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Abstract. We describe the Bayesian Analysis of Nuclear Dynamics (BAND)

framework, a cyberinfrastructure that we are developing which will unify the treatment

of nuclear models, experimental data, and associated uncertainties. We overview

the statistical principles and nuclear-physics contexts underlying the BAND toolset,

with an emphasis on Bayesian methodology’s ability to leverage insight from multiple

models. In order to facilitate understanding of these tools we provide a simple and

accessible example of the BAND framework’s application. Four case studies are

presented to highlight how elements of the framework will enable progress on complex,

far-ranging problems in nuclear physics. By collecting notation and terminology,

providing illustrative examples, and giving an overview of the associated techniques,

this paper aims to open paths through which the nuclear physics and statistics

communities can contribute to and build upon the BAND framework.
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1. Introduction

Progress in the theory of nuclei and nuclear matter has produced a multitude of

models that describe extant data well. The atomic nucleus is a complex system and

these models—many of which involve advanced numerical simulation—provide essential

insights into many nuclear-physics phenomena. The need for validation, verification,
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and uncertainty quantification of models that simulate real-world physical processes is

a theme that is common to all physical sciences. As eloquently stated in the recent

report [1] “regardless of their underlying mathematical formalism or their intended

purpose, [the complex models] share a common feature—they are not reality.” In

order to understand and use the results of nuclear-physics simulations well we must

follow best practices for statistical modeling and uncertainty quantification [2]. All this

means we are at an inflection point in how nuclear-physics data should be analyzed:

predictions and quantified uncertainties must use the collective wisdom of the best

models, constrained by data, and include a unified treatment of all uncertainties.

Bayesian Analysis of Nuclear Dynamics (BAND) will be a set of publicly-available

software tools—a cyberinfrastructure framework—designed to facilitate principled

uncertainty quantification (UQ) with multiple nuclear models. It will enable reliable

predictions for experimentally inaccessible environments, such as the properties and

dynamics of matter at the core of neutron stars or in the first microseconds after the

Big Bang. And it will make possible quantitative evaluation of the impact of new

experiments, thus facilitating optimal use of investment in this science.

Contemporary nuclear physics involves statistical inference within complex and

computationally intensive theoretical models that combine heterogeneous datasets taken

at experimental facilities around the world. Modern UQ can enhance the predictive

power of these models and optimize knowledge extraction from new measurements and

observations. The goal of BAND is to translate novel statistical methods of UQ into

software tools that address prominent current problems in nuclear physics (NP). This,

in turn, will inform near- and medium-term planning for experimental programs at

leading NP facilities. This interweaving of statistical approaches into the dialog between

nuclear physicists and experimental data will accelerate the theory-experiment feedback

loop [4, 5] and lead to sustained innovation.

BAND will do all this by providing to the community a suite of codes that

produce emulators for forefront, computationally-intensive nuclear models, and perform

principled UQ that calibrates those models against data. Codes already exist—some

publicly available, some written by members of our team and as yet unpublished—

that implement parts of this UQ methodology. But BAND will go further. Because

it is built on Bayesian statistical methodology, it will also include a software tool to

mix different models, thereby providing a multi-model prediction ‡ for key observables.

This will permit the use of Bayesian Model Mixing for the quantitative assessment

of model-related uncertainties in the multi-model context. A model-mixed prediction

that enriches the physics and provides a full assessment of the modeling uncertainty

of predictions is a natural outcome [6, 7] within BAND. That prediction includes

experimental and modeling errors, thus providing a unified statistical treatment of all

uncertainties. Model-mixed predictions can then give insight into what experimental

‡ Here and below, the term prediction refers to an observable that is an output of the Bayesian model

but is not part of the dataset used to constrain the model. Our predictions therefore include quantities

that have already been measured (i.e., what are sometimes called postdictions).
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Table 1. Lexicon: When I use a word it means what I choose it to mean, neither

more nor less [3]. Note that several terms that are defined in the text of the article are

not listed here. Instead, this table focuses on terms at the nuclear-physics/statistics

interface whose use may otherwise cause confusion.

Term Usage here

Calibration dataset The observables that are used to constrain the model

parameters

Computational tool A piece of software that accomplishes a statistical or other

data analysis task for a physics model or a set of physics

models

Dataset A collection of observables

Domain scientist Here, the nuclear physicist

Emulator A computationally inexpensive way to interpolate results

of an expensive physics model in its many-dimensional

parameter space

Experimental design The process of selecting amongst experimental options based

on the optimization of a selected utility function

Experiments Measurements in the nuclear laboratory

Framework A set of inter-linked input tools and computational tools that

can be used separately, or in concert

Input tool An interrogative process by which the elements of the

statistical analysis being carried out are established

Model The combination of a physics model, a calibration dataset, and

a statistical model

Model results The probability distribution function obtained for observables

in the model

Hyperparameter Parameter describing a prior distribution (Bayesian statistics

usage)

Model parameters Variables internal to the model [Their (joint) probability

distribution can be estimated from Bayesian statistics

or otherwise learned from experiment through repeated

parameter estimation]

Observables The results of measurements described by physics models

Physics model The physical description of the observables through math-

ematical equations encoding physical rules and principles

[These equations involve parameters that are usually con-

strained by the calibration dataset ]

Predictions Values obtained in the model for observables that are not part

of the training dataset

Statistical model The statistical framework to assess deficiencies of the physics

model and the uncertainties inherent in its predictions
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information will best constrain models.

To illustrate the power of this approach we take the example of the Facility for Rare

Isotope Beams (FRIB) [8], which will come online soon and provide a wealth of new data

on atomic nuclei and their reactions. A key physics target for FRIB is a quantitative

understanding of the astrophysical rapid neutron capture (r-)process by which many

heavy elements such as gold and uranium are formed. This requires knowledge of the

masses, decays, and reaction rates of short-lived neutron-rich nuclei. While FRIB will be

able to produce many key r-process isotopes, it cannot measure all of the ≈ 3,000 nuclei

involved. Nuclear-structure models, informed by the existing experimental datasets

augmented by the new FRIB data, will have to carry out massive extrapolations to

provide the needed input for nucleosynthesis simulations [9].

The arrival of the era of multi-messenger astrophysics [10, 11] presents both an

opportunity and a challenge for FRIB’s program. The extrapolations needed to

interpret the different signals from an extreme stellar event (e.g., neutrinos, optical,

X-ray and gamma spectra, gravitational waves) require proper propagation of not just

measurement errors, but also theoretical uncertainties. It is important that multi-

messenger astrophysics—and other fields that need data on unstable nuclei—achieve the

most possible benefit from FRIB. Guidance will be needed to optimize FRIB’s precious

beam: we need to assess which measurements might best reduce extrapolation errors

for the properties outside experimental reach that affect the multi-messenger signal—or

some other application of interest. This guidance should coherently use the information

from different nuclear models and must account for theoretical uncertainties.

BAND will also advance the modeling of neutron stars and supernovae by

assimilating new experimental information on exotic nuclei from FRIB and from high-

energy heavy-ion collisions at RHIC [12] and the LHC [13]. There are many other

examples of potential framework applications, including critically needed quantified

predictions for tonne-scale experiments searching for the neutrinoless double-beta decay

of nuclei [14] as a definitive sign of new physics.

This article introduces the BAND software framework for multiple models in

physics. (Further details on the framework can be found at the project webpage [15].)

Here we lay out a strategy for the use of Bayesian methods to assess model uncertainty

in the nuclear-physics context. In order to ground that strategy in a common language

and practice we provide guidance on the use of Bayesian methods to the nuclear-physics

community. The most novel sections of the paper are those pertaining to Bayesian

Model Averaging (BMA) and the more general technique of Bayesian Model Mixing

(BMM). While BMA is the most obvious (Bayesian) way to assess model uncertainty

and is frequently employed, we strongly emphasize that it has important shortcomings

which could be damaging in the nuclear-physics context. We therefore exhort nuclear

physicists to focus on the more general BMM. We also present several nuclear-physics

examples that illustrate the ways in which BAND could advance the field.

To accomplish these goals we first lay out in Sec. 2 the ingredients for Bayesian

inference from a dataset D to quantities of interest (QOIs) Q in a nuclear physics—
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or any—problem. These ingredients are the Bayesian prior, which encodes extrinsic

information and expert opinion about the QOIs, and the likelihood, which expresses the

way in which the data to be considered constrain those quantities. Within BAND,

Bayesian statisticians will work with nuclear physicists on prior specification and

likelihood formulation. The results will be incorporated into the software framework

as “Input Tools” A and B. These are the first steps in the flowchart for the BAND

software framework, see Fig. 1.
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Figure 1. Flowchart displaying the different tools that will be incorporated in the

BAND framework.

Nuclear physicists using BAND will also specify the set of physics models from

which they want to obtain a prediction. Often, evaluating these models will involve

a calculation that consumes a large amount of (super)computer time for a “forward

evaluation”: obtaining the observables of interest for just one instance of the model

parameters. For these “expensive” models UQ can only be accomplished in a realistic

amount of time once a computationally cheap model emulator has been built. This

model emulation will be accomplished by Computational Tool A. Emulation as a tool to

reduce the computational load of inference is well covered in many references [16–18].

We touch on it briefly in Sec. 4.2, but other than that it is not really discussed in this

article.

Once observations D are specified by the user, BAND will combine the likelihood

and prior and use emulator samples to perform model calibration, obtaining the posterior

probability density function (“posterior” or “posterior pdf” hereafter) for the parameters
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of each model (Computational Tool B).

Even after calibration and emulation have been achieved we have still only obtained

information on the individual models. Calibrating models to data, while including prior

information, is a practice that is gaining increasing currency in nuclear physics. But

BAND will push the field further, by taking a set of individual models, each of which

have been calibrated to data, and use them to obtain a model-mixed prediction. Section 3

discusses the general theory of model-mixed predictions, presents the standard approach

of BMA, elucidates its limitations, and introduces ways to combine models that are less

global, in order to leverage information on local model performance. BMA as well as

these more general BMM strategies will be implemented in Computational Tool C.

In Sec. 4 we put the emulation, calibration, and model-mixing steps together in

the context of a classical toy problem: “the ball drop”. This (admittedly very simple)

example is meant to show the kind of analysis BAND could facilitate when using several

sophisticated nuclear-physics models and large sets of experimental observations.

A major challenge in NP, as in many other advanced disciplines, is the optimal

design of experiments. Not all measurements are equally useful, and beam time is

expensive. The costs of running an experiment include not only the workforce, time

and money invested, but also the opportunity cost of alternative measurements that

were not carried out. Thus, when planning an experiment, it is important to consider

which data are most likely to provide the largest information gain. This is a highly

practical field of study, with applications including engineering, biology, environmental

processes, computer experiments, and psychology [17,19–28]. The process of making the

best selection in this regard is known as experimental design. In order to ensure that

the substantial resources necessary for modern experiments are focused on acquiring

the most valuable data, both the theory uncertainty and the expected pattern of

experimental errors must be considered.

BAND’s model-mixed prediction is therefore important if nuclear physicists are to

have guidance on experimental design that reflects the true extent of model uncertainty.

Providing such guidance will be the job of Computational Tool D. Experimental design

formalism and an example of its use in a nuclear-physics context is discussed in Sec. 5.

Finally, in Secs. 6, 7, 8, and 9 we showcase different nuclear-physics problems where

one or more ideas from the BAND framework have been implemented. We discuss the

benefits gleaned from emulation, calibration, and model averaging in those cases. We

then explain how application of the full BAND tool set will build on these initial steps

towards Bayesian analyses of prominent nuclear-physics problems and yield the full

benefit of using advanced statistical methods to consistently combine the insights of

multiple forefront nuclear-physics models. Section 10 provides a summary as well as

comments on topics not treated in the main text.

Throughout the article we use a number of terms at the nuclear-physics/statistics

interface. Usage frequently differs between communities, so in Table 1 we take the

opportunity to define these terms as we use them in this work.
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2. Finding your posterior

At its core, a Bayesian framework seeks to obtain the probability distribution p of a set

of unobserved quantities of interest (QOIs) Q, combining probabilistic information on

beliefs about them (the prior) and on how they relate to observations D (the likelihood).

