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Empirical energy density functionals (EDFs) are generally successful in describing nuclear proper-
ties across the table of nuclides. But their limitations motivate using the density-matrix expansion
(DME) to embed long-range pion interactions into a Skyrme functional. Recent results on the
impact of the pion were both encouraging and puzzling, necessitating a careful re-examination of
the DME implementation. Here we take the first steps, focusing on two-body scalar terms in the
DME. Exchange energies with long-range one-pion contributions are well approximated by all DME
implementations considered, with preference for variants that do not truncate at two derivatives in
every EDF term. The use of the DME for chiral pion contributions is therefore supported by this
investigation. For scalar-isovector energies it is important to treat neutrons and protons separately.
The results are found to apply under broad conditions, although self-consistency is not yet tested.

I. INTRODUCTION

Empirical energy density functionals (EDFSs) success-
fully describe nuclear bulk properties and some spectro-
scopic features throughout the known table of nuclides,
except for the lightest nuclei. Various parametrizations
are available, including Skyrme, Gogny, Fayans, and rel-
ativistic functionals [1, 2]. Each have of order ten param-
eters that are determined by fits to selected nuclei. De-
spite the phenomenological successes of empirical EDFs,
greater accuracy is desired, e.g., for r-process nucleosyn-
thesis [3, 4] and the description of single-particle ener-
gies [5], but analyses suggest that the standard EDF
forms have reached an accuracy limit [5-7]. Recasting
EDFs as effective field theories (EFTs) would offer guid-
ance for more accurate functionals, as well as greater
control of their uncertainties and limits (e.g., toward the
driplines), and would fill a gap in the tower of EFTs de-
scribing strong interaction phenomena [8].

The effort to adapt EFT methods to EDFs is com-
plementary to the applications of chiral EFT to an ex-
panding range of nuclei using ab initio many-body meth-
ods [9-11]. Chiral EFT builds on free-space internucleon
interactions, while the EDFs and their extensions effi-
ciently embody the emergent phenomena of nuclear sat-
uration, pairing, low-lying collective excitations, and fis-
sion in a low-resolution many-body framework [8, 12].
However, a key question in formalizing an EFT for EDFs
is the role of the pion as a long-range degree of freedom.
The pion is missing in practice from empirical EDFs, but
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is it needed to reach greater accuracy for bulk properties
or describing dripline physics? To address this question,
a semi-phenomenological hybrid approach to include pion
physics based on the density-matrix expansion (DME)
has been pursued in Refs. [13-16] (see Ref. [8] for an
overview of other approaches).

The DME was introduced by Negele and Vautherin in
their seminal papers, Refs. [17, 18], as a more sophis-
ticated alternative for approximating one-body density
matrices than the simple Slater approximation [19]. It
allows one to approximate the nonlocal one-body den-
sity matrix (OBDM) in terms of quasilocal densities by
factorizing the nonlocality into universal functions. Ap-
plying it to the expression for the exchange energy in
Hartree-Fock (HF) theory facilitates its calculation and
clarifies how phenomenological zero-range Skyrme inter-
actions are connected to the underlying nuclear forces.
While several other DME variants have been subse-
quently developed (see Sec. IIB), a consistent extension
beyond HF in many-body perturbation theory (MBPT)
is not yet available [20].

The components of the HF-OBDM for a single particle
species (neutrons or protons; identified by ¢), p,(x1,X2),
can be written in terms of self-consistent HF orbitals as

Aq

Py(X101,%209) = Y &% 1 (X202)0g.i(x101), (1)

=1

with the sum running over occupied single-particle states
and A, denoting the corresponding nucleon number. To
apply a DME, the OBDM is commonly split into Hermi-
tian scalar and vector parts [13], respectively denoted by
pq and s,

pulx1,x2) = 5 [py(x1, %)+ 5y0x1,%0) 0] (2)


mailto:lzurek@theorie.ikp.physik.tu-darmstadt.de
mailto:coelloperez1@llnl.gov
mailto:bogner@frib.msu.edu
mailto:furnstahl.1@osu.edu
mailto:schwenk@physik.tu-darmstadt.de

with

pq(x1,%2) = Tr7[pg(x1,x2)] 3)
SQ(le X2) =T [pq(xh x2>0-} ) (4)

where the trace is in spin space only and o are the spin
Pauli matrices.

In the recent hybrid approach [13-16], a simplified
phase-space-averaging DME [13, 21] is used to deter-
mine an EDF based on the long-range parts of free-space
nucleon-nucleon (NN) and three-nucleon (3N) interac-
tions from chiral EFT at the HF level. These terms are
combined with a conventional Skyrme EDF whose pa-
rameters are subsequently refitted. The underlying idea
is that the Skyrme coupling constants capture the contri-
butions from short-range physics and correlations from
higher orders in MBPT, like contact interactions in an
EFT [14, 15]. The direct use of long-range interactions in
a low-resolution EDF is justified by the observation that
renormalization-group (RG) evolution only modifies the
short-distance physics [13].

In practice, the direct (Hartree) terms are treated ex-
actly while the DME is applied to the exchange (Fock)
contributions [16]. The rationale for only applying the
DME to the Fock contributions is twofold. First, from
a purely technical standpoint, the exact treatment of
the NN Hartree contribution is relatively straightforward
since the direct Coulomb contribution is already treated
exactly in most EDF implementations. Second, and more
importantly, the falloff of the nonlocality in the Hartree
and Fock contributions behaves differently [17], and can
result in large errors in self-consistent calculations that
treat both direct and exchange terms via the DME. For
the Fock contribution, the scale of nonlocality is rela-
tively independent of direction and is set by the local
Fermi momentum. In contrast, the nonlocality in the
Hartree term depends strongly on direction, which is not
captured in DME treatments that use angle averaging.
EDFs obtained in this fashion have a much more involved
density dependence than conventional Skyrme EDFs.

When including terms up to next-to-next-to-leading
order in the chiral expansion, the hybrid-approach EDFs
constructed in Ref. [16] show a significantly improved de-
scription of experimental binding energies compared to a
conventional Skyrme EDF. While these results are en-
couraging, the details are puzzling: first, the inclusion of
3N forces breaks this trend, and second, at leading or-
der, which naively might be expected to have the biggest
effect, no overall improvement is found. This is partic-
ularly surprising as the leading-order NN one-pion ex-
change constitutes the interaction with the longest range
in the chiral expansion and hence is supposedly the most
difficult to be correctly described by a conventional (zero-
range) Skyrme pseudopotential.

There could be several reasons for this behavior, in-
cluding potentially suboptimal choices for the DME used
to determine contributions to the functional from the ex-
change term. Therefore, we begin here to compare dif-
ferent DMEs, focusing in particular on the accurate re-

production of the Fock energy due to long-range pion
exchange. This paper constitutes a first step towards
improving the accuracy of DMEs based on chiral inter-
actions.

At this stage, we restrict our analysis to the scalar
parts of the OBDM as they contribute the most to the
HF energy. The vector parts as well as the more involved
DME choices in the 3N sector will be considered in future
work. We also isolate the role of the DME by performing
non-self-consistent tests only, with a self-consistent im-
plementation into a full EDF planned for a later stage.

In Sec. II, we review the different choices to be made
in formulating a DME that we explore. This includes
the choice of the momentum scale in DMEs, different
choices for the auxiliary functions (II functions), ex-
panding in single-particle vs. center-of-mass coordinates,
as well as isoscalar /isovector vs. neutron/proton DMEs.
Section IIT surveys results for different implementations,
using different sets of orbitals for a range of closed-shell
nuclei. We compare in detail the performance of the
DME for the OBDM, as well as for integrated quanti-
ties, focusing on the contributions from the long-range
pion exchange. In particular, our results point to the
improved performance of full-square DMEs and of using
DMEs for neutron/proton contributions instead of the
isoscalar /isovector formulation. Our summary and out-
look are given in Sec. IV.

