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Abstract. We construct a family of twisted generalized Weyl algebras which includes
Weyl-Clifford superalgebras and quotients of the enveloping algebras of gl(m|n) and
osp(m|2n). We give a condition for when a canonical representation by differential opera-
tors is faithful. Lastly, we give a description of the graded support of these algebras in
terms of pattern-avoiding vector compositions.

1. Introduction

Twisted generalized Weyl algebras (TGWAs) were introduced by Mazorchuk
and Turowska in [20], [21] in an attempt to include a wider range of examples than
Bavula’s generalized Weyl algebras (GWAs) [1]. Their structure and representa-
tions have been studied in [20], [21], [19], [24], [12], [13], [14], [15], [10]. Known
examples of TGWAs include multiparameter quantized Weyl algebras [21], [12],
[10], the Mickelsson-Zhelobenko step algebras associated to (gl, 1, gl,, © gl;) [19]
and some primitive quotients of enveloping algebras [16].

In this paper we take a step further by proving that supersymmetric analogs
of some classical algebras are also examples of TGWAs. Specifically, we show
that Weyl-Clifford superalgebras and some quotients of the enveloping algebras
of gl(m|n) and osp(m|2n) can be realized as twisted generalized Weyl (TGW)
algebras. This suggests that much of the general representation theory from [21],
[19], [12] could be applied to the study of certain families of superalgebras. In
addition our new algebras provide a large supply of consistent but non-regular
TGW algebras (i.e., certain elements ¢; are zero-divisors). This motivates future
development of the theory to include such algebras.

It is also worth mentioning that, as a special case, we show that Clifford algebras
can be presented as TGW algebras. This shows that TGW algebras can be finite-
dimensional.

To summarize the contents of the present paper, in Section 2 we recall the
definition of TGW algebras from [21] which includes certain scalars p;; that in our
case will be 1. Some known results that will be used are also stated. In Section 3
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we prove that the Weyl-Clifford superalgebra from [23] can be realized as a TGW
algebra.

The main object of the paper is introduced in Section 4, in which we define a
family of TGW algebras A(y)® which depend on a certain matrix v with integer
entries. These algebras naturally come with an algebra homomorphism ¢ from
A(7)* to a Clifford-Weyl algebra. This is a generalization of the construction in
[16]. A sufficient condition for ¢, to be injective is given in Section 4.2. This
condition is related to the graded support of the algebra A(y)* which is combina-
torially characterized in Section 4.3.

Lastly, these results are applied in Section 5 to prove that for appropriate 7,
the TGW algebras A(y)* fit into commutative diagrams involving the spinor
representation m of U(g) for g = gl(m|n) and osp(m|2n) studied by Nishiyama
[23] and Coulembier [9]. As a corollary we obtain that U(g)/J are examples
of TGW algebras for such g as well as for classical Lie algebras. These results
generalize previous realizations in [16]. We end with some open problems regarding
exceptional types.

Notation

Throughout, we work over an algebraically closed field k of characteristic zero.
Associative algebras are assumed to have a multiplicative identity. [a,b] denotes
the set of integers x with a < x < b.

2. Twisted generalized Weyl algebras

We recall the definition of TGW algebras and some of their useful properties.

2.1. Definitions

Let I be a set.

Definition 1 (TGW Datum). A twisted generalized Weyl datum over k with in-
dex set I is a triple (R, 0,t) where

e R is an associative k-algebra,

e 0 = (0;)icr is a sequence of commuting k-algebra automorphisms of R,

e ¢ = (t;)ier is a sequence of central elements of R.

Let ZI denote the free abelian group on I, with basis denoted {e;};cs. For
g=> gie; € ZI put oy = [[o?". Then g — o, defines an action of ZI on R by
k-algebra automorphisms.

Definition 2 (TGW Construction). Let

e (R,0,t) be a TGW datum over k with index set I,

e ;1 be an I x I-matrix without diagonal, p = (pi5)ix;, with p;; € k\ {0}.

The twisted generalized Weyl construction associated to p and (R, o,t), denoted
Cu(R,0,t), is defined as the free R-ring on the set {X;,Y; | ¢ € I} modulo the two-
sided ideal generated by the following elements:

Xir —oi(r) Xy,  Yir—o;'(r)Y; Vre R, i€, (1a)
Y;Xi - tia X'LY:L - Ui(ti)a Vi € Ia (lb)
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The algebra C,(R,o,t) has a ZI-gradation given by requiring deg X; = e,
deg; = —e;, degr = 0 Vr € R. Let J,(R,0,t) C C,(R,0,t) be the sum of all
graded ideals J C C,(R,o,t) such that C,(R,o,t)o N J = {0}. It is easy to see
that J,(R,0,t) is the unique maximal graded ideal having zero intersection with
the degree zero component.

Definition 3 (TGW Algebra). The twisted generalized Weyl algebra A, (R, o,t)
associated to p and (R, 0,t) is defined as the quotient

Au(R,0,t) :=Cu(R,0,t)/I (R, 0,1).

Since J,(R, 0,t) is graded, A, (R, o,t) inherits a ZI-gradation from C,(R, 0,t).
The images in A, (R, 0,t) of the elements X;,Y; will also be denoted by X;,Y;.

Example 1. For an index set I, the I:th Weyl algebra over k, A = Ar(k) is the
k-algebra generated by {x;,0; | i € I} subject to defining relations

[l‘i,ﬂl‘j} = [81',(9]‘] = [61‘,1‘]‘] — 51‘]‘ =0, V’L,j el.
There is a k-algebra isomorphism A, (R, 7,u) — A, where p;; = 1 for all i # j,
R= ]k[ui | 1€ I], Ti(u]') =U; — (51']‘, given by X; — Ti, Y, — 81', U; 61.1‘1
2.2. Regularity and consistency

Definition 4 (Reduced and monic monomials). A monic monomial in a TGW
algebra is any finite product of elements from the set {X;};er U{Y;}icr. A reduced
monomial is an element of the form Y;, ---Y; X, --- X, where {i1,...,ix} N

{jl,...,jl}zg.
Lemma 1. [12, Lem. 3.2] A,(R,0,t) is generated as a left (and as a right) R-
module by the reduced monomials.

