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In2016,theATOMKIcollaborationannounced[PRL116,042501(2016)]observinganunex-
pectedenhancementofthee+-e−pairproductionsignalinoneofthe8Benucleartransitionsinduced
byanincidentprotonbeamona7Litarget. Manybeyond-standard-modelphysicsexplanations
havesubsequentlybeenproposed.Onepopulartheoryisthattheanomalyiscausedbythecreation
ofaprotophobicvectorboson(X)withamassaround17 MeV[e.g.,PRL117,071803(2016)]in
thenucleartransition. Westudythishypothesisbyderivinganisospinrelationbetweenphotonand
Xcouplingstonucleons.ThisallowsustofindsimplerelationsbetweenprotophobicX-production
crosssectionsandthosefor measuredphotonproduction. ThenetresultisthatX production
isdominatedbydirecttransitionsinducedbyE1X andL1X (transverseandlongitudinalelectric
dipoles)andC1X (chargedipole)withoutgoingthroughanynuclearresonance(i.e.Bremsstrahlung
radiation)withasmoothenergydependencethatoccursforallprotonbeamenergiesabovethresh-
old. Thiscontradictstheexperimentalobservationsandinvalidatestheprotophobicvectorboson
explanation.

Ref.[1]observedananomalyinmeasuringe+-e−pair
productionin8Be’snucleartransitionbetweenthe18.15
MeV1+ resonanceandits0+ groundstate. Fig.1
showstherelevantenergylevels[2]. Thetwo1+ res-
onancesarebarelyabovethe7Li+pthreshold. The
unexpectedenhancementofthesignalwasobservedin
thelargee+-e−invariant massregion(about17 MeV)
andinthelargepair-correlationangles(near140◦)re-
gion. Thelargeangleenhancementisasimplekine-
maticsignatureofthedecayofaheavyparticleintoan
e+−e−pair.Theanomalyhasgeneratedmanybeyond-
standard-modelphysicsexplanations(e.g.,[1,3,4
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FIG.1.The8Belevels[2]thatarerelevantfortheM1tran-
sitionsproducingphoton(γ)andrecentlyproposedvector
bosonX [3,5,6]. Thetwo1+ resonancestatesareeither
mostlyisovector(MIV)ormostlyisoscalar(MIS).Theblue
lineisthe7Li+pthreshold. NoteX and(off-shell)γcan
furtherdecayintoe+-e−.
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Ourfocusisontheprotophobicvectorbosonexplana-
tion(seee.g.[3,5,6]). Weshallshowthattakingthis
hypothesisseriouslyleadstotheresultthatthelargean-
gleenhancementofpair-productionwouldhavebeenseen
atallATOMKIenergiesabovethreshold.
Thephysicsofabosonthatalmostdoesnotinter-
actwithprotonsprovidesaninterestingcontrastwith
photon-nucleoninteractions. Wenextshowthatisospin
symmetryenablesthederivationofausefulrelationbe-
tweenthematrixelementsofthetwointeractions.
Thephoton-quarkinteractionsaregivenbythefollow-
ingelectromagnetic(EM)currentinits2ndquantization
form:

jµγ=Qγ
µ 1

6
+
τ3
2
Q=jµs+j

µ
v,with

jµs≡Qγ
µ1

6
Q,jµv≡Qγ

µτ3
2
Q. (1)

Here,Q≡(u,d)Tistheiso-doubletquarkfieldoperator
τ3theisospinPaulimatrix,andj

µ
vandj

µ
sastheisovector

andisoscalarcomponentsofjµγ.
Thegeneralformofthecouplingbetweenanewvector
boson(X)andquarksisexpressedintermsofadifferent
linearcombinationofjµsandj