Specifically, the prior is a probability model p(Q) for the QOIs, and the likelihood is a

probability model p(D|Q) for the observations given the QOIs. The output of Bayes’

rule, known as the posterior, is then a probability distribution p(Q|D) for the QOIs

given the observations §. In most modeling contexts Bayes’ rule is astonishingly simple:

it says that the posterior probability density of Q given D is proportional to the product

of the prior and the likelihood:

p(Q|D) =
p(D|Q)p(Q)

p(D)
=

p(D|Q)p(Q)∫
p(D|Q)p(Q)dQ

∝ p(D|Q)p(Q). (1)

The functional dependence of this pdf on Q is given by the numerator in the middle

expression. Since D is assumed to be known, the associated denominator is just a

normalization constant, whose value is not needed if one’s only goal is to sample the

pdf of Q. This denominator does, however, become relevant in the context of model

selection or model averaging problems.

Prior specification and likelihood formulation are therefore the first two elements

of BAND. Typically, nuclear physicists will already have an opinion as to the physics

models that should be used to express a likelihood relation. The statistician’s role in

likelihood formulation is then to determine with clarity where the uncertainty, from

both experiment and theory, comes into the NP model. How to specify priors on the

unobserved elements Q in a NP model is usually a much less well defined question; it

is best answered through strong interactions between physicists and statisticians. We

now discuss BAND’s approach to prior specification and likelihood formulation before

briefly describing the opportunities and challenges associated with then obtaining the

posterior of the QOIs Q.

2.1. Prior specification

Specifying priors requires asking about—eliciting—prior knowledge of the quantities

that are sought [30]. These could be model parameters that need to be estimated, or

they could be predictions for observables that are not part of the dataset D (e.g., an

interpolation or extrapolation). The statistician and the nuclear physicist need to jointly

uncover expected ranges for these QOIs and any other statistical properties they wish

to define for these QOIs.

§ We use the notation p liberally for different probability notions. In particular, when we refer to the

probability of a continuous quantity, p should be read as a probability density function (pdf). Whether

p is a pdf or an integrated probability should be clear from context. For an introduction to Bayesian

statistics particularly well suited to physicists, we recommend Ref. [29].
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When working to encode the prior information into distributions, it is tempting to

insist on the use of so-called uninformative priors with the goal of being maximally data-

driven. This approach, which is often advocated in popular presentations of Bayesian

statistics, is based on formal methods of computing the amount of information that a

particular prior brings to the problem. An uninformative prior tries to minimize this

information. In practice this often leads to incorrect deployment of uniform priors. The

incorrectness can arise for several reasons [31]. First, a prior that is uniform in one

parameterization will not be in another so “uniform in what” is always a worthwhile

question in this context. Second, uniform priors may end up being more informative

than their user intends: by completely precluding certain parts of the Q domain, uniform

priors can overstate what is known. But the broader problem is that uniform priors

rarely reflect the actual physical prior knowledge of Q. Uninformative priors effectively

lockout the logical meaning of the nuclear physics model and leave the interpretation

of parameters and numerical structure to the numerical experimental results. Indeed,

nuclear physicists typically have important insights into what to expect for some of the

parameters or observables they seek to infer. This prior knowledge can come from formal

constraints (e.g., regarding positivity or other bounds from physical principles), from

an expected size based on the physical scales in the problem, or from accumulated

experience. By asking questions through either informal or formal elicitation, the

statistician can extract some of this knowledge and build it into the priors. This

facilitates the inclusion of physics information in the prior where it is warranted. Of

course, checks for unwanted sensitivity to the prior should also be executed in order

to catch biases in opinions that result in a misinformed prior. The prior produced by

this process would be far from uninformative, and rightly so. BAND is thus built on

a participatory approach to prior specification that works to incorporate the available

and useful information about the unobserved QOIs that is not in the observations D

into the prior.

A simple way of selecting priors in an informative way occurs by taking advantage

of the fact that a prior itself has parameters. These are called hyperparameters to

distinguish them from the parameters Q. The hyperparameters should be tuned to agree

with the physicists’ thinking while keeping with statistical principles such as prudence

and parsimony. Standard distributions for parameter priors include hyperparameters

that encode prior beliefs on a parameter’s central value (e.g., mean) and spread (e.g.,

standard deviation). In practice, statisticians can gauge their NP colleagues’ level of

confidence in parameter ranges and other properties and advocate for distributions with

hyperparameters yielding sufficiently conservative spreads or heavy tails. This type of

strategy is prudent, is not computationally expensive, and can markedly increase a

model’s robustness.

Informative priors are built by using other information I—even if it is limited in

quantity—that is relevant for the QOIs Q. I should not be directly related with the

information encoded in the likelihood model and the dataset D. Formally we express
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this relationship via repeated application of Bayes’ rule:

p(Q|D) ∝ p(D|Q, I)p(Q|I)p(I) ∝ p(D|Q)p(Q|I)p(I). (2)

This modeling scenario is known as a hierarchical Bayesian model: the prior is not

just an arbitrary set of probability distributions on each element of Q, but uses other

information to constrain (some of) these elements probabilistically. The key point in

the use of a hierarchical Bayesian framework is that if p(D|Q, I) = p(D|Q) then this

is equivalent to I and the D being independent, given Q. In such a situation the

hyperparameters that define the prior distribution p(Q|I) would be estimated using

I. In the case that I = D′ (another dataset), there is the possibility that D and D′

could be analyzed simultaneously as part of a (more complicated) likelihood (see, e.g.,

Refs. [32, 33]). In that case the parameters that appear in p(Q|I) would no longer be

referred to as hyperparameters, since they would appear in the likelihood, not in the

prior.

The hierarchy that encodes the prior does not have to be complicated in order to

aid the statistical determination of Q. A discussion between nuclear physicists and their

statistician collaborators about the value of using a hierarchy can be initiated simply

by asking what external variables or other information might be used to calibrate the

knowledge the nuclear physicists want to encode in their priors. For illustration we

consider two examples of prior specification that typify NP applications.

A simple hierarchical Bayesian model can be used to aid the fitting of a polynomial

of specified degree M . Suppose that the data to which the polynomial is fit is scaled

so that the natural units of the dependent and independent variables are both of order

unity [34, 35]. This situation is paradigmatic of attempts to extract the parameters of

effective field theories (EFTs) from low-energy data. The desired quantities Q are then

the model’s set of parameters θ, namely the coefficients θ ≡ {a0, a1, . . . , aM} of the

polynomial

f(x, θ) = a0 + a1x+ . . . aMx
M . (3)

The likelihood relates the polynomial to the information in the dataset D, which will

include points where the response has been measured to have certain central values,

with certain uncertainties. The key Bayesian step is to model naturalness by assuming

all the coefficients {a0, a1, . . . , aM} represent draws from a common population. Then

the prior on the parameters θ ≡ {a0, a1, . . . , aM} can be specified via hyperparameters

for the mean and variance of the set of coefficients. For example, if we specify mean

zero and standard deviation σa of a normal distribution, we have:

p(a0, a1, . . . , aM |σa) ∝ exp

(
−a

2
0 + a2

1 + . . .+ a2
M

2σ2
a

)
. (4)

The last element in the Bayesian hierarchy would then be a prior distribution for the

hyperparameter σa, just as one must pick priors for any parameter.

Another NP example of a Bayesian hierarchy arises in the extrapolation of

observables for nuclei near the driplines. In [36–39], separation energies are extrapolated
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using various Bayesian techniques, including Gaussian processes (see Sec. 8 for more

discussion). For that technique, an estimation is needed for the characteristic ranges of

influence of one nucleus over another in the (Z,N) space. Weakly informative priors for

the Z and N ranges-of-influence were employed, where hyperparameters for the means

and variances of those priors were declared. Specifically, a Gaussian process (GP) was

used to extrapolate the observable S from currently known locations to a new location

(Z ′, N ′), with a squared-exponential kernel defining the correlation function of the GP.

For two locations (Z1, N1) and (Z2, N2) in the nuclear landscape the correlation between

the two measurements of S is taken as

Corr(S(Z1, N1), S(Z2, N2)) = exp

(
−1

2

(Z1 − Z2)2

ρ2
Z

− 1

2

(N1 −N2)2

ρ2
N

)
. (5)

Here ρZ and ρN are the ranges of influence. Gamma priors were chosen for their squares.

A more sophisticated hierarchical Bayesian model would be to take priors for ρZ and ρN
that depend on the mass number of the location (Z ′, N ′) where we want to extrapolate,

thus using a different model for each extrapolation. Modifying ρZ and ρN in this manner

must be carefully done to avoid violating the condition that the correlation function be

positive definite, but such an adaptation allows for the inclusion of the NP knowledge

that the nuclear-chart distances over which S is correlated are far shorter for light nuclei

than they are for heavy nuclei. A model for ρ2
Z ’s and ρ2

N ’s mean hyperparameter that

is linear in A′ = Z ′ + N ′ and includes an additive error term captures this belief and

admits uncertainty about it. This means two new hyperparameters will need to be

determined: the slope of the linear model with respect to A′, and the noise level there.

An even more sophisticated hierarchical Bayesian model that has four hyperparameters

rather than two might take ρ2
N to have a different slope and a different noise level than

ρ2
Z , because the valley of stability is longer than it is wide. These ways of defining

the prior distribution of ρZ and ρN would produce a conditional GP for S, where the

range of influence is uncertain and depends on the extrapolation location of interest.

But it is unlikely that any nuclear physicist would just say “Hey, let’s write down a

conditional Gaussian process for this correlation matrix, which depends on individual

extrapolation conditions”. The hierarchy enables the organized and clear incorporation

of known physics in the probabilistic model. The BAND-driven collaboration is designed

to match insight in nuclear physics with statistical tools exactly as done in this example.

To summarize, the task of picking priors is nontrivial, yet priors can have a

fundamental influence on the statistical analysis. Informative priors can be useful and

should not be shunned. Overstating what we know, by picking priors that are excessively

informative, can lead to problems like credibility intervals for the QOIs that are too

narrow. Understating what we know is also a mistake, and is liable to lead to credibility

intervals that are too wide.
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2.2. Likelihood formulation

We now define our notational convention for setting up likelihood models of the form

most commonly used in nuclear physics. A deterministic physics model (i.e., one with

no randomness) that nominally explains observable y (e.g., cross section, masses) from

an input x (e.g., kinematics, proton and neutron numbers), will take the functional

form y = f(x, θ), where θ represents parameters which may need to be estimated. In

a set of observations y ≡ {yi : i = 1, . . . , n} at points x ≡ {xi : i = 1, . . . , n} there

will be disagreement with the physics model. Because of this we write the relationship

between those observations and the physics model as y = f(x, θ)+error. This model for

the observations then includes both a physics model, which may depend on unobserved

parameters, and a statistical model for the error term.

The familiar so-called χ2 formulation follows when the statistical model assumes

that the error at each experimental measurement point i is independent and normally

distributed ‖ with mean 0 and variance σ2
i , namely

p(D|θ, {σ2
i }) ∝ exp

(
−1

2

n∑
i=1

(
yi − f(xi, θ)

)2

σ2
i

)
. (6)

Throughout the article, D represents the list of couples (x1, y1), . . . , (xn, yn), and so

D ≡ {x = (x1, . . . , xn),y = (y1, . . . , yn)} includes both the input choices and the

experimental observations ¶. The physics model f may depend on unknown parameters

θ; the intensity of the point-to-point error is also sometimes unknown. In Eq. (6) we have

denoted explicitly that the pdf depends on this intensity of errors {σ2
i }. A subtle point

is that this expression implicitly is conditional on a physics model f . The suppression of

obvious conditionals is common in Bayesian statistics: it prevents page-long expressions

and emphasizes the key data and parameters. This implicit conditioning on the physics

model will become important later when we turn our attention to emulation and mixing,

but it remains implicit for now. Conversely, in later applications some dependencies that

are explicit on the right of the conditional here become implicit.