Since a TGW algebra A, (R, 0,t) is a quotient of an R-ring, it is an R-ring itself
with a natural map p: R — A, (R, 0,t). By Lemma 1, the degree zero component
of A, (R, 0,t) (with respect to the ZI-gradation) is equal to the image of p.

Definition 5 (Regularity). A TGW datum (R, o,t) is called regular if t; is regular
(i.e., not a zero-divisor) in R for all i.

Due to Relation (1b), the canonical map R — €, (R, 0,t) is not guaranteed to
be injective, and indeed sometimes it is not [10]. It is injective if and only if the
map R — A, (R, o,t) is injective.

Definition 6 (u-Consistency). A TGW datum (R, o,t) is p-consistent if the ca-
nonical map p: R — A, (R, 0,t) is injective.

Abusing language we say that a TGW algebra A, (R, 0,t) is regular (respectively
consistent) if (R, o,t) is regular (respectively u-consistent).

Theorem 2 ([10]). A regular TGW algebra A, (R,o,t) is consistent if and only if

oioj(tity) = pijhjioi(ti)o;(ty), Vi # j; (2a)
oioy(ti)t; = oi(ty)on(t;), Vi#j#k#i (2b)



1188 JONAS T. HARTWIG, VERA SERGANOVA

That relation (2a) is necessary for consistency of a regular TGW datum was
known already in [20], [21]. If (R,0,t) is not regular, sufficient and necessary
conditions for p-consistency are not known (see Problem 2). In this paper we
produce many examples of consistent but non-regular TGW algebras.

Conversely, for consistent TGW algebras one can characterize regularity as
follows:

Theorem 3 ([15, Thm. 4.3]). Let A = A, (R,0,t) be a consistent TGW algebra.
Then the following are equivalent

(i) (Ryo,t) is regular.
(ii) Each monic monomial in A is non-zero and generates a free left (and
right) R-module of rank one.
(iii) A is regularly graded, i.e., for all g € ZI, there exists a nonzero regular
element in Ag.
(iv) If a € A is a homogeneous element such that bac = 0 for some monic
monomials b,c € A, then a = 0.

2.3. Non-degeneracy of the gradation form

For a group G, any G-graded ring A = @QGG Ay can be equipped with a Z-bilinear
form v: A x A — A, called the gradation form, defined by

7(a,b) = pe(ab)

where p, is the projection A — A, along the direct sum P . Ay, and e € G is
the neutral element.

Theorem 4 ([15, Cor. 3.3]). The ideal I,(R,0,t) is equal to the radical of the
gradation form ~ of C,(R,o,t) (with respect to the ZI-gradation), and thus the
gradation form on A, (R,o,t) is non-degenerate.

2.4. R-rings with involution
Definition 7. Let R be a commutative ring.

(i) An involution on a ring A is a Z-linear map * : A — A, a — a* satisfying
(ab)* =b*a*, (a*)* = a for all a,b € A.

(ii) An R-ring with involution is a ring A equipped with a ring homomorphism
ha : R — A and an involution % : A — A such that h(r)* = h(r) for all
r € R.

(iii) If A and B are two R-rings with involution, then a map of R-rings with
involution is a ring homomorphism k : A — B such that ko hs = hp and
k(a*) = (k(a))* for all a € A.

When R is commutative, any TGW algebra A = A, (R, 0,t) for which p;; = pj;
for all 7, j, can be equipped with an involution * given by X =Y;, V" = X; Vi € I,
r* = r Vr € R. Together with the canonical map p : R — A this turns A into an
R-ring with involution. In particular we regard the Weyl algebra A; as an R-ring

with involution in this way, where R = k[u; | ¢ € I] as in Example 1.
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3. The Clifford/Weyl superalgebras

In this section let + € {4, —} and put F+ = —=+. Let p and ¢ be non-negative
integers and put n = p + q. We consider supersymmetric analogs A;ﬁq of Clifford
and Weyl algebras and prove that they can be presented as TGW algebras.

3.1. Definition and properties
Definition 8. The Clifford/Weyl superalgebra of degree p|q, denoted A;q, is de-

fined as the superalgebra with even generators x;, 9; (i € [1,p]) and odd generators
x;,0; (i € [p+1,n]) and relations

[ai,.%'j]i — 6i]‘ = [xi,xj]i = [8i,8j]i =0 for all ’i,j S [[l,n]], (3)
where [, -]+ denotes the super(anti-)commutator
[a,b]+ = ab + (—1)P(@WPO)pg,

Thus A;lq (respectively A;‘q) is a supersymmetric analog of the Clifford (res-
pectively Weyl) algebra.
We will need the following result.

Lemma 5. The subalgebra R of A;ﬁq generated by {0;xz; | i € [1,n]} is mazimal
commutative.

Proof. The algebra A;q has a Z™-gradation determined by deg(z;) = e; and
deg(0;) = —e; where {e;}?_, is a Z-basis for Z". We have [F0;x;, ;|- = d;;x;
and [F0;x;,0;]- = —0;;0;. In other words, {[Fz;0;, —]_}?:1 is a set of commuting
(even) derivations on A;t‘q whose common eigenspaces coincide with the graded

homogeneous components. Thus the centralizer of R is the subalgebra Ag of A;th

consisting of elements of degree 0 € Z". Clearly R C Ay. The converse inclusion
is straightforward to check using the commutation relations (3) and induction on
the length of a monomial of degree zero. 0O

By the defining relations, Aj‘q is a graded algebra with respect to the free
abelian group Z™. In addition A;ﬁq has an involution * given by z; = 0;, 0] = z;.
Since (0;x;)* = 0;x;, A% is an R-ring with involution. Even though A* isnot a

plg plg
domain in general, the following graded regularity property still holds.

Lemma 6. Leta € A;t‘q be homogeneous of degree g € Z™. If a*-a = 0 then a = 0.

Proof. We give a proof for A = A;Iq, the other case being analogous. Write a =

rz(9) where r € R and x(9) = a:ggl) -2l where for s > 0, xl(»s) =z, xl(-fs) =0;.