µ
v[5,6]:

jµX =Qγ
µ εs
6
−
εvτ3
2

Q=εsj
µ
s−εvj

µ
v, (2)

whereεsand(−εv)aretheratiosbetweentheXandγ
couplingconstantsintheisoscalarandisovectorcompo-
nents. Whenεs≈εv,Xisconsideredtobeprotophobic,
becausetheX-protoncharge-couplingwouldbe much
smallerthantheX-neutronone.Infact,withεs=εv
theX-pchargecouplingvanishesbecausetherearetwo
uandonedvalencequarksinproton,butX-ncharge
couplingisεvtimesthatofγ-p.
ComparingEq.(1)andEq.(2)showsthatapartfrom
thefactorεstheisoscalar(p+n)currentoperatorsof
theγandXarethesame,but(apartfromthefactorεv)

ar
Xi
v:
2
00
8.
11
28
8v
2  
[h
ep
-p
h]
  
26
 J
an
 2
02
1

mailto:zhang.10038@osu.edu
mailto:miller@phys.washington.edu


2

the isovector (p−n) matrix current operators differ by a
minus sign.

The connection between quark operators and nucleon
matrix elements is made explicit using invariance under
the isospin rotation Pcs ≡ Py(π) [7, 8], a rotation along
y-axis by 180◦ in the isospin space, that interchanges p
and n and also (because isospin is an additive quantum
number) d and u. Invariance under this rotation gives

〈p|jµs |p〉 = 〈n|jµs |n〉, 〈p|jµv |p〉 = −〈n|jµv |n〉. (3)

Hence the nucleon-level isoscalar X-boson current opera-
tor is obtained by multiplying the isoscalar photon opera-
tor by εs and the nucleon-level isovector X-boson current
operator is obtained by multiplying the isovector photon
operator by −εv.

In obtaining Eq. (3) isospin symmetry is assumed to
be exact. That isospin violation in the nucleon wave
function is very small can be anticipated from the small
ratio of the neutron-proton mass difference to their av-
erage mass of order 10−3, and is also verified by explicit
calculations, see e.g. [9].)

Therefore, jµs and jµv ’s matrix elements between nu-
cleons are related to the isoscalar and isovector parts of
the EM current’s matrix elements (with u as the relevant
Dirac spinor ):

〈p|jµs |p〉 =
1

2

(
〈p|jµγ |p〉+ 〈n|jµγ |n〉

)
≡ uΓµs u , (4)

〈p|jµv |p〉 =
1

2

(
〈p|jµγ |p〉 − 〈n|jµγ |n〉

)
≡ uΓµv u . (5)

At small values of the momentum transfer the nucleon
EM current operators are given by

Γµs =
γµ

2
+ λ(0)

σµνiqν
2MN

, Γµv =
γµ

2
+ λ(1)

σµνiqν
2MN

and Jµγ = N (Γµs + Γµv τ3)N , (6)

with N = (p , n)T as the nucleon field and Jµγ the

nucleon-level (2nd quantization) current operator. With
λ(0) = −0.06 and λ(1) = 1.85, the magnetic moments
µp = 1+λ(0)+λ(1) = 2.79 and µn = λ(0)−λ(1) = −1.91.1

Based on Eqs. (4), (5), (3) and (2), the nucleon-level
current JµX can be written as

JµX = N (εsΓs − εvΓvτ3)N. (7)

This means that while the Dirac (γµ) coupling of the
X to nucleons is protophobic, the Pauli (σµν) coupling
cannot be so. If εs = εv, the ratio of neutron to proton
X-magnetic moments is close to −3/2, a value predicted
in the non-relativistic quark model.

Eq. (7) tells us that, after accounting for kinematic ef-
fects (for boson momentum qµ, qµq

µ = M2
X for X and 0

1 It is worth pointing out that the ratio µn/µp = −0.684 is in
excellent agreement with the non-relativistic quark-model result
of −2/3 [10].
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FIG. 2. The Feynman diagrams for the M1 and M1X (left),
and E1 and E1X (right) transitions. In the left diagram, the
intermediate 8Be∗ states are the two 1+ resonances.

for γ) of the non-zero mass of the X boson, and the dif-
ferent polarization vectors, the isovector (isoscalar) com-
ponents in the X- and γ-generating transition matrix el-
ements are related by a simple factor of −εv (εs). As
reasoned later, the isovector component dominates over
the isoscalar one in all the transitions relevant to this
work, so the X-production cross section can be inferred
from that of the γ-production up to an overall factor ε2v.