II. DENSITY-MATRIX EXPANSIONS

A. Overview

For the following discussion we switch from single-
particle coordinates x; and x5 to relative and center-
of-mass coordinates defined by

1
r=x; —xs and REi(Xl-l-Xz), (5)

and write py(R;r) as a shorthand for p,(R +r/2,R —
r/2) = py(x1,%2). A naive approximation for the scalar
part of the OBDM, which factorizes its nonlocality, is
given by a Taylor expansion about R truncated at order

nmaxv
NMmax 1 r n
puBit) = Y — (3 Vi) py(Ra,Ro) :
n=0 " R;=R,=R

(6)
where Vi3 = (V1 — V3) and V; (V3) acts on Ry (Ra).
However, this approximation performs poorly at large
values of r, for which the OBDM is expected to vanish.
The latter condition can be enforced by multiplying each
term of the Taylor expansion by a function 7/'max(kr)
that vanishes faster than 1/r™ for large r (using notation



similar to that in Refs. [22, 23]):

'@ rimax (kr) /v n
pq(R;T) = Z —— n'( ) (5 . V12)
n=0 :

x pg(R1, Ra) (7)

R;=R>=R

Here we have introduced the momentum scale &k, which
determines the fall-off in the off-diagonal direction of the
OBDM. If we further impose

nmas (z) = 1 4 O (zmmex "+ )

the first nga.x terms of the quasilocal approximation
Eq. (7) match the first n,.x terms of the Taylor series of
pq(R;r). Specifically, the mth term in the Taylor expan-
sion of Eq. (7) is proportional to

(r-Vi2)"py(Ri, Ro)
(rk)™ " (r - V12)" pg(R1, Ra)

for m < npmax ,
for m > Nmax -

The most well-known example of such approximations
is the Slater approximation [19], which is often used in

calculations of the Coulomb exchange energy [1]. It in-
cludes only the n = 0 term in Eq. (7) and is given by

- 3]1 (kFT)

pu(Bir) ~ D (R, )

where j;(z) is a spherical Bessel function of the first kind
and the local density reads

pq(R) = pg(R;0). (10)
The momentum scale,

be = kA(R) = [37%p,(R)] ", (11)

is the local density approximation for the Fermi momen-
tum. The Slater approximation has the special feature
that it becomes exact in the limit of homogeneous infinite
nuclear matter (INM).

Several other approximations to the density matrix are
built around the Slater approximation by adding correc-
tion terms that vanish in INM. This can be expressed
nicely by regrouping certain terms in Eq. (7) yielding
(using notation similar to Refs. [13, 21])

Tmax
pe(Rir) = Z Hngcr) Tay Ta, Pat " (R). (12)
n=0
Here and in the following, a summation over repeated
Greek indices denoting spatial components is implied.
The II functions are normalized according to II,,(0) = 1,
and the quasilocal density combinations P21~ (R) are
chosen such that the Taylor expansions of the exact
pq(R;r) and of Eq. (12) agree up to order nmax (as be-
fore). Then all terms of Eq. (12) except for the zeroth

vanish in nuclear matter if o (z) = 371 (z) /2 and k — kp
in that limit. We refer to approximations with these
properties as density-matrix expansions (DMEs) around
the INM limit.

Different DME variants differ in their choices of mo-
mentum scales k£ and in their IT functions. As the Taylor
series of Eq. (12) is supposed to match the exact p,(R;r)
only up to order mpyax, the higher-order terms in the
IT functions can be chosen rather unrestrictedly. These
choices can lead to significantly varying convergence be-
haviors with respect t0 nmax [24]-

In general DMEs perform well at smaller r values and
degrade as r increases, but even then, they are superior to
straightforward truncations of the derivative expansion
of the density matrix, Eq. (6). Additionally, one may
expect that DMEs reproduce the exact OBDM better in
the interior of a typical nucleus (so for small R) than
in the nuclear surface because there the resemblance to
INM is worse and the omitted higher-order terms are
more relevant.

The notation of Eq. (12) has the advantage that the
II functions do not depend on the truncation order nyax
unlike the 7)'ms= functions used in Eq. (7). However, the
notation is somewhat abstract. To make it a bit more
explicit we give here as an example the general expression
of a second-order DME (i.e., a DME with nyay = 2):

pe(Rir) = I (kr)pg(R) 4 iIl1 (kr)re jg.a(R)

I (kr 1
+ 2 )"arﬁLlVaVﬁﬂq(R)—Tq,aﬁ(R)

2
1 2
+ £0aak%py(R)| (13)

where the components of the current density and kinetic
density tensor are given by

Jg.a(R) ;o (14
Ri=R:=R

Tg.a8(R) = vl,av?ﬁﬂq(RhR2)|R1:R2:R' (15)

Finally, we note that the scalar part of the OBDM
typically only has a minor dependence on the direction
of the nonlocality r [17, 21]. Therefore, often DMEs are
formulated using an angular average with respect to r.
This leads to the simpler expression

1
—§V12,al)q(R1> R»)

"R T, (k)

pq(R;T) =~ nZ:O m

P, (R), (16)

where the prime indicates that the sum only runs over
even values of n (as the angular average cancels all odd-n
terms).

Continuing with our example from above we obtain for
a DME of order npax = 2:

pq(R; 1) = Iy (kr)pg(R) + dt (6k7') 2
X [1V04(R) 7y (R) + Ky (R) |, (17)



with the kinetic density
T7,(R) = 7g.0a(R). (18)

B. Considered DME variants

Several approximations to the OBDM have been de-
veloped in the past. In this work, we explore DMEs with
Nmax < 2. The quasilocal densities appearing in such
approximations are those known from standard second-
order Skyrme EDFs. Higher-order DMEs could be use-
ful in the context of higher-order Skyrme-like EDFs [25]
as they have the potential to be more accurate, see
Refs. [24, 26] for related studies. The considered cases
are listed with their respective references in Table I. Al-
though a couple of them do not use Ily(z) = 3j1(x)/x,
hence not reproducing the correct INM limit, see Table I,
we still refer to all of them as DMEs.

Additionally, we restrict ourselves to angular-averaged
DMEs as given in Eqgs. (16) and (17). Hence, we only
list ITp(z) and (where applicable) II5(z) in Table I. Lift-
ing this restriction has the potential for better accuracy,
too [24]. The DMEs considered here all use as their mo-
mentum scales either the standard local density approx-
imation to the Fermi momentum as defined in Eq. (11)*
or an alternative introduced in Ref. [28] which is given
by

tre = Ho(R) = { 05 [m(R) - 1925, }1/2 .
(19)

With the latter choice the second-order term in Eq. (17)
vanishes identically and II3(z) does not need to be spec-
ified. Thus, using this momentum scale can be viewed
as incorporating the second-order contribution into the
zeroth-order term. Additionally, it coincides with the
regular Fermi momentum in nuclear matter, hence not
changing the corresponding limit. However, in princi-
ple, the term enclosed in square brackets in Eq. (19)
can become negative and thus kpc imaginary. This is
clearly unphysical and can lead to diverging exchange en-
ergies. In practice we find that kpc is almost always real,
which has been also found in molecular systems [29, 30].
None of the systems considered in this work produces
imaginary values for krc, but for future applications one
should be aware of the possibility.

We now proceed to give a few remarks regarding some
of the considered DME variants, for more details on the
variants we refer the reader to the references listed in
Table I:

1. We employ the PSA-DME in the simplified ver-
sion described in Ref. [13] (also called INM-
DME |[21]). This is the variant that has been

1 See Ref. [27] for phenomenological adjustments of this momen-
tum scale.

TABLE I. DME variants investigated in this work. For each
DME the order nmax, the expansion momentum scale k, and
the II functions for the scalar parts of the OBDM are given.
For the definitions of kr, krc, and G(z,Y) see Egs. (11),
(19), and (20), respectively. Ji(z) is the fourth (cylindrical)
Bessel function of the first kind. An asterisk (*) indicates that
the marked II function does not need to be specified as the
corresponding term vanishes. The sixth column (INM) shows
whether the specified DME reproduces the exact OBDM for
nuclear matter. The last column (II) indicates if the DME-
approximation to the OBDM obeys integrated idempotency.
See text for details.

DME Max k Io(z) Ma(z) INM II
Slater [19] 0  kp 371;”3) - 7
PSA [13,21] 2 ke 3;‘12:(9:) 3j1;””) v

NV [17,18] 2 ke 3j1;"3) 10553(:”) o/
SVCK [31] 2 ke 31'135””) 945;3(“) v

DT [24] 2 ke ?’jlx(“’) exp(—%) v

CB 28,32 2 hee 2 lx(“’) x v

BZ [32] 2 krc 96]435;/%) «

Gaussian 2 kpc exp(—fj) «

32, 33]
MG [34] 2 krc G(z,21.5) x

used in Ref. [16] to enrich a Skyrme-like EDF with
density-dependent coupling functions originating
from long-range parts of chiral NN+43N interac-
tions.