By reordering the indices, we may assume that the first k£ elements of the tuple

(gp+1; - - - gn) are zero, and the rest are nonzero. Put u; = 0;x;. For i > p we have
wir; = 02 = 0 and w;0; = 0;7;,0; = (1 — x;0;)0; = 0;. Thus we may assume that
r lies in the subalgebra of R generated by {u1,...,uptx}. If a-a* = 0 then we
have

0=a-a* =rz Dz =2ch (4)
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where
b = .’Ifggl) [P x}()gp) . xl()_gp) e mg*gl)

which can be written as a polynomial in u;, ¢+ < p, and

= x(gwkﬂ) coglan) 335;9”) ) (—gptrks1)

ptk+1 T n Ttk

which can be written as a polynomial in u;, ¢ > p. Since b is regular in A, (4)
implies 72c = 0. We have the following isomorphisms of algebras

R MQq (k) ~ MQk (A_

A~ A »[0 Rk AO_\ ~ A~ p\O) Rk M2q—k(]k).

p|0

Under this isomorphism, 72c is mapped to 72 ® c. That this is zero implies 7 = 0.

But R is isomorphic to (k[u; | i € [1,p]])?" which is a direct product of domains,
hence r = 0. This proves a =0. [

3.2. Realization as TGW algebras

To realize A;q as TGW algebras, consider the commutative k-algebra

R:t

plg *

k[ul,u27...,un}/Ji (5)

where J* is the ideal generated by u? — u; for all i is such that (—1)P(®) = +1.
There is an injective homomorphism

R;th - A;th’
(6)
Ui — 811‘,

We will often use ¢ to identify R;t‘q with its image in Ai One checks that the image
of ¢ coincides with the degree zero subalgebra, (Aplq)o, of Ap‘q with respect to the
Z"™-gradation A:l @dezn( )d given by deg(x;) = e;, deg(d;) = —e;, Vi €
[1,n].

For i,j € [1,n], put
Ay = (10 )

and for i € [1,n], define 7; € Auty(RE ol ) by

nw»:?dm‘mi“:$ ©

uj, otherwise.

One checks that 7; preserves the relations u? —u; = 0 for j with (=1)PU) = £1.

Let 7 = (1), and u = (u;)?,. Let Ay(R:
algebra.

ol T ,u) be the corresponding TGW
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Theorem 7. There is an isomorphism of k-algebras
X : AA(R;th,T, u) = A;t‘q,
X; — Ti,

In particular, AA(RIim, u) s consistent (i.e., the natural map

E R;:Iq — Ax(RE

p‘anv ’LL)

is injective).

Proof. Put R = R;ﬁq and A = A;th and [-,-] = [,:]+. The identities z;(0;x;) =
(Jci@i)a:i, a:,ﬁj = )\U@xl for i # j, and x;0; = )\”(811‘1 + 1) imply that relations (1)
are preserved. Thus we have a map C)(R, 7,u) — A of R-rings given by X; — z;,
Y; — 0;. Furthermore, for each i,5 € [1,n], it can be checked, using Theorem 4
that [X;, X;] and [Y;,Y;] lie in the radical of the gradation form on Cy(R,T,u).
For example, if ¢ # j then by Lemma 1 the homogeneous component of degree
—e; — e; is equal to RY;Y; + RY;Y; so by symmetry it suffices to show that
v(Y;Y;, [ X, X;]+) = 0. For simplicity, say ¢,j < p and that £ = —. Then we get
V(Y3Y5, [Xi, X5)2) = ViYi(XiX; — X;X;) = A wsuy — 7,7 ' (uy)u; = 0. The other
cases are checked similarly. In fact the elements [X;, X;] and [Y;,Y]] generate the
radical. To see this, let 7' be the ideal of C\(R,T,u) generated by all [X;, X]]
and [Y;,Y;]. It suffices to show that B := C\(R,7,u)/J has a non-degenerate
gradation form. By Lemma 1, any nonzero homogeneous component of B is a free
cyclic left R-module. If £ = — say, then for a = (aq,...,a,) € Z° x {—1,0,1}¢
the monomial Z = X§a1)~-X,(La") (where Xi(k) = (X;)* for k > 0 and Xi(k) =
(Y;)*! for k < 0) and its dual Z* = X" ... X7 satisty v(2%,2) = 2*Z
which simplifies to a nonzero element of R. Since B, = RZ this shows that v
is nondegenerate on B. Hence the commutators generate the ideal Jy(R, 7, u) by
Theorem 4. Since [x;, z;] = [0;,0;] = 0 in A this shows that we have a well-defined
map x : Ax(R,7,u) — A of R-rings given by X; — x;, Y; — 0;. Since z; and 0;
generate A, the map x is surjective. It remains to prove it is injective. Since y is
a map of R-rings, the following diagram is commutative:

Ax(R, T,u) XA
R

Since ¢ is injective, p is injective. That is, Ay (R, 7, u) is consistent. Identifying R
with the images under p and ¢, the map x|r is the identity map. Both Ay (R, 7, u)
and A are Z"-graded algebras and x is a graded homomorphism. Therefore J =
ker y is a graded ideal of Ay (R, 7,u). If J # 0 then, since A, (R, 7, u) is a consistent
TGW algebra, J N R # 0. However that contradicts that x|g is injective. Hence
J = 0 which completes the proof that y is an isomorphism. O
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Remark 1. When ¢ > 0, Theorem 7 implies that Azjlq is a consistent TGW algebra
which is not regularly graded. Indeed, if j > p, then u; is not regular in R because
uj(u; + 1) = 0. Thus, by Theorem 3, Ax(R,T,u) is not regularly graded. Note
that for non-regularly graded TGW algebras, it is not known if relations (2) are
sufficient (or even necessary) for it to be consistent.

Remark 2. The algebra A0_|q is finite-dimensional (an even Clifford algebra). Hence
Theorem 7 shows that TGW algebras can be finite-dimensional.

Remark 3. Theorem 7 suggests that the class of TGW algebras already contains
not only quantum deformations of many algebras (see, e.g., [21, Ex. 2.2.3]), but also

supersymmetric analogues of certain algebras, without modifying the definition of
TGW algebras.

4. A new family of TGW algebras A(v)*

In this section we define a family of TGW algebras that depend on a matrix.
This construction is a supersymmetric generalization of the one in [16].
4.1. Construction via monomial maps
In this section we use the Clifford/Weyl superalgebras A;th to construct new TGW
algebras denoted A(y)*. Our method is to look for maps
o : AL (R,0,t) — AT

plg

of R-rings with involution. Here R = R;t‘

generalizes the construction from [16] which corresponds to the case A;lo. Second,

v The motivation is threefold. First it

the TGW algebras obtained in this way automatically come with ¢, which may
be thought of as a representation by differential operators. Thirdly we show in
Section 5 that certain quotients of enveloping algebras of Lie superalgebras are
TGW algebras of exactly this form.