The next step is to apply the existing understanding
of the EM transitions in 8Be [2, 11, 12]. The special
feature of the formalism developed for modeling 7Li+p→
8Be+γ (or e++e−) in Ref. [12] is that the effects of non-
resonant γ production via an E1 electric dipole operator
is included along with a magnetic dipole M1 induced
production that goes through intermediate excited states
(8Be∗). After that, the relation between Eq. (6) and
Eq. (7) will be exploited to compute X-production cross
sections.

The photon-production matrix element of the Jµγ op-

erator between the initial p-7Li( 3
2

−
) system and the

8Be (0+) ground state is given by 〈8Be;−q|Jµγ (q)|7Li +

p; a, σ, p〉, with a and σ as 7Li and proton spin projec-
tions and q as the (virtual) photon momentum. (From
now on, the physical variables in bold fonts, such as q
denote 3-dimensional vectors.) This matrix element has
various components, labeled by UλSL [12], with λ, S, and
L labeling the γ’s multipolarity (λ), the total spin (S)
and orbital angular momentum (L) in the initial state.

The γ production proceeds by either direct proton cap-
ture on 7Li (see the right diagram in Fig. 2) or by pop-
ulating the two intermediate 1+ excited states [2, 13] of
8Be at relevant beam energies (see the left diagram in
Fig. 2). The properties of the two 1+ resonances are
shown in Fig. 1 and Table. I. Since the scattering energy
between p and 7Li considered here is very low, only s
and p wave initial states (L = 0, 1) need to be consid-
ered, while its total spin S = 1, 2. Parity and angular
momentum conservation leads to selection rules that re-
quire only three amplitudes: U110 for E1, U111 and U121

for M1. The role of the E2 transition is negligible [12]
and ignored here.

The basic difference between X-boson and γ pro-
duction is that MX is non-zero (and is around 17
MeV [3]). Therefore, the X has three independent

polarizations λ̃ = ±1, 0. We follow Ref. [6] to ap-
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E(i) (MeV) Γγ(i) (eV) Γ(i) (keV)

i = 0 0.895 1.9(±0.4) 138(±6)

i = 1 0.385 15.0(±1.8) 10.7(±0.6)

TABLE I. From the left to right: the approximate isospin (i),
excitation energies, EM and strong decay widths of the 8Be’s
two 1+ resonances [2].

ply the qµεXµ (q, λ̃) = 0 constraint [14]2 with εXµ (q, λ̃)
as the polarization vector. Based on the deriva-
tion of the vector-current multipoles—as a part of
the electroweak current—of many-nucleon systems [see
Eqs. (7.20) (45.12) and (45.13) in Ref. [16]], we can see
that (1) for the transverse polarizations, the correspond-
ing E1X and M1X multipoles are defined in the same
way as E1 and M1 multipoles; (2) in addition, there are
longitudinal multipoles (e.g., L0X and L1X) that couples

to the λ̃ = 0 polarization, and J0
X -charge-induced multi-

poles (C0X and C1X). Since L and C multipoles don’t
contribute in γ production, no direct information can be
drawn for these multipoles from the γ production data.
However, in both X and γ productions, their momenta
(with ω as their energy),

|q| =

{√
ω2 −M2

X ∼ O(1) MeV for X

ω ∼ O(10) MeV for γ,
(8)

are much smaller than the inverse of the nuclear length
scale (∼ O(102) MeV). In this region, as discussed in the
Appendix A, L1X and C1X are directly related to the
E1X . In the following discussion of multipoles, we focus
on the E1, M1, E1X and M1X at the |q| → 0 limit, and
comment on C0X and L0X in the end.

