2012.07704v2 [nucl-th] 22 May 2021

.
.

arxiv

Get on the BAND Wagon: A Bayesian Framework
for Quantifying Model Uncertainties in Nuclear
Dynamics

D. R. Phillips!, R. J. Furnstahl?, U. Heinz?, T. Maiti?,
W. Nazarewicz?!, F. M. Nunes?, M. Plumlee®®, M. T. Pratola’,
S. Pratt?, F. G. Viens®, S. M. Wild%?

!'Department of Physics and Astronomy and Institute of Nuclear and Particle
Physics, Ohio University, Athens, OH 45701, USA

2Department of Physics, The Ohio State University, Columbus, OH 43210, USA
3Department of Statistics and Probability, Michigan State University, East Lansing,
Michigan 48824, USA

4Department of Physics and Astronomy and Facility for Rare Isotope Beams,
Michigan State University, East Lansing, Michigan 48824, USA

SDepartment of Industrial Engineering and Management Sciences, Northwestern
University, Evanston, Illinois 60208, USA

SNAISE, Northwestern University, Evanston, Illinois 60208, USA

"Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
8Mathematics and Computer Science Division, Argonne National Laboratory,
Lemont, Illinois 60439, USA

E-mail: phillidl@ohio.edu

25 May 2021

Abstract. We describe the Bayesian Analysis of Nuclear Dynamics (BAND)
framework, a cyberinfrastructure that we are developing which will unify the treatment
of nuclear models, experimental data, and associated uncertainties. We overview
the statistical principles and nuclear-physics contexts underlying the BAND toolset,
with an emphasis on Bayesian methodology’s ability to leverage insight from multiple
models. In order to facilitate understanding of these tools we provide a simple and
accessible example of the BAND framework’s application. Four case studies are
presented to highlight how elements of the framework will enable progress on complex,
far-ranging problems in nuclear physics. By collecting notation and terminology,
providing illustrative examples, and giving an overview of the associated techniques,
this paper aims to open paths through which the nuclear physics and statistics
communities can contribute to and build upon the BAND framework.
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1. Introduction

Progress in the theory of nuclei and nuclear matter has produced a multitude of

models that describe extant data well. The atomic nucleus is a complex system and

these models—many of which involve advanced numerical simulation—provide essential

insights into many nuclear-physics phenomena. The need for validation, verification,
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and uncertainty quantification of models that simulate real-world physical processes is
a theme that is common to all physical sciences. As eloquently stated in the recent
report [1] “regardless of their underlying mathematical formalism or their intended
purpose, [the complex models| share a common feature—they are not reality.” In
order to understand and use the results of nuclear-physics simulations well we must
follow best practices for statistical modeling and uncertainty quantification [2]. All this
means we are at an inflection point in how nuclear-physics data should be analyzed:
predictions and quantified uncertainties must use the collective wisdom of the best
models, constrained by data, and include a unified treatment of all uncertainties.

Bayesian Analysis of Nuclear Dynamics (BAND) will be a set of publicly-available
software tools—a cyberinfrastructure framework—designed to facilitate principled
uncertainty quantification (UQ) with multiple nuclear models. It will enable reliable
predictions for experimentally inaccessible environments, such as the properties and
dynamics of matter at the core of neutron stars or in the first microseconds after the
Big Bang. And it will make possible quantitative evaluation of the impact of new
experiments, thus facilitating optimal use of investment in this science.

Contemporary nuclear physics involves statistical inference within complex and
computationally intensive theoretical models that combine heterogeneous datasets taken
at experimental facilities around the world. Modern UQ can enhance the predictive
power of these models and optimize knowledge extraction from new measurements and
observations. The goal of BAND is to translate novel statistical methods of UQ into
software tools that address prominent current problems in nuclear physics (NP). This,
in turn, will inform near- and medium-term planning for experimental programs at
leading NP facilities. This interweaving of statistical approaches into the dialog between
nuclear physicists and experimental data will accelerate the theory-experiment feedback
loop [4,5] and lead to sustained innovation.

BAND will do all this by providing to the community a suite of codes that
produce emulators for forefront, computationally-intensive nuclear models, and perform
principled UQ that calibrates those models against data. Codes already exist—some
publicly available, some written by members of our team and as yet unpublished—
that implement parts of this UQ methodology. But BAND will go further. Because
it is built on Bayesian statistical methodology, it will also include a software tool to
mix different models, thereby providing a multi-model prediction i for key observables.
This will permit the use of Bayesian Model Mixing for the quantitative assessment
of model-related uncertainties in the multi-model context. A model-mixed prediction
that enriches the physics and provides a full assessment of the modeling uncertainty
of predictions is a natural outcome [6,7] within BAND. That prediction includes
experimental and modeling errors, thus providing a unified statistical treatment of all
uncertainties. Model-mixed predictions can then give insight into what experimental

1 Here and below, the term prediction refers to an observable that is an output of the Bayesian model
but is not part of the dataset used to constrain the model. Our predictions therefore include quantities
that have already been measured (i.e., what are sometimes called postdictions).
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Table 1. Lexicon: When I use a word it means what I choose it to mean, neither
more nor less [3]. Note that several terms that are defined in the text of the article are
not listed here. Instead, this table focuses on terms at the nuclear-physics/statistics

interface whose use may otherwise cause confusion.

Term

Usage here

Calibration dataset

Computational tool

Dataset
Domain scientist
Emulator

Ezperimental design

Ezxperiments
Framework

Input tool
Model

Model results
Hyperparameter

Model parameters

Observables
Physics model

Predictions

Statistical model

The observables that are used to constrain the model
parameters

A piece of software that accomplishes a statistical or other
data analysis task for a physics model or a set of physics
models

A collection of observables

Here, the nuclear physicist

A computationally inexpensive way to interpolate results
of an expensive physics model in its many-dimensional
parameter space

The process of selecting amongst experimental options based
on the optimization of a selected utility function
Measurements in the nuclear laboratory

A set of inter-linked input tools and computational tools that
can be used separately, or in concert

An interrogative process by which the elements of the
statistical analysis being carried out are established

The combination of a physics model, a calibration dataset, and
a statistical model

The probability distribution function obtained for observables
in the model

Parameter describing a prior distribution (Bayesian statistics
usage)

Variables internal to the model [Their (joint) probability
distribution can be estimated from Bayesian statistics
or otherwise learned from experiment through repeated
parameter estimation]

The results of measurements described by physics models
The physical description of the observables through math-
ematical equations encoding physical rules and principles
[These equations involve parameters that are usually con-
strained by the calibration dataset]

Values obtained in the model for observables that are not part
of the training dataset

The statistical framework to assess deficiencies of the physics
model and the uncertainties inherent in its predictions
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information will best constrain models.

To illustrate the power of this approach we take the example of the Facility for Rare
Isotope Beams (FRIB) [8], which will come online soon and provide a wealth of new data
on atomic nuclei and their reactions. A key physics target for FRIB is a quantitative
understanding of the astrophysical rapid neutron capture (r-)process by which many
heavy elements such as gold and uranium are formed. This requires knowledge of the
masses, decays, and reaction rates of short-lived neutron-rich nuclei. While FRIB will be
able to produce many key r-process isotopes, it cannot measure all of the &~ 3,000 nuclei
involved. Nuclear-structure models, informed by the existing experimental datasets
augmented by the new FRIB data, will have to carry out massive extrapolations to
provide the needed input for nucleosynthesis simulations [9].

The arrival of the era of multi-messenger astrophysics [10, 11] presents both an
opportunity and a challenge for FRIB’s program. The extrapolations needed to
interpret the different signals from an extreme stellar event (e.g., neutrinos, optical,
X-ray and gamma spectra, gravitational waves) require proper propagation of not just
measurement errors, but also theoretical uncertainties. It is important that multi-
messenger astrophysics—and other fields that need data on unstable nuclei—achieve the
most possible benefit from FRIB. Guidance will be needed to optimize FRIB’s precious
beam: we need to assess which measurements might best reduce extrapolation errors
for the properties outside experimental reach that affect the multi-messenger signal—or
some other application of interest. This guidance should coherently use the information
from different nuclear models and must account for theoretical uncertainties.

BAND will also advance the modeling of neutron stars and supernovae by
assimilating new experimental information on exotic nuclei from FRIB and from high-
energy heavy-ion collisions at RHIC [12] and the LHC [13]. There are many other
examples of potential framework applications, including critically needed quantified
predictions for tonne-scale experiments searching for the neutrinoless double-beta decay
of nuclei [14] as a definitive sign of new physics.

This article introduces the BAND software framework for multiple models in
physics. (Further details on the framework can be found at the project webpage [15].)
Here we lay out a strategy for the use of Bayesian methods to assess model uncertainty
in the nuclear-physics context. In order to ground that strategy in a common language
and practice we provide guidance on the use of Bayesian methods to the nuclear-physics
community. The most novel sections of the paper are those pertaining to Bayesian
Model Averaging (BMA) and the more general technique of Bayesian Model Mixing
(BMM). While BMA is the most obvious (Bayesian) way to assess model uncertainty
and is frequently employed, we strongly emphasize that it has important shortcomings
which could be damaging in the nuclear-physics context. We therefore exhort nuclear
physicists to focus on the more general BMM. We also present several nuclear-physics
examples that illustrate the ways in which BAND could advance the field.

To accomplish these goals we first lay out in Sec. 2 the ingredients for Bayesian
inference from a dataset D to quantities of interest (QOIs) Q in a nuclear physics—
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or any—problem. These ingredients are the Bayesian prior, which encodes extrinsic
information and expert opinion about the QOIs, and the likelihood, which expresses the
way in which the data to be considered constrain those quantities. Within BAND,
Bayesian statisticians will work with nuclear physicists on prior specification and
likelthood formulation. The results will be incorporated into the software framework
as “Input Tools” A and B. These are the first steps in the flowchart for the BAND
software framework, see Fig. 1.
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Figure 1. Flowchart displaying the different tools that will be incorporated in the
BAND framework.

Nuclear physicists using BAND will also specify the set of physics models from
which they want to obtain a prediction. Often, evaluating these models will involve
a calculation that consumes a large amount of (super)computer time for a “forward
evaluation”: obtaining the observables of interest for just one instance of the model
parameters. For these “expensive” models UQ can only be accomplished in a realistic
amount of time once a computationally cheap model emulator has been built. This
model emulation will be accomplished by Computational Tool A. Emulation as a tool to
reduce the computational load of inference is well covered in many references [16-18].
We touch on it briefly in Sec. 4.2, but other than that it is not really discussed in this
article.

Once observations D are specified by the user, BAND will combine the likelihood
and prior and use emulator samples to perform model calibration, obtaining the posterior
probability density function (“posterior” or “posterior pdf” hereafter) for the parameters
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of each model (Computational Tool B).

Even after calibration and emulation have been achieved we have still only obtained
information on the individual models. Calibrating models to data, while including prior
information, is a practice that is gaining increasing currency in nuclear physics. But
BAND will push the field further, by taking a set of individual models, each of which
have been calibrated to data, and use them to obtain a model-mized prediction. Section 3
discusses the general theory of model-mixed predictions, presents the standard approach
of BMA, elucidates its limitations, and introduces ways to combine models that are less
global, in order to leverage information on local model performance. BMA as well as
these more general BMM strategies will be implemented in Computational Tool C.

In Sec. 4 we put the emulation, calibration, and model-mixing steps together in
the context of a classical toy problem: “the ball drop”. This (admittedly very simple)
example is meant to show the kind of analysis BAND could facilitate when using several
sophisticated nuclear-physics models and large sets of experimental observations.