As in [16] we restrict attention to monomial embeddings

(X)) = ai™ x> gm0 (10)

Here n = p+ ¢, vj; € Z and we use the notation

RON {l‘;‘, k>0,
J o7k, k<.

In the case of [16], under mild assumptions on ¢ the form (10) was in fact
shown to be necessary. Here in our more general setting we shall be content with
showing how the assumption that ¢ is a homomorphism of R-rings with involution
such that (10) holds, naturally gives rise to conditions on +y;; and also specifies the
TGW datum (automorphisms o;, elements ¢; € R and scalars f;;).

First, since ¢ is supposed to be a map of rings with involution, we necessarily
have

P(Yi) = p(X7) = p(Xi)* = a2 {7,

(3
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Second, since ¢ is a map of R-rings and t; € R we have

ti = p(t;) = (YiXi) = o(Yi)p(Xi)
B N T BN B

_ xg—’m)zg’m) . xé—Vzi)x;’m) . .xgl*'}’ni)x;?’ni).

In the last step we used the TGW algebra realization of Apilq which in particular has
7;(u;) = u;j for j # i. To obtain an explicit formula for ¢; we compute ajg-f’” i)xy"i).
If vj; > 0 we have

-1

—v5i) (Vi gt Vi ~itl
(=734) 5, (v ):3;7 27 :7—; K )(Uj)"'Tj (uj)u;-

:E] J J

Here we see that this is zero if A;; = —1 and 7;; > 1 because then ijl(uj)uj =
Tj_l(uj)\jj (uj —1)) = 0 due to u5 = u; in R. To avoid this scenario (having ¢; =0
in a TGW algebra leads to degenerate behaviour such as X; = Y; = 0) we make

our first assumption on ;;:
|vjil <1 for all 4,7 such that A\;; = —1. (11)
Under this assumption we can proceed and obtain the formula
(=v354) ,.(vie) _ (), 1) e (s 4 D
Zj z; 7 = (uj + 5 — 1) (uy + Dy

We used that 7;(u;) = Aj;(u; — 1), so the formula is clear when \;; = 1 while if
Aj; = —1 there is at most one factor (empty product is interpreted as 1.) The case
;i < 0 is handled analogously (which is why we put absolute value in (11)).

The final formula for ¢; is

tp = UpUg; * - Upg,
(uj +50 = 1) (uj + Dug, 56 >0,
uj; = {1, vji = 0,
(wj = |vjal) -+ (uj = 2)(uj = 1), 5 <O.

(12)

Similarly o; can be deduced as follows. We have
P(Xiuj) = p(oi(u;) X).
Since ¢ is a homomorphism of R-rings, we have
P(Xi)uj = oi(uj)p(X5).
Substituting (10) we immediately obtain the sufficient condition

op =TTy e (13)
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What remains is to ensure that for ¢ £ j,
Xi¥j = pigYiXi
holds for appropriate scalars p;;, under suitable assumptions on ;. We have
PX)R(Vy) = 2y o) )T,

First we observe that if there exists k£ € {1,2,...,n} with A\, = —1 and
Yeive; < 0 then ¢(X;)e(Y;) = 0 = ¢(Y;)e(X;). If no such k exists we want

to move all factors on the right ;vl(fw“) to the left of all factors x,(:’“‘). The only
problem is when k& = [. A natural assumption for it to be possible is that actually
VriYke; < 0, because then the two factors are either both powers of x; or both
powers of Jy.

To summarize, we make the following second assumption on ~;;:

Vi # j : Bither vy < 0 for some k with Ay, = —1, or Y ve; < 0 for all k.
Under this assumption we then have for all &, {:
I’(C'Yki)xl('}’lj) _ )\Z?mjxl(’nj)xl(:m).
Thus we finally obtain that
P(Xi)p(Y;) = nijep(Y;)p(X)
holds, provided

_ YeiVlj
Hij = H Aw
1<k,l<n

Using that Ay = (F1)(—=1)P*PM) this can be written
= “i = (F1)P @p'G) . (_l)p(i)p(j)7 (14)

where the parities are defined by

p(i) = " Fu(h), (15)
k=1

Pj:

P =3 (16)

=~
I
—

(T € Z/2Z is the image of x € Z under the canonical projection).
Note that (15) expresses that the matrix v, when regarded as a Z-module map
Z™ — 7, is an even map, with respect to the parity p(ai,...,a,) =Y, arp(k).

Theorem 8. Let p,q, m be non-negative integers, put n =p+ q. Let v = (vy;;) be
a n X m-matriz with integer entries satisfying the following two conditions:
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(1) |vjil <1 whenever A\;; = —1,

1195

(i) Vi # j: either yiive; < 0 for some k with Agy, = —1, or ygive; < 0 for all k.
Then there exist a TGW algebra A(y)* = A, (R, 0,t) with index set [1,m], and a

homomorphism of R-rings with involution

o Au(R,0,t) — A;th.

The homomorphism is uniquely determined by the condition
p(Xi) = a{ el ),
and the TGW algebra is given by the following data:

R= R;tIq =Kkfug, ..., un]/(u? —u; | i = —1),

where \jj = F(—1)POPU) and t = (t1,...,t,) where

bi = Upiug; - - Ung
(uj + 750 = 1) -+ (uj + Dy, ¥ji > 0,
Uj; = 1, Yii = 0,
(uj = 1al) -+ (uj = 2)(u; — 1), 750 <0.
Lastly, o = (o1,...,0m), where

C— VY28 Y
0; =Ty To T

where
N (s — 1 TR
Tz(u]) — %(ul )7 Zfl j)
uj, otherwise,
and = (lij)1<ij<m where

ij = (F1)P PG (—1)P@rG)

where p(i) and p'(i) were defined in (15)—(16).

(17)

(18)

(19)

Proof. The discussion preceding the theorem proves that there exists a homomor-

phism of R-rings with involution

¢ C=Cu(R,0,t) — A;q.