Heterogeneous datasets often appear in the likelihood. In such cases, the dataset

D can be divided into ncl classes of observations D1, . . . ,Dncl
. The data classes may

contain rather different numbers of observations and the level of precision may vary

widely between classes too. For instance, the data class D1 may represent 100 binding

energies, the data class D2 may represent 10 charge radii, and so on. Breaking up the

data into different data classes facilitates using different covariance forms for each class,

which has the effect of introducing relative weights for each class into the likelihood, so

that one can avoid a situation in which one data type dominates because it is either

very numerous or very precise [40,41].

‖ Other distributions can certainly be used, but we have assumed normally distributed uncertainties

here since that case is the one with which readers are likely to be most familiar.
¶ Strictly speaking, this definition of D means that x has been moved to the other side of the conditional

in (6) because we presume the Q’s we are trying to infer do not depend on where we make the

observations.
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Notice that in Eq. (6) we have deliberately not stated whether the noise term σi
comes from experimental noise and/or imperfections in the theoretical model. If the

form (6) is used in the presence of model imperfections, the assumption stated above is

implicitly adopted for theoretical errors as well.

But theoretical errors are typically highly correlated. When model imperfections are

a significant contributor to the overall uncertainties, a likelihood that uses a non-diagonal

covariance matrix may be a better choice. For example, in the polynomial-coefficient

parameter estimation problem discussed in the previous section, we can estimate the

coefficients in the kth-order polynomial while treating the term of O(xk+1) as a model

imperfection. If we then marginalize over the coefficient ak+1 using the “naturalness”

information in the prior (4) we obtain a modified likelihood [34, 42]:

p(D|θ,Σ) ∝ exp

(
−1

2

n∑
i,j=1

(
yi − f(xi, θ)

)
Σ−1
ij

(
yj − f(xj, θ)

))
. (7)

Here the matrix Σ can be expressed as Σ = Σexp + Σth, where Σexp is the diagonal

covariance matrix used in Eq. (6) above:

Σexp ≡ diag(σ2
i : i = 1, . . . , n), (8)

while the piece of Σ associated with the theory error encodes a high degree of correlation:

Σth,ij = σ2
ax

k+1
i xk+1

j . (9)

Similarly, if the point-to-point (“statistical”) and systematic uncertainties in an

experiment are accurately characterized and well explained in the publication detailing

the observations, then it is straightforward to write down a likelihood with a

non-diagonal covariance matrix that accommodates components of the experimental

uncertainties that are not independent (see, e.g., Ref. [43]).

All such generalizations, where observations (x, y) are modeled as functions of

unobserved quantities θ, and where we incorporate probability modeling for a random

error of possibly unknown intensity, yield a likelihood derived from a statistical model

y = f(x, θ)+error. These likelihoods encode the statement “This is how likely we think

it would be to observe what we see y, under conditions x, based on the model function

f that depends on parameters θ, and based on an error intensity σ”. Equation (6)

provides a particularly simple example of this kind of statistical model and it is used

very often.

But, in fact, the likelihood formulation y = f(x, θ) + error does not mandate that

the operand “+” be interpreted as an additive error. For example, it can be formulated

so that the function f itself is a random distribution (i.e., not a deterministic model)

where the values x are used to define the distribution’s parameters. A specific instance

of this is when a Gaussian process (GP) is used to directly interpolate or extrapolate

to QOIs. What all likelihood formulations have in common in the Bayesian context is

that, when they are combined with a suitable prior according to (1), they (i) provide a
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principled solution to the inverse problem of estimating QOIs by introducing priors for

them (and for σ, if needed); and (ii) use probability models.

Finally, we reiterate that the “error” should account for imperfections in both the

model and the experiment. It is advisable to consider a component of the error which

we call a discrepancy and that represents model imperfections: the δ(x) that appears

in the likelihood (25) is an example of such a term. This error component depends

on observables and experimental conditions, and is often correlated in the domain of x

values.

2.3. Together again: combining the prior and the likelihood and how to deal with what

you get

Once prior and likelihood models/distributions have been agreed upon, it typically

becomes a conceptually trivial matter to write down posteriors for the QOIs given

the data and these agreed-upon models, see Eq. (1). For illustration, in this article

there are also examples of how to extrapolate experimentally inaccessible values ỹ for

experimentally inaccessible conditions x̃ (see Sec. 8). The method for this is to use

Bayesian prediction, where the likelihood distribution of y given x under parameters

θ, applied to the range of values of interest x̃, ỹ, is integrated against the posterior

distribution of parameters θ:

p(ỹ|x̃,D) =

∫
θ

p(ỹ|x̃, θ,D)p(θ|x̃,D)dθ. (10)

The result of the integration is known as the “posterior predictive distribution”. For the

typical scenario in NP the data influences the distribution for ỹ explicitly only through

the parameters, and the posterior distribution of θ is thought to be independent of the

hypothetical experimental conditions x̃, in which case Eq. (10) simplifies to

p(ỹ|x̃,D) =

∫
θ

p(ỹ|x̃, θ)p(θ|D) dθ. (11)

The challenge then becomes understanding how posteriors like Eqs. (1), (2), and

(11) depend on all the variables and parameters involved. Typically, as soon as

there is more than one unknown parameter, and unless priors are set up in extremely

specific (and not necessarily realistic) ways, the behaviors of the resulting posterior

parameter and predictive distributions cannot be obtained analytically. Means, modes,

variances, etc., cannot usually be computed explicitly. One then resorts to mathematical

simulations (e.g., Markov Chain Monte Carlo (MCMC) sampling) to extract information

about these distributions. But our concern here is not with the specific implementation

used to obtain the posterior; instead we seek to illuminate the structure and benefits

of combining a Bayesian statistical model with a physics model in order to improve the

inference of the physics of interest.
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3. Bayesian inference for multiple models

In this section we discuss the challenge of combining the insights from a number

of individual physics models to produce inference endowed with the physics models’

collective wisdom. Section 3.1 provides the general setup for this problem, and

introduces the crucial distinction between M-closed and M-open settings. Section 3.2

describes the standard Bayesian solution: Bayesian Model Averaging (BMA); we then

explain why BMA can only resolve the challenge in the M-closed context. Section 3.3

then articulates paths to generalize BMA to a more sophisticated Bayesian Model Mixing

(BMM), wherein we combine information from different models in a more textured way

than BMA accomplishes. We end with Sec. 3.4, which gives an example where BMM

improves upon BMA by leveraging information on the local performance of two different

models across the input domain.

3.1. Bayesian inference in the multi-model setting

Recall that our generic setup is that we have observations D consisting of pairs of inputs

and outputs (x1, y1), . . . , (xn, yn) and want to, from these, predict quantities of interest

Q, which could be parameters, or interpolations or extrapolations, or even some totally

new observable. In this section we further suppose we have several physics models fk
(k = 1, . . . , K) that are purported to be a mapping from an x to a y. Each physics

model takes in an input setting x ∈ X and a parameter setting θk ∈ Θk. The kth physics

model is represented by fk(x, θk), which should be considered a deterministic prediction

of the observable at x once the model k and parameters θk are specified. One can build

a model Mk for observables by combining a physics model with an error term ε that

represents all uncertainties (systematic, statistical, computational):

Mk : yi = fk(xi, θk) + εi,k (12)

Usually, εi,k—the error of the ith observation in the kth model—is decomposed into

a stochastic term modeling systematic discrepancy and an independent term [44, 45].

Note that the error does not always have to be an additive form, but we have displayed

it as such for simplicity. Moreover, as written above, εi,k depends on the physics model

as well as on (hyper)parameters describing the statistical model, but this notation is

suppressed as the dependence involves complex factors [46].

While different physics models may have different parameters, inference on multiple

models involves dealing with a canonical parameter space Θ that spans all models

of interest. We assume that for each k in {1, . . . , K}, the model-specific parameter

space Θk can be mapped to Θ via some (possibly non-invertible) map Tk : Θk 7→ Θ.

After transformation, we say the parameters are in the canonical parameter space, and

simply write our canonical parameter as θ ∈ Θ since Θ is common to all models after

the application of Tk. We can think of this overall parameter space Θ as the union of

the individual (transformed) model-specific parameters arising out of each model. For
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notational simplicity, the Tk function will be suppressed throughout this article, meaning

θ is understood as Tk(θk) when appropriate.

Our goal is to conduct inference on the values of θ as well as the error term εi,k
for each model using Bayesian inference. Three conceptual settings have been identified

(see, e.g., [47]) where Bayesian inference on multiple models is applied: M−closed,

M−open, and M−complete. These three settings were originally motivated in the

context of statistical model building. In the M−closed case, one has ‘closed off’ the

need to introduce new models as it is known that the perfect model that represents the

physical reality must be within the set of models being considered. Therefore, as data

become more numerous and/or precise in the M−closed case, that perfect model will

become increasingly more likely, ultimately to the exclusion of all other models under

consideration. In the M−open case, one is open to introducing new models since the

perfect model is not known. In the M−complete case, we have decided that while we

might introduce new models for the sake of accuracy, we would like to maintain inference

on those in our original model set. We will not discuss this last case further.

The key distinction for inference in nuclear physics is between M−closed, when

the set of models is expected to include the perfect one, and M−open, when we know

that the set of models does not include the perfect one. We briefly outline the standard

statistical solution for the M−closed setting in the next section before moving on to

describing some potential approaches for the M−open setting that is more interesting

in the context of the BAND framework.

3.2. Bayesian model averaging and the M-closed assumption

Historically, mixing together different statistical models has been done through Bayesian

model averaging (BMA) [48, 49]. BMA has been broadly applied in many areas of

research including the physical and biological sciences, medicine, epidemiology, and

political and social sciences. For a recent survey of BMA applications, we refer to [50].

BMA is a framework where several competing (or alternative) modelsM1, . . . ,MK are

available. The BMA posterior density p(Q|D) corresponds to the linear combination of

the posterior densities of the individual models:

p(Q|D) =
K∑
k=1

p(Q|D,Mk) p(Mk|D). (13)

If we pull through the typical inference, we can compute the first term p(Q|D,Mk) by

p(Q|D,Mk) =

∫
Θ

p(Q|D,Mk, θ)p(θ|D,Mk)dθ. (14)

The second term in Eq. (13), p(Mk|D), represents the posterior probability that the

model k is correct. It can be computed as

p(Mk|D) =
p(D|Mk)p(Mk)∑K
k=1 p(D|Mk)p(Mk)

(15)
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where

p(D|Mk) =

∫
Θ

p(D|Mk, θ)p(θ|Mk)dθ. (16)

The BMA posterior (13) for Q can then be obtained by using (14) and (15).

The posterior probability of model k being correct, p(Mk|D), accounts for the

common physics assumptions or phenomenological properties being studied that may

span many of these models. But this framing works by choosing a single model that

is dominant over the entire model space. If a perfect model is explicitly considered,

that is, if some Mk is correct, the corresponding term should dominate the sum in

(13). However, generic BMA can lead to misleading results when a perfect model is

not included. One illustration is presented in Sec. 3.4. No nuclear physics models have

access to an exact representation of reality; one only hopes some are usefully close to

it. It is to be noted that while using an M−closed approach may be problematic in

many nuclear physics applications, there are nuclear physics cases when BMA can be

useful [51].

But, more generally, to be useful for nuclear physics, Bayesian inference methods

should account for the relative performance of models among the different observables.

Some early efforts in this direction include [52,53] which consider multiple models which

do not live on a common domain, resulting in some models being useful for prediction

in certain physical regimes but not others.

3.3. Using Bayesian model mixing to open the model space

Suppose then, that no models are exactly correct through the domain of interest.

To conceptualize this situation we introduce notation for the physical process f?(·, θ),
which gives the perfect (or oracle) model. That model’s predictions are related to the

experimental observations by:

yi = f?(xi, θ) + εi,?, (17)

where the set of εi,?’s represent the error between the perfect model and imperfect

observations. Equation (17) is introduced purely for conceptual purposes. It is not

practical because only an oracle has access to f?(·, θ). Someone who knows f? because

they have direct access to the underlying reality of the universe would likely not be

bothered with statistical inference—or with the scientific process at all. By presuming

the M−open scenario we invite the possibility that there is no k for which f?(·, θ) is

equivalent to fk(·, θ). The challenge is if that is true it breaks the statistical modeling

principles that undergird the effectiveness of BMA as an inferential strategy.