A major challenge in NP, as in many other advanced disciplines, is the optimal
design of experiments. Not all measurements are equally useful, and beam time is
expensive. The costs of running an experiment include not only the workforce, time
and money invested, but also the opportunity cost of alternative measurements that
were not carried out. Thus, when planning an experiment, it is important to consider
which data are most likely to provide the largest information gain. This is a highly
practical field of study, with applications including engineering, biology, environmental
processes, computer experiments, and psychology [17,19-28]. The process of making the
best selection in this regard is known as experimental design. In order to ensure that
the substantial resources necessary for modern experiments are focused on acquiring
the most valuable data, both the theory uncertainty and the expected pattern of
experimental errors must be considered.

BAND’s model-mixed prediction is therefore important if nuclear physicists are to
have guidance on experimental design that reflects the true extent of model uncertainty.
Providing such guidance will be the job of Computational Tool D. Experimental design
formalism and an example of its use in a nuclear-physics context is discussed in Sec. 5.

Finally, in Secs. 6, 7, 8, and 9 we showcase different nuclear-physics problems where
one or more ideas from the BAND framework have been implemented. We discuss the
benefits gleaned from emulation, calibration, and model averaging in those cases. We
then explain how application of the full BAND tool set will build on these initial steps
towards Bayesian analyses of prominent nuclear-physics problems and yield the full
benefit of using advanced statistical methods to consistently combine the insights of
multiple forefront nuclear-physics models. Section 10 provides a summary as well as
comments on topics not treated in the main text.

Throughout the article we use a number of terms at the nuclear-physics/statistics
interface. Usage frequently differs between communities, so in Table 1 we take the
opportunity to define these terms as we use them in this work.
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2. Finding your posterior

At its core, a Bayesian framework seeks to obtain the probability distribution p of a set
of unobserved quantities of interest (QOIs) Q, combining probabilistic information on
beliefs about them (the prior) and on how they relate to observations D (the likelihood).
Specifically, the prior is a probability model p(Q) for the QOIs, and the likelihood is a
probability model p(D|Q) for the observations given the QOIs. The output of Bayes’
rule, known as the posterior, is then a probability distribution p(Q|D) for the QOIs
given the observations §. In most modeling contexts Bayes’ rule is astonishingly simple:
it says that the posterior probability density of Q given D is proportional to the product
of the prior and the likelihood:

p(DQp(Q) _  p(DQ)p(Q)
p(D) [ p(D[Q)p(Q)dQ

The functional dependence of this pdf on Q is given by the numerator in the middle

p(QD) =

x p(D|Q)p(Q). (1)

expression. Since D is assumed to be known, the associated denominator is just a
normalization constant, whose value is not needed if one’s only goal is to sample the
pdf of Q. This denominator does, however, become relevant in the context of model
selection or model averaging problems.

Prior specification and likelihood formulation are therefore the first two elements
of BAND. Typically, nuclear physicists will already have an opinion as to the physics
models that should be used to express a likelihood relation. The statistician’s role in
likelihood formulation is then to determine with clarity where the uncertainty, from
both experiment and theory, comes into the NP model. How to specify priors on the
unobserved elements Q in a NP model is usually a much less well defined question; it
is best answered through strong interactions between physicists and statisticians. We
now discuss BAND’s approach to prior specification and likelihood formulation before
briefly describing the opportunities and challenges associated with then obtaining the
posterior of the QOIs Q.

2.1. Prior specification

Specifying priors requires asking about—eliciting—prior knowledge of the quantities
that are sought [30]. These could be model parameters that need to be estimated, or
they could be predictions for observables that are not part of the dataset D (e.g., an
interpolation or extrapolation). The statistician and the nuclear physicist need to jointly
uncover expected ranges for these QOIs and any other statistical properties they wish
to define for these QOIs.

§ We use the notation p liberally for different probability notions. In particular, when we refer to the
probability of a continuous quantity, p should be read as a probability density function (pdf). Whether
p is a pdf or an integrated probability should be clear from context. For an introduction to Bayesian
statistics particularly well suited to physicists, we recommend Ref. [29].
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When working to encode the prior information into distributions, it is tempting to
insist on the use of so-called uninformative priors with the goal of being maximally data-
driven. This approach, which is often advocated in popular presentations of Bayesian
statistics, is based on formal methods of computing the amount of information that a
particular prior brings to the problem. An uninformative prior tries to minimize this
information. In practice this often leads to incorrect deployment of uniform priors. The
incorrectness can arise for several reasons [31]. First, a prior that is uniform in one
parameterization will not be in another so “uniform in what” is always a worthwhile
question in this context. Second, uniform priors may end up being more informative
than their user intends: by completely precluding certain parts of the Q domain, uniform
priors can overstate what is known. But the broader problem is that uniform priors
rarely reflect the actual physical prior knowledge of Q. Uninformative priors effectively
lockout the logical meaning of the nuclear physics model and leave the interpretation
of parameters and numerical structure to the numerical experimental results. Indeed,
nuclear physicists typically have important insights into what to expect for some of the
parameters or observables they seek to infer. This prior knowledge can come from formal
constraints (e.g., regarding positivity or other bounds from physical principles), from
an expected size based on the physical scales in the problem, or from accumulated
experience. By asking questions through either informal or formal elicitation, the
statistician can extract some of this knowledge and build it into the priors. This
facilitates the inclusion of physics information in the prior where it is warranted. Of
course, checks for unwanted sensitivity to the prior should also be executed in order
to catch biases in opinions that result in a misinformed prior. The prior produced by
this process would be far from uninformative, and rightly so. BAND is thus built on
a participatory approach to prior specification that works to incorporate the available
and useful information about the unobserved QOIs that is not in the observations D
into the prior.

A simple way of selecting priors in an informative way occurs by taking advantage
of the fact that a prior itself has parameters. These are called hyperparameters to
distinguish them from the parameters Q. The hyperparameters should be tuned to agree
with the physicists’ thinking while keeping with statistical principles such as prudence
and parsimony. Standard distributions for parameter priors include hyperparameters
that encode prior beliefs on a parameter’s central value (e.g., mean) and spread (e.g.,
standard deviation). In practice, statisticians can gauge their NP colleagues’ level of
confidence in parameter ranges and other properties and advocate for distributions with
hyperparameters yielding sufficiently conservative spreads or heavy tails. This type of
strategy is prudent, is not computationally expensive, and can markedly increase a
model’s robustness.

Informative priors are built by using other information I-—even if it is limited in
quantity—that is relevant for the QOIs Q. I should not be directly related with the
information encoded in the likelihood model and the dataset D. Formally we express
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this relationship via repeated application of Bayes’ rule:

p(QID) x p(D[Q, Dp(QL)p(I) o p(D[Q)p(QL)p(T). (2)

This modeling scenario is known as a hierarchical Bayesian model: the prior is not
just an arbitrary set of probability distributions on each element of Q, but uses other
information to constrain (some of) these elements probabilistically. The key point in
the use of a hierarchical Bayesian framework is that if p(D|Q,I) = p(D|Q) then this
is equivalent to I and the D being independent, given Q. In such a situation the
hyperparameters that define the prior distribution p(Q|I) would be estimated using
I. In the case that I = D’ (another dataset), there is the possibility that D and D’
could be analyzed simultaneously as part of a (more complicated) likelihood (see, e.g.,
Refs. [32,33]). In that case the parameters that appear in p(Q|I) would no longer be
referred to as hyperparameters, since they would appear in the likelihood, not in the
prior.

The hierarchy that encodes the prior does not have to be complicated in order to
aid the statistical determination of Q. A discussion between nuclear physicists and their
statistician collaborators about the value of using a hierarchy can be initiated simply
by asking what external variables or other information might be used to calibrate the
knowledge the nuclear physicists want to encode in their priors. For illustration we
consider two examples of prior specification that typify NP applications.

A simple hierarchical Bayesian model can be used to aid the fitting of a polynomial
of specified degree M. Suppose that the data to which the polynomial is fit is scaled
so that the natural units of the dependent and independent variables are both of order
unity [34,35]. This situation is paradigmatic of attempts to extract the parameters of
effective field theories (EFTs) from low-energy data. The desired quantities Q are then
the model’s set of parameters 6, namely the coefficients 6 = {ao,ay,...,an} of the
polynomial

f(z,0) = ap+ arx + ... apya™. (3)

The likelihood relates the polynomial to the information in the dataset D, which will
include points where the response has been measured to have certain central values,
with certain uncertainties. The key Bayesian step is to model naturalness by assuming
all the coefficients {ag, ai,...,ap} represent draws from a common population. Then
the prior on the parameters 6 = {ag,a1,...,an} can be specified via hyperparameters
for the mean and variance of the set of coefficients. For example, if we specify mean
zero and standard deviation o, of a normal distribution, we have:

(4)

a§+a§+...+a§\4)

p(a07a17"'7aM’0-a) X exp (_ 20_3

The last element in the Bayesian hierarchy would then be a prior distribution for the
hyperparameter o,, just as one must pick priors for any parameter.

Another NP example of a Bayesian hierarchy arises in the extrapolation of
observables for nuclei near the driplines. In [36-39], separation energies are extrapolated
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using various Bayesian techniques, including Gaussian processes (see Sec. 8 for more
discussion). For that technique, an estimation is needed for the characteristic ranges of
influence of one nucleus over another in the (Z, V) space. Weakly informative priors for
the Z and N ranges-of-influence were employed, where hyperparameters for the means
and variances of those priors were declared. Specifically, a Gaussian process (GP) was
used to extrapolate the observable S from currently known locations to a new location
(Z', N'), with a squared-exponential kernel defining the correlation function of the GP.
For two locations (Z;, N1) and (Z,, N») in the nuclear landscape the correlation between
the two measurements of S is taken as
1(Zy — Z3)*  1(Ny— No)?

COI‘I‘(S(Zh Nl), S(ZQ, NQ)) = exXp (-5 p2Z — 5 p?v > . (5)

Here pz and py are the ranges of influence. Gamma priors were chosen for their squares.
A more sophisticated hierarchical Bayesian model would be to take priors for pz and py
that depend on the mass number of the location (Z’, N) where we want to extrapolate,
thus using a different model for each extrapolation. Modifying p, and py in this manner
must be carefully done to avoid violating the condition that the correlation function be
positive definite, but such an adaptation allows for the inclusion of the NP knowledge
that the nuclear-chart distances over which S is correlated are far shorter for light nuclei
than they are for heavy nuclei. A model for p%’s and p3%’s mean hyperparameter that
is linear in A" = Z’ + N’ and includes an additive error term captures this belief and
admits uncertainty about it. This means two new hyperparameters will need to be
determined: the slope of the linear model with respect to A’, and the noise level there.
An even more sophisticated hierarchical Bayesian model that has four hyperparameters
rather than two might take p% to have a different slope and a different noise level than
p%, because the valley of stability is longer than it is wide. These ways of defining
the prior distribution of p; and py would produce a conditional GP for S, where the
range of influence is uncertain and depends on the extrapolation location of interest.
But it is unlikely that any nuclear physicist would just say “Hey, let’s write down a
conditional Gaussian process for this correlation matrix, which depends on individual
extrapolation conditions”. The hierarchy enables the organized and clear incorporation
of known physics in the probabilistic model. The BAND-driven collaboration is designed
to match insight in nuclear physics with statistical tools exactly as done in this example.