All that remains is to show that ¢’(J) = 0 where J is the unique maximal Z™-graded
ideal trivially intersecting the degree zero component of C. If ¢ is a homogeneous
element of J then a* - a = 0 hence, ¢'(a)* - ¢'(a) = 0. By Lemma 6, it follows that

pla)=0. O
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Remark 4. Theorem 8 provides a large family of consistent non-regular TGW
algebras.

Remark 5. Let p=3, ¢ =2, m =4 and

(The dashed line separates even from odd rows.) The corresponding TGW algebra
A(7)~ is a quotient of U(gl(3]2)) (see Section 5).
4.2. Injectivity of ¢

We prove a theorem which gives equivalent conditions for ¢ defined in (17) to be
injective. This result will be used in Section 5.

Lemma 9 (Weak injectivity of ¢). Ifg € Z™ andaGA(’y);‘E, a#0, then p(a)#0.

Proof. Suppose a # 0. Then, by the non-degeneracy of the gradation form of a
TGW algebra, ba # 0 for some b € A(’y)jfg. Applying ¢ we get ¢(ba) # 0 since
©|Rry; 1s injective. Hence ¢(b)p(a) # 0, so in particular p(a) #0. O

Let x : A;t‘q a — a*, be the unique k-linear map satisfying (a*)* =

a, (ab)* = b*a* for all a,b € Apj[lq7 and z¥ = 0; for all i.

Lemma 10. Let v be a matriz satisfying the conditions of Theorem 8 and let
A(y)* be the corresponding TGW algebra. Let a € A(y)* be a homogeneous
element of degree g € Z. If a* - a = 0 then a = 0.

Proof. Suppose a # 0. By Lemma 9, p(a) # 0. So, by Lemma 6, ¢(a)* - ¢(a) # 0.
Since ¢ is a map of rings with involution, ¢(a* - a) # 0. Hence a* -a #0. O

Remark 6. If \;; = 1 for all ¢ then R;t‘q defined in (18) is a domain. Then, by [10,

Prop. 2.9], A(y)* is also a domain. Hence Lemma 10 holds trivially in this case.
For a ZI-graded algebra A =D, Ay we define the (graded) support of A to

be Supp(4) := {g € ZI | Ay # {0} }.

Lemma 11. Let A(y)* be a TGW algebra as constructed in Theorem 8. Let S* C
7™ be the support of A(y)*. Then, regarding v as a Z-linear map from Z™ to 7"
we have

Y(ST) € {-1,0,1}" x Z9,

’Y(Si) g 7P x {717()’ l}q

Proof. We consider the case S~. The other case is analogous. Let g € S™. Since
any TGW algebra is generated as a left R module by the reduced monomials
(Lemma 1), there exist sequences (i1,1i9,...,4t) and (ji1,j2,...,7:) of elements
from {1,2,...,m} with {i1,42,...,9c} N {Jj1,J2,...,71} = @ such that

a=Y;,Yi, Yy - X5, X5, - X,
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is a nonzero element in A(y), . By Lemma 9, ¢(a) # 0. We have

pla) = Lo al 7o) gl g,
r=1
For r > p, a product of the form

~Yrig) (=vrig)  (yrj (vri;)
xg, Tl ...xr Tk .xr TJI)...Z‘T T

can only be nonzero if the factors %(ﬁ ) alternate between x, and 9, (ignoring factors
where 8 = 0). In particular, the number of z,’s must differ from the number of

0,’s by at most one. [

To prove that homomorphisms from TGW algebras are injective, the following
result is useful.

Theorem 12 ([15, Thm. 3.6]). If A = A, (R,0,t) is consistent, then the centra-
lizer Co(R) of R in A is an essential subalgebra of A, in the sense that JNC4(R) #
{0} for any nonzero ideal J of A.

Theorem 13. Let v be a matriz as in Theorem 8 and A = A(y)T be the corres-
ponding TGW algebra. Put R = R;E‘q. The following statements are equivalent.
(i) R is a mazimal commutative subalgebra of A.
(ii) If g € Supp(A) is such that o4 :=[[1=; 0" =1dg, then g = 0.
(iii) Put
7P = 7P x (2)22)7, TR = (Z/2Z)P x 7.
Then the composition
Supp(4) —» Z™ L 7" = 7P x 79 £y 78l
is injective (the first map is inclusion and the last is canonical projection).
(iv) The restriction of v : Z™ — Z™ to Supp(A) is injective.
(v) The map ¢ defined in (17) is injective.
Proof. (i)=(ii): Suppose g € Supp(A) with o4 = Idg. Then for any a € A, and

r € R we have ar = 04(r)a = ra which means that A; C Ca(R). But C4(R) =R
by (i). Thus, since A4 # {0}, this means that g must be 0 and A, = R.

(ii)=-(iii): Suppose P o ~(g) = 0 in thlq for some g € Supp(A4). Then o4 =

I, 779" = 1dp because 72 = Idg for r > p when + = — and for r < p when
+ = +. By (ii) this implies g = 0.
(iii)=-(i): For simplicity we assume + = —. The other case is symmetric. Suppose

a € Ca(R), a # 0. Since C4(R) is a graded subalgebra of A we may without loss
of generality suppose there exists g € Z™ such that a € A; N C4(R). Since a # 0,
this implies g € Supp(A). For all » € R we have (04(r) —r)a = ar —ra = 0. Taking
r=u; we get

" -v(9)ja,  j<p,
0 = (og(us)—uj)a = (7, (u;)—u;)a = ¢ 0, J>p.y(9); =0inZ/2Z,
(1-2uj)a, j>p,y(9); =1+2Z.
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Since a # 0, we get v(g); = 0 for all j < p. Suppose j > p and v(g); = 1 + 2Z,
then 0 = u;(1 — 2u;)a = —u;a since u? = u;. Combining this with (1 — 2u;)a =0
we get a = 0, a contradiction. Therefore, for j > p we must have v(g); = 0 in
Z/27. This proves that v(g) = 0 in Z? & (Z/27)1.

(iii)= (iv): Trivial.

(iv)= (iii): Suppose P o~(g) = 0 for some g € Supp(A). By Lemma 11 we get
7(g) =0 so by (iv), g = 0.