The generalized alternative framework we now present does not attempt to weight

models based on their performance across the entire input space. We say that such a

generalized framework is an example of Bayesian model mixing (BMM). Our approach

has connections to existing statistical literature such as [54] in addition to the single-

model frameworks of [44] and [45]. Our objective is to establish different distributional
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assumptions beyond the assumption that any one model is perfect throughout the input

space. We do this by constructing a model M† that combines the physics models to

inform on the observations:

M† : yi = f†(xi, θ) + ε†,i, where f†(·, θ) is formed by combining f1(·, θ), . . . , fK(·, θ).
(18)

The supermodel f† is built to contain the collective wisdom of all existing models

(this model was also termed reified in Ref. [54]). One possible way to combine the

models is BMA, where f†(·, θ) has a prior distribution that is a point mass at each of

{fk(·, θ) : k = 1, . . . , K} that holds universally throughout the domain of interest. In

BMM, we open up the possibility to combine the K models in more sophisticated ways.

By mixing, one can form many potential inferences about f†, and—we hope—produce

inferences using f† that more closely resemble inferences produced by the oracle using

f?.

The mixing approach would then give p(Q|D) = p(Q|D,M†). BMA is thus a

particular special case of the BMM approach. The key to the BAND BMM framework

is thatM† accounts for underlying information present in the individual models. In the

next subsection we present an example where such an M† is constructed in a way that

takes into account the different places in the input domain X in which each of them is

more accurate.

3.4. A tale of two models: contrasting BMA with BMM

Let us discuss a brief statistical example to unpack the sometimes subtle difference

between BMA and BMM. This should not be considered a general assessment of

the approaches, but instead an example to ground the concepts. For simplicity of

presentation, we assume that we have two physics models: f1(·, θ) and f2(·, θ). We want

to combine these two models to produce a model f† that is as close to the perfect model

f? as possible. Since perfection is not attainable we distinguish between f?, which we

continue to use as a gedankenmodel, and f† and try only to build the latter.

The first of the two models being mixed, f1, is an imperfect model everywhere.

Conceptually we imagine that, for all values of x ∈ {x1, . . . , xn}, f1 differs from f? by a

stochastic discrepancy a priori normally distributed with mean zero and some moderate

variance. In contrast the second model, f2, is such that there is a single observation, say

the one at the first point x1, for which f2(x1, θ)− f?(x1, θ) is potentially very large, i.e.,

here we think that the stochastic discrepancy is normally distributed with mean zero

and an extremely large variance. But everywhere else the model is essentially perfect.

We convert this information into Bayesian inference for f† by saying that f1(xi, θ) given

f†(xi, θ) is normally distributed with mean f†(xi, θ) and variance v1. And that f2(x1, θ)

given f†(x1, θ) is normally distributed with mean f†(x1, θ) and variance v2 � v1, while,

for j = 2, . . . , n, we have f2(xj, θ) = f†(xj, θ).

A BMA approach that acknowledges these model discrepancies expands the

observed variance by the model error variance. We will assume each model has the
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same prior probability of being correct and the prior p(θ) on θ is given such that

p(M1, θ) = p(M2, θ) = 1
2
p(θ). In terms of a posterior on the parameters, see (13),

this implies that

pBMA(θ|D) ∝ p(θ)

[
n∏
i=1

1√
σ2
i + v1

exp

(
−1

2

(yi − f1(xi, θ))
2

σ2
i + v1

)
(19)

+
1√

σ2
1 + v2

exp

(
−1

2

(y1 − f2(x1, θ))
2

σ2
1 + v2

) n∏
i=2

1

σi
exp

(
−1

2

(yi − f2(xi, θ))
2

σ2
i

)]
.

As mentioned previously, the BMA approach presumes that one model is correct

throughout the entire domain of interest. If v2 is truly extremely large, the BMA

formalism will implement this presumption in the most extreme way possible. The

spectacular failure of the second model at the first data point causes it to lose badly to

the first model which just manages to be mediocre everywhere. That is, the expression

for the posterior when v2 →∞ becomes

pBMA(θ|D) ∝ exp

(
−1

2

n∑
i=1

(yi − f1(xi, θ))
2

σ2
i + v1

)
p(θ). (20)

The model f2 has no role in the BMA posterior because the BMA weights consider only

the overall performance of the model over the entire domain of interest! But it seems

unduly wasteful to discard the entirety of f2 because it performs poorly in one small

subset of the domain of interest.

Now we consider a BMM approach where we do not presume a single model

is correct throughout the entire input space. One potential BMM approach obtains

the distribution of f†(x, θ) by using standard Bayesian updating formulae to combine

the probability distributions of f1(x, θ) and f2(x, θ) given f†(x, θ) with a Normally

distributed prior on f† having variance v†. Taking v† →∞, we have

f†(xi, θ) is distributed as

N
(
v2f1(xi,θ)+v1f2(xi,θ)

v1+v2
, v1v2
v1+v2

)
if i = 1

f2(xi, θ) if i = 2, . . . , n.
(21)

This seems to use our inference on both f1 and f2 in an effective way. Pulling this into

a posterior, we get that at v2 →∞

pBMM(θ|D) ∝ exp

(
−1

2

(y1 − f1(x1, θ))
2

σ2
1 + v1

− 1

2

n∑
i=2

(yi − f2(xi, θ))
2

σ2
i

)
p(θ). (22)

Now both models are being used in their respective strong areas: the model f2 is ignored

only at a single point x1 where it is very wrong and f1 is ignored everywhere that f2

provides a perfect result.

This example illustrates nicely that BMM can be a more effective tool for combining

models than BMA. Although the example is simple we believe the concept it represents

has wide applicability in NP applications where the models we want to mix perform

well in different regions of the domain of interest.
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4. An illustration: using BAND framework tools to analyze a toy problem

We now outline a toy example that spans the emulation, calibration and model-mixing

components of the BAND framework. The experimental design component of BAND is

discussed in Sec. 5. To facilitate the discussion, we will mostly make use of a basic GP

toolset. GPs are a popular default modeling choice for a few reasons, including: their

prior-on-functions interpretation, the smooth, continuous and differentiable emulations

they can provide, and their effectiveness when emulating sparsely observed functions.

We will outline a basic approach to emulating, calibrating and mixing these models

as would be desired in a real nuclear physics investigation—keeping in mind that the

BAND framework aims to enable multiple tools (i.e., a library of emulators, model

mixing methods, and experimental design algorithms) to be used in an inter-operable

and consistent manner. The simplified toy example we outline in this section can be

further explored in the R script file located in the BAND GitHub repository [55].

4.1. The toy model

In line with the notation established in the previous section we take a toy model, Mk,

to involve a physics model fk(x, θ) that depends on a single input x and a parameter

θ. Given this known θ, we can compute fk(x, θ) ≡ fk(x) at a selection of mk settings of

the input, xk ≡ (x1, . . . , xmk
) giving model outputs fk ≡ (fk(x1), . . . , fk(xmk

)).

A popular toy model we will use to outline the BAND framework arises in the

so-called ball drop experiment [56]. In this experiment, a large ball is dropped from a

tower, and its height is recorded at discrete time points until it hits the ground. The

input, x, is time and the observable of interest, y, is the ball height. We will eventually

consider two particular toy models for this physical process:

M1: A model for ball height that ignores atmospheric drag due to air resistance. The

physics model, f1, depends on a single parameter θ = g, the acceleration due to

gravity.

M2: A model for ball height that includes a quadratic component for atmospheric drag

due to air resistance. The physics model, f2, depends on two parameters, θ = (g, γ)

where γ is a drag coefficient.

The physics of both models are outlined in [57], and our toy problem will involve

dropping a 0.1 m diameter ball weighing 1 kg.

4.2. Emulation

We start with our simpler model, M1, which will only be an accurate description of

the physics when the effect of drag can be ignored. For simplicity, we simulate our

observables directly from M1 at the “true” gravity parameter g = 9.8 m/s2.

Our first task of interest is to predict, or emulate [16,17,58–64], our physics theory

f1(x) at arbitrary input(s) x̃, which were not made available to us directly from the
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output of physics modelM1. As outlined in Sec. 1, emulation is a probabilistic technique

that provides a computationally cheap surrogate for a model when the model can only

be evaluated at a sparse selection of input settings. This allows one to explore questions

of interest when evaluation of the model is limited due to computational constraints. To

perform this emulation, a prior distribution, pEmulate(f1|x1, φ), describes the statistical

emulator to be used. Here, φ refers to nuisance parameters that are necessary for the

statistical emulator, but are not directly physics parameters of interest. Without loss

of generality, we will drop φ from the notation unless required for clarity.

Emulation is then the process of probabilistically recovering the rest of f1 using

only the observed model runs (f1,x1), and the prior distribution pEmulate. Suppose we

want to emulate f1 at a point x̃. This task is performed via the posterior predictive

distribution, which is obtained by integrating over the emulator nuisance parameters φ:

pEmulate(f1(x̃)|x̃, f1,x1) :=

∫
φ

pEmulate(f1(x̃)|x̃, f1,x1, φ)p(φ|f1,x1)dφ. (23)

A key ingredient of the posterior predictive distribution is the first term of the integrand,

pEmulate(f1(x̃)|x̃, f1,x1, φ), which encodes how the observed function values f1 are used to

probabilistically extrapolate our function’s behavior at new input setting x̃. Meanwhile,

the second term, p(φ|f1,x1) encodes the information learned about our function from the

finite outputs f1, such as the function’s smoothness or differentiability. Note then that

this Bayesian solution describes an entire emulation pdf. A typical point estimate—i.e.,

the thing we might quote for “the number” given by the emulator—would be the mean

of the posterior predictive,

E[f1(x̃)|x̃, f1,x1] =

∫
f1(x̃)

f1(x̃)pEmulate(f1(x̃)|x̃, f1,x1)df1(x̃). (24)

But although this provides us with a “the number”, it is important to note that the

posterior predictive distribution is just that: a distribution, and as such the emulator

comes with an emulator uncertainty that is encoded in the spread and other properties

of that distribution. The development of GP emulators for this problem is thoroughly

discussed in [17,18].

4.3. Calibration

In statistical calibration, we expand on the emulation described above by removing the

assumption that we know θ while also introducing a model discrepancy term, δ(x) that

allows for the possibility of model misspecification. Calibration is a powerful technique

because it allows one to combine sparse observables with sparse emulator outputs to

perform inference and predictions. If emulation is not required, the extension of Eq. (6)

to include the discrepancy term, δ(x), is

p(D|fk, θ, δ, {σ2
i }) ∝ exp

(
−1

2

n∑
i=1

(yi − fk(xi, θ)− δ(xi))2

σ2
i

)
. (25)
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In the more common case where emulation is needed, we choose to run our physics

model at only mk settings because every such run is costly in time, money, or some

other thing we care about. Each selected “setting” corresponds to a simultaneous

choice of inputs and calibration parameters, and we notate those settings hereafter as

xk ≡ (x1, . . . , xmk
) and θk ≡ (θ1, . . . , θmk

). Outputs from our physics model Mk then

comprise fk ≡ (fk(x1, θ1), . . . , fk(xmk
, θmk

)) . Let Ck = {fk,xk,θk}. Calibration assumes

there are two sparse sources of information: n real-world observables, y, and mk outputs

from a physics model of interest, fk. These two sources of data are then combined in a

statistical model, pEmulate(y, fk|x,xk,θk, θ, δ) that connects the observations with model

outputs conditional on knowing both the calibration parameter setting that best aligns

with reality, and the model discrepancy term, δ, that accounts for infidelity between the

physics model and reality. Note that this means the Ck is divided in pEmulate—as D was

in Eq. (6)—since the model treats the θk,xk as fixed and known in order to emulate the

fk and y.

Calibration then allows two distributions of interest to be calculated. First, there

is the posterior distribution for θ and δ. By Bayes’ theorem (1) that is:

pCalibrate(θ, δ|Ck,D) ∝ pEmulate(y, fk|x,xk,θk, θ, δ)p(θ)p(δ). (26)

Here, we see that the posterior distribution encodes how much information was learned

about the unknown calibration parameter setting θ that aligns with the observables y,

and it also encodes what was learned about potentially unaccounted for physics, δ, in

our function fk. Note that this is accomplished using only a finite sample of observables

and model outputs.