To summarize, the task of picking priors is nontrivial, yet priors can have a
fundamental influence on the statistical analysis. Informative priors can be useful and
should not be shunned. Overstating what we know, by picking priors that are excessively
informative, can lead to problems like credibility intervals for the QOIs that are too
narrow. Understating what we know is also a mistake, and is liable to lead to credibility
intervals that are too wide.
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2.2. Likelihood formulation

We now define our notational convention for setting up likelihood models of the form
most commonly used in nuclear physics. A deterministic physics model (i.e., one with
no randomness) that nominally explains observable y (e.g., cross section, masses) from
an input x (e.g., kinematics, proton and neutron numbers), will take the functional
form y = f(x,0), where 6 represents parameters which may need to be estimated. In
a set of observations y = {y; : i = 1,...,n} at points x = {x; : ¢ = 1,...,n} there
will be disagreement with the physics model. Because of this we write the relationship
between those observations and the physics model as y = f(x,0) +error. This model for
the observations then includes both a physics model, which may depend on unobserved
parameters, and a statistical model for the error term.

The familiar so-called y? formulation follows when the statistical model assumes

that the error at each experimental measurement point ¢ is independent and normally
2

7

p(DI0, {07}) o< exp (—%Z (v = ff”’e)) > . (6)

distributed || with mean 0 and variance o7, namely

ok
=1 g

Throughout the article, D represents the list of couples (z1,¥1),...,(Zn, yn), and so
D= {x = (z1,...,2,),y = (y1,...,Yn)} includes both the input choices and the
experimental observations §. The physics model f may depend on unknown parameters
0; the intensity of the point-to-point error is also sometimes unknown. In Eq. (6) we have
denoted explicitly that the pdf depends on this intensity of errors {o?}. A subtle point
is that this expression implicitly is conditional on a physics model f. The suppression of
obvious conditionals is common in Bayesian statistics: it prevents page-long expressions
and emphasizes the key data and parameters. This implicit conditioning on the physics
model will become important later when we turn our attention to emulation and mixing,
but it remains implicit for now. Conversely, in later applications some dependencies that
are explicit on the right of the conditional here become implicit.

Heterogeneous datasets often appear in the likelihood. In such cases, the dataset
D can be divided into n classes of observations Dy,...,D,,_ . The data classes may
contain rather different numbers of observations and the level of precision may vary
widely between classes too. For instance, the data class D; may represent 100 binding
energies, the data class Dy may represent 10 charge radii, and so on. Breaking up the
data into different data classes facilitates using different covariance forms for each class,
which has the effect of introducing relative weights for each class into the likelihood, so
that one can avoid a situation in which one data type dominates because it is either
very numerous or very precise [40,41].

|| Other distributions can certainly be used, but we have assumed normally distributed uncertainties
here since that case is the one with which readers are likely to be most familiar.

q Strictly speaking, this definition of D means that x has been moved to the other side of the conditional
in (6) because we presume the Q’s we are trying to infer do not depend on where we make the
observations.
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Notice that in Eq. (6) we have deliberately not stated whether the noise term o;
comes from experimental noise and/or imperfections in the theoretical model. If the
form (6) is used in the presence of model imperfections, the assumption stated above is
implicitly adopted for theoretical errors as well.

But theoretical errors are typically highly correlated. When model imperfections are
a significant contributor to the overall uncertainties, a likelihood that uses a non-diagonal
covariance matrix may be a better choice. For example, in the polynomial-coefficient
parameter estimation problem discussed in the previous section, we can estimate the
coefficients in the kth-order polynomial while treating the term of O(z**1) as a model
imperfection. If we then marginalize over the coefficient a;,; using the “naturalness”
information in the prior (4) we obtain a modified likelihood [34,42]:

p(D]6,%) o exp <—% > (yi — f@i,0)) 55 (y; — f (=, 9))) : (7)

ij=1

Here the matrix ¥ can be expressed as X = Yy, + X, Where ey, is the diagonal
covariance matrix used in Eq. (6) above:

Yewp = diag(o? :i=1,...,n), (8)

while the piece of ¥ associated with the theory error encodes a high degree of correlation:

2kl k+l
Ying = o0y wy (9)

Similarly, if the point-to-point (“statistical”) and systematic uncertainties in an
experiment are accurately characterized and well explained in the publication detailing
the observations, then it is straightforward to write down a likelihood with a
non-diagonal covariance matrix that accommodates components of the experimental
uncertainties that are not independent (see, e.g., Ref. [43]).

All such generalizations, where observations (z,y) are modeled as functions of
unobserved quantities #, and where we incorporate probability modeling for a random
error of possibly unknown intensity, yield a likelihood derived from a statistical model
y = f(x,0)+error. These likelihoods encode the statement “This is how likely we think
it would be to observe what we see y, under conditions x, based on the model function
f that depends on parameters 6, and based on an error intensity o”. Equation (6)
provides a particularly simple example of this kind of statistical model and it is used
very often.

But, in fact, the likelihood formulation y = f(x, ) + error does not mandate that
the operand “+” be interpreted as an additive error. For example, it can be formulated
so that the function f itself is a random distribution (i.e., not a deterministic model)
where the values x are used to define the distribution’s parameters. A specific instance
of this is when a Gaussian process (GP) is used to directly interpolate or extrapolate
to QOIs. What all likelihood formulations have in common in the Bayesian context is
that, when they are combined with a suitable prior according to (1), they (i) provide a
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principled solution to the inverse problem of estimating QOIs by introducing priors for
them (and for o, if needed); and (ii) use probability models.

Finally, we reiterate that the “error” should account for imperfections in both the
model and the experiment. It is advisable to consider a component of the error which
we call a discrepancy and that represents model imperfections: the d(x) that appears
in the likelihood (25) is an example of such a term. This error component depends
on observables and experimental conditions, and is often correlated in the domain of z
values.

2.3. Together again: combining the prior and the likelihood and how to deal with what
you get

Once prior and likelihood models/distributions have been agreed upon, it typically
becomes a conceptually trivial matter to write down posteriors for the QOIs given
the data and these agreed-upon models, see Eq. (1). For illustration, in this article
there are also examples of how to extrapolate experimentally inaccessible values ¢ for
experimentally inaccessible conditions Z (see Sec. 8). The method for this is to use
Bayesian prediction, where the likelihood distribution of y given x under parameters
0, applied to the range of values of interest z,y, is integrated against the posterior
distribution of parameters 6:

p(717.D) = [ p(iz.6. D)o}, D)5 (10)
0

The result of the integration is known as the “posterior predictive distribution”. For the

typical scenario in NP the data influences the distribution for ¢ explicitly only through

the parameters, and the posterior distribution of # is thought to be independent of the

hypothetical experimental conditions Z, in which case Eq. (10) simplifies to

p(3]7,D) = / P32, 0)p(6D) do. (11)

The challenge then becomes understanding how posteriors like Egs. (1), (2), and
(11) depend on all the variables and parameters involved. Typically, as soon as
there is more than one unknown parameter, and unless priors are set up in extremely
specific (and not necessarily realistic) ways, the behaviors of the resulting posterior
parameter and predictive distributions cannot be obtained analytically. Means, modes,
variances, etc., cannot usually be computed explicitly. One then resorts to mathematical
simulations (e.g., Markov Chain Monte Carlo (MCMC) sampling) to extract information
about these distributions. But our concern here is not with the specific implementation
used to obtain the posterior; instead we seek to illuminate the structure and benefits
of combining a Bayesian statistical model with a physics model in order to improve the
inference of the physics of interest.
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3. Bayesian inference for multiple models

In this section we discuss the challenge of combining the insights from a number
of individual physics models to produce inference endowed with the physics models’
collective wisdom. Section 3.1 provides the general setup for this problem, and
introduces the crucial distinction between M-closed and M-open settings. Section 3.2
describes the standard Bayesian solution: Bayesian Model Averaging (BMA); we then
explain why BMA can only resolve the challenge in the M-closed context. Section 3.3
then articulates paths to generalize BMA to a more sophisticated Bayesian Model Mixing
(BMM), wherein we combine information from different models in a more textured way
than BMA accomplishes. We end with Sec. 3.4, which gives an example where BMM
improves upon BMA by leveraging information on the local performance of two different
models across the input domain.

3.1. Bayesian inference in the multi-model setting

Recall that our generic setup is that we have observations D consisting of pairs of inputs
and outputs (z1,41),. ., (s, y¥n) and want to, from these, predict quantities of interest
Q, which could be parameters, or interpolations or extrapolations, or even some totally
new observable. In this section we further suppose we have several physics models f
(k = 1,...,K) that are purported to be a mapping from an = to a y. Each physics
model takes in an input setting x € X and a parameter setting 6, € ;. The kth physics
model is represented by f(x, 6), which should be considered a deterministic prediction
of the observable at x once the model k and parameters 6, are specified. One can build
a model M, for observables by combining a physics model with an error term e that
represents all uncertainties (systematic, statistical, computational):

Mty = folwi, Ok) + i (12)

Usually, €;,—the error of the ith observation in the kth model—is decomposed into
a stochastic term modeling systematic discrepancy and an independent term [44, 45].
Note that the error does not always have to be an additive form, but we have displayed
it as such for simplicity. Moreover, as written above, ¢;;, depends on the physics model
as well as on (hyper)parameters describing the statistical model, but this notation is
suppressed as the dependence involves complex factors [46].

While different physics models may have different parameters, inference on multiple
models involves dealing with a canonical parameter space © that spans all models
of interest. We assume that for each k in {1,..., K}, the model-specific parameter
space O can be mapped to © via some (possibly non-invertible) map 7 : O — ©O.
After transformation, we say the parameters are in the canonical parameter space, and
simply write our canonical parameter as # € © since © is common to all models after
the application of 7. We can think of this overall parameter space © as the union of
the individual (transformed) model-specific parameters arising out of each model. For
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notational simplicity, the 7, function will be suppressed throughout this article, meaning
0 is understood as Ti(#;) when appropriate.

Our goal is to conduct inference on the values of ¢ as well as the error term ¢,
for each model using Bayesian inference. Three conceptual settings have been identified
(see, e.g., [47]) where Bayesian inference on multiple models is applied: M —closed,
M—open, and M—complete. These three settings were originally motivated in the
context of statistical model building. In the M—closed case, one has ‘closed oftf’ the
need to introduce new models as it is known that the perfect model that represents the
physical reality must be within the set of models being considered. Therefore, as data
become more numerous and/or precise in the M—closed case, that perfect model will
become increasingly more likely, ultimately to the exclusion of all other models under
consideration. In the M—open case, one is open to introducing new models since the
perfect model is not known. In the M —complete case, we have decided that while we
might introduce new models for the sake of accuracy, we would like to maintain inference
on those in our original model set. We will not discuss this last case further.

The key distinction for inference in nuclear physics is between M —closed, when
the set of models is expected to include the perfect one, and M—open, when we know
that the set of models does not include the perfect one. We briefly outline the standard
statistical solution for the M —closed setting in the next section before moving on to
describing some potential approaches for the M —open setting that is more interesting
in the context of the BAND framework.

3.2. Bayesian model averaging and the M-closed assumption

Historically, mixing together different statistical models has been done through Bayesian
model averaging (BMA) [48,49]. BMA has been broadly applied in many areas of
research including the physical and biological sciences, medicine, epidemiology, and
political and social sciences. For a recent survey of BMA applications, we refer to [50].
BMA is a framework where several competing (or alternative) models My, ..., M are
available. The BMA posterior density p(Q|D) corresponds to the linear combination of
the posterior densities of the individual models:

p(QID) = > p(QD, My,) p(M,|D). (13)

k=1
If we pull through the typical inference, we can compute the first term p(Q|D, My) by
PQID. M) = [ p(QID. My 6)p(6[D. My s (14

e

The second term in Eq. (13), p(My|D), represents the posterior probability that the
model k is correct. It can be computed as
p(D|My)p(My,)

M _
MDY = 1 D M p(M) o)
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where

p(DIM;) = / p(DI My, 6)p(6|My.)db. (16)

The BMA posterior (13) for Q can then be obtained by using (14) and (15).