Before going into the reaction formalism [12] which
uses 7Li and p as fundamental degrees of freedom, it is
worth understanding the isospin structure of the U1SL

on the nucleon level. It provides the key relationship
between γ and X production amplitudes.

The single-nucleon electric and magnetic multipole op-
erators, derived from the Jµγ current in Eq. (6), are well-

known (e.g., see Eqs. (5.45) and (5.71) in Ref. [17] 3).
The E1 operator is given by

Oγ
E1 = eEM

√
3

4π

A∑
i=1

r(i)
τ(i),3

2
. (9)

The summation index (i) labels the nucleons inside the
8Be system. The operator Oγ

E1 is explicitly isovector.

2 Different beyond-standard-model theories have been constructed
for massive dark photons [5, 6]. There, Proca-type lagrangians
have been employed (e.g., Eq. (54) in Ref. [5]) for the new par-
ticle, which can be considered as gauge-fixed versions of the
Stueckelberg action[15].

3 Note the convention of nucleon isospin multiplet in Ref. [17] is
N = (n, p)T , which is different from ours in Eq. (6).

The M1 transitions are governed by the operator

Oγ
M1 =

√
3

4π

eEM

2MN

∑
i

[(
λ(1) +

1

4

)
σ(i)τ(i),3

+

(
λ(0) +

1

4

)
σ(i) +

1

2
J(i)

(
1 + τ(i),3

)]
here
≈
√

3

4π

eEM

2MN

∑
i

[(
λ(1) +

1

4

)
σ(i) +

1

2
J(i)

]
τ(i),3

(10)

OM1 is simplified in Eq. (10) based on that (1) the ma-
trix element of the total angular momentum J =

∑
i J(i)

(assuming the nucleus is made only of nucleons) between
the initial resonances and the final state are zero, be-
cause J does not connect states with different angular
momentum; and (2) numerically |λ(1) + 1

4 | (= 2.10) �
|λ(0) + 1

4 | (= 0.19). These expressions for OE1 and OM1

are corrected by two-body meson exchange currents that
are mainly transverse and isovector [17, 18]. Therefore
both E1 andM1 transitions here are isovector in nature4.

As mentioned above, E1X and M1X are defined in the
same way as E1 and M1 but with Jµγ → JµX [16]. The

resulting E1X and M1X transition operators for the X
production are obtained using Eq. (7) (i.e., by multiply-
ing the isoscalar and isovector components in both OE1

and OM1 by εs and −εv respectively):

OX
E1 = −εvOγ

E1 (11)

OX
M1 =

√
3

4π

eEM

2MN

∑
i

[
−εv

(
λ(1) +

1

4

)
σ(i)τ(i),3

+εs

(
λ(0) +

1

4

)
σ(i) +

1

2
J(i)

(
εs − εvτ(i),3

)]
=

√
3

4π

eEM

2MN

∑
i

{
εs

(
λ(0) +

1

4

)
σ(i)

−εvτ(i),3
[(
λ(1) +

1

4

)
σ(i) +

1

2
J(i)

]}
(12)

≈ −εvOγ
M1 (13)

The approximation in Eq. (13) would only fail if the

isoscalar piece in OX
M1 is greater or comparable than the

isovector piece in size, i.e.,∣∣∣∣ εsεv
∣∣∣∣ &

∣∣∣∣∣λ(1) + 1
2

λ(0) + 1
4

∣∣∣∣∣ ≈ 12. (14)

The 1/2 in the |λ(1)+1/2| results from combining the spin
part of the

∑
i τ(i),3J(i) piece [=

∑
i τ(i),3

(
L(i) + σ(i)/2

)
]

with the
∑
i τ(i),3σ(i) piece; the L(i) part in the former

piece is neglected, because it is either 0 or 1 according

4 The M1 transition has been carefully examined in Ref. [5] which
also concludes that it is dominated by the isovector component.



4

to shell model and thus its contribution is much smaller
than than that of the spin part.