(i)=(v): Let K =ker(yp). If K # {0}, then by Theorem 12, K N C4(R) # {0}.
By (i), Ca(R) = R. Hence K N R # {0}. But by Theorem 8, ¢ is a map of R-rings
with involution and thus in particular ¢|r = Idgr (where we used the injective
maps p and ¢ to identify R with its image in A and Ag(k) respectively). This
contradiction shows that K = {0}.

(v)=(i): If a € C4(R) then p(a) € CA:flq(R) which equals R by Lemma 5. By
(v) this implies a € R. O

Example 2. Let p,q be non-negative integers and n = p + g > 0. Consider the
matrices

-1 2

These are n x m matrices (where m = n — 1 in the case of a and m = n for
B,7) and define Z-linear maps Z™ — Z™. In each case the top p rows are defined
to be even and the remaining g rows are odd. It is easy to see that these maps are
injective, hence by Theorem 13(iv)=>(v), the homomorphism ¢ : A({)* — A;th is
injective for ( = «, 3, 7.

4.3. A description of the graded support of A(vy)~

Although sufficient for the application to Lie superalgebras, the characterization
in Theorem 13 of the injectivity of the map (17) is not completely satisfactory
because we lack a good description of the support of A(v)*. In this section we give
a combinatorial description of the support of A(v)~ in terms of certain pattern-
avoiding vector compositions of the columns of 7. A similar analysis applies to
A(y)T. This allows us to compute the support in the certain cases. In addition,
it shows that that this is a non-trivial problem for a general (non-regular) TGW
algebra.

Put W = Z%. A d-dimensional vector composition of w € W is a tuple ¢ =
(c1,¢,...,c0) € W' such that ¢; + ¢ + -+ + ¢, = w. The non-negative integer
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£ is the length of c. The ¢; are called the parts of the composition c. A given
vector u € W appears with multiplicity m (in ¢) if ¢; = u for exactly m choices of

j€[1,4].

113 0 3 7
Example 3. [ |1, 0 |,|—1],] O is a 3-dimensional vector composition of |0].
(-1 1]]— 0

Theorem 14. Let A = A(v)~ be a TGW algebra constructed as in Theorem 8.
The following are equivalent for g € Z™:

(i) g € Supp(A).
(ii) There exists an n-dimensional vector composition of v(g) of length |g| =

> icv |9i| such that

(a) each part is of the form sgu(g;)v(e;) for i € V which appears with
multiplicity |g;,

(b) for each r > p the sequence (sgn(gi,)Vris, - - ,sgn(gi‘g‘)%i‘g‘) contains
no consecutive subsequence of the form

(1,0,...,0,1) or (—=1,0,...,0,—1)

where there are zero or more 0’s.
Proof. By Lemma 1, g € Supp(A) if and only if A, contains a reduced monomial
a = ZiZi, - Zy, (where each Z;, € |J;c {Xj,Y;}) such that a # 0, which by

gl

Lemma 9 is equivalent to ¢(a) # 0. Put &, = sgn(g;, ). We have
(e19riy) (e1917ri)g))
So(a) = SD(ZZI).SO(ZZ‘Q‘) =+ H:I:TEI'Y ce e Ty lgl
rek
which is nonzero if and only if property (b) in the theorem holds. O
Example 4. If ¢ = 0 then Supp (A(7)~) = Z™ because condition (b) is void.

1 3 0
Example 5. Let m =3,p=1,g=2andy= |1 0 —1|. Example 3 shows
1 -1 1

that (1,2,1) belongs to the graded support of the TGW algebra A(v)~. On the
other hand (2,1,0) does not, because there is no vector composition of length 3

1 3
with two parts equal to [1| and one part equal to | 0 | which avoids the pattern
1 -1

(1,0,...,0,1) in the second row.
Example 6. Let m=2,p=0,¢g=1 and v = [1 —1]. Then

Supp (A(7)) = {(91,92) € Z* | |1 — g2| < 1}.

1

0
1 _1}, then

Example 7. Let m=2,p=0,¢ =2, v = [

Supp (A(7)) = {(0,0),%(0,1),£(1,0), £(1,1),4(1,2)}.
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5. Relation to gl(m|n) and osp(m|2n)

Irreducible completely pointed weight modules have been classified and realized
by differential operators in the case of simple finite-dimensional complex Lie al-
gebras g in [6], [4] and over U, (sl,,) in [11]. In [9, Sect. 6], Coulembier classified all
irreducible completely pointed highest weight modules over the orthosymplectic
Lie superalgebras osp(m|2n), and realized them by differential operators on super-
symmetric Grassmann algebras. See also [23] for a uniform treatment of spinor
representations of orthosymplectic Lie superalgebras. In this section we show that,
analogously to the Lie algebra case [16], the realization of asp(m|2n) by differential
operators factors through a corresponding twisted generalized Weyl algebra of the
form A(a).

Recall that the Lie superalgebra gl(m|n) is the Lie superalgebra of all linear
transformations of (m|n)-dimensional vector superspace, and osp(m|2n) is the
subalgebra of gl(m|2n) preserving a non-degenerate even symmetric bilinear form
on an (m|2n)-dimensional vector superspace or, equivalently, the subalgebra of
gl(2n|m) preserving a non-degenerate even skew-symmetric bilinear form on an
(2n|m)-dimensional vector superspace. The even part of osp(m|2n) is the direct
sum so(m)®sp(2n). The Lie superalgebras gl(m|n) and osp(m|2n) are Kac-Moody
superalgebras and can be described by Chevally generators and relations; see [17],
as follows. Let p, ¢ be nonnegative integers, n = p4+q > 0. The Chevalley generators
of gl(p|q) are e1,...,en—1, b1, ..., hyn, f1,..., fn_1, with the convention that e,, f,
are odd and all other generators are even. They satisfy the relations

[hishj) =0,  [hise;] = 0i €5 — 0ijyres,  [hiy fi] = =i f5 + dijs1 [,
leir f5] = 613 (hi = (=1)°" hipr).

The Lie superalgebra gl(p|q) is the quotient of the infinite-dimensional Lie algebra
with the above relations by the maximal ideal which intersects trivially the Cartan
subalgebra generated by hq, ..., hy,. The Chevalley generators of osp(2p+1|2q) are
obtained from those for gl(p|g) by adding odd generators e,, f,, and relations

[hiven] = 51',71671; [hu fn] = _6i,nfn7 [ena fn] = hnv
lei, fn] = [en, fi] =0 if n # .