The posterior probability of model k being correct, p(My|D), accounts for the
common physics assumptions or phenomenological properties being studied that may
span many of these models. But this framing works by choosing a single model that
is dominant over the entire model space. If a perfect model is explicitly considered,
that is, if some My is correct, the corresponding term should dominate the sum in
(13). However, generic BMA can lead to misleading results when a perfect model is
not included. One illustration is presented in Sec. 3.4. No nuclear physics models have
access to an exact representation of reality; one only hopes some are usefully close to
it. It is to be noted that while using an M —closed approach may be problematic in
many nuclear physics applications, there are nuclear physics cases when BMA can be
useful [51].

But, more generally, to be useful for nuclear physics, Bayesian inference methods
should account for the relative performance of models among the different observables.
Some early efforts in this direction include [52,53] which consider multiple models which
do not live on a common domain, resulting in some models being useful for prediction
in certain physical regimes but not others.

3.3. Using Bayesian model mizing to open the model space

Suppose then, that no models are exactly correct through the domain of interest.
To conceptualize this situation we introduce notation for the physical process f.(:,0),
which gives the perfect (or oracle) model. That model’s predictions are related to the
experimental observations by:

Y; = f*(Ii, 6) + 51'7*, (17)

where the set of g;,’s represent the error between the perfect model and imperfect
observations. Equation (17) is introduced purely for conceptual purposes. It is not
practical because only an oracle has access to fi(+,6). Someone who knows f, because
they have direct access to the underlying reality of the universe would likely not be
bothered with statistical inference—or with the scientific process at all. By presuming
the M—open scenario we invite the possibility that there is no k for which f,(-,0) is
equivalent to fi(-,0). The challenge is if that is true it breaks the statistical modeling
principles that undergird the effectiveness of BMA as an inferential strategy.

The generalized alternative framework we now present does not attempt to weight
models based on their performance across the entire input space. We say that such a
generalized framework is an example of Bayesian model mixing (BMM). Our approach
has connections to existing statistical literature such as [54] in addition to the single-
model frameworks of [44] and [45]. Our objective is to establish different distributional
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assumptions beyond the assumption that any one model is perfect throughout the input
space. We do this by constructing a model M; that combines the physics models to
inform on the observations:

M; ry; = fi(x;,0) + €4, where fi(-,0) is formed by combining fi(-,6),..., fx(-,8).

(18)
The supermodel f; is built to contain the collective wisdom of all existing models
(this model was also termed reified in Ref. [54]). One possible way to combine the
models is BMA, where fi(-,6) has a prior distribution that is a point mass at each of
{fr(-,0) : k =1,..., K} that holds universally throughout the domain of interest. In
BMM, we open up the possibility to combine the K models in more sophisticated ways.
By mixing, one can form many potential inferences about f;, and—we hope—produce
inferences using f; that more closely resemble inferences produced by the oracle using
[

The mixing approach would then give p(Q|D) = p(Q|D, M;). BMA is thus a
particular special case of the BMM approach. The key to the BAND BMM framework
is that M accounts for underlying information present in the individual models. In the
next subsection we present an example where such an My is constructed in a way that
takes into account the different places in the input domain X in which each of them is
more accurate.

3.4. A tale of two models: contrasting BMA with BMM

Let us discuss a brief statistical example to unpack the sometimes subtle difference
between BMA and BMM. This should not be considered a general assessment of
the approaches, but instead an example to ground the concepts. For simplicity of
presentation, we assume that we have two physics models: fi(-,0) and fa(+,0). We want
to combine these two models to produce a model f; that is as close to the perfect model
f. as possible. Since perfection is not attainable we distinguish between f,, which we
continue to use as a gedankenmodel, and f; and try only to build the latter.

The first of the two models being mixed, f;, is an imperfect model everywhere.
Conceptually we imagine that, for all values of x € {z1,...,x,}, fi differs from f, by a
stochastic discrepancy a priori normally distributed with mean zero and some moderate
variance. In contrast the second model, f, is such that there is a single observation, say
the one at the first point xy, for which fo(x1,0) — fi(z1,0) is potentially very large, i.e.,
here we think that the stochastic discrepancy is normally distributed with mean zero
and an extremely large variance. But everywhere else the model is essentially perfect.
We convert this information into Bayesian inference for f; by saying that fi(z;, 0) given
f+(z;,0) is normally distributed with mean f;(x;, ) and variance v;. And that fo(z1,6)
given fi(z1,0) is normally distributed with mean f;(x1,6) and variance vy > vy, while,
for j =2,...,n, we have fy(z;,0) = fi(z;,0).

A BMA approach that acknowledges these model discrepancies expands the
observed variance by the model error variance. We will assume each model has the
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same prior probability of being correct and the prior p(f) on 6 is given such that
p(M1,0) = p(My,0) = Lp(f). In terms of a posterior on the parameters, see (13),
this implies that

n

e (5 (9

=1

1 1(y1 — fo(21,0)* 77 1 1 (y; — fo(,0))?
+W%+v2“p(‘5 o7 + v, >EEQX‘°<‘5 o? )]

As mentioned previously, the BMA approach presumes that one model is correct

peMA (0]D) o< p(0

throughout the entire domain of interest. If v, is truly extremely large, the BMA
formalism will implement this presumption in the most extreme way possible. The
spectacular failure of the second model at the first data point causes it to lose badly to
the first model which just manages to be mediocre everywhere. That is, the expression
for the posterior when v, — 0o becomes

peMa (0|D) o exp <_% Z (yi — fi(w, 9))2) " 20)

2
o; + vy

The model f; has no role in the BMA posterior because the BMA weights consider only
the overall performance of the model over the entire domain of interest! But it seems
unduly wasteful to discard the entirety of f; because it performs poorly in one small
subset of the domain of interest.

Now we consider a BMM approach where we do not presume a single model
is correct throughout the entire input space. One potential BMM approach obtains
the distribution of fi(x,6) by using standard Bayesian updating formulae to combine
the probability distributions of fi(x,6) and fa(z,6) given fi(z,0) with a Normally
distributed prior on f; having variance v;. Taking vy — oo, we have

<'U2f1($i79)+7)1f2(mi79) V12 > ifi=1

v1+vg 7 vtz

fa(xi,0) ifi=2....n

This seems to use our inference on both f; and f; in an effective way. Pulling this into

fi(x;,0) is distributed as (21)

a posterior, we get that at vy — oo

et (6]D) & exp (_1<y1 — fi(z1,0))? B 12 (yi — fzémﬁ))z) o(6). (22

2 o4y 2~

Now both models are being used in their respective strong areas: the model f5 is ignored
only at a single point x; where it is very wrong and f; is ignored everywhere that f,
provides a perfect result.

This example illustrates nicely that BMM can be a more effective tool for combining
models than BMA. Although the example is simple we believe the concept it represents
has wide applicability in NP applications where the models we want to mix perform
well in different regions of the domain of interest.
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4. An illustration: using BAND framework tools to analyze a toy problem

We now outline a toy example that spans the emulation, calibration and model-mixing
components of the BAND framework. The experimental design component of BAND is
discussed in Sec. 5. To facilitate the discussion, we will mostly make use of a basic GP
toolset. GPs are a popular default modeling choice for a few reasons, including: their
prior-on-functions interpretation, the smooth, continuous and differentiable emulations
they can provide, and their effectiveness when emulating sparsely observed functions.
We will outline a basic approach to emulating, calibrating and mixing these models
as would be desired in a real nuclear physics investigation—keeping in mind that the
BAND framework aims to enable multiple tools (i.e., a library of emulators, model
mixing methods, and experimental design algorithms) to be used in an inter-operable
and consistent manner. The simplified toy example we outline in this section can be
further explored in the R script file located in the BAND GitHub repository [55].

4.1. The toy model

In line with the notation established in the previous section we take a toy model, M,
to involve a physics model fi(z,6) that depends on a single input x and a parameter
6. Given this known 6, we can compute fi(z,0) = fr(z) at a selection of my, settings of
the input, xx = (x1,..., Ty, ) giving model outputs fr = (fi(x1), ..., fr(zm,)).

A popular toy model we will use to outline the BAND framework arises in the
so-called ball drop experiment [56]. In this experiment, a large ball is dropped from a
tower, and its height is recorded at discrete time points until it hits the ground. The
input, z, is time and the observable of interest, y, is the ball height. We will eventually
consider two particular toy models for this physical process:

My: A model for ball height that ignores atmospheric drag due to air resistance. The
physics model, f;, depends on a single parameter § = g, the acceleration due to
gravity.

My A model for ball height that includes a quadratic component for atmospheric drag
due to air resistance. The physics model, f, depends on two parameters, 0 = (g, )
where v is a drag coefficient.

The physics of both models are outlined in [57], and our toy problem will involve
dropping a 0.1 m diameter ball weighing 1 kg.

4.2. Emulation

We start with our simpler model, M, which will only be an accurate description of
the physics when the effect of drag can be ignored. For simplicity, we simulate our
observables directly from M; at the “true” gravity parameter g = 9.8 m/s?.

Our first task of interest is to predict, or emulate [16,17,58-64], our physics theory
fi(z) at arbitrary input(s) Z, which were not made available to us directly from the
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output of physics model M. As outlined in Sec. 1, emulation is a probabilistic technique
that provides a computationally cheap surrogate for a model when the model can only
be evaluated at a sparse selection of input settings. This allows one to explore questions
of interest when evaluation of the model is limited due to computational constraints. To
perform this emulation, a prior distribution, pgmulate(f1]X1, @), describes the statistical
emulator to be used. Here, ¢ refers to nuisance parameters that are necessary for the
statistical emulator, but are not directly physics parameters of interest. Without loss
of generality, we will drop ¢ from the notation unless required for clarity.

Emulation is then the process of probabilistically recovering the rest of f; using
only the observed model runs (f;,x;), and the prior distribution pgmulate- Suppose we
want to emulate f; at a point . This task is performed via the posterior predictive
distribution, which is obtained by integrating over the emulator nuisance parameters ¢:

P A 6,%1) = [ e (BN 61, (0l ). (23)
A key ingredient of the posterior predictive distribution is the first term of the integrand,
PEmulate(f1(Z)|Z, f1, X1, @), which encodes how the observed function values f; are used to
probabilistically extrapolate our function’s behavior at new input setting . Meanwhile,
the second term, p(¢|f;, x;) encodes the information learned about our function from the
finite outputs fi, such as the function’s smoothness or differentiability. Note then that
this Bayesian solution describes an entire emulation pdf. A typical point estimate—i.e.,
the thing we might quote for “the number” given by the emulator—would be the mean
of the posterior predictive,

Elfi(2)]2, f1,x1] = - S (@) PEmuate (f1(2)|Z, £, 1 )dfy (T). (24)
1 (F

But although this provides us with a “the number”, it is important to note that the

posterior predictive distribution is just that: a distribution, and as such the emulator

comes with an emulator uncertainty that is encoded in the spread and other properties

of that distribution. The development of GP emulators for this problem is thoroughly

discussed in [17,18].

