − (−1)p(v)p(w)wv = 2vw − β(v, w).

Next we compute the commutator between [v, w] and u using super Leibniz identity

[u, [v, w]] = 2[u, vw] = 2([u, v]w + (−1)p(u)p(v)v[u,w])

= 2(2uvw − β(u, v)w + (−1)p(u)p(v)2vuw − (−1)p(u)p(v)β(u,w)v).

Using vu = −(−1)p(u)p(v)uv + β(v, u) and the symmetry of β we obtain

[u, [v, w]] = 2(β(u, v)w − (−1)p(u)p(v)β(u,w)v).

Hence we have obtained [[V, V ], V ] ⊂ V and by Jacobi identity [[V, V ], [V, V ]] ⊂
[V, V ]. �
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We concentrate on the case when β is non-degenerate and dim V = (2p|2q), let
n = p+ q and choose a basis ξ1, . . . , ξn, η1, . . . , ηn such that

β(ξi, ξj) = β(ηi, ηj) = 0, β(ηi, ξj) = δi,j .

The parity is defined by

p(ξi) = p(ηi) =

{
0 if i ≤ p,

1 if i > p.

The corresponding Clifford superalgebra is isomorphic to A+
p|q. The defining rela-

tions are

ξiξj + (−1)p(i)p(j)ξjξi = ηiηj + (−1)p(i)p(j)ηjηi = 0,

ηiξj + (−1)p(i)p(j)ξjηi = δij .

Lemma 19. The Lie subsuperalgebra of A+
p|q generated by ξi, ηi for i = 1, . . . , n

is isomorphic to osp(2p+ 1|2q).

Proof. In notations of Lemma 18, consider the adjoint action of [V, V ] on V . The
Leibniz rule implies that the form β is invariant under this action. Hence [V, V ]
is isomorphic to osp(2p, 2q) and V is its natural representation. Since obviously
V ⊕ [V, V ] is simple, it must be isomorphic to osp(2p+ 1|2q). �

Corollary 20. There exist homomorphisms of associative superalgebras

π1 : U(osp(2p|2q)) → A+
p|q and π2 : U(osp(2p+ 1|2q)) → A+

p|q.

Let q 6= 0. Let us assume that e1, . . . , en and f1, . . . fn are the Chevalley
generators of osp(2p+1|2q) such that ep, fp, en, fn are odd and all other generators
are even. Then we have

π2(ei) =

{
ξiηi+1 if i < n,

ξn if i = n,
π2(fi) =

{
ξi+1ηi if i < n,

ηn if i = n,

and π1 is obtained from π2 by restriction.
Let g = gl(p|q), osp(2p|2q) or osp(2p+1|2q) and identify Z

m with the root lattice
of g with basis consisting of the distinguished simple roots of g. Let ζ : Zm → Z

n

be the Z-linear maps given by the matrices




1
−1 1

−1
. . . 1

−1



,




1
−1 1

−1
. . . 1

−1 2



,




1
−1 1

−1
. . . 1

−1 1




(23)

respectively. Let A+
p|q = AI be the Weyl algebra with index superset I, I0̄ =

J1, pK, I1̄ = Jp+ 1, p+ qK.
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Theorem 21. Let p, q be nonnegative integers, n = p + q > 0. Let g = gl(p|q),
osp(2p|2q) or osp(2p + 1|2q). Then there is a commutative triangle of associative
algebras with involution

U
(
g
)

A+
p|q

A(ζ)+

π

ψ ϕ
(24)

where ϕ is given by Theorem 8, ψ(ei) = Xi, ψ(fi) = Yi, ψ(hii) = λii(ui − 1), and

π(ei) =





xi∂i+1, i < n,

xn, i = n, g = osp(2q + 1|2p),

x2n, i = n, g = osp(2q|2p),

π(fi) = π(ei)
∗, π(hi) = xi∂i − (−1)p(i) 12 .

The proof is similar to Theorem 17 and we leave it to the reader.

5.3. On A
+

p|q versus A
−
q|p

If we disregard Z2-grading, then we have an isomorphism of associative algebras
A±
p|0 ≃ A∓

0|p. We suspect that A+
p|q and A−

q|p are not isomorphic in general. Note

also that A−
p|q is isomorphic to the tensor product M2q ⊗ (A−

p|0), while A
+
q|p is

isomorphic to the supertensor product M2q ⊗ (A+
0|p). However, we do have the

following result.

Corollary 22. Consider the sublattice

Γ = {(a1, . . . , an) | a1 + · · ·+ an ∈ 2Z}

in Z
n. Let C±

p|q denote the subsuperalgebra of elements of A±
p|q with the support in

Γ. Then C+
p|q and C−

q|p are isomorphic superalgebras.

Proof. Theorems 17 and 21 provide the homomorphisms from U(osp(2p|2q)) to
A−
q|p and A+

p|q respectively. It follows from formulas defining these isomorphisms

that C−
q|p and C+

p|q are respective images. Consider the modules

M− := A−
q|p ⊗k[∂1,...,∂n] k, M+ := A+

p|q ⊗k[η1,...,ηn] k,

and let
N− = C−

q|p(1⊗ 1), N+ = C+
p|q(1⊗ 1).