The full PSA-DME takes the anisotropy of the local
momentum distribution into account, leading to a
more complicated expansion momentum scale. The
authors of Refs. [13, 21] note that the anisotropy is
especially pronounced in the surface of the nucleus

and hence consider it only for the vector part of the
OBDM which sharply peaks there.

The envelope of the PSA-DME II, function falls off
like 1/r? for large r, meaning that it falls off just
too slow to yield a density matrix that vanishes
in the large-r limit. As we will see later, this is
not an issue for approximating exchange energies
from finite-range forces, but it can be one in other
situations.

2. The NV-DME is the “original” DME as formulated
by Negele and Vautherin [17, 18], on which sub-
sequent DME developments build. For NV-DME,
the authors of Ref. [23] showed that replacing the



IT functions by exponentials having the same low-
order dependence on the argument leads to almost
indistinguishable results when applied to the ex-
change energy arising from the Gogny D1S interac-
tion [35].

. In the DT approach we use the INM limit for the
model density (p!, in Ref. [24]) and set the param-
eter a to the same value as in Ref. [24], a = 4/kp.
Note that the DT-DME, unlike the other variants,
has originally been formulated without the angular
averaging we use here.

. A whole class of DMEs based on the momentum
scale kpc was developed by Bhaduri and Zaifman
in Ref. [32] (recovering also the CB- and Gaussian
DMEs). Here, we refer to the particular version
rated best by them as BZ-DME.

. It has been argued that the Gaussian approxima-
tion is favored by information theory as it is based
on the least biased phase-space distribution func-
tion subject to yielding the correct density and ki-
netic density distributions [36].

In addition to the version used here, the Gaussian
approximation has been developed in a form that
uses the kinetic density tensor and the density’s
Hessian matrix instead of their scalar counterparts
in Eq. (19) [37], effectively amounting to using a
momentum scale tensor kpc og(R).

. In the original construction [34], the modified Gaus-
sian (MG) approximation uses

—¥)=* - (20)

g~

Ty(z) = G(z,Y) = (1 - i)e(

The value of the parameter Y > 10 then depends
on the considered system and is obtained by en-
forcing that the approximated density matrix ful-
fills the integrated-idempotency constraint (as de-
scribed below). This leads to the equation

1/dqu<R>2_2 12\
A, kgc(R)S_W?)/z 5 Y

Xll 3., 15
Y
572 A5 -2

7| - (21
d

which gets solved numerically for Y.

We observe in our calculations that the resulting
values of Y do not vary much throughout the whole
mass range of nuclei, thus we do not employ a spe-
cific value of Y for each nucleus. Instead, we always
consider a value of Y = 21.5, which we obtained as
an average over neutrons and protons in the nuclei
considered in Sec. III. The resulting energies are
almost indistinguishable.

7. A modification of the Gaussian approximation sim-
ilar in spirit to the MG approach has been proposed
in Ref. [38]. This approximation uses kpc and

Io(z) = V1 + az* exp(—2?/10) , (22)

with a getting determined via the integrated-
idempotency constraint. In our calculations the im-
pact of this modification was minor, improving the
results in the isovector sector but worsening them
in the isoscalar case. For this reason we do not
consider this approximation here.

The OBDM is idempotent [39, 40], i.e., pg = pg, which
in coordinate-space representation explicitly reads

Pq(X1017X202)

= Z /ng pq(xlal,X303)pq(X303,X202) . (23)
o3

In the following, we will use the matrix notation for the
OBDM for brevity. By setting x; = x2 and noting that
the OBDM is Hermitian,

pq(XhXS)T = Pq(XB,X1)a (24)

Eq. (23) implies that the integrated, spin-summed ver-
sion is normalized to the nucleon number

1
Aq = §/dX1dX3 [‘pq(X17X3>|2 + |Sq(X1’X3)|2} ' (25)

As this paper only deals with the scalar part of the
OBDM we check this constraint for the considered DMEs
for the case of spin-saturated nuclei where s,(R;r) =0 in
the approximation that the single-particle wave functions
of spin-orbit partners are identical [21]. To this end the
square of the absolute value of the scalar part of the
OBDM (hereafter referred to as density-matrix square)
is calculated according to the usual prescription [24, 30|
that is neglecting terms of higher-than-second order [in
agreement with the truncation order of Eq. (17)]:

lpa(R;T)|* ~ Ty (kr)%py (R)? + wﬁpq(f{)
* [90(R) ~ (R) + 2K, (R)

(26)

We call this the truncated square of the density matrix.
When calculating the square in this way only the Slater
approximation as well as the NV- and SVCK-DMEs fulfill
the integrated-idempotency constraint, Eq. (25), exactly.
In contrast, the PSA-DME violates this constraint max-
imally: in this case the right-hand side of Eq. (25) is in-
finite. We should also point out that the original version
of the MG approximation obeys Eq. (25) by construction
and our modification only leads to a minor deviation.
In Table I we summarize the integrated idempotency
results, which for some of the considered DME variants



were already given in Refs. [21, 30, 41], and also list which
DMEsS yield the correct INM limit.

We end this section by noting that all of the consid-
ered DMEs can be re-expressed in an orbital-free form by
assuming some relation 7(p, Vp,...) and in a completely
local form by assuming [T — iVQp}(p), e.g., see Ref. [38].
This could be useful for applications to other types of
EDFs than Skyrme EDFs but requires further study.

C. Square of the density matrix

In time-reversal-invariant systems the scalar part of
the OBDM is real so that its Hermiticity boils down to

pq(R§ I‘) = pq(R§ *r) , (27)

hence the current density j, o(R) vanishes [42]. Thus,
in these cases the conventional, truncated way of cal-
culating the density-matrix square, Eq. (26), which was
obtained by averaging the density matrix with respect to
the orientation of r and then squaring it, has the feature
of being identical to the expression one obtains from first
squaring the density matrix [as given by Eq. (13)] and
then performing the angular average, i.e.,

(pg(R;1))g, = (pg(Ri1)%), - (28)

Here (...)q, indicates averaging over the direction of
r. However, for certain DME variants Eq. (26) also
possesses the undesirable characteristic of yielding a
negative-valued square for some values of R and r.

Figure 1 contains an example of such behavior: We
show the density-matrix square for neutrons in '32Sn as
a function of the nonlocality r for two values of R, 5 fm
(just in the surface of the nucleus, see Fig. 2) and 6.7 fm
(quite far into the surface of the nucleus). The under-
lying single-particle orbitals are generated from a self-
consistent HF calculation using the SLy4-EDF [43]. In
addition to the exact square in solid black, Fig. 1 includes
the Slater approximation and the NV-DME as defined in
Table I. For R = 6.7 fm, where the second-order correc-
tion is much larger (relative to the zeroth-order term),
the NV-DME significantly underestimates the value of
the square and becomes negative for 2.8 fm < r < 5.9 fm.

Therefore, we additionally employ an alternative ap-
proach for squaring the density matrix. It was briefly
investigated in Ref. [28] and consists in considering the
full square of the angle-averaged density matrix, Eq. (17),
(hence the approximation cannot get negative):

pufRin)? = (i) () + B2

X BVZ’pq(R) —7,(R) + §k2pq(R)} }2 .
(29)

Whereas this equation is not in agreement with the trun-
cation order of Eq. (17) and thus contains some but not
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FIG. 1. Normalized density-matrix square for two values of
R in '¥28n for different DMEs. The underlying orbitals are
obtained from a self-consistent HF calculation with the SLy4-
EDF.

all of the fourth-order terms, it effectively shifts the re-
gion where the DME approximation is poor to larger
r values compared to the previously applied truncated
squaring prescription. This can be seen in the lower
panel of Fig. 1, where this approach is labeled as NV2.
Such behavior can turn out useful when approximating
expressions where the large-r behavior is damped, e.g.,
exchange energies from finite-range forces as considered
in Sec. III. In the following we refer to the same treatment
of the square for PSA-, SVCK-, and DT-DMEs as PSA?-,
SVCK?-, and DT2-DMEs, respectively. The other in-
vestigated DME variants have no contribution from IIs,
hence Eq. (26) and Eq. (29) yield identical results in those
cases.