Accepting the condition of Eq. (14) would require X-
proton and -neutron to have almost the same coupling
strength, which contradicts X being protophobic. (Note
according to Ref. [5], εs/εv . 3.) Moreover, including

the two-body current contribution to OX
M1 would further

increase [18] the dominance of the isovector component
over the isoscalar one, and thus makes Eq. (13) a better
approximation.

In summary, the E1X and M1X operators for proto-
phobic X boson production are (to an excellent approxi-
mation) simply proportional to those for the γ production,
with an overall factor −εv.

Next we briefly describe our effective field theory
(EFT) inspired model [12] for γ production, which pro-
vides a good description of the cross section data [19], and
the space anisotropy data [20, 21]. The model uses 7Li
and p as fundamental degrees of freedom to construct the
appropriate Lagrangian, so that the model reproduces
the properties of nuclear resonances near 7Li-p thresh-
old, including both MIS and MIV 1+ states. Appropriate
EM transition vertices are then constructed to describe
both direct EM capture process and the radioactive decay
of resonant states populated by 7Li-p scattering. Their
Feynman diagrams can be found in Fig. 2. The former
has smooth dependence on the beam energy while the
latter shows resonant behavior. Both components can
be qualitatively identified in the γ production data, as
shown in the top panel (purple error bars) in Fig. 3.

The next step is to separate the E1 and M1 contribu-
tions to the γ-production cross section and then use the
relations in Eqs. (11) and (13) to obtain the E1X and
M1X contributions to the X-boson production. One may
immediately expect that the E1X contributions will be
substantial if the E1 and M1 contributions are compara-
ble. This is important because the observed enhancement
of e+-e−pair-production is associated only with an M1X

transition.

The differential cross section can be computed [12] via

dσγ,X
d cos θ

=
M

4π

q

p

1

8

∑
a,σ,λ̃

|Mγ,X |2 . (15)

Mγ,X is the reaction amplitude depending on polariza-

tions λ̃ and nuclear spin projections a and σ; M the re-
duced mass between 7Li and proton; θ the angle between
boson momentum q and beam direction in the CM frame;
q ≡ |q|; p ≡

√
2ME (E as the CM initial-state kinetic

energy with E = 7/8Elab). For both productions, the
boson energy ω ≡ q0 = E+Eth (Eth as the 7Li-p thresh-
old energy wrt the 8Be ground state, see Fig. 1), ignoring
the final state 8Be’s very small recoiling energy. Note for
γ, ω = q, while for X, ω =

√
M2
X + q2.

For X production,
∑
λ̃ ε

X
µ ε

X
ν = −

(
gµν − qµqν/M2

X

)
,

since qµεXµ (q, λ̃) = 0 [6].
∑
a,σ,λ̃ |MX |2 becomes

∑
aσλ̃

JXµJ
∗
Xν ε

µεν =
∑
aσ

JX,iJ
∗ j
X

(
δij −

qjq
i

ω2

)
, (16)

with J now as the currents’ matrix elements between nu-
clear states and i, j as the space indices. The current
conservation for which J0

X = q ·JX/ω is employed in the
derivation. As reasoned above, the pieces in JµX corre-
sponding to E1X and M1X can be derived by multiply-
ing the corresponding pieces in Jµγ by −εv. (The latter’s
expression in terms of UλSL can be found in Eq. (3.1)
in Ref. [12].) In addition, Appendix A shows that the
contributions of L1X and C1X associated with E1X are
automatically included in Eq. (16) as well.

For an on-shell photon, ω = q, so the above formula
also applies for

∑
a,σ,λ̃ |Mγ |2 with JµX → Jµγ .