4.8. Calibration

In statistical calibration, we expand on the emulation described above by removing the
assumption that we know € while also introducing a model discrepancy term, 6(z) that
allows for the possibility of model misspecification. Calibration is a powerful technique
because it allows one to combine sparse observables with sparse emulator outputs to
perform inference and predictions. If emulation is not required, the extension of Eq. (6)
to include the discrepancy term, d(x), is
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In the more common case where emulation is needed, we choose to run our physics
model at only m; settings because every such run is costly in time, money, or some
other thing we care about. Each selected “setting” corresponds to a simultaneous
choice of inputs and calibration parameters, and we notate those settings hereafter as
Xp = (T1,...,%m,) and Oy = (01,...,0,,). Outputs from our physics model M, then
comprise £, = (fr(x1,01), ..., fi(@m,,0m,)) - Let Cp = {fi, %y, O;}. Calibration assumes
there are two sparse sources of information: n real-world observables, y, and my, outputs
from a physics model of interest, fi. These two sources of data are then combined in a
statistical model, pemulate (¥, fx|X, Xk, Ok, 0, §) that connects the observations with model
outputs conditional on knowing both the calibration parameter setting that best aligns
with reality, and the model discrepancy term, ¢, that accounts for infidelity between the
physics model and reality. Note that this means the C;, is divided in pgpuate—as D was
in Eq. (6)—since the model treats the 6y, x; as fixed and known in order to emulate the
fp and y.

Calibration then allows two distributions of interest to be calculated. First, there
is the posterior distribution for  and §. By Bayes’ theorem (1) that is:

pCalibrate(ea 5|Ck> D) X pEmulate(Y7 fk|xa Xk, ek’a 9, 5)]9(9)]9(5). (26)

Here, we see that the posterior distribution encodes how much information was learned
about the unknown calibration parameter setting ¢ that aligns with the observables y,
and it also encodes what was learned about potentially unaccounted for physics, 4, in
our function fj. Note that this is accomplished using only a finite sample of observables
and model outputs.

Second, there is the posterior predictive distribution which, as in Eq. (10), can be
found by marginalizing over 6 and 9:

pEmulate(fk ({i')lclm D) = / pEmulate(fk(j> |Ck7 DJ 07 5)pCalibrate(97 5’Ck7 D)d6d5 (27)
0,0

As before, the first integrand shown in the posterior predictive distribution encodes how
the probabilistic extrapolation is performed. However, unlike in pure emulation, this
extrapolation now additionally depends on the estimated 6 and .

A calibrated emulator can then be used to compute the mean of f,(Z) from this
posterior predictive distribution:

B[f(#)|Cy. D] (28)

- / fk(j‘)pEmulate(fk (i')le, D7 97 5)pCalibrate(67 5‘Ck7 D)dfk(j>d6d§
0,6 J fr.(z)

This mean is marginalized over #. We can, of course, also use the posterior predictive
distribution to compute the mean of f,(Z) for a specific value of 6:

E[fk (i)‘cka D7 9] = /(; s (*)fk (-%)pEmulate<fk(a~j) |Ck7 Da 9) 5)pCalibrate(ea 5’Cka D)dfk (ji)dé
k (29)
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In the ideal case that § = 0 (i.e., there is no unaccounted-for physics) and we
can observe the real-world process without measurement error (¢ = 0), then in the GP
setting with a mean-zero assumption [44], the mean of the predictive distribution (29)
takes the form of a linear combination of the observations and model evaluations

=1 =1

in which the (unnormalized) weights w depend on the cross-covariances between real-
world observations and physics model outputs via the calibration parameter(s) 6 and
input x. The calibrated predictions therefore inherit useful information from the model
outputs if the calibration parameter is well estimated and the simulator outputs are not
“too far” from the real-world observables. But if those two conditions are not met then
the second set of weights become small (w§(Z,0) — 0) and the predictions increasingly
behave as if one were simply regressing on the observations y, i.e., they ignore the
physics-model outputs f;. Note that this behavior is analogous to the motivating
example described in Sec. 3.4, and in particular Eq. (21).

The priors p(f) and p(d) are critically important elements to understand in
calibration models [44,65]. The former encodes our information about the calibration
parameter vector before we observe our observables, while the latter encodes any
information we might have on unaccounted physics in our physics model. Though
there are some identifiability concerns when including ¢ in our statistical model [66],
the challenges appear surmountable with careful modeling practices [46,67].

The idea of calibration is depicted graphically in Fig. 2, where we have demonstrated
the technique using the GP models for pcajiprate- In panel (a), the grey surface represents
what the physics-model response would be in M. In practice, we only sparsely compute
fi(z;,0;) at a finite collection of input settings {x;, 0;};~ as denoted by the green dots.
These form our vector f;. The observables y are displayed as red dots (here simulated
from M; at g = 9.8 m/s?), however in the context of the model space of M; we do
not know where the red dots are located since (= g) is unknown. Hence the red dots
should really be thought of as the red lines (i.e., the observations could correspond
to any value of 6 a priori). Panel (b) displays the inferences made using calibrated
emulation of M;. The red curve in the x—y plane denotes the posterior density of #
and the blue lines are realizations of the posterior predictive distribution. Note that the
spread of the blue lines conveys the impact of the multiple sources of uncertainty on our
inference: the uncertainty in 6 as well as the uncertainty in the noisy observations y
and the incomplete (sparse) information about M provided by C;. Panel (c¢) projects
this information back down to the x— f; plane, which is the view one would usually plot.
Here, the calibrated model’s posterior mean is shown as the green line, while the mean
of the inferred discrepancy is denoted by the orange line. The mean of the calibrated
predictor is again shown in blue.
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Figure 2. (a) Emulation of model space. The gray surface represents what the physics
model in M; would be were it available in closed-form. The green dots represent
our actual information about f;, as simulated on computer. The red dots represent
the observed field observations of the real-world process. (b) The blue lines represent
posterior samples of the calibrated emulator, which combines sparse information about
model space M; with sparse field observations to estimate the drop trajectory of the
calibrated emulator for M;. The red density in the z=0 plane represents the posterior
estimate of the calibration parameter, gravity. (c) The corresponding calibrated
emulator and its uncertainty is denoted by the blue lines. The orange line denotes
the estimated discrepancy between the model and reality, which contains 0 in its
uncertainty interval across the range of time. The corresponding predicted trajectory
that combines the calibrated emulator and discrepancy is shown in green.

4.4. Model mizing

Bayesian solutions to statistical modeling problems typically involve some type of
weighted average. For instance, the Bayesian solutions to emulation and calibration
described so far, e.g., Egs. (30),(28), all share a common form: the posterior distribution
of interest, e.g., Eq. (27), can always be expressed as a combination of our prior
knowledge weighted by the data-based evidence encoded in the likelihood. The BMA
outlined in Sec. 3.2 also involves a combination, it’s just that Eq. (13) describes a finite
linear combination rather than the continuous version seen in Eq. (27) for the calibration

model.
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The multi-model setting raises tricky questions about how, or whether, we want to
average—questions we do not encounter within fixed-model statistical inference. For
example, in the simple ball-drop example, the BMA approach to the problem fits
each model separately before averaging the two of them. But the parameter g is
common between both models and has the same interpretation in each. This raises
several questions, for instance: might estimates of g benefit from a joint approach to
modeling M; and M5y? And how do separate estimates of such models affect uncertainty
quantification in comparison to joint approaches? As mentioned earlier, BMA is optimal
in the M-closed setting, but in our M-open reality, and particularly in a data-poor
context, we may benefit from considering models jointly.

Beyond the flexible software architecture to be developed in the BAND project,
a core area of methodological research for BAND will be to explore such complexities
that arise in the multi-model setting. For now, we outline two different solutions to
our multi-model ball-drop problem, one that uses BMA and one employing a Bayesian
calibration setup. This allows us to highlight some of the differences.

4.4.1. Model mizing via BMA In a data-rich setting where the physics simulator of
the real-world process can be cheaply sampled at the same inputs as the observational
data, emulation may not be needed. The BMA approach outlined in Sec. 3.2 can then
be applied directly. In this case, we have our K = 2 models M, M5y where M is
equivalent to 6§ = (g,0) and M, is equivalent to § = (g, ). The observations are then
modeled by each of these in turn, and we approximate the BMA solution described in
Eq. (13) by performing the model average over a discretization of #-space (alternatively,
the MCMC algorithm of [48] could be applied were 6 of higher dimension). Note that
the weights for M; in the BMA approach do not make use of information from the
~v # 0 outputs from Ms. The resulting BMA prediction and recovered estimates of the
gravity and drag parameters are shown in Fig. 3. Since we include both drag-free and
draggy models in this BMA, we expect BMA to perform well. However, to get a sense of
what can go wrong we also performed BMA ignoring the draggy model which resulted
in the highly biased estimate of gravity shown as the dotted density curve in Fig. 3(b).

4.4.2. Model mizing via calibration By again considering the models to be continuously
indexed by 6 = (g, ) where v = 0 is equivalent to My, it is straightforward to cast the
situation of multiple models within the calibration framework. The calibrated predictor
in (30) then bears a striking resemblance to the BMA form,

E[f1<:i‘>ycl7 CZ:Da 975 = O] = wa(iﬂe)yl + waz(i'ae)flz
=1 i=1

+ ) wh(E,0) fa, (31)
=1

where we see that the (unnormalized) weights for the outputs of both models
in Eq. (31) in fact depend on the parameter 6 spanning both model spaces and
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Figure 3. (a) Realizations of the 2-parameter quadratic drag model in My over a
20% 20 grid of gravity (¢) and drag (). The gray lines represent the height trajectory as
a function of time for this 20 x 20 grid of parameter settings. The n = 7 observations are
shown as red dots while the BMA prediction and corresponding 95% credible interval
are shown in blue. (b) The corresponding BMA density estimate for gravity, 6, = g,
and (c) the BMA estimate of the drag coefficient, § = . The true values of the
parameters for this simulated data are shown as the vertical dotted lines in (b) and
(c). The BMA density estimate for gravity using the wrong model (M) is shown as
the dotted line in panel (b).

the input setting z. This expectation would then be further re-weighted as in
Eq. (28) where pcalibrate(#, |C1, C2, D) now involves the joint posterior. In other
words, the calibration solution outlined considers both models jointly,
can think of E[f;(%)|Cy,Cs, D] as approximating FE[fi(Z)|M;y, Ms] and similarly
Pcalibrate (0, 0|C1, Co, D) as approximating pcatibrate (¢, 6| M1, My).

A demonstration of this idea is shown in Fig. 4, where we now consider both our
drag-free model M; and the quadratic-drag model My that depends on the additional
drag coefficient parameter, v. Setting v = 0 recovers the drag-free model, and the gray
surfaces depict the physics model evaluated at v = 0 (i.e., as in M), v = 25 and
~v = 75 in the figure. Note that the behavior of both models is similar up to about x =1
seconds, indicating that f; can still be leveraged for prediction in this regime. However,
beyond x = 1 seconds, the models diverge significantly, indicating that information can
only usefully be borrowed from f;, even though M, is more sparsely sampled. The
observations were generated with a drag coefficient of v = 40 at n = 7 time points, as
denoted by the red dots in Fig. 4(b). We see that even though M; is not meaningful
beyond x = 1 seconds and M is much more sparsely sampled than the drag-free model,
the overall prediction is well behaved. The resulting posterior for gravity (g) shown in
Fig. 4(c) is well centered on the true value. Meanwhile, calibrating only using M; (the
incorrect model) results in the biased estimates shown in Fig. 4(d) for both strong and

weak priors on the discrepancy.

and we
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Figure 4. (a) Calibration with two models: the drag-free physics model (as in
Fig. 2) and a quadratic-drag physics model. The gray surfaces represent what the
physics model would be were it available in closed form with no drag (M;), and with
quadratic drag (Ms). The quadratic drag surfaces are plotted using drag coefficients of
v = 25,75. Note the much more linear appearance of f; at these two settings of v, and
the corresponding reduction in drop distance as compared to the drag-free model. The
model-mixed calibration is shown as the blue curves. (b) The corresponding model-
mixed calibrated emulator and its uncertainty is denoted by the blue lines. The orange
line denotes the estimated discrepancy between the model and reality, which contains
0 in its uncertainty interval across the range of time. The corresponding predicted
trajectory that combines the model-mixed calibrated emulator and discrepancy is
shown in green. (c) Posterior density of gravity (6; = g) is shown in this multi-model
setup. (d) Corresponding posterior density of gravity when using the incorrect model
M is shown here with the same discrepancy prior as in the multi-model calibration
(solid line) and with a more vague prior (dotted line).

