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In-cell protein landscapes: making the match between theory, 
simulation and experiment 
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Theory, computation and experiment have matched up for the folding of small proteins in vitro, a difficult 

feat because folding energy landscapes are fairly smooth and free energy differences between states are 

small. Smoothness means that protein structure and folding are susceptible to the local environment 

inside living cells. Theory, computation and experiment are now exploring cellular modulation of energy 

landscapes. Interesting concepts have emerged, such as co-evolution of protein surfaces with their 
cellular environment to reduce detrimental interactions. Here we look at very recent work beginning to 

bring together theory, simulations and experiments in the area of protein landscape modulation, to see 

what problems might be solved in the near future by combining these approaches. 
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Introduction 
Protein folding has been studied quantitatively in vitro for over half a century, starting with experiments 

that revealed the structural, kinetic and thermodynamic principles behind folding of small proteins [1,2],  

soon followed by computational efforts to model folding and unfolding events [3,4]. The energy landscape 

theory of protein folding that crystallized in the 1990s quantified the paradigm of entropy-enthalpy 

compensation that allows protein folding to be such a fast (microseconds to minutes) chemical reaction 
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with small barriers and shallow free energy minima; yet folding is also a frustrated process because not all 

constraints (e.g. function vs. rapid folding) can be simultaneously optimized [5,6]. Starting about 20 years 

ago, in vitro computational and experimental efforts began to converge [7,8], culminating in computational 

reversible folding of a dozen small proteins [9] and more since then [10]. 

In contrast, a protein that is folding in vivo must navigate a heterogeneous environment filled with 

metabolites, inorganic ions, water, and many types of macromolecules. Neighboring macromolecules are 

considered to be particularly important because macromolecules are estimated to occupy 10-40% of a cell’s 

volume [11], but ions and small metabolites also play a big role by screening and binding [14]. A folding 

protein’s shallow free energy minima means that cell cycle, cell compartments, cytoskeleton and other 

features of the cell will modulate protein folding and protein interactions in space and time [12,13].  

Theoretical and computational efforts to determine the effect of the cellular environment on proteins began 

in the 1980s by exploring the effects of crowding [14] and macromolecular ‘sticking’ [15] on protein folding 

and protein-protein interactions. Early efforts to simulate proteins in vivo modeled macromolecules as hard 

spheres and focused on their diffusion and neighboring interactions [16,17]. In 2010, McGuffee and Elcock 

simulated a sizeable segment of the E. coli cytoplasm using Brownian dynamics [18]. Following their work, 

coarse-grained cellular models and all-atom models of crowded protein solutions were developed [19,20]. 

In 2016, Sugita and Feig used all-atom molecular dynamics to evaluate protein stability and protein-protein 

interactions in a large (>100 million atom) model of a bacterial cytoplasm [21].  Since this study, the field 

of in-cell protein dynamics has continued to grow [22–24].  

Experimental techniques to study protein folding in cells started to develop in the early 2000s. The first 

quantitative method to compare protein stability in vitro and inside cytoplasm of E. coli cells using mass 

spectroscopy was reported by the Oas group in 2001 [25]. Such early techniques were destructive to the 

cell by extracting its contents prior to measurement. However, with improved in vivo fluorescent labeling, 

protein stability and aggregation could be observed directly in live bacterial cells [26]. Fluorescence 

imaging further emerged as a powerful technique to study protein folding stability and kinetics directly in 

live mammalian cells [27], enabling the observation even of single molecules [28].  

A number of recent reviews have covered the advances in theoretical, computational and experimental 

analysis of in-cell protein folding stability, diffusion and protein-protein interactions prior to the last three 

years [12,29–31]. The combination of improved computational capacity and increasingly sensitive 

experimental techniques makes the field ripe for a second theory-computation-experiment convergence in 

vivo. Here we emphasize tests of emerging ideas on protein folding and binding in vivo from the last two 

years, and discuss where the convergence can push boundaries in physics, biology and chemistry. 
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Theory and Computation 

Theoretical studies of protein folding and binding in vivo have focused on three major areas: crowding, 

sticking, and quinary structure. Crowding (steric or repulsive interactions of neighboring macromolecules) 

is predicted to stabilize more compact (folded) structures. The interior of the cell also offers electrostatic 

and hydrophobic interactions mediated by water, ions, and other macromolecules which can destabilize 

proteins [32] and interfere with their diffusion around the cell [33,34]. These interactions are referred to 

collectively as ‘sticking.’ When such weak, transient interactions have evolved to benefit the organism, 

they are referred to as quinary structure [12,35]. The existence of sticking is yet another sign of frustration 

because different interactions can make conflicting demands and evolution optimizes overall cellular 

homoeostasis, not just any individual interaction. 

The interplay of repulsive and attractive interactions has been shown experimentally to predict both 

stabilizing and destabilizing trends for proteins in cells [36]. Although proteins initially fold as a nascent 

chain during translation, their shallow energy landscapes ensure that an unfolded population is always 

present in the cell. For small proteins the ribosomal and unassisted folding processes may not be all that 

different [37]. For larger proteins, chaperones are indispensable protectors and holdases [38], reducing 

access to undesirable parts of the energy landscapes (e.g.  aggregate global minima). 