The net result, including (E1, M1) and (E1X , L1X ,
C1X , M1X) multipoles and evaluating the spin sums, is
to arrive at the following decomposition:∑

a,σ,λ̃ |Mγ,X |2 = T γ,X0 + T γ,X1 P1 (cos θ) + T γ,X2 P2 (cos θ) ,

(17)

where, Pn are the Legendre polynomials, and

TX0 /ε
2
v = (3ω2 − q2)|U110|2 +

2

3
q2
( p
M

)2 [
|U111|2 + |U121|2

]
,

(18)

TX1 /ε
2
v = 2

√
2ωq

( p
M

)
Im (U111U

∗
110) , (19)

TX2 /ε
2
v =

1

3
q2
( p
M

)2 [
|U111|2 −

1

5
|U121|2

]
. (20)

Expressions for T γn (that agree with those in Ref. [12])
are obtained from the above formula by using q = ω and
setting εv to unity.

Expressions for UλSL in terms of EFT coupling pa-
rameters are Eqs. (3.2), (3.5) and (3.6) in Ref. [12]. The
parameters are fixed by reproducing the photon produc-
tion data, including total cross section, and T γ1 /T

γ
0 and

T γ2 /T
g
0 ratios, with Elab ≡ 8/7E below 1.5 MeV. Note

the amplitudes UλSL depend only on E, but not ω or q.
We now turn to the results, starting with the γ-

production cross section shown in the upper panel of
Fig. 3. The model provides good agreement with the
data from Ref. [19]. For further comparisons between
theory and experiment see Ref. [12]. The salient features
are the two M1 resonance contributions, with the lower-
energy MIV peak being much higher, and the smooth
behavior of those of the E1. Except for the strong peaks
at the two 1+ resonances, the E1 dominates.

The resonance peaks occur from a two-step process in
which the strong interaction connects the initial |7Li, p〉
to the 1+ states which then decay by emitting a photon
(see the left diagram in Fig. 2). The relative strengths
of the two peaks naturally arise from Eq. (10). If the
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FIG. 3. Top: σγ vs. the proton’s lab energy Elab. The data
are from Ref. [19]. The lower panels: σX/ε

2
v for different

values of MX . The shaded regions cover the four measured
energies [1]. The legends are shared by all the panels; E1
(E1X L1X C1X), M1 (M1X), and their sum are shown as
sold (red), dashed (blue), and dotted (black) lines.

1+ states were pure isospin eigenstates, the OM1 opera-
tor would only connect the lower-energy state with the
ground state. γ-production at the higher-energy reso-
nance occurs only because isospin mixing between the
two 1+ states causes the higher-energy state to have an
isospin 1 amplitude of −0.21 [18, 22]. The kinematics to-
gether with this ratio can qualitatively explain the ratio

0.0 0.5 1.0 1.5

120

130
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160

170

180

Elab(MeV)

θ
+
-m
in
(d
eg
re
e)

MX=16.5 MeV

17
17.5

18

FIG. 4. The minimum values of the pair correlation angles vs.
the proton’s lab energy Elab. Four different cases are plotted
with the corresponding masses indicated. The shaded regions
again cover the four measured energies [1].

of photon widths Γγ(i) listed in Table I [5]. The difference
between the strong decay widths shown in that Table
arises from phase space factors and the greater impor-
tance of the Coulomb barrier at lower energies [12]. The
final |7Li, p〉 states in these strong decays are equal mix-
tures of isospin 0 and 1, so the 1+ states’ isospin contents
do not dictate the strong decay width.

Next turn to the production of X bosons. Eq. (18)
gives the relative magnitude of the total X production
cross section i.e., σX/ε

2
v and its decomposition into the

ELC1X and M1X components. (From now on, ELC1X

means the combination of E1X , L1X and C1X , since
they always show up together.) The first term, being
proportional to 3ω2 − q2, is ELC1X contributions (for
the photon this factor is 2ω2). The second term gives
that of M1X , whose q2 factor arises from the magnetic
nature of the interaction.