Second, there is the posterior predictive distribution which, as in Eq. (10), can be

found by marginalizing over θ and δ:

pEmulate(fk(x̃)|Ck,D) ≡
∫
θ,δ

pEmulate(fk(x̃)|Ck,D, θ, δ)pCalibrate(θ, δ|Ck,D)dθdδ. (27)

As before, the first integrand shown in the posterior predictive distribution encodes how

the probabilistic extrapolation is performed. However, unlike in pure emulation, this

extrapolation now additionally depends on the estimated θ and δ.

A calibrated emulator can then be used to compute the mean of fk(x̃) from this

posterior predictive distribution:

E[fk(x̃)|Ck,D] (28)

=

∫
θ,δ

∫
fk(x̃)

fk(x̃)pEmulate(fk(x̃)|Ck,D, θ, δ)pCalibrate(θ, δ|Ck,D)dfk(x̃)dθdδ.

This mean is marginalized over θ. We can, of course, also use the posterior predictive

distribution to compute the mean of fk(x̃) for a specific value of θ:

E[fk(x̃)|Ck,D, θ] =

∫
δ

∫
fk(x̃)

fk(x̃)pEmulate(fk(x̃)|Ck,D, θ, δ)pCalibrate(θ, δ|Ck,D)dfk(x̃)dδ.

(29)
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In the ideal case that δ = 0 (i.e., there is no unaccounted-for physics) and we

can observe the real-world process without measurement error (ε = 0), then in the GP

setting with a mean-zero assumption [44], the mean of the predictive distribution (29)

takes the form of a linear combination of the observations and model evaluations

E[fk(x̃)|Ck,D, θ, δ = 0] =
n∑
i=1

wfi (x̃, θ)yi +
m∑
i=1

wci (x̃, θ)fki, (30)

in which the (unnormalized) weights w depend on the cross-covariances between real-

world observations and physics model outputs via the calibration parameter(s) θ and

input x̃. The calibrated predictions therefore inherit useful information from the model

outputs if the calibration parameter is well estimated and the simulator outputs are not

“too far” from the real-world observables. But if those two conditions are not met then

the second set of weights become small (wci (x̃, θ)→ 0) and the predictions increasingly

behave as if one were simply regressing on the observations y, i.e., they ignore the

physics-model outputs fk. Note that this behavior is analogous to the motivating

example described in Sec. 3.4, and in particular Eq. (21).

The priors p(θ) and p(δ) are critically important elements to understand in

calibration models [44, 65]. The former encodes our information about the calibration

parameter vector before we observe our observables, while the latter encodes any

information we might have on unaccounted physics in our physics model. Though

there are some identifiability concerns when including δ in our statistical model [66],

the challenges appear surmountable with careful modeling practices [46, 67].

The idea of calibration is depicted graphically in Fig. 2, where we have demonstrated

the technique using the GP models for pCalibrate. In panel (a), the grey surface represents

what the physics-model response would be inM1. In practice, we only sparsely compute

f1(xi, θi) at a finite collection of input settings {xi, θi}m1
i=1 as denoted by the green dots.

These form our vector f1. The observables y are displayed as red dots (here simulated

from M1 at g = 9.8 m/s2), however in the context of the model space of M1 we do

not know where the red dots are located since θ(= g) is unknown. Hence the red dots

should really be thought of as the red lines (i.e., the observations could correspond

to any value of θ a priori). Panel (b) displays the inferences made using calibrated

emulation of M1. The red curve in the x−y plane denotes the posterior density of θ

and the blue lines are realizations of the posterior predictive distribution. Note that the

spread of the blue lines conveys the impact of the multiple sources of uncertainty on our

inference: the uncertainty in θ as well as the uncertainty in the noisy observations y

and the incomplete (sparse) information about M1 provided by C1. Panel (c) projects

this information back down to the x−f1 plane, which is the view one would usually plot.

Here, the calibrated model’s posterior mean is shown as the green line, while the mean

of the inferred discrepancy is denoted by the orange line. The mean of the calibrated

predictor is again shown in blue.
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Figure 2. (a) Emulation of model space. The gray surface represents what the physics

model in M1 would be were it available in closed-form. The green dots represent

our actual information about f1, as simulated on computer. The red dots represent

the observed field observations of the real-world process. (b) The blue lines represent

posterior samples of the calibrated emulator, which combines sparse information about

model space M1 with sparse field observations to estimate the drop trajectory of the

calibrated emulator forM1. The red density in the z=0 plane represents the posterior

estimate of the calibration parameter, gravity. (c) The corresponding calibrated

emulator and its uncertainty is denoted by the blue lines. The orange line denotes

the estimated discrepancy between the model and reality, which contains 0 in its

uncertainty interval across the range of time. The corresponding predicted trajectory

that combines the calibrated emulator and discrepancy is shown in green.

4.4. Model mixing

Bayesian solutions to statistical modeling problems typically involve some type of

weighted average. For instance, the Bayesian solutions to emulation and calibration

described so far, e.g., Eqs. (30),(28), all share a common form: the posterior distribution

of interest, e.g., Eq. (27), can always be expressed as a combination of our prior

knowledge weighted by the data-based evidence encoded in the likelihood. The BMA

outlined in Sec. 3.2 also involves a combination, it’s just that Eq. (13) describes a finite

linear combination rather than the continuous version seen in Eq. (27) for the calibration

model.
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The multi-model setting raises tricky questions about how, or whether, we want to

average—questions we do not encounter within fixed-model statistical inference. For

example, in the simple ball-drop example, the BMA approach to the problem fits

each model separately before averaging the two of them. But the parameter g is

common between both models and has the same interpretation in each. This raises

several questions, for instance: might estimates of g benefit from a joint approach to

modelingM1 andM2? And how do separate estimates of such models affect uncertainty

quantification in comparison to joint approaches? As mentioned earlier, BMA is optimal

in the M-closed setting, but in our M-open reality, and particularly in a data-poor

context, we may benefit from considering models jointly.

Beyond the flexible software architecture to be developed in the BAND project,

a core area of methodological research for BAND will be to explore such complexities

that arise in the multi-model setting. For now, we outline two different solutions to

our multi-model ball-drop problem, one that uses BMA and one employing a Bayesian

calibration setup. This allows us to highlight some of the differences.

4.4.1. Model mixing via BMA In a data-rich setting where the physics simulator of

the real-world process can be cheaply sampled at the same inputs as the observational

data, emulation may not be needed. The BMA approach outlined in Sec. 3.2 can then

be applied directly. In this case, we have our K = 2 models M1,M2 where M1 is

equivalent to θ = (g, 0) and M2 is equivalent to θ = (g, γ). The observations are then

modeled by each of these in turn, and we approximate the BMA solution described in

Eq. (13) by performing the model average over a discretization of θ-space (alternatively,

the MCMC algorithm of [48] could be applied were θ of higher dimension). Note that

the weights for M1 in the BMA approach do not make use of information from the

γ 6= 0 outputs from M2. The resulting BMA prediction and recovered estimates of the

gravity and drag parameters are shown in Fig. 3. Since we include both drag-free and

draggy models in this BMA, we expect BMA to perform well. However, to get a sense of

what can go wrong we also performed BMA ignoring the draggy model which resulted

in the highly biased estimate of gravity shown as the dotted density curve in Fig. 3(b).

4.4.2. Model mixing via calibration By again considering the models to be continuously

indexed by θ = (g, γ) where γ = 0 is equivalent toM1, it is straightforward to cast the

situation of multiple models within the calibration framework. The calibrated predictor

in (30) then bears a striking resemblance to the BMA form,

E[f1(x̃)|C1,C2,D, θ, δ = 0] =
n∑
i=1

wfi (x̃, θ)yi +

m1∑
i=1

wc1i(x̃, θ)f1i

+

m2∑
i=1

wc2i(x̃, θ)f2i, (31)

where we see that the (unnormalized) weights for the outputs of both models

in Eq. (31) in fact depend on the parameter θ spanning both model spaces and
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Figure 3. (a) Realizations of the 2-parameter quadratic drag model in M2 over a

20×20 grid of gravity (g) and drag (γ). The gray lines represent the height trajectory as

a function of time for this 20×20 grid of parameter settings. The n = 7 observations are

shown as red dots while the BMA prediction and corresponding 95% credible interval

are shown in blue. (b) The corresponding BMA density estimate for gravity, θ1 = g,

and (c) the BMA estimate of the drag coefficient, θ2 = γ. The true values of the

parameters for this simulated data are shown as the vertical dotted lines in (b) and

(c). The BMA density estimate for gravity using the wrong model (M1) is shown as

the dotted line in panel (b).

the input setting x̃. This expectation would then be further re-weighted as in

Eq. (28) where pCalibrate(θ, δ|C1,C2,D) now involves the joint posterior. In other

words, the calibration solution outlined considers both models jointly, and we

can think of E[f1(x̃)|C1,C2,D] as approximating E[f1(x̃)|M1,M2] and similarly

pCalibrate(θ, δ|C1,C2,D) as approximating pCalibrate(θ, δ|M1,M2).

A demonstration of this idea is shown in Fig. 4, where we now consider both our

drag-free model M1 and the quadratic-drag model M2 that depends on the additional

drag coefficient parameter, γ. Setting γ = 0 recovers the drag-free model, and the gray

surfaces depict the physics model evaluated at γ = 0 (i.e., as in M1), γ = 25 and

γ = 75 in the figure. Note that the behavior of both models is similar up to about x = 1

seconds, indicating that f1 can still be leveraged for prediction in this regime. However,

beyond x = 1 seconds, the models diverge significantly, indicating that information can

only usefully be borrowed from f2, even though M2 is more sparsely sampled. The

observations were generated with a drag coefficient of γ = 40 at n = 7 time points, as

denoted by the red dots in Fig. 4(b). We see that even though M1 is not meaningful

beyond x = 1 seconds andM2 is much more sparsely sampled than the drag-free model,

the overall prediction is well behaved. The resulting posterior for gravity (g) shown in

Fig. 4(c) is well centered on the true value. Meanwhile, calibrating only usingM1 (the

incorrect model) results in the biased estimates shown in Fig. 4(d) for both strong and

weak priors on the discrepancy.
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Figure 4. (a) Calibration with two models: the drag-free physics model (as in

Fig. 2) and a quadratic-drag physics model. The gray surfaces represent what the

physics model would be were it available in closed form with no drag (M1), and with

quadratic drag (M2). The quadratic drag surfaces are plotted using drag coefficients of

γ = 25, 75. Note the much more linear appearance of f2 at these two settings of γ, and

the corresponding reduction in drop distance as compared to the drag-free model. The

model-mixed calibration is shown as the blue curves. (b) The corresponding model-

mixed calibrated emulator and its uncertainty is denoted by the blue lines. The orange

line denotes the estimated discrepancy between the model and reality, which contains

0 in its uncertainty interval across the range of time. The corresponding predicted

trajectory that combines the model-mixed calibrated emulator and discrepancy is

shown in green. (c) Posterior density of gravity (θ1 = g) is shown in this multi-model

setup. (d) Corresponding posterior density of gravity when using the incorrect model

M1 is shown here with the same discrepancy prior as in the multi-model calibration

(solid line) and with a more vague prior (dotted line).

4.5. Experimental design questions

Within the toy model we can imagine a range of enhanced experiments to better measure

the gravitational constant θ: build a taller tower to reach greater ball speeds (“energy

frontier”) or develop better clocks and rulers (“precision frontier”) or drop more balls

(“intensity frontier”). Deciding which option to pursue and with what specifications is

a problem of experimental design. We turn to the Bayesian approach to this problem

in the next section.
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5. Experimental design

Bayesian experimental design provides a framework in which experiments can be

designed using the current information available both from experiment and theory.

Broadly speaking, NP experiments involve a plethora of observables measured with

a great variety of techniques, ranging from simple decay and scattering experiments to

cross-section reactions with radioactive ion beams, to relativistic heavy-ion collisions.