4.5. Experimental design questions

Within the toy model we can imagine a range of enhanced experiments to better measure
the gravitational constant #: build a taller tower to reach greater ball speeds (“energy
frontier”) or develop better clocks and rulers (“precision frontier”) or drop more balls
(“intensity frontier”). Deciding which option to pursue and with what specifications is
a problem of experimental design. We turn to the Bayesian approach to this problem

in the next section.
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5. Experimental design

Bayesian experimental design provides a framework in which experiments can be
designed using the current information available both from experiment and theory.
Broadly speaking, NP experiments involve a plethora of observables measured with
a great variety of techniques, ranging from simple decay and scattering experiments to
cross-section reactions with radioactive ion beams, to relativistic heavy-ion collisions.
Experiments can be expensive, and communities often have to choose between competing
proposals for new apparatus or for beam time.

To optimize experiments, the goals of the experimenter are encoded in a wutility
function which describes the usefulness of potential observations and may also include
the cost of the experiment. One then considers various future experimental designs and
computes the expected utility of each design by averaging over all potential experimental
results from that design. A particular experimental design might be specified by
an observable and a set of experimental conditions at which to measure it (e.g.,
beam energies and detector positions) and perhaps also the experimental noise levels.
Experimental regimes (e.g., kinematic regions) where limitations of the facility being
used for the experiment are liable to make collecting data excessively difficult can be
excluded from the optimization by explicit restrictions on the designs considered. Once
the utility function and the possible designs have been specified, the optimal design is
simply the scenario that maximizes the expected utility function over the domain of
possible designs.

In order to invoke the experimental design formalism, the goal of the experiment
must be specified. Is it to make an accurate observation of some quantity? To
discriminate between competing models? Or to precisely constrain parameters of the
theory? In this section we illustrate the Bayesian approach to experimental design
by focusing on experiments with the last of these three goals. We define the optimal
design as the one which provides the greatest increase, on average, in the knowledge
of the parameters of the NP model. The state of knowledge about those parameters
before any new experiment is performed is incorporated in our experimental design using
Bayesian priors.

In general the experimental goal is encoded as a utility function, or design criterion,
U(x,Q,y), that depends on the design points®™ x in the design space E from which
experimental data y are then measured and the quantities-of-interest Q that we have
constructed our experiment to find. Of course, y will not be known until the experiment
is conducted. Hence the optimal design x* is that which maximizes the expected utility
U(x) = FlU(x,Q,y)]. In this section we focus on the case where Q are the (physics-

T A single design (observable, experimental conditions, etc.) is denoted by x. The space E is the set of
all considered experiments over which the utility is optimized (e.g., all possible 5-angle measurements
of a differential cross section at a given energy).
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model) parameters 6, so we seek

x* = argmax U(x)
xek

—argmax [ U(x,6,5)p(0.y|x)d0 dy (32)

xelk

= argmaX/{U(Xﬁ,Y)p(f)ly,X) d9}p(YIX) dy

xelk

where argmax U(x) denotes the maximum of the utility function over all choices of
xXER
x € E. For each possible experimental outcome y, we compute corresponding posteriors

for the parameters 6. By then marginalizing over y, with a weighting given by the
probability of that y for a given x as predicted by the model or its emulator, we
average the expected gain in information on the parameters 6 over all data that could
plausibly be measured. To sample all those possibilities is often computationally quite
expensive, which is why emulators are a key part of the BAND framework. However,
if the predictions can be reliably linearized around the best known parameters then a
simple and intuitive formula for the expected utility of an experiment is obtained [68].

Equation (32) says that the process of experimental design requires a theory f(z,0)
and a probabilistic model relating data to theory parameters, p(6,y|x). To calculate
that pdf we use the product rule to write p(0,y | x) = p(y | 0, x)p(0) (likelihood for given
design x prior). To evaluate the likelihood p(y | 0, x) we need to include the theoretical
model discrepancy in a model such as Eq. (12). Here we’ll use for illustration a Gaussian
prior and (correlated) Gaussian errors in the model (e.g., see Ref. [68]). We suppose
that at the start of our experimental-design process prior knowledge of the parameters
of interest is specified by a multi-variate normal distribution with a vector of means
and a covariance matrix Vj,

p(0) = N (o, Vo), (33)

Under the assumption that f(z,#) is linear in 6, it follows that the posterior is also
given by a normal distribution

p(Oy,x) = N(uly, x),V(x)), (34)

where the mean and variance have been updated from g and Vj to p(y,x) and V(x)
respectively. Crucially, V' (x) depends on neither the specific value of 14y nor the measured
data y. Instead the extent to which it updates V{ is determined by a combination of
the model error and the experimental errors.

The optimal design is then that which provides the best improvement in constraints
on 0, i.e., the greatest improvement in V' over Vj. This leads us to choose the utility to
be the gain in Shannon information compared to prior information for 8, based on the
experiment (x,y). This is equivalent to the so-called Kullback-Leibler (KL) divergence,
or relative entropy, between the prior and posterior for 6 (a measure of the difference
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between these probability distributions), followed by marginalizing over y:
U _ p(f]y,x)
ku(x) = [4{ln 0 p(0 ]y, x)df ¢p(y [ x)dy. (35)

In fact, if linearization is valid, the integral over y is trivial since neither the
posterior not the prior covariance matrix depend on it. Equation (35) can be computed
exactly (see Appendix A of Ref. [68]), with the result

[Vl =Ind(x
‘V(X)’_l S(x) =0, (36)

where we have defined the posterior shrinkage factor S > 1. Our assumptions lead to a

1
UKL(X) = 5 In

form of the expected utility that is analytic, easy to understand, and quick to compute.
Particular confidence levels for the prior (33) and posterior (34) for the parameters 6
define hyperellipsoids. Then S is the factor by which the volume of the prior ellipsoid
shrinks as it is updated to the posterior, with larger values of S (or Uk ) being more
informative than smaller values. An experiment yielding S = 1 (or Ugy; = 0) is then
completely uninformative. If we are interested only in a subset of the #, and not in the
rest, we can re-define the utility to find the optimal design of an experiment that seeks
to measure our subset of interest by simply computing Eq. (36) with the corresponding
submatrices of Vi and V.

Note that constraints from previous experiments are built in naturally via the
prior on the parameters. So, if we find a large utility in an observable or a region of
experimental conditions that has already been thoroughly explored, that means there
is still valuable constraining information to be gained there.

As an illustrative example, Fig. 5 shows the expected utility from Eq. (36) for
experiments to measure Compton scattering from the proton [68]. Each panel in
the top or bottom row shows a color contour plot of Ukp(x) at possible kinematic
points (specified by laboratory energy and scattering angle) for determining a subset
of proton polarizabilities from the measurement of the proton differential cross section
(see Ref. [68] for further examples and explanations). The polarizabilities are extracted
through application of a NP model (here: chiral effective field theory). The most red
regions are where the most fruitful measurement will be. The top row does not include
the theoretical model discrepancy, which in this case is from the model truncation
error, while the bottom row does include this uncertainty. The effect of including the
truncation errors is striking: it shifts the region of optimal utility to lower energies and
moderates the expected information gain. Including theory uncertainties is essential for
experimental design!

Now suppose we have multiple models. Then our observational conditional,
p(y|x,0), will be replaced by a mixed model conditioning. For example, if BMA is
used for the mixing then the mixed model for observables can be formulated according
to Eq. (13). Aslong as the parameters  are common to all models used in the mixing we
can employ the above formalism by revising p(6,y | x) accordingly in Eq. (32). However,
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Figure 5. Example illustrating the concept of experimental design. The expected
utility Eq. (36) of proton differential cross section (do) measurements (see Ref. [68] for
details). Colors indicate the utility of one measurement conducted at each kinematic
point (wiab, f1ab), with the point of largest utility Uk, being by definition the optimal
1-point design. (The color bar is on a linear scale, though the hue varies much more
quickly for small Uky.) The top row (with the red, “No dy,” box) does not include
model truncation estimates, whereas the bottom row does include this uncertainty.
Each column shows the information gain one could expect to achieve for a subset of
the proton polarizabilities. The white circles with black borders show the optimal
design kinematics for five measurement points at the same energy but different angles.
Reproduced from Ref. [68] with kind permission of The European Physical Journal
(EPJ).

the use of general mixing can lead to more complicated forms than the illustration
presented here. Such use of model mixing for experimental design is one of the ultimate
goals of the BAND project.

6. Case Study: The equation of state of strongly interacting matter

Heavy-ion collisions, performed at energies from a few MeV to a few tens of TeV provide
the means to excite femtoscopic regions of matter to extreme densities and temperatures.
Great experimental investments have been made at NSCL [69], RIKEN [70], GSI [71],
RHIC [12], and LHC [13] to explore strongly interacting matter at temperatures from
a few to hundreds of MeV and densities up to several times nuclear matter density.
New facilities are coming online, as FRIB [8], FAIR [72], and NICA [73] should all be
completed in the next few years.

Although these experiments address a wide variety of issues, two critical areas
of commonality will be addressed by BAND. First, existing and future high-quality
datasets are enormous and cover a remarkably heterogeneous range of physics by
employing a vast complement of detectors. Secondly, the created hot and dense



The BAND Framework 32

matter cools quickly and is very short-lived, and interpreting the measurements thus
requires comparison to sophisticated and numerically intensive theoretical models and
simulations describing its evolution through multiple stages before being observed.
These models build on robust theoretical frameworks for describing strongly interacting
matter in its various manifestations but involve a number of parameters describing
medium properties that cannot yet be precisely computed from first principles.
In addition, the transitions between different stages provide conceptual challenges
that result in competing models built on conflicting paradigms, assumptions and/or
approximations. BAND’s role lies at the intersection of experiment and theory
where comprehensive experimental datasets are analyzed using Bayesian inference
to constrain the uncertainties in model structure and model parameters. Given
the complexity of these model-to-data comparisons, sophisticated new methodologies
from the statistical science community are required to achieve complete and rigorous
uncertainty quantification including both experimental and theoretical sources of error.

Statistical approaches based on model emulators have recently been applied to
analyses of heavy ion data from RHIC and the LHC [74, 75]. After being tuned
using a few hundred to several thousand full model runs at each point of a sufficiently
large number of design points for the model parameters, emulators reproduce principal
components of the model output (predictions for observables) with little computation.
This enables exploration of the high-dimensional parameter space with fine resolution
for mapping out the joint posterior distribution for the model parameters. These
analyses result in likelihood contours of the parameter space where uncertainties, both
experimental and theoretical, are taken into account. The result of one such analysis
performed by the MADAI Collaboration [76] is presented in Fig. 6. Here, a 14-
dimensional parameter space was explored in analyzing high-energy collisions from
RHIC and from the LHC [12,13]. Parameters expressing the equation of state were
among those varied, and the ensuing constraint of the equation of state is shown in the
figure.