We note that this treatment of the square makes the
DMESs no longer fulfill the integrated idempotency. In
addition, the statement that squaring and angular aver-
aging commute is no longer true:

(pg(R;1))g, # (pg(RiT)%), . (30)

In the particular case of the PSA-DME the truncated
squaring approach yields a density-matrix square that
vanishes for large r, but the PSA2-DME does not (see
also the related remark in Sec. IIB). We also note that



while still being constructed from the standard quasilocal
Skyrme densities, the full-square DME variants lead to
EDFs with more than two derivatives in some terms (as
do all DMEs with the kpc momentum scale).

D. Expansion coordinates

Up until now we have expanded the density matrices
in the relative coordinate r around the center of mass
R. However, other choices are possible. It is useful to
choose the expansion point to be located on the line con-
necting the two positions of interest, x; and xs. Then,
the nonlocality can be fully expressed in terms of only
one coordinate, r. This is generally not possible when
dealing with 3N forces, e.g., see Ref. [15], and constitutes
one of the reasons why applying a DME for such interac-
tions is much more involved. Here we deal only with NN
forces and are thus able to express the nonlocality only
in terms of r. We refer to the general expansion point in
between x; and x5 as

vy = ax1 + (1 — a)xs (31)

where a € [0, 1] determines the exact expansion point.
For a = 1/2 one recovers the center of mass R used in the
previous sections and for ¢ = 0 the expansion is about
the position of the second particle. For this expansion
point the analogous expression to Eq. (13) for a DME of
order Npya.x = 2 reads

Pq(Va;T) = pg(ve + (1 —a)r, vy — ar)
~ Iy (kr)pg(va)

+ Iy (kr)rq K; - a) Vap(va) + ijq,a(va)}

I, (k 1
2(2 r) TalB Kz —a+ a2> VaVapge(va)

+(1- ZG)Z.VQJIQ”B(V@) - Tq,aﬁ(va)

+ ééaﬁkqu(va)} . (32)

+

Averaging over the direction of r yields

Pq(Vair) = o (kr)pg(va)
Ty (kr) K 1

r
2

6 a+a2) V2p,(Va)

+ (1 —2a)iV - jo(va) — 74(Va)
+ ikQPq(va)] ) (33)

which simplifies to Eq. (17) when a = 1/2.

For a # 1/2, angular averaging and squaring do not
commute even for time-reversal-invariant systems. Both
for the truncated and the full squaring prescription,

(pa(vai g, (Pa(Vair) ), # (Ipa(vair) ) . (30

as a term proportional to (Vp,)? is missing on the left-
hand side of Eq. (34).

Nevertheless, Eq. (33) and an accordingly adjusted
momentum scale kj(v,) were used in Ref. [30] in time-
reversal-invariant molecular systems with the NV-DME,
and a = 0 was found to lead to a much improved repro-
duction of the exact Coulomb exchange energies com-
pared to the usual @ = 1/2 choice. An optimization rou-
tine gave basically the same value (a = 0.00638) as the
best fit for their considered systems [30]. While we are
able to reproduce a similar behavior in our test systems
when using the Coulomb interaction, we do not see this
improvement for one-pion exchange, see Sec. III E for de-
tails.

Moreover, it is not clear how to extend the DME vari-
ants that use kpc to a = 0 because for Il to not con-
tribute one needs an adjusted momentum scale,

thoten) = { 05 o) = V00 }1/2 (35)

(x2

(note the prefactor 1/2 instead of 1/4 in front of V?p,).
This ];g*c is often imaginary [30], which is unphysical and
can lead to diverging exchange energies. For these rea-
sons we only consider DMEs about R in the following
(except for Sec. IIIE as noted).

III. RESULTS AND DISCUSSION

We now proceed to apply the different DME variants
discussed in Secs. II B and IT C to the nonlocal densities in
the exchange energy arising from a local NN interaction
in coordinate space. This energy is given by [15, 44|

1
Wew = =5 17 [ dRale p (Ri —1)p® (Riv)

x (x[VUD|r) POT (36)

where the index 1 (2) denotes on which part of the two-
body product space the OBDMs and the potential V act,
i.e., 1 (2) refers to the spin and isospin space of “particle
17 (“particle 2”), Tr{3 denotes a trace over the whole
product space, and

l+o01-0014+71T -1
2 2

is the two-particle spin and isospin exchange operator,
with isospin Pauli matrices 7. The OBDMs in Eq. (36)
are those of the whole system and can be split similarly
to Eq. (2),

Py = PPy = (37)

p(R;x) = {[po(Rsw) + 1 (Riv)7
+so(R;r) - o +s1(Ryr) - o72], (38)

where we assumed that the single-particle states do not
mix neutrons and protons. The scalar-isoscalar, scalar-
isovector, vector-isoscalar, and vector-isovector parts are



given by
Po (Rv I‘) =Tr77 [p(Ra I‘)] ) (39)
p(R;r) =T [p(R;r)7.], (40)
so(R;r) = Tr7" [p(R;1)0], (41)
s1i(R;r) =T [p(R;r)o.]. (42)

Isoscalar and isovector quantities are sums and differ-
ences of the corresponding neutron and proton quanti-
ties, e.g.,

po(R;r) = pn(Rs1) + pp(R; 1), (43)
p1(R;T) = pu(Rir) — pp(R; 1), (44)

which are treated separately when expanded with a
DME. After breaking up the nonlocal densities as in
Eq. (38) the exchange energy reads

1
Weyx = ~3 Tr{y /der [po(R; —r)+ p1(R; —F)Tz(l)

+so(R;—1) -0 +5;(R; —1) - M7V

x [po(Rix) + p1 (Rs )7 + 50 (Rsx) - o
+s1(R;r) - 0'(2)7752)} (r\V(1®2) Ir) Py . (45)

Depending on the spin and isospin structure of the inter-
action, different bilinears of the OBDM parts survive in
Eq. (45) after carrying out the traces.

To test the different DMEs we insert these approxi-
mations into Eq. (45) and compare the resulting ener-
gies to the exact exchange energy. Before we can do
that we need to specify both the system (which enters
the OBDMs) and the interaction. Let us start with dis-
cussing the latter. As stated earlier, we restrict ourselves
to NN interactions in this work because the inclusion of
3N forces involves dealing with two relative coordinates
in the OBDMs (instead of one), which means that even
more approximations and choices need to be considered.
This study will be carried out in future work.

DMEs are naturally formulated in coordinate space.
Thus, using them together with momentum-space inter-
actions requires explicitly evaluating a Fourier transform
(e.g., see Refs. [44, 45]) which hinders linking observa-
tions with the form of the II functions. For coordinate-
space interactions a Fourier transform is not necessary
and the analysis is more straightforward. Therefore,
we consider only interactions formulated in coordinate
space.

As DMEs are less accurate for large values of the rel-
ative distance r, a good description of the exchange en-
ergy arising from long-range interactions is particularly
challenging. The interactions used in Ref. [16] to enrich
a Skyrme EDF are determined from chiral EFT. In this
scheme, the interaction with the longest range is one-pion
exchange, which appears already at leading order (LO)
in the chiral expansion, meaning that it should be partic-
ularly relevant according to the underlying power count-
ing. Investigating one-pion exchange is also interesting

because the inclusion of this term in Ref. [16] did not
improve the functional’s reproduction of experimental
binding energies (unlike for higher order, shorter-range
terms).

The one-pion exchange piece with the longest range
is described by a central Yukawa interaction, which in
coordinate space reads:

|Va®|p) = WEO (1o - o9 - T2, (46)
with the radial dependence
Loy M3 ((ga e
Ws (r)2<2F> myr (47)
where we use g4 = 1.29, F;, = 92.4 MeV, and m, =

138.03 MeV for the axial-vector coupling constant, the
pion decay constant, and the pion mass, respectively [46].
To regularize the interaction it is multiplied with a local
regulator function f(r),

WEO(r) = WO (r) f(r). (48)

While other coordinate-space regulator forms are avail-
able, e.g., see Ref. [47], we choose here [46, 48, 49]

). (19

0

) =1- exp(—

where the spatial cutoff Ry specifies up to which value of
r the short-distance part of the potential is smoothly cut
off. We first consider Ry = 1.2 fm. While regulators are
not needed at the HF level, they suppress large short-
distance contributions [50, 51] that would otherwise have
to be absorbed into the Skyrme parameters and enable
us to smoothly turn on the long-distance interactions.