The results thus obtained for four different MX (16.5,
17, 17.5 18 MeV) around the suggested values from
Ref. [3] are shown in the lower four panels of Fig. 3.
The shaded regions cover the four different Elab values,
0.8, 1.04, 1.1, 1.2 MeV, that have been measured by the
experiment [1]. The X can be produced via the domi-
nant ELC1X component for almost any energy above the
kinematic threshold, except around the MIV resonance
for MX = 16.5, 17 and 17.5 MeV. (The 7Li-p threshold
is 17.26 MeV above 8Be’s ground state, and thus no ki-
netic threshold exists for MX = 16.5, 17 and 17.5 MeV,
while such threshold for MX = 18 MeV eliminates X
production around the MIV resonance.)

One key experimental signal of the X productions is
the enhanced e+-e−detection—from X’s decay—in the
region of large pair-correlation-angle (θ+−) as measured
in the lab frame, on the top of the EM-induced pair pro-
duction background that varies smoothly in the same re-
gion [1, 12]. If MX ≈ ω, θ+− is limited to a small win-
dow, between θmin

+− and 180◦, which can be seen based
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on heavy-particle-decay kinematics (see Ref. [6]). Fig. 4
plots θmin

+− against Elab for the four different MX values.
For example, with MX = 17 MeV and 0.8 ≤ Elab ≤ 1.2
MeV (shaded region), the X-decay e+-e−are concen-
trated in 140◦ ≤ θ+− ≤ 180◦; while for other masses,
θ+−s are in qualitatively similar regions.

Since the full X-production cross section varies
smoothly with Elab as shown in Fig. 3, the enhanced
e+-e−detection in the θ+− ∼ 180◦ region should have
been observed across the shaded region. This is in di-
rect conflict with the experimental observation of such
enhancement associated only with the higher energy 1+

state, i.e., not seen at Elab = 0.8 and 1.2 MeV [1].
The dominance of the ELC1X component around

the MIS resonance and the strong dependence of the
ELC1X/M1X ratio on the value of MX , as shown in
the figure can be understood using a simple calculation.
The ratio can be inferred from the same ratio for the γ
production (the phase space factors canceled in the ra-
tios). At a given beam energy E,

σX,ELC1X (E)

σX,M1X (E)
=
σγ,E1(E)

σγ,M1(E)

3ω2 − q2

2q2
, (21)

with ω as energy for both X and photon, with q =√
ω2 −M2

X . Now, at the energy of the MIS resonance
where the anomaly was observed, Fig. 3 shows σγ,E1 ≈
0.7 σγ,M1. Here ω = 18.15 MeV, and q = 6.36 MeV for
MX = 17 MeV. Then Eq. (21) tells us that

σX,ELC1X

σX,M1X

∣∣∣∣
MIS

=
2ω2 +M2

X

2(ω2 −M2
X)

σγ,E1

σγ,M1

∣∣∣∣
MIS

MX=17
≈ 8.6 .

(22)

The sensitivity to the value of MX can be seen from the
denominator—MX is close to ω.

The ratio 8.6 is obtained by assuming that Eq. (13)
is exact. However to evade this conclusion, |εs/εv| must
be around or larger than 12 as shown in Eq. (14), which
conflicts with X being protophobic.

In summary, the results presented in Fig. 3 show that
there would be a signal of X production due to the
E1X + L1X + C1X transitions, i.e., Bremsstrahlung ra-
diation of X boson at all beam energies above thresh-
old. This mechanism has a smooth beam energy Elab

dependence, while the resonant production diminishes
quickly when Elab is a few widths away from the res-
onances. In fact, given a 17 MeV X boson, the en-
hancement signal should have been seen at all four of
energies of the ATOMKI experiment [1]. For a 18 MeV
X boson, although X production around the MIV res-
onance is eliminated due to kinematic threshold, the
smooth Bremsstrahlung component should still be de-
tectable above the MIS resonance. However, the experi-
mental observation [1] of the anomaly is absent below or
above the MIS, higher-energy 1+, resonance. Therefore,
the explanation of the anomaly in terms of protophobic
vector boson X cannot be correct.