Going forward, a main challenge facing the field is to handle multiple competing
models that do not necessarily share a common set of parameters. All applications
of emulators to heavy-ion collisions to date have accounted for parameter variation
within a particular model. However, there are instances where multiple models must be
simultaneously considered. For heavy-ion collisions this is especially true for models
of the initial stopping stage for lower energy collisions corresponding to the RHIC
Beam Energy Scan, for the pre-hydrodynamic evolution, and for the interface between
the hydrodynamic and late hadronic simulation stage (for this last issue see Sec. 9.)
For the initial conditions and pre-hydrodynamic stage, several models based on very
different paradigms should be considered. Both for the purpose of determining the best
choice of early-stage models, and for accurately reflecting the uncertainty in the early
evolution stage when extracting information about the medium properties controlling
the hydrodynamic stage of the collision, one must consider a variety of theoretical
pictures. This challenge defines the principal role of BAND’s expertise in applications
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Figure 6. The speed of sound vs. energy density for baryon-free matter as constrained
by a 14-parameter model compared to data from RHIC and the LHC. Results are
described in detail in Ref. [74].

to heavy-ion physics.

7. Case Study: Design of experiments for nuclear reactions

The Facility for Rare Isotope Beams will come online soon and will offer the possibility
of producing thousands of rare isotopes, many of which are unobserved and extremely
neutron rich. Due to the complexity of each experiment, the facility cannot (and should
not!) measure them all. Reactions offer an array of probes into the structure of nuclei.
Reactions at FRIB will also be used as indirect methods for extracting reaction rates
for astrophysics [77]. In planning for these future experiments we can ask: What are
the best beam energies? What is the required angular range?” Which reaction products
should be detected? What reaction observables should be measured? Etc. As discussed
in Sec. 5 the answers to these questions will depend on the goal; once a goal has been
chosen it can be encoded in a utility function.

Due to the complexity of an ab-initio theory for reactions involving intermediate
mass and heavy nuclei, few-body models are commonly used. In these models, most
nucleonic degrees of freedom are frozen, and only a few are included in the dynamics. In
such cases, the essential ingredient to the calculations becomes the optical potential: an
effective complex interaction between the relevant composite bodies that captures the
many-body complexity of the problem. Nucleon-nucleus optical potentials have been
traditionally obtained from fitting data, primarily elastic scattering. Global optical
potential parameters (e.g., [78,79]) obtained using standard x? minimization [80] are
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charge, mass and energy dependent and only provide an average description of reactions
across the nuclear chart. Indeed, particularly for reactions with unstable nuclei, the
accuracy of global approaches is unknown due to the extrapolations to nuclei far away
from the valley of stability. To properly leverage the massive investment of time,
scientific expertise, and resources we must understand how the uncertainties in models
that are fitted to data propagate to their predictions, and especially to extrapolated
predictions for targets with extreme neutron or proton numbers.

In the last few years, Bayesian methods have been established to quantify the
uncertainties in the optical potential parameters and corresponding observables [81,82].
Initial work in Refs. [81,82] focused on how well a single set of elastic scattering data
characterized by a well defined beam energy and a generous angular distribution could
pin down the optical-potential parameters. Mock data were generated for elastic angular
distributions using the model of Ref. [79] and an overall 10% error on these synthetic
observations was assumed. These data were then used to calibrate an optical potential
model of the reaction containing 9 parameters. Wide Gaussian prior distributions
centered around the global parameters of [78] were chosen as the prior for these
parameters. The nine-dimensional parameter posterior was then generated from Monte
Carlo sampling using the Metropolis-Hastings algorithm. These posteriors were then
used to obtain the credibility intervals for the elastic scattering angular distributions
and propagated to other reaction observables such as the total (reaction) cross section
and the transfer angular distribution, see Eq. (10). The most striking conclusion
from these Bayesian studies [81,82] was that the resulting posterior distributions for
predicted observables were significantly wider than previously assumed and did not
exhibit Gaussian shapes. The linear error propagation assumed in previous studies
was not valid for this situation. In fact, the credibility intervals obtained when the
optical potential is calibrated on elastic data of this accuracy and results propagated to
a transfer reaction are too large for a useful model comparison. These early UQ studies
for optical potentials suggest that the way they are presently constrained by data leads to
too much uncertainty for their application in other reactions to give significant insights
into the dynamics of those reactions.

Since optical-potential models are workhorses of nuclear-reaction theory it is
important to understand how these too-large uncertainties could be reduced. Which
observables and kinematic conditions can provide a significant reduction of this
uncertainty? As a first step to a full experimental-design analysis Ref. [83] asked how
impactful it is to reduce the experimental error. This is largely dominated by the point-
to-point error for experiments with rare isotopes, so issues with discrepancy functions
were not discussed in this initial study. Ref. [83] then showed that, for most cases, a
factor of two reduction in the point-to-point uncertainty of observations does not result
in a factor of two reduction in the uncertainty of the model prediction for the elastic
angular distribution.

The angular range is also another important consideration in such experiments.
As an illustration, Fig. 7 shows the 95% credibility intervals obtained for the angular
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Figure 7. Angular distributions for elastic scattering of protons on 208Pb at 30
MeV: 95% credibility intervals when including data in the full angular range (full,
blue solid line), when only including forward angles (forward, orange dashed line) and
when including a sparse angular grid (reduced, green dotted line). The y-axis displays
the ratio of the simulated proton-2"8Pb cross section to the Rutherford cross section.
Results are described in detail in Ref. [83].

distributions for the elastic scattering of protons on 2°Pb at 30 MeV. These are
presented in terms of the ratio to elastic scattering due purely to the Coulomb
interaction—the “Rutherford cross section”. This removes the divergence in the results
at zero degrees. The results obtained using the “full” angular distributions (180 data
points from 1 to 180 degrees) are shown as the green band and compared to a “reduced”
analysis when only every tenth data point is used for model calibration. The differences
in the posterior predictive distribution obtained from the full and reduced dataset are
imperceptible. By contrast, when only data for angles below 100 degrees is included
(“forward” analsysis) the orange band thereby obtained is markedly wider (note the log
scale) at the backward angles where constraining data were not included.

Figure 8 shows the corresponding posteriors for the optical-model potential
parameters: the depth, radius and diffuseness of the real part of the optical potential
(V,r,a) and the imaginary terms, surface (Wj, 7, as) and volume (W,ry,a,). The
most important difference between calibration with data over the full angular range
and that which uses only forward-angle data is in W,. Reference [83] concluded that
using a dense angular grid in the experiment is likely a waste of resources, but there
is important information in the backward angles observations that makes a substantial
difference to the model calibration.

The BAND framework will be brought to bear on these issues. A first step will
be to use a utility function as described in Sec. 5 to quantify the notions of optimal
experimental design implemented heuristically in Ref. [83]. Meanwhile, Secs. 2.2 and
3 emphasized the importance of accounting for model imperfections in the likelihood
function used for calibration. And Sec. 5 and Ref. [68] demonstrated that unless such

a discrepancy function is included in the analysis the conclusions regarding the optimal
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Figure 8. Parameter posterior distributions for the elastic scattering of protons on
208Ph at 30 MeV: including data in the full angular range (blue), when only including
forward angles (orange) and when including a sparse angular grid (green) [83].

experimental design may be misleading. So understanding the imperfections of different
reaction-theory models and including statistical descriptions of them will be a key part
of BAND’s effort in this area. The reaction-theory community can also benefit from
BAND’s participatory approach to prior building: Sec. 2.1 showed how hierarchical
Bayesian models can be used to incorporate constraints, other data, and intuition on
model parameters in the analysis.

While the simplicity of the optical model made it attractive for these first
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applications of Bayesian methods to reaction-theory questions, more sophisticated
methods are needed to describe many reactions of interest. These models may include
couplings to collective degrees of freedom, to the continuum, and/or to rearrangement
channels. Implementing UQ in these models will require their calibration, and to do that
efficiently emulators must be developed. The model-mixing tools discussed in Secs. 4
and 3.4 are an appealing way to combine treatments of reaction dynamics that are
designed for different kinematic domains. BAND’s tools will give us the opportunity to
leverage these models’ local performance in an effort to achieve an overall description
of nuclear reactions that is better than that obtained in any individual model.

8. Case Study: Bayesian Model Averaging in nuclear mass models

The BAND framework will enable quantified extrapolations to yet-unexplored domains
and to environments that cannot be directly probed in the laboratory, e.g., the conditions
occurring in neutron-star mergers or supernovae. The example below illustrates how the
anticipated BAND tools can enable massive, but still reliable, extrapolations of nuclear
properties, such as binding energies.

These extrapolations will establish the limits of nuclear binding and quantify our
uncertainty as to where those limits are. This is crucial for understanding how elements
in the universe are produced in stellar nucleosynthesis; see, e.g., Ref. [9]. A quantitative
understanding of related astrophysical processes requires knowledge of nuclear properties
and reaction rates of thousands of very exotic isotopes, the majority of which cannot be
accessed by experiments. Consequently, the nuclear data for astrophysical simulations
must often be obtained by carrying out massive model-based extrapolations. In several
recent studies [37-39] BMA techniques were applied to quantify the limits of the
nuclear landscape by considering several global models and the most recent experimental
information on particle stability and masses.

The global modeling of all particle-bound nuclei inhabiting the nuclear landscape
is a challenging task that requires control of many aspects of the nuclear many-body
problem. For such a task, the microscopic tool of choice is nuclear density functional
theory based on effective inter-nucleon interactions modeled in terms of energy density
functionals (EDFs). Bayesian model calibration has been carried out [84] for some
selected EDFs, but not for most of the mass models on the market. In the absence of full
uncertainty quantification for each model, a simple and practical strategy [36,85,86] is
to develop a statistical approach to the residuals between experimental observations and
the predictions of the nuclear mass models across the two-dimensional nuclear domain
{z;} = (Z;, N;). Following the discrepancy approach described in Sec. 4, the Bayesian
statistical model for these residuals y; — f(z;,0) can be written §(x;) + &;, where §(z)
represents the systematic deviation, € is the propagated point-to-point uncertainty. In
Refs. [37-39] the function 0 was taken as a GP in the nuclear domain.

The BMA example presented here is from Ref. [39], which studied one- and two-
nucleon separation energies Si,/1p/2n/2p and particle drip lines. The observations D
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include all experimental masses from atomic mass evaluations AME2003 [87] (training
set) together with later measurements from AME2016 [88] and elsewhere (testing
set) Ref. [39]. The GPs were trained on the separation-energy residuals of K = 11
nuclear mass models My, (k = 1,...11) that are listed in Fig. 9. Once the discrepancy
functions were inferred in this way, the posterior distributions for each model plus its
corresponding discrepancy function were obtained from 50,000 post-burn-in iterations
of MCMC. These samples were then used to generate 10,000 mass tables.

HFB-24 FRDM-2012

ﬁ ----------- BMA(n) BMA(p) BMA(n+p)
3 (
cC BCPM SV—m|n
3 M UNEDF2 ' UNEDFO
5 } UNEDF1
2 {
21
8|
‘A
7000 7500 8000 8500
Number of particle-bound nuclei
Figure 9. Posterior distributions of the number of particle-bound nuclei with

Z,N > 8 and Z < 119. The histograms show the posterior densities for each model:
HFB-24, FRDM-2012, D1M, BCPM, SLy4, SkP, SV-min and UNEDF2, UNEDFO,
UNEDF1, and SkM*. The lines show the BMA posterior densities. (From Ref. [39].)