Experiments can be expensive, and communities often have to choose between competing

proposals for new apparatus or for beam time.

To optimize experiments, the goals of the experimenter are encoded in a utility

function which describes the usefulness of potential observations and may also include

the cost of the experiment. One then considers various future experimental designs and

computes the expected utility of each design by averaging over all potential experimental

results from that design. A particular experimental design might be specified by

an observable and a set of experimental conditions at which to measure it (e.g.,

beam energies and detector positions) and perhaps also the experimental noise levels.

Experimental regimes (e.g., kinematic regions) where limitations of the facility being

used for the experiment are liable to make collecting data excessively difficult can be

excluded from the optimization by explicit restrictions on the designs considered. Once

the utility function and the possible designs have been specified, the optimal design is

simply the scenario that maximizes the expected utility function over the domain of

possible designs.

In order to invoke the experimental design formalism, the goal of the experiment

must be specified. Is it to make an accurate observation of some quantity? To

discriminate between competing models? Or to precisely constrain parameters of the

theory? In this section we illustrate the Bayesian approach to experimental design

by focusing on experiments with the last of these three goals. We define the optimal

design as the one which provides the greatest increase, on average, in the knowledge

of the parameters of the NP model. The state of knowledge about those parameters

before any new experiment is performed is incorporated in our experimental design using

Bayesian priors.

In general the experimental goal is encoded as a utility function, or design criterion,

U(x,Q,y), that depends on the design points+ x in the design space E from which

experimental data y are then measured and the quantities-of-interest Q that we have

constructed our experiment to find. Of course, y will not be known until the experiment

is conducted. Hence the optimal design x? is that which maximizes the expected utility

U(x) = E[U(x,Q,y)]. In this section we focus on the case where Q are the (physics-

+ A single design (observable, experimental conditions, etc.) is denoted by x. The space E is the set of

all considered experiments over which the utility is optimized (e.g., all possible 5-angle measurements

of a differential cross section at a given energy).
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model) parameters θ, so we seek

x? = arg max
x∈E

U(x)

= arg max
x∈E

∫
U(x, θ,y)p(θ,y |x) dθ dy (32)

= arg max
x∈E

∫ {
U(x, θ,y)p(θ |y,x) dθ

}
p(y |x) dy

where arg max
x∈E

U(x) denotes the maximum of the utility function over all choices of

x ∈ E. For each possible experimental outcome y, we compute corresponding posteriors

for the parameters θ. By then marginalizing over y, with a weighting given by the

probability of that y for a given x as predicted by the model or its emulator, we

average the expected gain in information on the parameters θ over all data that could

plausibly be measured. To sample all those possibilities is often computationally quite

expensive, which is why emulators are a key part of the BAND framework. However,

if the predictions can be reliably linearized around the best known parameters then a

simple and intuitive formula for the expected utility of an experiment is obtained [68].

Equation (32) says that the process of experimental design requires a theory f(x, θ)

and a probabilistic model relating data to theory parameters, p(θ,y |x). To calculate

that pdf we use the product rule to write p(θ,y |x) = p(y | θ,x)p(θ) (likelihood for given

design × prior). To evaluate the likelihood p(y | θ,x) we need to include the theoretical

model discrepancy in a model such as Eq. (12). Here we’ll use for illustration a Gaussian

prior and (correlated) Gaussian errors in the model (e.g., see Ref. [68]). We suppose

that at the start of our experimental-design process prior knowledge of the parameters

of interest is specified by a multi-variate normal distribution with a vector of means µ0

and a covariance matrix V0,

p(θ) = N (µ0, V0) , (33)

Under the assumption that f(x, θ) is linear in θ, it follows that the posterior is also

given by a normal distribution

p(θ |y,x) = N (µ(y,x), V (x)) , (34)

where the mean and variance have been updated from µ0 and V0 to µ(y,x) and V (x)

respectively. Crucially, V (x) depends on neither the specific value of µ0 nor the measured

data y. Instead the extent to which it updates V0 is determined by a combination of

the model error and the experimental errors.

The optimal design is then that which provides the best improvement in constraints

on θ, i.e., the greatest improvement in V over V0. This leads us to choose the utility to

be the gain in Shannon information compared to prior information for θ, based on the

experiment (x,y). This is equivalent to the so-called Kullback-Leibler (KL) divergence,

or relative entropy, between the prior and posterior for θ (a measure of the difference
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between these probability distributions), followed by marginalizing over y:

UKL(x) =

∫ {
ln

[
p(θ |y,x)

p(θ)

]
p(θ |y,x)dθ

}
p(y |x)dy. (35)

In fact, if linearization is valid, the integral over y is trivial since neither the

posterior not the prior covariance matrix depend on it. Equation (35) can be computed

exactly (see Appendix A of Ref. [68]), with the result

UKL(x) =
1

2
ln
|V0|
|V (x)|

≡ lnS(x) ≥ 0 , (36)

where we have defined the posterior shrinkage factor S ≥ 1. Our assumptions lead to a

form of the expected utility that is analytic, easy to understand, and quick to compute.

Particular confidence levels for the prior (33) and posterior (34) for the parameters θ

define hyperellipsoids. Then S is the factor by which the volume of the prior ellipsoid

shrinks as it is updated to the posterior, with larger values of S (or UKL) being more

informative than smaller values. An experiment yielding S = 1 (or UKL = 0) is then

completely uninformative. If we are interested only in a subset of the θ, and not in the

rest, we can re-define the utility to find the optimal design of an experiment that seeks

to measure our subset of interest by simply computing Eq. (36) with the corresponding

submatrices of V0 and V .

Note that constraints from previous experiments are built in naturally via the

prior on the parameters. So, if we find a large utility in an observable or a region of

experimental conditions that has already been thoroughly explored, that means there

is still valuable constraining information to be gained there.

As an illustrative example, Fig. 5 shows the expected utility from Eq. (36) for

experiments to measure Compton scattering from the proton [68]. Each panel in

the top or bottom row shows a color contour plot of UKL(x) at possible kinematic

points (specified by laboratory energy and scattering angle) for determining a subset

of proton polarizabilities from the measurement of the proton differential cross section

(see Ref. [68] for further examples and explanations). The polarizabilities are extracted

through application of a NP model (here: chiral effective field theory). The most red

regions are where the most fruitful measurement will be. The top row does not include

the theoretical model discrepancy, which in this case is from the model truncation

error, while the bottom row does include this uncertainty. The effect of including the

truncation errors is striking: it shifts the region of optimal utility to lower energies and

moderates the expected information gain. Including theory uncertainties is essential for

experimental design!

Now suppose we have multiple models. Then our observational conditional,

p(y|x, θ), will be replaced by a mixed model conditioning. For example, if BMA is

used for the mixing then the mixed model for observables can be formulated according

to Eq. (13). As long as the parameters θ are common to all models used in the mixing we

can employ the above formalism by revising p(θ,y |x) accordingly in Eq. (32). However,
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Figure 5. Example illustrating the concept of experimental design. The expected

utility Eq. (36) of proton differential cross section (dσ) measurements (see Ref. [68] for

details). Colors indicate the utility of one measurement conducted at each kinematic

point (ωlab, θlab), with the point of largest utility UKL being by definition the optimal

1-point design. (The color bar is on a linear scale, though the hue varies much more

quickly for small UKL.) The top row (with the red, “No δyth” box) does not include

model truncation estimates, whereas the bottom row does include this uncertainty.

Each column shows the information gain one could expect to achieve for a subset of

the proton polarizabilities. The white circles with black borders show the optimal

design kinematics for five measurement points at the same energy but different angles.

Reproduced from Ref. [68] with kind permission of The European Physical Journal

(EPJ).

the use of general mixing can lead to more complicated forms than the illustration

presented here. Such use of model mixing for experimental design is one of the ultimate

goals of the BAND project.

6. Case Study: The equation of state of strongly interacting matter

Heavy-ion collisions, performed at energies from a few MeV to a few tens of TeV provide

the means to excite femtoscopic regions of matter to extreme densities and temperatures.

Great experimental investments have been made at NSCL [69], RIKEN [70], GSI [71],

RHIC [12], and LHC [13] to explore strongly interacting matter at temperatures from

a few to hundreds of MeV and densities up to several times nuclear matter density.

New facilities are coming online, as FRIB [8], FAIR [72], and NICA [73] should all be

completed in the next few years.

Although these experiments address a wide variety of issues, two critical areas

of commonality will be addressed by BAND. First, existing and future high-quality

datasets are enormous and cover a remarkably heterogeneous range of physics by

employing a vast complement of detectors. Secondly, the created hot and dense
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matter cools quickly and is very short-lived, and interpreting the measurements thus

requires comparison to sophisticated and numerically intensive theoretical models and

simulations describing its evolution through multiple stages before being observed.

These models build on robust theoretical frameworks for describing strongly interacting

matter in its various manifestations but involve a number of parameters describing

medium properties that cannot yet be precisely computed from first principles.

In addition, the transitions between different stages provide conceptual challenges

that result in competing models built on conflicting paradigms, assumptions and/or

approximations. BAND’s role lies at the intersection of experiment and theory

where comprehensive experimental datasets are analyzed using Bayesian inference

to constrain the uncertainties in model structure and model parameters. Given

the complexity of these model-to-data comparisons, sophisticated new methodologies

from the statistical science community are required to achieve complete and rigorous

uncertainty quantification including both experimental and theoretical sources of error.

Statistical approaches based on model emulators have recently been applied to

analyses of heavy ion data from RHIC and the LHC [74, 75]. After being tuned

using a few hundred to several thousand full model runs at each point of a sufficiently

large number of design points for the model parameters, emulators reproduce principal

components of the model output (predictions for observables) with little computation.

This enables exploration of the high-dimensional parameter space with fine resolution

for mapping out the joint posterior distribution for the model parameters. These

analyses result in likelihood contours of the parameter space where uncertainties, both

experimental and theoretical, are taken into account. The result of one such analysis

performed by the MADAI Collaboration [76] is presented in Fig. 6. Here, a 14-

dimensional parameter space was explored in analyzing high-energy collisions from

RHIC and from the LHC [12, 13]. Parameters expressing the equation of state were

among those varied, and the ensuing constraint of the equation of state is shown in the

figure.

Going forward, a main challenge facing the field is to handle multiple competing

models that do not necessarily share a common set of parameters. All applications

of emulators to heavy-ion collisions to date have accounted for parameter variation

within a particular model. However, there are instances where multiple models must be

simultaneously considered. For heavy-ion collisions this is especially true for models

of the initial stopping stage for lower energy collisions corresponding to the RHIC

Beam Energy Scan, for the pre-hydrodynamic evolution, and for the interface between

the hydrodynamic and late hadronic simulation stage (for this last issue see Sec. 9.)

For the initial conditions and pre-hydrodynamic stage, several models based on very

different paradigms should be considered. Both for the purpose of determining the best

choice of early-stage models, and for accurately reflecting the uncertainty in the early

evolution stage when extracting information about the medium properties controlling

the hydrodynamic stage of the collision, one must consider a variety of theoretical

pictures. This challenge defines the principal role of BAND’s expertise in applications
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Figure6.Thespeedofsoundvs.energydensityforbaryon-freematterasconstrained

bya14-parametermodelcomparedtodatafromRHICandtheLHC.Resultsare

describedindetailinRef.[74].

toheavy-ionphysics.

7. CaseStudy: Designofexperimentsfornuclearreactions

TheFacilityforRareIsotopeBeamswillcomeonlinesoonandwillofferthepossibility

ofproducingthousandsofrareisotopes,manyofwhichareunobservedandextremely

neutronrich.Duetothecomplexityofeachexperiment,thefacilitycannot(andshould

not!)measurethemall.Reactionsofferanarrayofprobesintothestructureofnuclei.

ReactionsatFRIBwillalsobeusedasindirectmethodsforextractingreactionrates

forastrophysics[77].Inplanningforthesefutureexperimentswecanask: Whatare

thebestbeamenergies? Whatistherequiredangularrange? Whichreactionproducts

shouldbedetected? Whatreactionobservablesshouldbemeasured?Etc.Asdiscussed

inSec.5theanswerstothesequestionswilldependonthegoal;onceagoalhasbeen

chosenitcanbeencodedinautilityfunction.