The Chevalley generators of 0sp(2p|2q) are obtained from those for gl(p|q) by
adding even generators €2, f2. From the above description it is not difficult to see
that we have an embedding of Lie superalgebras

al(plg) C osp(2p|2q) C osp(2p + 1]2q).

5.1. Weyl superalgebra and osp(2p|2q)

Let V be a vector superspace equipped with even skew-symmetric form w : V x V
— k. We define the Weyl superalgebra W (V,w) as the quotient of the tensor
superalgebra T'(V') by the relations

v@w— (—1)POPWy @y = w(v, w).
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Lemma 15. Let g denote the span of the elements of the form vw+(—1)PP(®)
for allv,w € V. Then g is closed under the supercommutator and the adjoint action
of g on V preserves the form w.

Proof. Note that
vw 4 (—=1)POPyy = 20w — w(v, w)

and
[vw, u] = v[w, u] + (=1)PPO [y, ww = w(w, u)v + (—1)POPE (v, u)w.

The super Jacobi identity ensures that w is ad,-invariant. Indeed,

w([vw, ulL UQ) + (_l)p(vw)p(ul)w(uh [U’LU, UQ])
= [[ow, wi], ug) + (1P [y, fow, us]] = [ow, [u1, us]] = 0.

Finally, g is closed under supercommutator as
[vw, 22] = [vw, 2]z + (=1)PCVP@ glpw, 2] = [vw, 2]z + (=1)PEVPE) [y, 2]z, O
Corollary 16. If w is non-degenerate then g constructed in the previous lemma
is isomorphic to osp(r|s) where r = dimVy and s = dim Vj.

Let us assume that the w is non-degenerate and both r and s are even. Set
r =2p, s =2q and n = p+ q. Choose basis z1,...,Zn,Y1,...,yn in V such that

w(@i, xj) = w(yi,y;) =0, w(yi, ;) = i ;.

The parity is defined by
1 ifi<p
0 ifi>p.

p(xi) = plyi) = {

In this case the Weyl algebra is isomorphic to Aq_‘p since the defining relations are

Tiry — (—1)p(i)p(j)xjxi = Yy — (71)p(i)p(j)yjyi =0,
it — (_1)p(i)p(j)xjyi =0y

Let g = gl(plg), or osp(2p|2q) and identify Z™ with the root lattice of g with
basis consisting of the distinguished simple roots of g. Let ¢ : Z™ — Z"™ be the
Z-linear maps given by the matrices

-1 1 -1 1
-1 -1

1 o1
-1 -1 2

respectively. Let Aql

» be the Weyl superalgebra.
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Theorem 17. Let p,q be nonnegative integers, n = p+q > 0. Let g = gl(p|q), or
0sp(2p|2q) and let ¢ be as above. Then there is a commutative triangle of associative
algebras with involution

— A
qlp

\ / (22)
where @ is given by Theorem 8, ¥(e;) = Xi, ¥(fi) =Y;, ¥(hi) = Ais(u; — 1), and

" 1T="n,

iOig1, 1<, . .
m(e;) = {; +o <n m(f;) = m(e)*, m(hy) = 2:0; + (—1)PO L.

Proof. First, the existence of 7w follows from Corollary 16. We need to check that
7(j) = 0. This follows immediately from the fact that 7(h) is the self-centralizing

subalgebra of 7(g). Therefore we have a map 7 : g — Aq‘p which extends to

the homomorphism 7 : U(g) — A;lp of associative algebras. By Theorem 13, ¢ is
injective. Moreover, the image of ¢ coincides with the image of 7. This immediately
proves the existence of a unique map v such that the diagram commutes. [

5.2. Clifford superalgebra and osp(2p + 1|2q)

Let V be a vector superspace equipped with even symmetric form §: V x V —
k. We define the Clifford superalgebra Cliff(V,3) as the quotient of the tensor
superalgebra T'(V') by the relations

v@w+ (—1)POPW Yy @ v = Bo, w).

Note that Cliff (V, §) is finite-dimensional iff V" is purely even. As any associative
superalgebra Cliff(V, §) has the associated Lie superalgebra structure defined by
[z,y] = zy—(—1)P@PWyz. Let g denote the Lie subalgebra of Cliff(V, 8) generated
by V.

Lemma 18. We have the decomposition g = V @ [V, V] such that [[V,V],V] C
V. As a vector space [V, V] is isomorphic to AV and concides with the span of
20w — B(v,w) for all v,w € V.

Proof. First, we compute the commutator
[0, w] = vw — (=1)PPP@ ey = 20w — B(v, w).
Next we compute the commutator between [v, w] and u using super Leibniz identity
[u, [, w]] = 2[u, vw] = 2([u, v]w + ()PP ofu, w])
2(2uvw — B(u, v)w + (—1)PPO 200 — (—=1)PEIPW) B4, w)v).
Using vu = —(—1)PPyy + B(v,u) and the symmetry of 3 we obtain
[u, [v, w]] = 2(B(u, v)w — (—1)PWPW) By, w)v).

Hence we have obtained [[V,V],V] C V and by Jacobi identity [[V,V],[V,V]] C
v,v]. O
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We concentrate on the case when f is non-degenerate and dim V' = (2p|2q), let
n = p+ q and choose a basis &1,...,&,,m1, ..., N, such that

B(&i: &) = Bmimg) =0, B(ni, &) = i j.
The parity is defined by

0 ifi<np,
1 ifi>p.

p(&) =p(ni) = {

The corresponding Clifford superalgebra is isomorphic to A;lq. The defining rela-
tions are

&€ + (~1POPOE 6 = miny + (~1)POP g = 0,
mi&j + ()PP m; = ;5.

Lemma 19. The Lie subsuperalgebra of A;q generated by &,n; fori=1,....n
is isomorphic to osp(2p + 1]2q).