The resulting predictions of the K = 11 nuclear mass models were then combined
via BMA. Ref. [39] used two families of weights based on the data from the neutron-
rich (x,) and proton-rich (x5,) nuclear domains. On the neutron-rich side, weights were
assigned according to the model performance in regard to the prediction of the existence
of observed neutron-rich nuclei that were not part of the training or testing sets:

w(n) o< p (Smﬂn(x) >0 forz € anMk) , (37)

where x,, is the set of 254 experimentally observed neutron-rich nuclei with 20 < Z <50
for which no experimental neutron separation energy is available. On the proton-rich
side, weights

wi(p) o< p(Sap(z) < 0, Sip(z) > 0 for z € x9p| Mp) , (38)
were given, where X, is the set of five long-lived two-proton emitters [38]. To assess the
whole landscape, Ref. [39] applied a local model averaging variant called BMA (n+p),
with local weights that correspond to wi(p) (wk(n)) on the proton-rich (neutron-rich)
side of stability:

wi(Z, N) = w(n) H(N > Ng(Z)) + wi(p) H(N < Ns(2)), (39)

with H(z) is the Heaviside step function and Ng(Z) is the neutron number of the average
line of B-stability at proton number Z.
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To estimate how many particle-bound nuclei with Z, N > 8 and Z < 119 may exist
in nature, the posterior distribution of the number of isotopes with positive separation
energies was calculated. The resulting posterior distributions for individual models and
BMA are shown in Fig. 9. According to the BMA(n+p) analysis in Eq. (39), the number
of particle-bound nuclei is 7708 £ 534. The results of the individual models shown in
Fig. 9 show considerable spread, primarily due to the extrapolation uncertainty in the
heavy neutron-rich region. This result underlines the fact that one should be very careful
when trusting extrapolative predictions of any given model.

BAND will take posterior predictions obtained with BMA-—such as those discussed
in this section—and use them to plan experiments. For this case study those experiments
would aim at establishing the existence of exotic nuclei. In the nucleosynthesis context,
the errors on binding energies computed with BMA can guide the uncertainty analysis
for abundance studies involving astrophysical network simulations. BAND will also
improve the EDF's used for this study, since full calibration of individual NP models can
be considered before they are mixed. Better understanding of the NP model properties
in the data space can yield more informed statistical models for the discrepancy between
the models and reality than the GP used in the study described above. This, in turn,
will permit more robust prediction of extrapolated nuclear properties thus providing
better input for experimental design described in Sec. 5.

With BAND, we will improve the simple BMA methodology presented in this
example by using the more advanced BMM discussed in Sec. 3. In this way, we will be
able to catch local model preferences, see Sec. 3.4 and Ref. [89]. Another anticipated
improvement concerns the pre-selection of models used in the BMM. This will amount
to computing the prior probability p(M}) based on the model performance in the space
of observations x. This will enable us to eliminate models that are very similar (or
identical) in the space x [89].

9. Case Study: Bayesian Model Averaging for transport coefficients in
dynamical models of heavy-ion collisions

A simple application of Bayesian Model Averaging to heavy-ion collisions dynamics
was recently published by the JETSCAPE Collaboration [90]. One of JETSCAPE’s
goals is to use experimental data measured at RHIC and the LHC to perform global
calibration of a highly complex dynamical model for the evolution of hot and dense
quantumchromodynamics (QCD) matter created in relativistic heavy-ion collisions [91].
There is, however, an irreducible model uncertainty in the calibration. It arises from
ambiguities in the model used for “particlization”. Particlization marks the transition
between two dynamical modules: a relativistic dissipative fluid dynamical description of
the early quark-gluon plasma stage of the heavy-ion collision and a microscopic kinetic
transport code describing the late and much more dilute hadronic stage. Particlization
is necessary to translate the fluid from the first stage into the set of particles that get
transported in the second stage. The posterior joint probability distribution P(6|yexp)
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for 17 model parameters 6 was extracted via Bayesian Model Averaging. As in Eq. (13),
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Figure 10. The 90% credible intervals for the prior (gray), the posteriors of the Grad
(blue), Chapman-Enskog (red) and Pratt-Torrieri-Bernhard (green) particlization
models, and their Bayesian model average (orange) for the specific bulk (left) and
shear (right) viscosities of QGP. (From Ref. [90].)

that posterior is a linear combination of the posteriors corresponding to three different
model choices for this transition. These models are denoted Grad, PTB (Pratt-Torrieri-
Bernhard), and CE (Chapman-Enskog) in Fig. 10. For the case studied in [90] the
evidence ratios of these models were approximately 5000:3000:1; that is, the CE model
turned out to be significantly disfavored by the data while the other two contributed with
similar weights to the Bayesian Model Average. The resulting 90% credibility intervals
for the specific shear and bulk viscosities, /s and (/s, as functions of temperature are
shown in Fig. 10. The gray areas denote the prior 90% credible intervals (see Ref. [91]
for an in-depth discussion of prior selection), the colored lines outline the corresponding
ranges for the three particlization models studied in [90,91], while the orange areas
show the ones for the Bayesian Model Averages. The differences between the prior
(gray) and posterior (orange) 90% credible intervals for the Quark-Gluon Plasma
(QGP) viscosities indicate that the available experimental data exhibit their strongest
constraining power in the lower temperature region 150 MeV < T < 250 MeV; above
T ~250MeV their power to constrain these transport coefficients rapidly degrades,
leaving large uncertainties for both the shear and, in particular, the bulk viscosity.
For a deeper discussion of the physical and statistical implications of this plot we refer
the reader to [90].

The study presented in Refs. [90,91] employed a number of tools used in Bayesian
inference that are anticipated to become, in one form or another, part of the BAND
framework. This will facilitate their application to a much wider set of problems in
Nuclear Physics: (i) economic sampling of a high-dimensional model parameter space
using a Latin hypercube design for full model runs; (ii) Principal Component Analysis
(PCA) of a large space of observables to reduce the dimensionality of the space of
target observables for calculating the likelihood of the model parameters; (iii) GP
emulators trained on the PCA observables predicted by the full-model runs to efficiently
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interpolate these predictions to large numbers of alternate model parameter settings;
(iv) closure tests for testing emulator performance and our ability to reconstruct the
model parameters from “mock data” generated by the full model with known parameter
settings; (v) efficient MCMC sampling of the multidimensional posterior probability
distribution for the model parameters; and (vi) Bayesian Model Averaging to combine
the posterior distributions from different, a priori equally likely models, in order to
quantify the contribution of irreducible model uncertainties to the variance of parameters
inferred from the experimental data. In developing these tools and applying them
appropriately, collaboration between physicists and statisticians has been invaluable,
and BAND will follow the same strategy.

A key deliverable of the BAND initiative is a statistically meaningful simultaneous
quantification of both theoretical and experimental uncertainties in Bayesian inference.
The study reported in Refs. [90,91] made a first step in this direction within the context
of heavy-ion collision dynamics. But its scope was limited because it considered only
the theoretical uncertainty associated with the particlization of the quark-gluon plasma
fluid at the end of its evolution. As mentioned in Sec. 6, other modeling uncertainties
affect the early evolution stages and even the initial conditions of QCD matter created in
heavy-ion collisions. For studying the interplay of early and late modeling uncertainties,
and the best weighting of these in future predictions of additional observables for
experimental design, the discussion presented in Sec. 3 clarifies that the simple linear
combination of the posterior distributions of each individual model used in Ref. [90] is no
longer adequate. The BAND initiative will combine expertise in physics, statistics and
computer science to develop and implement more powerful Bayesian Model Mixing tools
needed to properly account for local model preferences while also adequately accounting
for the individual models’ overall performance in the space of observations D through
their model evidence p(My).

10. Strike up the BAND

The BAND framework is designed to be an integrated set of computational and input
tools. The BAND collaboration will develop the framework in several stages that will
include concurrent lines of development and testing. Open-source code development and
delivery will be facilitated via the BAND Github repository [55]. We will develop codes
for novel applications using a mix of the repository’s public and private branches. The
framework will also draw on and integrate other repositories where publicly available
open-source codes that perform BAND-relevant physics and statistics functions reside.
The BAND framework will be intentionally permissive in terms of the languages and
formats of collaboration code. The computational/theoretical models that can be
interfaced with BAND framework codes will thus range in language (e.g., Fortran,
C/C++, Python) and scale (e.g., executable on a single thread, with its own MPI
communicator). This fusion of disparate tools will be achieved by adhering to newly
designed BAND Software Development Kit (SDK) requirements. This SDK will borrow
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from established community software requirements such as those of the Extreme-scale
Scientific Software Development Kit (xSDK) [92] and IDEAS Productivity [93] efforts.
The goal of this SDK is to build in interoperability across the BAND software ecosystem,
large-scale scientific simulation codes, and other numerical libraries. This will enable
non-BAND scientists’ involvement in the development of BAND’s instruments and in
proof-of-concept science analyses.

BAND is already collating, documenting, and linking to or storing codes from
various sub-fields of nuclear physics. New framework codes will be developed in parallel
with interfaces that allow the use of existing modeling code within the framework. For
example, the model calibration component of BAND will involve new technology for
emulation and posterior exploration that interfaces with existing GP emulators and
MCMC methods. The resulting capabilities will be part of the first release of the
framework, scheduled for 2021. That release will have limited physics functionality
but serve as a testing platform. Unit and regression tests will be used to ensure that
core functionalities are maintained during BAND’s continuous, community-oriented
development. Later releases will include the entire suite of tools depicted in Fig. 1.
All releases will be available for download from our public repository, so any interested
community member can test and develop familiarity with the evolving framework.

Nuclear physicists will then be able to bring their physics model and dataset and
use BAND’s input tools to:

e Formulate a likelihood. Section 2.2 explains the Bayesian approach to formulating
likelihoods that users can employ for parameter estimation and making predictions.
BAND will encourage them to consider error modeling that goes beyond the
standard likelihood (6) in order to account for deficiencies in their physics model.

e Specify priors. BAND’s participatory approach to prior selection, discussed in
Sec. 2.1, will facilitate the development of priors that encode physical bounds on
parameters, or expectations regarding their natural size. This will mean that all
pertinent information, not just that in the provided dataset, will be leveraged and
accounted for in the posteriors for all quantities of interest.

Of course, the statistical models developed in this way must be checked. BAND will
employ a number of statistical model-checking diagnostics (see, e.g., Ref. [94] for the GP
case) to ensure that the statistical models adopted are consistent. We will particularly
focus on whether the BAND framework produces accurate credibility intervals, i.e., the
68% credibility interval around the model prediction encompasses the correct result 68%
of the time.

BAND'’s inter-operable computational tools will also facilitate model emulation,
which is crucial for NP models that require large amounts of computer time for a single
evaluation. BAND’s emulators will then be used to map out the posterior via Monte
Carlo sampling. In this way, BAND can be used for efficient calibration of a single NP
model.

But a key emphasis of BAND is to go beyond such a single-model approach and use
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Bayesian Model Mixing to obtain more information—and more reliable information—
than is available in the posterior of any one NP model. The principles of BMM were
explained in Sec. 3. BMM can be superior to Bayesian Model Averaging because it
does not generate the full posterior of each model before averaging them, but instead
employs more specific information on each model to produce a posterior that draws on
each model in its areas of strength.

Section 4 applied the emulation, calibration, and Bayesian Model Mixing elements
of the BAND framework in a simple context: the problem of estimating the gravitational
acceleration from data in a ball-drop experiment.

The results of BAND analyses—whether single- or multi-model—will then be used
to perform experimental design analyses, i.e., answer questions about what experiment
will produce the maximum gain in regard to a desired piece (or pieces) of information—
see Sec. b.

Finally, in Secs. 6-9 we discussed some recent applications of Bayesian methods in
NP and explained how the BAND framework will enable analyses that go much further.
BAND'’s ability to develop statistical models of the discrepancy between physics models
and data, together with its intelligent use of priors, and its emphasis on Bayesian Model
Mixing, will provide deeper insights into the equation of state, initial conditions and
transport coefficients of strongly interacting matter, the existence of nuclei near the
driplines, production of elements in stars, and models of nuclear reactions. In each area
BAND’s full quantification of uncertainties will allow it to provide valuable guidance
regarding the impact of proposed experiments at FRIB, RHIC, and other NP facilities.
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