Note that N± is a simple module over C+
p|q and C

−
q|p, respectively, hence both N+

and N− are simple U(osp(2p|2q))-modules. Furthemore if v = 1⊗ 1, then

fiv = 0, hiv = −(−1)p(i)v.

Thus both N+ and N− are simple lowest weight modules with the same lowest
weight. Thus, N+ andN− are isomorphic, therefore they have the same annihilator
J ⊂ U(osp(2p|2q)) and we obtain

C+
p|q ≃ U(osp(2p|2q)/J ≃ C−

q|p. �
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5.4. Consequence for classical Lie algebras

Taking q = 0 in Theorem 21 we immediately get the following result.

Corollary 23. For g = sln, so2n+1, or so2n, there is a corresponding γ and a
commutative triangle of associative algebras with involution

U
(
g
)

A+
n|0

A(γ)+

π

ψ ϕ
(25)

We can now prove that further primitive quotients of enveloping algebras of
classical Lie algebras are examples of TGWAs. This extends previous results by
the authors [16], where a condition for U(g)/J to be a not-necessarily abelian
TGW algebra (i.e., we allowed σiσj 6= σjσi) was given.

Theorem 24. If g = so2n, so2n+1 or sp2n and M be a finite-dimensional comp-
letely pointed simple g-module and let J = AnnU(g)M . Then U(g)/J is graded
isomorphic to a TGWA of the form A(γ)+. The same is true for any fundamental
representation of sln.

Proof. The problem is to show that we can choose σi so that the group G generated
by σi is abelian.

If g = so2n or so2n+1 and M is a spinor representation, then U(g)/J is isomor-
phic to a subalgebra in the Clifford algebra with abelian G as follows from Corol-
lary 23.

Let g = sln. Consider the embedding sln ⊂ so2n+1 induced by the embedding of
the corresponding Dynkin diagrams. The restriction of the spinor representation to
sln contains all fundamental representations. Let γ be the rightmost matrix in (23)
and consider the subalgebra in C⊂A(γ)+ generated byX1, . . . , Xn−1, Y1, . . . , Yn−1.
Let I = AnnCM and B = C/I ≃ End(M). Then B is a direct summand in the
semisimple algebra C. Hence σi for i = 1, . . . , n−1 preserve B∩R and the statement
follows.

Let Γ denote the set of weights of M . Note that σi must permute projectors
Eβ , hence it is defined by a permuation of Γ.

Let M be the standard representation of sp2n. Then Γ = {±εi}. Let σ1 = σ2 =
· · · = σn−1 be defined by the permutation κ = (ε1, . . . , εn)(−εn, . . . ,−ε1) and σn
be defined by the permutation τ = (ε1,−ε1) · · · (εn,−εn).

If g = so2n and M is the standard representation, then we choose σ1 = · · · =
σn−1 as in the previous case and let σn be given by the permutation κτ .

Finally, if g = so2n+1 and M is the standard representation, then Γ = {±εi, 0}
and we define σ1 = · · · = σn by the permutation (ε1, . . . , εn, 0,−εn, . . . ,−ε1). �

6. Open problems

Problem 1. For a simple Lie algebra g, list all finite-dimensional irreducible g-
modulesM for which there exists a graded isomorphism between U(g)/AnnU(g)M
and a TGW algebra (equivalently, for which there is a choice of commuting σi).
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We believe none of the non-fundamental representations of sln for n > 2 are in
this list. The remaining cases to consider are the 27-dimensional representation of
E6 and 56-dimensional representation of E7.

Problem 2. Find necessary and sufficient conditions for a not necessarily regular
TGW algebra Aµ(R, σ, t) to be consistent, generalizing the main result of [10].
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[7] T. Brzeziński, Circle and line bundles over generalized Weyl algebras, Algebr.
Represent. Theory 19 (2016), no. 1, 57–69.

[8] T. Cassidy, B. Shelton, Basic properties of generalized down-up algebras, J. Algebra
279 (2004), 402–421.

[9] K. Coulembier, On a class of tensor product representations for the orthosymplectic

superalgebra, J. Pure Appl. Algebra 217 (2013), no. 5, 819–837.

[10] V. Futorny, J. T. Hartwig, On the consistency of twisted generalized Weyl algebras,
Proc. Amer. Math. Soc. 140 (2012), no. 10, 3349–3363.

[11] J. Hartwig, V. Futorny, E. Wilson, Irreducible completely pointed modules for quan-

tum groups of type A, J. Algebra 432 (2015), 252–279.

[12] J. T. Hartwig, Locally finite simple weight modules over twisted generalized Weyl

algebras, J. Algebra 303 (2006), 42–76.

[13] J. T. Hartwig, Twisted generalized Weyl algebras, polynomial Cartan matrices and

Serre-type relations, Comm. Algebra 38 (2010), 4375–4389.

[14] J. T. Hartwig, Noncommutative singularities and lattice models, arXiv:1612.08125
(2016).
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