Proof. In notations of Lemma 18, consider the adjoint action of [V, V] on V. The
Leibniz rule implies that the form § is invariant under this action. Hence [V, V]
is isomorphic to osp(2p,2q) and V is its natural representation. Since obviously
V & [V, V] is simple, it must be isomorphic to osp(2p + 1|2¢). O

Corollary 20. There exist homomorphisms of associative superalgebras

71 U(osp(2p|2q)) — AT,

la and 7o : U(osp(2p + 1|2¢)) — A,

plg’

Let ¢ # 0. Let us assume that ej,...,e, and fi,...f, are the Chevalley
generators of 0sp(2p+1|2¢) such that ey, f,, en, fr, are odd and all other generators
are even. Then we have

{fﬂh‘ﬂ ifi <mn,

én if i = n,

ma(fi) =

772(61') =

{fiﬂm if i <mn,

Mn if i =n,

and 71 is obtained from 7y by restriction.

Let g = gl(p|q), 0sp(2p|2q) or 0sp(2p+1|2¢) and identify Z™ with the root lattice
of g with basis consisting of the distinguished simple roots of g. Let ¢ : Z™ — Z"
be the Z-linear maps given by the matrices

—1 1 -1 1 —1 1
-1 : -1 : -1 (23)
' 1 o1 1
—1 -1 2 -1 1

respectively. Let A;rlq = A; be the Weyl algebra with index superset I, Iz =

[L,p]. Ii =[p+1,p+4].
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Theorem 21. Let p,q be nonnegative integers, n = p+ q > 0. Let g = gl(p|q),
0sp(2p|2q) or osp(2p + 1|2q). Then there is a commutative triangle of associative
algebras with involution

— T 5 AT
plg

TN

where ¢ is given by Theorem 8, V(e;) = X;, ¥(fi) =Yi, ¥(hii) = Ais(u; — 1), and

20541, ©<mn,
m(e;) = < Ty, i=mn, g=o0sp(2¢+ 1|2p),
7, i=mn, g=osp(2q|2p),
w(f;) = m(e)*, m(hi) = z:0; — (—1)PD 4.
The proof is similar to Theorem 17 and we leave it to the reader.
5.3. On A;‘I versus Aqlp

If we disregard Zs-grading, then we have an isomorphism of associative algebras
Ai0 ~ Ao\p We suspect that A;_Iq and Aq_‘p are not isomorphic in general. Note

also that Aplq is isomorphic to the tensor product Mss ® (A_\o) while A+‘ is
isomorphic to the supertensor product Ms¢ ® (Ao\p) However, we do have the

following result.

Corollary 22. Consider the sublattice
I'={(a1,...,an)| a1 + -+ a, € 2Z}
i Z". Let C’;t‘q denote the subsuperalgebra of elements of A;q with the support in

I'. Then C’;Iq and Cq_lp are isomorphic superalgebras.

Proof. Theorems 17 and 21 provide the homomorphisms from U (osp(2p|2q)) to

A;lp and A;‘q respectively. It follows from formulas defining these isomorphisms

that C’qf‘p and Cp+|q are respective images. Consider the modules
= A + . gt
- Aq|p ®k[617~~-76n] k’ M™ = Ap|q ®k[7]11-"7nn] ka
and let
+
Oq|p( )? Cplq( )

Note that N* is a simple module over Cpl and C’q‘ ,

and N~ are simple U (o0sp(2p|2¢))-modules. Furthemore if v =1 ® 1, then
fiv=0, hjwv= f(fl)p(i)v.

respectively, hence both N T

Thus both N and N~ are simple lowest weight modules with the same lowest
weight. Thus, Nt and N~ are isomorphic, therefore they have the same annihilator
J C U(osp(2p|2q)) and we obtain
+ N ~ —
C U(osp(2p|2q)/J ~ Cop O

plg —
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5.4. Consequence for classical Lie algebras

Taking ¢ = 0 in Theorem 21 we immediately get the following result.

Corollary 23. For g = sl,,509,41, Or 502,, there is a corresponding v and a
commutative triangle of associative algebras with involution

4>A

TN

We can now prove that further primitive quotients of enveloping algebras of
classical Lie algebras are examples of TGWAs. This extends previous results by
the authors [16], where a condition for U(g)/J to be a not-necessarily abelian
TGW algebra (i.e., we allowed 0;0; # 0;0;) was given.

Theorem 24. If g = s09,,,502,4+1 07 §Py,, and M be a finite-dimensional comp-
letely pointed simple g-module and let J = Annggy M. Then U(g)/J is graded
isomorphic to a TGWA of the form A(y)T. The same is true for any fundamental
representation of sl,.

Proof. The problem is to show that we can choose o; so that the group G generated
by o; is abelian.

If g = s09,, or $09,+1 and M is a spinor representation, then U(g)/J is isomor-
phic to a subalgebra in the Clifford algebra with abelian G as follows from Corol-
lary 23.

Let g = sl,,. Consider the embedding sl,, C s02,+1 induced by the embedding of
the corresponding Dynkin diagrams. The restriction of the spinor representation to
sl,, contains all fundamental representations. Let -y be the rightmost matrix in (23)
and consider the subalgebra in CCA(y)" generated by X1,...,X,_1,Y1,..., Y, 1.
Let I = Anne M and B = €/I ~ End(M). Then B is a direct summand in the
semisimple algebra C. Hence o; for i = 1,...,n—1 preserve BNR and the statement
follows.

Let T" denote the set of weights of M. Note that o; must permute projectors
Eg, hence it is defined by a permuation of I'.

Let M be the standard representation of sp,,,. Then I' = {+¢;}. Let 07 = 09 =

- = op—1 be defined by the permutation k = (e1,...,e,)(—€n,...,—€1) and oy,
be defined by the permutation 7 = (1, —€1) - - (€n, —€n)-

If g = s02, and M is the standard representation, then we choose o1 = -+ =
0n—1 as in the previous case and let o, be given by the permutation k7.

Finally, if g = s02,4+1 and M is the standard representation, then I' = {+e¢;,0}
and we define o1 = - - - = g, by the permutation (e1,...,£,,0,—€p,...,—¢1). O

6. Open problems

Problem 1. For a simple Lie algebra g, list all finite-dimensional irreducible g-
modules M for which there exists a graded isomorphism between U (g)/ Anng(g) M
and a TGW algebra (equivalently, for which there is a choice of commuting ;).
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We believe none of the non-fundamental representations of sl,, for n > 2 are in
this list. The remaining cases to consider are the 27-dimensional representation of
FEs and 56-dimensional representation of E7.

Problem 2. Find necessary and sufficient conditions for a not necessarily regular
TGW algebra A, (R, 0,t) to be consistent, generalizing the main result of [10].
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