The tensor part of one-pion exchange has a shorter
range than the central piece and its exchange energy
involves only the vector part of the OBDM, so we do
not consider it here. Applying a DME to the short-
range piece of one-pion exchange (whether described by a
smeared-out delta function or an actual one) works very
well because of its short range. In a scheme where a
proper delta function is used all DME variants even yield
the same (exact) functional with density-independent
couplings as in a Skyrme EDF.

Inserting Eq. (46) into Eq. (45) yields for the WZL©
exchange energy

Wex = —é /der [9]po(R;T)|* — 3|p1(R; ) |?
(r)f(r). (50)

We consider the first two terms (which depend on the
scalar parts of the OBDM) and refer to them as the
scalar-isoscalar energy Wy,

= 3|so(R; 1) [* + [s1(R; 1) 7] Wg©

Wo= -3 [dRdr (R0 PWEO(0S0), 6L



and scalar-isovector energy W7,
3
Wi= g [dRar R PWEG)0). (52)

The question we want to investigate now is how well do
the different DME variants of Secs. II B and 11 C approx-
imate these energies.

In this work, we compare different DMEs with
the same single-particle orbitals generated from a
self-consistent HF calculation employing the SLy4
parametrization of the Skyrme EDF [43] without pair-
ing. This enables a clean comparison, but we point out
that the orbitals used are not self-consistent with the
EDF and DME. The HF equations are solved using the
code HFBRAD [52], which works directly on a spherical
coordinate-space grid. The step size is set to 0.1 fm. Re-
ducing the step size to 0.025 fm changes the obtained to-
tal energies of the HF calculation at most in the per-mill
regime. This precision is sufficient for the present appli-
cation. We made sure the code and the implementation
of the outputted orbitals into our DME routines work
as intended by comparing against results obtained with
orbitals from HOSPHE [53] and HFODD [54]. The DME
implementations themselves were benchmarked against
the second-order results of Ref. [24], the LO results of
Ref. [15], and the one-pion-exchange Fock expressions
of Refs. [55, 56]. We consider in total 11 closed-shell
nuclei, ranging from light to heavy and from N = Z
to very asymmetric: 160, 240, 4°Ca, 48Ca, %*Ca, 56Ni,
60Ni, 80Zr, 100Qn, 1328n, and 20%Pb. All of these nuclei
are closed-shell, hence their ground states are treated as
being time-reversal invariant and II; does not contribute
even without the angular-average approximation. For
three example nuclei the isoscalar density distributions
are displayed as solid lines in Fig. 2.

In the following subsections we first consider the scalar-
isoscalar energy in Sec. IIT A and then the scalar-isovector
energy in Sec. III B, followed by an analysis regarding the
use of a single species-independent momentum scale in
Sec. III C. In Secs. IIID and IITE we discuss the depen-
dence of the results on the considered orbitals and on the
employed interaction and expansion coordinates, respec-
tively. We finish each subsection with a summary of the
main take-away points.

A. Scalar-isoscalar energy

We begin by considering the scalar-isoscalar Yukawa
exchange-energy integrand W, defined as

9
WalRr) = ¢ [0 0 B2 oo (Rim) PIWEC (1) £ (1),
(53)
and pick 132Sn as our first test case. The 132Sn isoscalar

(matter) density distribution is shown in Fig. 2. The ex-
act integrand W, displayed in the first panel of Fig. 3,
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FIG. 2. Isoscalar density distributions of selected closed-shell
nuclei. Solid lines correspond to orbitals from a self-consistent
HF calculation with the SLy4-EDF, dashed lines correspond
to orbitals from an isotropic HO with Aiw = 10 MeV, and
dash-dotted lines correspond to orbitals obtained from a self-
consistent HF calculation with the 1.8/2.0 (EM) interac-
tion [57].

has the largest contributions at about r =~ 1.5 fm over the
whole R range, which mostly reflects the nature of the
regularized interaction, and peaks at R ~ 4.7 fm, which
is close to the peak of R?py(R)? at R ~ 4.6 fm, the
expected peak position for an exactly separable OBDM.
These features are rather well reproduced by the inte-
grands that are obtained when replacing |po(R;r)|? in
Eq. (53) by its different DME approximations. There-
fore, we do not show the DME integrands themselves but
instead their differences to the exact integrand. They
are depicted in the other panels of Fig. 3: the zeroth-
order Slater approximation in the top-right panel, DMEs
using kg with the common truncated-square approach,
Eq. (26), in the second row, and with full squares,
Eq. (29), in the third row, and DMEs with kpc in the
last row. The same order and grouping is used in the
other figures below.

Several trends are clearly visible from the integrand
differences in Fig. 3: The second-order DMEs (besides
the Gaussian approximation) locally reproduce the ex-
act integrand significantly better than the zeroth-order
Slater approach, highlighting the improvement due to the
inclusion of higher-order terms. In particular, the region
where relevant deviations first occur gets shifted from
r =~ 1 fm in the Slater case to r ~ 1.5 fm for the other
DMEs. In all cases the largest differences arise close to
or in the surface of the nucleus. This can probably be
attributed to the larger relevance of missing higher-order
terms compared to the situation in the interior of the
nucleus. Comparing the second and third rows of pan-
els in Fig. 3 reveals that the additional term in the full-
square DMEs is particularly relevant in the surface where
it flips the sign of the differences for r 2 4 fm. Interest-
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FIG. 3. First panel: exact scalar-isoscalar exchange-energy integrand obtained for a regularized Yukawa interaction in '32Sn.
Other panels: differences of DME approximations of this integrand and the exact integrand itself. In every difference panel
the value of the ratio of the DME-approximated energy and the exact energy is shown in the top right corner. The underlying
orbitals are obtained from a self-consistent HF calculation with the SLy4-EDF.

ingly, this is not always an improvement locally but the
global scalar-isoscalar energy Wy is always closer to the
exact result for the full square than for the truncated-
squares approach due to (possibly fortuitous) cancella-
tions in the former case. We provide the ratio of the
DME-approximated W} and the exact counterpart in the
top-right corner of each panel.

Regarding these global energies, all considered DME
variants approximate the exact values remarkably well
with SVCK2- and MG-DMEs performing best: both
yield values that deviate less than 1% from the exact
result. Somewhat surprisingly, the Slater approximation
follows next despite the inferior quality in local reproduc-
tion of the integrand. Again, this can be attributed to
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FIG. 4. Ratios of DME-approximated and exact exchange-
energy contributions for a regularized Yukawa interaction.
For every DME variant the average over a set of nuclei is
shown together with a bar ranging from the smallest to the
largest ratio observed. Below each bar, the results for selected
nuclei are given. The underlying orbitals are obtained from
a self-consistent HF calculation with the SLy4-EDF. The left
panel shows the results for the scalar-isoscalar contributions,
where 11 closed-shell nuclei are considered (see text); the right
panel shows the results for the scalar-isovector contributions
(from 6 closed-shell nuclei). In both panels the DMEs are used
with separate momentum scales for neutrons and protons.

cancellations of regions of overestimation and underesti-
mation. We also note that while the Gaussian approx-
imation overestimates the integrand throughout the nu-
clear interior, yielding the worst energy reproduction, it
provides an extremely good description of the integrand
in the surface.

In other nuclei, the results are very similar. This can be
seen from the left panel in Fig. 4 where we show for each
DME variant the average ratio of approximated (WPME)
and exact (W) scalar-isoscalar energies over the 11
test nuclei and a bar that ranges from the smallest to the
largest ratio observed. Underneath each bar the values of
three individual nuclei (corresponding to the density dis-
tributions shown in Fig. 2) are highlighted, showing that
smaller ratios (typically corresponding to worse energy
reproductions) almost always occur for lighter nuclei.

As before, all ratios are notably close to unity and
the full-square variants of the DMEs reproduce the exact
energies better than the corresponding truncated-square
versions. Additionally, the spread of the ratios is smaller
for the full squares. Again, the reproduction is particu-
larly good for SVCK?2- and MG-DME and on average it
is worst for the Gaussian approximation.