It is worth commenting on the C0X and L0X multi-
poles which contribute to the X-production but not to

the γ production. Although their contributions can not
be inferred from the γ production, their energy depen-
dences are smooth, because they do not induce transition
between 8Be’s 1+ resonance and 0+ ground state. There-
fore, their contributions 5 enhance the smooth-energy-
dependence component in the X-production cross sec-
tion, which further strengthens our basic conclusion.

Our considerations here are concerned with the A = 8
system. However, for the A = 4 system 4He, where a sig-
nal of X-boson production has also been claimed [6, 23],
the Bremsstrahlung terms induced by the (L0X , C0X)
multipoles, and the ELC1X induced resonant produc-
tions from the two 1+ resonances—about 3.5 MeV above
the experimental measurement [23] but with about 6
MeV widths [24]—will be present. Therefore, given the
coupling constants of Ref. [6] one should reasonably ex-
pect to have seen a signal at all beam energies. Detailed
nuclear calculations of the L0X , C0X , E1X , L1X and
C1X matrix elements for A = 4 would be valuable for
addressing this issue.
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Appendix A: Multipoles for producing a massive
vector boson

The reaction amplitude for producing a photon γ or X
is

Mγ,X = −eEMε
γ,X
µ 〈f |jµγ,X |i〉 , (A1)

with |i(f)〉 as nuclear states and jµγ,X currents defined in

Eqs. (1) and (2). Two different ways are employed to
describe these amplitudes with γ and X’s |q| → 0.

From a low-energy EFT perspective, the γ and X fields
Aµ and Xµ can be treated as external fields [25] in con-
structing an effective lagrangian. Based on the conserva-
tion of jµγ,X , the lagrangian density with external fields is
invariant under the corresponding local symmetry trans-
formation [25]. The leading order contact terms for pro-

ducing a γ can be expressed as d̂γ · (∂tA− ∂A0) for the

5 The C0X and L0X cross section should be much smaller than
the E1X , because for the former the relative motions in both
initial (7Li–p) and final states (8Be–X) are in p waves, while for
the latter both are in s waves. Of course, a definite answer has
to be drawn from nuclear microscopic calculations.
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E1, and µ̂γ · (∂ ×A) for the M1. d̂γ and µ̂γ are electric
and magnetic dipole operators, which can be expressed in
terms of nuclear cluster fields. For example, in Eqs. (2.4)
and (2.5) in the Ref. [12], both operators are constructed
using 7Li and proton fields. The lagrangian terms for X

production take the same forms: d̂X · (∂tX − ∂X0) and
µ̂X · (∂×X), due to the local transformation invariance.
The µ̂X term again corresponds to the M1X , but the

d̂X term now has the E1X L1X and C1X contributions,
since X is massive. Therefore in Eq. (16), 〈f |jµX |i〉, as de-

rived from 〈f |d̂X |i〉 and 〈f |µ̂X |i〉, automatically includes
the E1X L1X and C1X ’s contributions together and the
M1X ’s respectively.

Note the basic argument of this paper is that d̂X and

µ̂X are proportional to d̂γ and µ̂γ respectively because
of the dominance of the isovector component.

On the nucleon level, the electroweak current multi-
poles have been derived in Ref. [16]. The vector cur-
rent mulitpoles, including transverse EX and MX , lon-
gitudinal LX , and the charge-induced CX [Eqs. (45.12)
and (45.13) in Ref. [16]], can be directly applied here
for the X production. By comparing the (EX , MX) to
the (E M) defined in the Eq. (7.20) of Ref. [16], we see
that they can be changed into each other by jµX ↔ jµγ .
Moreover, the |q| → 0 limits of these multipoles are in
the Eqs. (45.35)–(45.37) of Ref. [16]. It can be easily
checked that in this limit, the relationship between E1X

and (L1X , C1X) are those given by the effective interac-

tion d̂X ·(∂tX−∂X0) discussed above. I.e., this effective
coupling includes all the contributions from the E1X L1X

and C1X multipoles.
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