Duetothecomplexityofanab-initiotheoryforreactionsinvolvingintermediate

massandheavynuclei,few-bodymodelsarecommonlyused.Inthesemodels,most

nucleonicdegreesoffreedomarefrozen,andonlyafewareincludedinthedynamics.In

suchcases,theessentialingredienttothecalculationsbecomestheopticalpotential:an

effectivecomplexinteractionbetweentherelevantcompositebodiesthatcapturesthe

many-bodycomplexityoftheproblem. Nucleon-nucleusopticalpotentialshavebeen

traditionallyobtainedfromfittingdata,primarilyelasticscattering. Globaloptical

potentialparameters(e.g.,[78,79])obtainedusingstandardχ2minimization[80]are
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charge, mass and energy dependent and only provide an average description of reactions

across the nuclear chart. Indeed, particularly for reactions with unstable nuclei, the

accuracy of global approaches is unknown due to the extrapolations to nuclei far away

from the valley of stability. To properly leverage the massive investment of time,

scientific expertise, and resources we must understand how the uncertainties in models

that are fitted to data propagate to their predictions, and especially to extrapolated

predictions for targets with extreme neutron or proton numbers.

In the last few years, Bayesian methods have been established to quantify the

uncertainties in the optical potential parameters and corresponding observables [81,82].

Initial work in Refs. [81, 82] focused on how well a single set of elastic scattering data

characterized by a well defined beam energy and a generous angular distribution could

pin down the optical-potential parameters. Mock data were generated for elastic angular

distributions using the model of Ref. [79] and an overall 10% error on these synthetic

observations was assumed. These data were then used to calibrate an optical potential

model of the reaction containing 9 parameters. Wide Gaussian prior distributions

centered around the global parameters of [78] were chosen as the prior for these

parameters. The nine-dimensional parameter posterior was then generated from Monte

Carlo sampling using the Metropolis-Hastings algorithm. These posteriors were then

used to obtain the credibility intervals for the elastic scattering angular distributions

and propagated to other reaction observables such as the total (reaction) cross section

and the transfer angular distribution, see Eq. (10). The most striking conclusion

from these Bayesian studies [81, 82] was that the resulting posterior distributions for

predicted observables were significantly wider than previously assumed and did not

exhibit Gaussian shapes. The linear error propagation assumed in previous studies

was not valid for this situation. In fact, the credibility intervals obtained when the

optical potential is calibrated on elastic data of this accuracy and results propagated to

a transfer reaction are too large for a useful model comparison. These early UQ studies

for optical potentials suggest that the way they are presently constrained by data leads to

too much uncertainty for their application in other reactions to give significant insights

into the dynamics of those reactions.

Since optical-potential models are workhorses of nuclear-reaction theory it is

important to understand how these too-large uncertainties could be reduced. Which

observables and kinematic conditions can provide a significant reduction of this

uncertainty? As a first step to a full experimental-design analysis Ref. [83] asked how

impactful it is to reduce the experimental error. This is largely dominated by the point-

to-point error for experiments with rare isotopes, so issues with discrepancy functions

were not discussed in this initial study. Ref. [83] then showed that, for most cases, a

factor of two reduction in the point-to-point uncertainty of observations does not result

in a factor of two reduction in the uncertainty of the model prediction for the elastic

angular distribution.

The angular range is also another important consideration in such experiments.

As an illustration, Fig. 7 shows the 95% credibility intervals obtained for the angular
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Figure7. Angulardistributionsforelasticscatteringofprotonson 208Pbat30

MeV:95%credibilityintervalswhenincludingdatainthefullangularrange(full,

bluesolidline),whenonlyincludingforwardangles(forward,orangedashedline)and

whenincludingasparseangulargrid(reduced,greendottedline).They-axisdisplays

theratioofthesimulatedproton-208PbcrosssectiontotheRutherfordcrosssection.

ResultsaredescribedindetailinRef.[83].

distributionsfortheelasticscatteringofprotonson208Pbat30 MeV.Theseare

presentedintermsoftheratiotoelasticscatteringduepurelytothe Coulomb

interaction—the“Rutherfordcrosssection”.Thisremovesthedivergenceintheresults

atzerodegrees.Theresultsobtainedusingthe“full”angulardistributions(180data

pointsfrom1to180degrees)areshownasthegreenbandandcomparedtoa“reduced”

analysiswhenonlyeverytenthdatapointisusedformodelcalibration.Thedifferences

intheposteriorpredictivedistributionobtainedfromthefullandreduceddatasetare

imperceptible. Bycontrast,whenonlydataforanglesbelow100degreesisincluded

(“forward”analsysis)theorangebandtherebyobtainedismarkedlywider(notethelog

scale)atthebackwardangleswhereconstrainingdatawerenotincluded.

Figure8showsthecorrespondingposteriorsfortheoptical-modelpotential

parameters:thedepth,radiusanddiffusenessoftherealpartoftheopticalpotential

(V,r,a)andtheimaginaryterms,surface(Ws,rs,as)andvolume(W,rw,aw). The

mostimportantdifferencebetweencalibrationwithdataoverthefullangularrange

andthatwhichusesonlyforward-angledataisinWs. Reference[83]concludedthat

usingadenseangulargridintheexperimentislikelyawasteofresources,butthere

isimportantinformationinthebackwardanglesobservationsthatmakesasubstantial

differencetothemodelcalibration.

TheBANDframeworkwillbebroughttobearontheseissues. Afirststepwill

betouseautilityfunctionasdescribedinSec.5toquantifythenotionsofoptimal

experimentaldesignimplementedheuristicallyinRef.[83]. Meanwhile,Secs.2.2and

3emphasizedtheimportanceofaccountingformodelimperfectionsinthelikelihood

functionusedforcalibration.AndSec.5andRef.[68]demonstratedthatunlesssuch

adiscrepancyfunctionisincludedintheanalysistheconclusionsregardingtheoptimal



TheBANDFramework

50 60 70

V (MeV)

0

50

100

150

a)

1.1 1.2 1.3 1.4

r (fm)

0

50

100

150

200

b)

0.5 0.6 0.7 0.8 0.9

a (fm)

0

50

100

150

200

c)

4 6 8

Ws (MeV)

0

50

100

150

d)

1.0 1.2 1.4 1.6

rs (fm)

0

50

100

150

200

e)

0.5 0.6 0.7 0.8

as (fm)

0

50

100

f)

2 3 4 5

W (MeV)

0

50

100

150

200

g)

0.75 1.00 1.25 1.50 1.75

rw (fm)

0

50

100

150

200

h)

0.4 0.6 0.8 1.0

aw (fm)

0

50

100

150

200

i)

5 10 15
2/N

0

50

100

150

200

j)

Full

Forward

Reduced

36

Figure8. Parameterposteriordistributionsfortheelasticscatteringofprotonson
208Pbat30MeV:includingdatainthefullangularrange(blue),whenonlyincluding

forwardangles(orange)andwhenincludingasparseangulargrid(green)[83].

experimentaldesignmaybemisleading.Sounderstandingtheimperfectionsofdifferent

reaction-theorymodelsandincludingstatisticaldescriptionsofthemwillbeakeypart

ofBAND’seffortinthisarea. Thereaction-theorycommunitycanalsobenefitfrom

BAND’sparticipatoryapproachtopriorbuilding:Sec.2.1showedhowhierarchical

Bayesianmodelscanbeusedtoincorporateconstraints,otherdata,andintuitionon

modelparametersintheanalysis.

Whilethesimplicityoftheoptical model madeitattractiveforthesefirst
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applications of Bayesian methods to reaction-theory questions, more sophisticated

methods are needed to describe many reactions of interest. These models may include

couplings to collective degrees of freedom, to the continuum, and/or to rearrangement

channels. Implementing UQ in these models will require their calibration, and to do that

efficiently emulators must be developed. The model-mixing tools discussed in Secs. 4

and 3.4 are an appealing way to combine treatments of reaction dynamics that are

designed for different kinematic domains. BAND’s tools will give us the opportunity to

leverage these models’ local performance in an effort to achieve an overall description

of nuclear reactions that is better than that obtained in any individual model.

8. Case Study: Bayesian Model Averaging in nuclear mass models

The BAND framework will enable quantified extrapolations to yet-unexplored domains

and to environments that cannot be directly probed in the laboratory, e.g., the conditions

occurring in neutron-star mergers or supernovae. The example below illustrates how the

anticipated BAND tools can enable massive, but still reliable, extrapolations of nuclear

properties, such as binding energies.

These extrapolations will establish the limits of nuclear binding and quantify our

uncertainty as to where those limits are. This is crucial for understanding how elements

in the universe are produced in stellar nucleosynthesis; see, e.g., Ref. [9]. A quantitative

understanding of related astrophysical processes requires knowledge of nuclear properties

and reaction rates of thousands of very exotic isotopes, the majority of which cannot be

accessed by experiments. Consequently, the nuclear data for astrophysical simulations

must often be obtained by carrying out massive model-based extrapolations. In several

recent studies [37–39] BMA techniques were applied to quantify the limits of the

nuclear landscape by considering several global models and the most recent experimental

information on particle stability and masses.

The global modeling of all particle-bound nuclei inhabiting the nuclear landscape

is a challenging task that requires control of many aspects of the nuclear many-body

problem. For such a task, the microscopic tool of choice is nuclear density functional

theory based on effective inter-nucleon interactions modeled in terms of energy density

functionals (EDFs). Bayesian model calibration has been carried out [84] for some

selected EDFs, but not for most of the mass models on the market. In the absence of full

uncertainty quantification for each model, a simple and practical strategy [36, 85, 86] is

to develop a statistical approach to the residuals between experimental observations and

the predictions of the nuclear mass models across the two-dimensional nuclear domain

{xi} = (Zi, Ni). Following the discrepancy approach described in Sec. 4, the Bayesian

statistical model for these residuals yi − f(xi, θ) can be written δ(xi) + εi, where δ(x)

represents the systematic deviation, ε is the propagated point-to-point uncertainty. In

Refs. [37–39] the function δ was taken as a GP in the nuclear domain.

The BMA example presented here is from Ref. [39], which studied one- and two-

nucleon separation energies S1n/1p/2n/2p and particle drip lines. The observations D
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includeallexperimentalmassesfromatomicmassevaluationsAME2003[87](training

set)togetherwithlater measurementsfromAME2016[88]andelsewhere(testing

set)Ref.[39]. TheGPsweretrainedontheseparation-energyresidualsofK =11

nuclearmassmodelsM k(k=1,...11)thatarelistedinFig.9

Number of particle-bound nuclei
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er
i
or
 
d
e
ns
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y

HFB-24 FRDM-2012

UNEDF0SkP
UNEDF1

SkM*

UNEDF2
SV-min

SLy4D1M
BCPM

BMA(n+p)BMA(p)BMA(n)

.Oncethediscrepancy

functionswereinferredinthisway,theposteriordistributionsforeachmodelplusits

correspondingdiscrepancyfunctionwereobtainedfrom50,000post-burn-initerations

ofMCMC.Thesesampleswerethenusedtogenerate10,000masstables.

Figure9. Posteriordistributionsofthenumberofparticle-boundnucleiwith

Z,N≥8andZ≤119.Thehistogramsshowtheposteriordensitiesforeachmodel:

HFB-24,FRDM-2012,D1M,BCPM,SLy4,SkP,SV-minandUNEDF2,UNEDF0,

UNEDF1,andSkM∗.ThelinesshowtheBMAposteriordensities.(FromRef.[39].)