We find almost identical, though slightly worse, results

11

when approximating the NV-DME II functions with ex-
ponentials as proposed in Ref. [23]. This approximation
could be useful for implementations in numerical EDF
codes. For the MG-DME the results are almost indistin-
guishable when using the average value of the parameter
Y = 21.5 as done here and when using specific values for
each nucleus based on the integrated-idempotency con-
straint as described in Sec. ITB.

In summary, using DMEs to approximate the scalar-
isoscalar energies Wy works remarkably well for the con-
sidered closed-shell systems and the investigated Yukawa
interaction. The dependence on orbitals and interaction
is investigated in Secs. III D and IITE, respectively. Re-
fined improvement from few-percent accuracy for some
DME variants to the 1% level can be realized by switch-
ing to full-square DMEs or other variants, in particular
to SVCK?- and MG-DME.

B. Scalar-isovector energy

The right panel of Fig. 4 contains the ratios for the
scalar-isovector energies W as given by Eq. (52). Here
only the 6 asymmetric nuclei (with N # Z) in our set
are considered since the isovector energies are completely
negligible for the symmetric nuclei. For most DMEs the
ratios WPME /jyexact are further away from the ideal
value of unity than in the isoscalar case. This can be
understood when comparing the shape of the isoscalar
part of the OBDM, which is a bulk quantity, to that of
the isovector part, which is basically a neutron-excess
density matrix. Thus, the region contributing the most
to the isovector integral is located much closer to the nu-
clear surface where omitted higher-order corrections are
expected to be more relevant. This is also clearly visible
for 132Sn when comparing the scalar-isoscalar integrand
Wy in the first panel of Fig. 3 with the scalar-isovector
integrand W, which is defined as

Wi(R,r) = Z / dQr dQ R*r?|py (R; 1) PWEO (r) £ (1),
(54)

and is depicted in the first panel of Fig. 5. In addition,
the energy contributions stem on average from a larger r
value in the isovector case for all considered nuclei, which
again makes an accurate description harder when using
DMEs.

Nevertheless, the general trends are very similar for
the isovector and the isoscalar energies. Notable excep-
tions are the BZ- and the Gaussian DME because their
overestimations in the nuclear interior (also reflected in
them not yielding the correct INM limit) matter less for
the isovector part.

Overall, our results show that DMEs do not perform
as well for scalar-isovector energies as for scalar-isoscalar
energies, with typical accuracies being around 10%. For
the considered asymmetric nuclei the magnitude of the
scalar-isovector energies is on average only 1.3% of the
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FIG. 5. First panel: exact scalar-isovector exchange-energy integrand obtained for a regularized Yukawa interaction in '3?Sn.
Other panels: differences of DME approximations of this integrand and the exact integrand itself. Approximations obtained
with isoscalar momentum scales for both neutron and proton density matrices are labeled with “~k%” next to the abbreviated
DME name. In every difference panel the value of the ratio of the DME-approximated energy and the exact energy is shown
in the top right corner. The underlying orbitals are obtained from a self-consistent HF calculation with the SLy4-EDF.

scalar-isoscalar contributions. Therefore, the worse ac-
curacy in the isovector case has no relevant effect on the
total energy reproduction, though it might be important
when looking at nonbulk quantities.

C. Isoscalar expansion momentum scale

So far, the results have been obtained by expanding
neutron and proton density matrices separately as de-
scribed in Sec. II and subsequently forming the isoscalar
and isovector parts by the appropriate sums, Eqgs. (43)
and (44). However, this procedure yields EDFs where the
terms that are normally isospin invariant (such as those
proportional to p?) also contain isospin-dependent parts,
though their isospin symmetry is still conserved [21].
Hence one might want to utilize another possibility that
is to expand both the isoscalar and isovector parts as a
whole. Then Eq. (17) becomes

pt(R;r) = Iy (kr)ps(R) + %7’2
< |V (R) — n(R) + §k2pt(R) . (55)

where t = 0,1. Using different momentum scales for
the isoscalar and isovector expansions leads to additional

complications. Therefore, we follow Ref. [23] and simply
use the isoscalar variants of Eqgs. (11) and (19),

2 1/3
B = [ wnm)] (56)
tholR) = { -0 [n(®) - V2 (R) }1/2 . 57)

for all OBDM parts. Then, this prescription is equiv-
alent to using Eq. (17) but with the same momentum
scale for both neutrons and protons. Because klﬂl(c) (R) =~
k%((}) (R) =~ kg(c) (R) one may expect the results to not
be significantly different for either of the momentum
scales. But in the particular case of pure isovector quan-
tities using k% (R) or k2 (R) could be much worse as this
effectively results in approximating the difference of neu-
tron and proton density matrices with a momentum scale
that assumes their similarity. This can also be viewed as
employing a single-species procedure to approximate the
neutron-skin density matrix, which almost never behaves
like a single-species density matrix.

This is confirmed by the panels in the second row
of Fig. 5, which display the differences between DME-
approximated and exact scalar-isovector integrands W;.
We show them for the NV- and NV2-DMEs, both for
separate neutron/proton momentum scales and for the
isovector momentum scale k. The expected much larger
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FIG. 6. Same as Fig. 4 without the ratios for individual nu-
clei. Unlike in Fig. 4, here both panels show expansions with
isoscalar momentum scales. Note the different axis scale of
this figure when comparing to other figures.

(local) deviations in the latter case are clearly visible.
This is similar for the other DMEs that are not displayed
and translates also to the energy ratios WPME /jypexact,

In the right panel of Fig. 6 we show these ratios, but
unlike in Fig. 4 here the values are obtained by using the
isoscalar variants of the momentum scales. The results
are much worse for the isoscalar momentum scale: the
average ratios range from 0.37 to 1.53 and are in all cases
further away from unity than with separate momentum
scales. However, the scalar-isoscalar energies are almost
identical for isoscalar (Fig. 6) and separate momentum
scales for the two species (Fig. 4). As explained, both
observations are expected.

Whether one deems using DMEs with isoscalar mo-
mentum scales acceptable or not in light of these findings
depends very much on the case at hand. The poor accu-
racy of the very small scalar-isovector energies effectively
does not matter when one is only interested in a good
description of the total energies,? but again this might
not be true for isovector and differential quantities, such
as differences along isotope chains.

D. Dependence on orbitals

In this subsection we want to answer the question
whether the results reported above depend sensitively
on details of the orbitals. The orbitals used so far
were obtained from self-consistent HF calculations with

2 For some DMEs the total energy reproduction is even slightly
better with the isoscalar momentum scale due to cancellations
of errors between scalar-isoscalar and scalar-isovector energies.
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FIG. 7. Same as Fig. 4 without the ratios for individual nuclei.
The nuclei are given in terms of orbitals from an isotropic HO
with Aiw = 10 MeV. In both panels the DMEs are used with
separate momentum scales for neutrons and protons.

the SLy4-EDF. We now switch to orbitals from a sim-
ple isotropic harmonic oscillator (HO) with frequency
hw = 10 MeV. As can be seen in Fig. 2 they are quite
well suited to provide a less realistic counterpart to the
SLy4 orbitals. We consider the same 11 (6) nuclei as
before for the scalar-isoscalar (scalar-isovector) energies.

Changing back to expansions with separate momen-
tum scales for neutrons and protons we show the ratios
WPME jpyexact and WPME /jyexact iy Fig. 7. For both
scalar-isoscalar and scalar-isovector energies the results
are very similar to the SLy4 results given in Fig. 4. The
main difference is that the spread between the smallest
and the largest ratios is typically slightly smaller in the
case of HO orbitals but the ranking of the DME vari-
ants according to the accuracy of their Yukawa exchange
energy reproduction is very similar.

As an additional check we use orbitals obtained from
spherical HF calculations employing the 1.8/2.0 (EM)
interaction [57]. For selected nuclei, the corresponding
isoscalar density distributions are shown in Fig. 2. Again,
the accuracy ranking of the DMEs is virtually the same.
Detailed results for these orbitals are presented in the
Supplemental Material [58].

Overall the investigations of this section strongly indi-
cate that previous findings regarding the accuracy of re-
producing Yukawa exchange energies are generally true,
i.e., do not sensitively depend on orbitals.

E. Dependence on interaction

Exchange energies from interactions with shorter
ranges are expected to be better reproduced by DMEs.
Our tests confirm such behavior. In particular, DMEs
are exact in the limit of vanishing interaction range. But



what about the opposite limit? Consider

3 2 _—mr
LO — mer ga €
Ws™(mr) = 150 (ZFW) _—— (58)

where the parameter m is the reciprocal of the interaction
range. One-pion exchange is obtained for m = m, and
the infinite-range limit (i.e., the Coulomb interaction) for
m = 0.

In Fig. 8 we plot the scalar-isoscalar energy ratios
WPME jyyexact for this interaction as a function of m,
where again each point is averaged over the same 11 nu-
clei obtained from SLy4-EDF orbitals as in Secs. III A
to ITI C. The interaction is also regularized as before [see
Egs. (48) and (49)]. The energy ratios are shown for
m = 0, 10, 25, 50, 85, 138.03, 200, and 300 MeV. In
addition, for each DME a single additional point, which
corresponds to the value at m = 0 without regulators, is
drawn on the very left. Figure 8 contains the results for
Slater-, NV-, NV2-, and CB-DMEs. The behavior for the
other second-order DMEs with kg (kpc) is similar to the
NV/NV?2 (CB) trends.

For large interaction ranges the DME exchange-energy
integrals, Egs. (51) and (52), have to be carried out up
to very high r values to obtain converged results. This is
especially important for full-square DMEs because their
oscillations with significant amplitudes occur for particu-
larly large r in regions of small expansion momenta. For
one-pion exchange (m = 138.03 MeV) these regions are
damped, but when the interaction falls off much more
slowly they contribute nonnegligibly. Thus, we calcu-
late the integrals for m < 25 MeV analytically with-
out the regulator by employing a strategy proposed in
Ref. [59] and add to that the correction from the regula-
tor, which can easily be calculated numerically due to its
short range. Details on this procedure and the relevant
analytical expressions are provided in the Supplemental
Material [58]. Note that when using an isoscalar momen-
tum scale those analytical integrals can also be obtained
with the Mathematica package of Ref. [60].

As expected, the NV-DME results significantly dete-
riorate with increasing interaction range (i.e., decreasing
m) and even more so do the NV2-DME results. This is
in agreement with results from Ref. [28]. The worse ac-
curacy for the full-square variant is due to the unwanted
large-r bump of the expansion (see Fig. 1 for an example)
getting probed more for larger interaction ranges.

We consider here also DMEs around x5 as discussed
in Sec. IID, which have been reported to yield good
results with the Coulomb interaction in molecular sys-
tems [30]. These are labeled with an additional “~x5”
in Fig. 8. While they perform worse for small ranges,
the NV-DME about x5 produces much better results for
large interaction ranges than its conventional counter-
part. This is despite the angle averaging being performed
before squaring the density matrix. The opposite order
of these two operations yields a different expression for
expansions about x5 and should also be investigated in
the future. The improved energy reproduction also holds
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FIG. 8. Ratio of DME-approximated and exact scalar-isosclar
exchange-energy contribution for a regularized Yukawa inter-
action. The parameter m corresponds to the reciprocal of the
interaction range. The values are averages over 11 closed-shell
nuclei obtained from a self-consistent HF calculation with the
SLy4-EDF. Density-matrix expansions are used with separate
momentum scales for neutrons and protons and the expan-
sions are about the two-particle center of mass R except for
the cases marked with “—x5” where instead they are about
the position of one particle. Extra points on the left show the
result at m = 0 without regulators.

when neglecting the regulator and agrees qualitatively
with the molecular-physics result of Ref. [30] despite the
different considered systems. This confirms the conclu-
sion of the previous section.

As elaborated on in Sec. II D, generalizing DMEs that
use kpc to expansions about x5 leads to complications
and hence we give the CB-DME results only about R.
We observe that the CB-DME accuracy is significantly
less range dependent than the second-order kp-DMEs.
The performance of the Slater approximation (which is
the same for expansions about R and x») is even less
range dependent.

We also note that for PSA- and PSA2-DME the en-
ergies are infinite in the Coulomb limit, independent of
the expansion point, due to insufficient convergence of
these DME variants, see also the corresponding remark
in Sec. I B. Depending on the asymptotic behavior of the
orbitals, the Coulomb exchange integrals can diverge for
any full-square DME, see Ref. [28] for an example.

The Yukawa interaction considered in the previous
subsections contains another length scale in addition to
m: the regulator cutoff Ry, see Eq. (49). The dependence
of the DME accuracy on Ry is straightforward. As the
regulator cuts off only short-distance parts of the interac-
tion where DMEs work very well, larger regulator cutoffs
correspond to a worse overall reproduction of exact ex-
change energies and a larger spread of the accuracies for
different systems. Detailed values for different regulator



cutoffs as well as for the EKM regulator [47]

s =1~ xp(—R)} 6 (59)

are provided in the Supplemental Material [58].

There we also show results for the finite-range parts of
the Gogny D1S interaction [35], a successful phenomeno-
logical pseudopotential that was also considered in DME
studies of Refs. (23, 24]. Its finite-range parts are two
Gaussians that contribute with different signs to the ex-
change energy. The resulting cancellations change the
ranking of the DMEs according to their accuracy in mi-
nor details but the overall conclusions of this work are
still valid.

Summing up, for not-too-long-range NN forces such
as one-pion exchange, DMEs around the center of mass
R yield the best results. This is not the case for the
Coulomb interaction where for instance in the case of
the NV-DME expanding about x, is superior.

IV. SUMMARY AND OUTLOOK

Empirical EDFs have been broadly successful in de-
scribing nuclear properties across the table of nuclides.
Recently, EDFs have included long-range pion contribu-
tions from chiral EFT with encouraging and puzzling re-
sults [16]. In this work, we therefore have taken the first
steps with a detailed re-examination of the DME imple-
mentation. To this end, we compared several zeroth- and
second-order DMEs for scalar parts of OBDMs, focusing
on the accurate non-self-consistent reproduction of exact
Yukawa exchange energies in closed-shell nuclei.

In general, all considered DMEs approximate the in-
vestigated exchange energies very well. Of those DMEs
that do not lead to more than two derivatives in any
EDF term (like conventional Skyrme EDFs) we find best
energy reproduction for the Slater approximation, al-
though locally it approximates the energy integrands
worse than second-order DMEs. When allowing for EDF
terms with more than two derivatives, but still using
only the standard Skyrme densities, one can also employ
the full-square DMEs. These perform better than their
truncated-square counterparts and the ones that use kpc
as their momentum scale. Overall we find best results for
the SVCK?- and MG-DMEs, although the latter yields
the wrong INM limit.

Regarding a good reproduction of scalar-isovector en-
ergies we find that it is crucial to treat neutrons and
protons separately in DMEs. Using a single isoscalar
momentum scale can lead to results wrong by more than
50%, though the effect on the total exchange energy is
very small due to the small absolute size of isovector con-
tributions.

All these findings are robust in the sense that they hold
along the entire nuclear mass range, are confirmed also
for less realistic orbital shapes, and are valid for different
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regulators and interaction ranges (except for very-long-
range interactions, see Sec. IIIE).

Our results put the DME applicability for long-range
pion contributions on a solid footing, showing that the
different DME choices generally lead to tolerable varia-
tions. This does therefore not resolve the puzzles in the
EDF performances with chiral physics included.

All results in this paper are based on non-self-
consistent tests and should therefore be regarded as pro-
visional. For instance, it is at this stage unclear how local
errors in the reproduction of exchange-energy integrands
(e.g., see Slater approximation in Fig. 3) influence the re-
sults of the self-consistency loop in an EDF calculation of
nuclei. Hence, one of next steps is to implement the find-
ings of this work into EDFs like the ones of Ref. [16]. This
could also bring us closer to answering if explicit pions
are needed for higher EDF accuracies. However, we be-
lieve the present findings suggest the EDF improvement
coming from an enhanced DME treatment will be minor,
especially considering that the Skyrme couplings get re-
fitted after incorporating the DME in the approach of
Ref. [16]. In general, EDF practitioners can test the per-
formance of the DME variant of their choice by switching
to one of the other variants discussed in this work. If the
results are quantitatively very similar, this suggests that
further EDF improvements need to come from elsewhere,
and not from DME improvements.