TheresultingpredictionsoftheK=11nuclearmassmodelswerethencombined

viaBMA.Ref.[39]usedtwofamiliesofweightsbasedonthedatafromtheneutron-

rich(xn)andproton-rich(x2p)nucleardomains.Ontheneutron-richside,weightswere

assignedaccordingtothemodelperformanceinregardtothepredictionoftheexistence

ofobservedneutron-richnucleithatwerenotpartofthetrainingortestingsets:

wk(n)∝pS1n/2n(x)>0forx∈xn|Mk , (37)

wherexnisthesetof254experimentallyobservedneutron-richnucleiwith20≤Z≤50

forwhichnoexperimentalneutronseparationenergyisavailable. Ontheproton-rich

side,weights

wk(p)∝p(S2p(x)<0,S1p(x)>0forx∈x2p|Mk), (38)

weregiven,wherex2pisthesetoffivelong-livedtwo-protonemitters[38].Toassessthe

wholelandscape,Ref.[39]appliedalocalmodelaveragingvariantcalledBMA(n+p),

withlocalweightsthatcorrespondtowk(p)(wk(n))ontheproton-rich(neutron-rich)

sideofstability:

wk(Z,N)=wk(n)H(N≥Nβ(Z))+wk(p)H(N<Nβ(Z)), (39)

withH(x)istheHeavisidestepfunctionandNβ(Z)istheneutronnumberoftheaverage

lineofβ-stabilityatprotonnumberZ.
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To estimate how many particle-bound nuclei with Z,N ≥ 8 and Z ≤ 119 may exist

in nature, the posterior distribution of the number of isotopes with positive separation

energies was calculated. The resulting posterior distributions for individual models and

BMA are shown in Fig. 9. According to the BMA(n+p) analysis in Eq. (39), the number

of particle-bound nuclei is 7708 ± 534. The results of the individual models shown in

Fig. 9 show considerable spread, primarily due to the extrapolation uncertainty in the

heavy neutron-rich region. This result underlines the fact that one should be very careful

when trusting extrapolative predictions of any given model.

BAND will take posterior predictions obtained with BMA—such as those discussed

in this section—and use them to plan experiments. For this case study those experiments

would aim at establishing the existence of exotic nuclei. In the nucleosynthesis context,

the errors on binding energies computed with BMA can guide the uncertainty analysis

for abundance studies involving astrophysical network simulations. BAND will also

improve the EDFs used for this study, since full calibration of individual NP models can

be considered before they are mixed. Better understanding of the NP model properties

in the data space can yield more informed statistical models for the discrepancy between

the models and reality than the GP used in the study described above. This, in turn,

will permit more robust prediction of extrapolated nuclear properties thus providing

better input for experimental design described in Sec. 5.

With BAND, we will improve the simple BMA methodology presented in this

example by using the more advanced BMM discussed in Sec. 3. In this way, we will be

able to catch local model preferences, see Sec. 3.4 and Ref. [89]. Another anticipated

improvement concerns the pre-selection of models used in the BMM. This will amount

to computing the prior probability p(Mk) based on the model performance in the space

of observations x. This will enable us to eliminate models that are very similar (or

identical) in the space x [89].

9. Case Study: Bayesian Model Averaging for transport coefficients in

dynamical models of heavy-ion collisions

A simple application of Bayesian Model Averaging to heavy-ion collisions dynamics

was recently published by the JETSCAPE Collaboration [90]. One of JETSCAPE’s

goals is to use experimental data measured at RHIC and the LHC to perform global

calibration of a highly complex dynamical model for the evolution of hot and dense

quantumchromodynamics (QCD) matter created in relativistic heavy-ion collisions [91].

There is, however, an irreducible model uncertainty in the calibration. It arises from

ambiguities in the model used for “particlization”. Particlization marks the transition

between two dynamical modules: a relativistic dissipative fluid dynamical description of

the early quark-gluon plasma stage of the heavy-ion collision and a microscopic kinetic

transport code describing the late and much more dilute hadronic stage. Particlization

is necessary to translate the fluid from the first stage into the set of particles that get

transported in the second stage. The posterior joint probability distribution P(θ|yexp)
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for 17 model parameters θ was extracted via Bayesian Model Averaging. As in Eq. (13),

Figure 10. The 90% credible intervals for the prior (gray), the posteriors of the Grad

(blue), Chapman-Enskog (red) and Pratt-Torrieri-Bernhard (green) particlization

models, and their Bayesian model average (orange) for the specific bulk (left) and

shear (right) viscosities of QGP. (From Ref. [90].)

that posterior is a linear combination of the posteriors corresponding to three different

model choices for this transition. These models are denoted Grad, PTB (Pratt-Torrieri-

Bernhard), and CE (Chapman-Enskog) in Fig. 10. For the case studied in [90] the

evidence ratios of these models were approximately 5000:3000:1; that is, the CE model

turned out to be significantly disfavored by the data while the other two contributed with

similar weights to the Bayesian Model Average. The resulting 90% credibility intervals

for the specific shear and bulk viscosities, η/s and ζ/s, as functions of temperature are

shown in Fig. 10. The gray areas denote the prior 90% credible intervals (see Ref. [91]

for an in-depth discussion of prior selection), the colored lines outline the corresponding

ranges for the three particlization models studied in [90, 91], while the orange areas

show the ones for the Bayesian Model Averages. The differences between the prior

(gray) and posterior (orange) 90% credible intervals for the Quark-Gluon Plasma

(QGP) viscosities indicate that the available experimental data exhibit their strongest

constraining power in the lower temperature region 150 MeV . T . 250 MeV; above

T ≈ 250 MeV their power to constrain these transport coefficients rapidly degrades,

leaving large uncertainties for both the shear and, in particular, the bulk viscosity.

For a deeper discussion of the physical and statistical implications of this plot we refer

the reader to [90].

The study presented in Refs. [90,91] employed a number of tools used in Bayesian

inference that are anticipated to become, in one form or another, part of the BAND

framework. This will facilitate their application to a much wider set of problems in

Nuclear Physics: (i) economic sampling of a high-dimensional model parameter space

using a Latin hypercube design for full model runs; (ii) Principal Component Analysis

(PCA) of a large space of observables to reduce the dimensionality of the space of

target observables for calculating the likelihood of the model parameters; (iii) GP

emulators trained on the PCA observables predicted by the full-model runs to efficiently
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interpolate these predictions to large numbers of alternate model parameter settings;

(iv) closure tests for testing emulator performance and our ability to reconstruct the

model parameters from “mock data” generated by the full model with known parameter

settings; (v) efficient MCMC sampling of the multidimensional posterior probability

distribution for the model parameters; and (vi) Bayesian Model Averaging to combine

the posterior distributions from different, a priori equally likely models, in order to

quantify the contribution of irreducible model uncertainties to the variance of parameters

inferred from the experimental data. In developing these tools and applying them

appropriately, collaboration between physicists and statisticians has been invaluable,

and BAND will follow the same strategy.

A key deliverable of the BAND initiative is a statistically meaningful simultaneous

quantification of both theoretical and experimental uncertainties in Bayesian inference.

The study reported in Refs. [90,91] made a first step in this direction within the context

of heavy-ion collision dynamics. But its scope was limited because it considered only

the theoretical uncertainty associated with the particlization of the quark-gluon plasma

fluid at the end of its evolution. As mentioned in Sec. 6, other modeling uncertainties

affect the early evolution stages and even the initial conditions of QCD matter created in

heavy-ion collisions. For studying the interplay of early and late modeling uncertainties,

and the best weighting of these in future predictions of additional observables for

experimental design, the discussion presented in Sec. 3 clarifies that the simple linear

combination of the posterior distributions of each individual model used in Ref. [90] is no

longer adequate. The BAND initiative will combine expertise in physics, statistics and

computer science to develop and implement more powerful Bayesian Model Mixing tools

needed to properly account for local model preferences while also adequately accounting

for the individual models’ overall performance in the space of observations D through

their model evidence p(Mk).

10. Strike up the BAND

The BAND framework is designed to be an integrated set of computational and input

tools. The BAND collaboration will develop the framework in several stages that will

include concurrent lines of development and testing. Open-source code development and

delivery will be facilitated via the BAND Github repository [55]. We will develop codes

for novel applications using a mix of the repository’s public and private branches. The

framework will also draw on and integrate other repositories where publicly available

open-source codes that perform BAND-relevant physics and statistics functions reside.

The BAND framework will be intentionally permissive in terms of the languages and

formats of collaboration code. The computational/theoretical models that can be

interfaced with BAND framework codes will thus range in language (e.g., Fortran,

C/C++, Python) and scale (e.g., executable on a single thread, with its own MPI

communicator). This fusion of disparate tools will be achieved by adhering to newly

designed BAND Software Development Kit (SDK) requirements. This SDK will borrow



The BAND Framework 42

from established community software requirements such as those of the Extreme-scale

Scientific Software Development Kit (xSDK) [92] and IDEAS Productivity [93] efforts.

The goal of this SDK is to build in interoperability across the BAND software ecosystem,

large-scale scientific simulation codes, and other numerical libraries. This will enable

non-BAND scientists’ involvement in the development of BAND’s instruments and in

proof-of-concept science analyses.

BAND is already collating, documenting, and linking to or storing codes from

various sub-fields of nuclear physics. New framework codes will be developed in parallel

with interfaces that allow the use of existing modeling code within the framework. For

example, the model calibration component of BAND will involve new technology for

emulation and posterior exploration that interfaces with existing GP emulators and

MCMC methods. The resulting capabilities will be part of the first release of the

framework, scheduled for 2021. That release will have limited physics functionality

but serve as a testing platform. Unit and regression tests will be used to ensure that

core functionalities are maintained during BAND’s continuous, community-oriented

development. Later releases will include the entire suite of tools depicted in Fig. 1.

All releases will be available for download from our public repository, so any interested

community member can test and develop familiarity with the evolving framework.

Nuclear physicists will then be able to bring their physics model and dataset and

use BAND’s input tools to:

• Formulate a likelihood. Section 2.2 explains the Bayesian approach to formulating

likelihoods that users can employ for parameter estimation and making predictions.

BAND will encourage them to consider error modeling that goes beyond the

standard likelihood (6) in order to account for deficiencies in their physics model.

• Specify priors. BAND’s participatory approach to prior selection, discussed in

Sec. 2.1, will facilitate the development of priors that encode physical bounds on

parameters, or expectations regarding their natural size. This will mean that all

pertinent information, not just that in the provided dataset, will be leveraged and

accounted for in the posteriors for all quantities of interest.

Of course, the statistical models developed in this way must be checked. BAND will

employ a number of statistical model-checking diagnostics (see, e.g., Ref. [94] for the GP

case) to ensure that the statistical models adopted are consistent. We will particularly

focus on whether the BAND framework produces accurate credibility intervals, i.e., the

68% credibility interval around the model prediction encompasses the correct result 68%

of the time.

BAND’s inter-operable computational tools will also facilitate model emulation,

which is crucial for NP models that require large amounts of computer time for a single

evaluation. BAND’s emulators will then be used to map out the posterior via Monte

Carlo sampling. In this way, BAND can be used for efficient calibration of a single NP

model.

But a key emphasis of BAND is to go beyond such a single-model approach and use
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Bayesian Model Mixing to obtain more information—and more reliable information—

than is available in the posterior of any one NP model. The principles of BMM were

explained in Sec. 3. BMM can be superior to Bayesian Model Averaging because it

does not generate the full posterior of each model before averaging them, but instead

employs more specific information on each model to produce a posterior that draws on

each model in its areas of strength.

Section 4 applied the emulation, calibration, and Bayesian Model Mixing elements

of the BAND framework in a simple context: the problem of estimating the gravitational

acceleration from data in a ball-drop experiment.

The results of BAND analyses—whether single- or multi-model—will then be used

to perform experimental design analyses, i.e., answer questions about what experiment

will produce the maximum gain in regard to a desired piece (or pieces) of information—

see Sec. 5.

Finally, in Secs. 6–9 we discussed some recent applications of Bayesian methods in

NP and explained how the BAND framework will enable analyses that go much further.

BAND’s ability to develop statistical models of the discrepancy between physics models

and data, together with its intelligent use of priors, and its emphasis on Bayesian Model

Mixing, will provide deeper insights into the equation of state, initial conditions and

transport coefficients of strongly interacting matter, the existence of nuclei near the

driplines, production of elements in stars, and models of nuclear reactions. In each area

BAND’s full quantification of uncertainties will allow it to provide valuable guidance

regarding the impact of proposed experiments at FRIB, RHIC, and other NP facilities.
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