This paper only dealt with the application of DMEs to
NN forces. In the 3N sector, even more choices have to be
made regarding the DME and the authors of Ref. [16] re-
port that the inclusion of 3N forces degrades the quality
of their EDFs at every considered chiral order. In addi-
tion, we did not consider vector parts of the OBDM, or
DME terms with an odd number of derivatives that are
relevant in not-time-reversal-invariant systems. These
topics are left for future investigations.
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SUPPLEMENTAL MATERIAL

Hartree-Fock orbitals for 1.8/2.0 (EM) interaction

In addition to the SLy4 orbitals, we show results for
orbitals from a spherical HF calculation based on a chiral
low-momentum two- plus three-nucleon interaction [57],
1.8/2.0 (EM), which has been used widely in ab initio
calculations of medium-mass nuclei. The HF orbitals are
expanded in an HO basis with fuw = 16 MeV and epax <
12, and the three-body configurations are included up to
FE3max < 16. We consider the same nuclei as in the main
text. Figure 9 shows that the DME performance is very
similar for these orbitals, with slightly larger spread and
slightly worse energy reproduction. This further supports
the general conclusions of our paper.
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FIG. 9. Ratios of DME-approximated and exact exchange-
energy contributions for a regularized Yukawa interaction.
For every DME variant the average over a set of nuclei is
shown together with a bar ranging from the smallest to the
largest ratio observed. The underlying orbitals are obtained
from a self-consistent HF calculation with the 1.8/2.0 (EM)
interaction. The left panel shows the results for the scalar-
isoscalar contributions, where 11 closed-shell nuclei are con-
sidered (see text); the right panel shows the results for the
scalar-isovector contributions (from 6 closed-shell nuclei). In
both panels the DMEs are used with separate momentum
scales for neutrons and protons.
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Different regulators and cutoff choices

In addition, we explore different regulators and cutoff
choices for the Yukawa interaction. In Figs. 10 to 13, we
show results for the same local regulator with different
cutoffs Ry = 1.0 fm, 1.4 fm, and 1.6 fm, as well as for the
EKM regulator, Eq. (59), with cutoff Ry = 1.0 fm [47].
The figures show that larger cutoffs correspond to a
worse overall reproduction of exact exchange energies and
a larger spread of the accuracies for different systems.
These observations agree with expectations as the regu-
lators cut off only short-distance parts of the interaction
so that only the long-distance parts, where DMEs do not
work as well, contribute to the energy.
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FIG. 10. Same as Fig. 9 but with orbitals from a self-

consistent HF calculation with the SLy4-EDF and for a reg-
ulator cutoff Ry = 1.0 fm.
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FIG. 11. Same as Fig. 10 but for a cutoff Ry = 1.4 fm.



W(PME/ngact WIDME/Wlexact
07 08 09 1.0 1.1 0.7 08 09 1.0 1.1
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Slater| T et
NV —— —— kn/kp
SVCK —e= — 1.6 fm
nprp, 0 | e
PSA2
NV?2 - —e-
SVCK? - .
1D T T e
CB -o- —_—
BZ
Gaussian —e— —_—
MG -0~ —
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

FIG. 12. Same as Fig. 10 but for a cutoff Ry = 1.6 fm.
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FIG. 13. Same as Fig. 10 but for the EKM regulator, given
in Eq. (59), with cutoff Ro = 1.0 fm.

Application to a Gogny interaction

As a final test, we explore the DME performances for
the finite-range parts of the Gogny D1S interaction [35].
The finite-range parts are given by a sum of two Gaus-
sians which contribute with different signs to the ex-
change energy. The results are shown in Fig. 14 for
expansions with individual momentum scales for neu-
trons and protons and in Fig. 15 for expansions using
isoscalar momentum scales for both species. As for the
Yukawa interaction the scalar-isovector energy reproduc-
tion is much worse when using the isoscalar momentum
scale (except for the PSA2-DME). One difference to the
Yukawa-interaction results lies in the improvement from
using full squares rather than truncated squares, which
is smaller here. This is because the additional term in
the full square affects mainly the large-r behavior, which
is not much probed by the Gaussians. In addition, the
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FIG. 14. Same as Fig. 10 but for the finite-range parts of the
Gogny DI1S interaction.
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FIG. 15. Same as Fig. 14 but for expansions with isoscalar
momentum scales.

ratios obtained for the Slater approximation depend sig-
nificantly more on the nucleus in the present case. This
indicates that the cancellations of large local under- and
overestimations as present in this approximation (see,
e.g., Fig. 3) can be quite sensitive to system details. Note
that the DME accuracies for every individual Gaussian
in the D1S interaction are much better than the total
accuracies shown in Figs. 14 and 15 because of cancella-
tions between the two terms. The overall conclusions of
our paper are supported by these results.
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Semi-analytical EDF expressions

To calculate the scalar-isoscalar DME exchange-energy contribution for regularized Yukawa interactions with very
long ranges m~! we split the energy into two parts,

Wo = Wg° — Wi, (60)
where
Wee = —2 /der Lo (R 1) 2L (m, 7) (61)
is the exchange-energy contribution without regulators and
Wi = =3 [aRdrpo(Rin) PWEO(m. 1)1~ () (62)

contains the whole regulator dependence. As [1 — f(r)] has a very short range, the integrals in W;*® can easily be

carried out numerically even for very large Yukawa interaction ranges. To tackle W§°, which is for small m (especially
for full-square DMEs) much harder to calculate numerically, we split it further according to

Wooo_—gm( ) Jar S oo (R (R

a,b=n,p
3
 oalin o ) (R) | V2 R) = (R + St n(R)|

+ Iao(m, ka, kp) BV%Q(R) —7.(R) + 3kapa( )} BV%(R) — 1(R) + gkipb(m} } ; (63)

where the momentum scales k,, k; can be set either to the individual momentum scales for neutrons and protons or to
the isoscalar momentum scale for both species and the I;; functions depend on the considered DME variant. Zeroth-
order DMEs have contributions only from Iy, truncated-square second-order DMEs have additional contributions
from Iz, and 32 contributes only for full-square variants.

The I;; functions are calculated analytically by evaluating the integrals

Too (1, ka, k) = 470 / dr 72Tl (ko) o (ker) — | (64)
T
Toa(m, K, k) = / dr v Ty (k)T () (65)
4 7m7‘
Ino(m, ko, ky) = % / drr6H2(kar)H2(kbr) . (66)

To this end we apply the method outlined in Ref. [59] and obtain after some analytical simplifications the following
expressions. They are checked against their numerical counterparts for different values of m, k., and k;. For the
Slater approximation [or any other DME that uses () = 3j1(z)/x] the Iy function reads

3T 2 2k k
Ioo(m, k’a, k‘b) 4]{73]{33 {2k k‘b[ (kg + k?) — m2] + |:—3(k§ — k%) + 6m2 (k’g + k‘g) + m4:| artanh(W)
+8m {(kg — k) arctan(W) — (K2 + k3) arctan(l%;b))} } . (67)

The other I;; functions for NV®@)._-DME read
35T
48k3 kT
—6 [(kg — k2)? (5K2 + k7) + 3m® (—15k% + 6k2k7 + ki) + 3m* (5k2 + k2) + mﬂ

x artanh L“kb
k2 + k} + m?

ky — & ky + &
+ 48mkj [3(k7 — ki) — 5m?] |arctan Ba =8} _ oretan ( Bat e : (68)
a a b m

m

Toa(m, ko, k) = — {4kakb [—22k2k7 + 15k} + 3kj + 6m>(—13k2 + k) + 3m*]
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and

Ino(m, ka, k) = % <4kakb{7(k§ + k7)) [—22k2k7 +15(k; + kyy )| — m?[134k2k; + 141 (k) + k) |
a’vb
—69m* (k2 + ki) — 15m°}
o+ 6{ =7 (k2 — kZ)[6k2KF + 5(kd + ki) ] + 28m? [5 (kS + K§) + 3(kiKE + k2]

2k, k
4 14m? [(jkgk;g + 5(k:§ + k?)] + 28m° (ki + k’g) + 5m8} artanh(W)

+ 768m {(ké — k) arctan(kam_kb> — (kI + &) arctan(ka;;kb>}) . (69)

Note that for the case of a single isoscalar momentum scale, i.e., the special case k, = k;, a Mathematica package
to obtain these expressions was published in Ref. [60]. For k, = ks, our equations agree with the ones outputted by
that package.
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