A major challenge of computational studies of crowded environments is reaching the microsecond or longer 

timescales necessary to fold a protein or to bring two proteins together. This is particularly challenging 

because early results point to slower folding in cells due to more restricted conformational dynamics [23]. 

To date, no protein has been folded atomistically in a cytoplasm model. Recently, we simulated multiple 

unfolded copies of a fast-folding WW domain for over 220 µs and observed only partial folding; instead, 

persistent non-native structure or even intermolecular structure [24] is formed. Additionally, coarse-grained 

simulations of proteins in the presence of inert crowders demonstrate the impact of crowding on structural 

ensembles of both folded and unfolded proteins [39,40]. In cellular simulations, the more compact 

ensembles are subject to a high degree of copy-to-copy variation, underscoring the importance of local 

environment on in-cell protein structure [21]. 

Multiple simulations of proteins in cell-like environments have observed excessive nonspecific protein-

protein interactions and clustering [22,23,34,41]. Due to the chemical nature of protein-protein sticking, a 

number of forces can contribute to these interactions. Current experimental evidence emphasizes the 

importance of electrostatic interactions in protein-protein sticking [42,43]. Computational results also point 

to the importance of hydrophobic patches. While all-atom studies of concentrated protein solutions do 

observe protein-protein contact formation between charged residues [41,44], other studies revealed both 
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electrostatic and hydrophobic surface interactions in a model of the cytoplasm [23,24], or in dense 

homogeneous protein solutions [22].  

As computational studies of proteins in the cell continue to develop, molecular dynamics force fields need 

to as well. Current force fields tend to over-stabilize protein-protein sticking [45].  To better simulate these 

environments, a number of modifications have been made to reduce sticking to the right level and better 

replicate experimental diffusion coefficients: using the TIP4P-D water model [22], modifying the strength 

of protein-water interactions [41], and using NBFIX corrections [23]. Despite these improvements, the 

comparison of computed and experimentally observed protein-protein sticking demonstrates that force 

fields developed to fold single proteins in vitro still need refinement to work for the cytoplasm (Figure 1). 

 

Figure 1: MD force fields’ tendency to stabilize protein-protein interactions make modeling crowded environments 
challenging. (a) While a WW domain (red) folds easily in a waterbox simulation with ions (gray spheres = Na+, Cl-), 
(b) excessive sticking interactions between surrounding macromolecules and metabolites cause long-lived misfolded 
states to appear in crowded simulations (WW domain in red has formed non-native helical structure) [24]. 

 

Experiment 

Protein structure, stability and function are sensitive to the local environment. Experiments under a wide 

range of crowding conditions have revealed great structural variety exhibited by some proteins even in vitro 

[39]. There have also been efforts to develop in vitro environments to better mimic the intracellular 

environment’s interplay of crowding and sticking [46].  

Crowding and sticking forces balance to control the structure of proteins inside the cell (Figure 2). A recent 

in-cell NMR study of protein GB1 reported a significant shift in the position of a helix-loop inside the cell 

vs. the solution structure [47]. DEER measurements of calmodulin inside living cells revealed more diverse 

conformations adopted by the protein in comparison to in vitro and cell lysate measurements [48], 

reinforcing again the idea of copy-to-copy variation in cells [21]. Live-cell imaging of FRET-labeled PGK 
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revealed that crowding also causes compaction of the unfolded state in addition to stabilizing the folded 

state [49].  

Crowding and sticking also balance to control protein stability and folding inside the cell’s many different 

environments (Figure 2). Our group recently used the cell as a test tube to modulate cell volume and 

intracellular concentration of small solutes independently and alter the stability of an enzyme, PGK [52]. 

Another recent study by Gnutt et al. demonstrated how surface mutations that weakened interactions, 

presumably sticking interactions, of SOD1 with the local environment lead to stabilization of the protein 

inside cells [53]. Moreover, cells subject to differentiation and stress exhibit changes in proteome and 

quality control machinery which modulate protein folding differently compared to unperturbed cells [51]. 

Mosaic expression of FRET labeled-protein in zebrafish larvae enabled us to study the variability of protein 

stability and folding kinetics across different tissues in a living organism with single-cell resolution [54]. 

 

Figure 2: The complexity and impact of cellular environment on protein structure, stability and function are difficult 
to reproduce in a test tube. Figure summarizes the factors in play based on a few experimental results of interest. (a) 
In vitro experiments of proteins in dilute aqueous buffer solutions or with inert crowders often neglect the non-steric 
interactions between macromolecules and variability in composition inside cells [50,51]. (b) Effects of 
macromolecular crowding and sticking forces on compactness of unfolded state [49], structure and stability of folded 
state [52–54] and diffusion of a protein inside the cell to reach the required locations or in search of binding partners 
[33]. Protein-protein interactions can result in functional (quinary) or non-functional complexes/oligomers, whose 
shape determines the stabilization by crowding [55]. Quinary structures allow for multivalent interactions, extreme 
cases leading to phase separation in the crowded cellular environment [56]. 

In the cell, proteins interact with one another to form functional complexes. More so than strong quaternary 

interactions, the weakest transiently bound complexes or quinary structures are highly sensitive to 

variations in the local environment, useful for sensing the state of the cell and cellular signaling. As in the 



 6 

case of protein folding, macromolecular crowding is expected to favor the more compact associated state 

of a protein complex. Recent studies on protein dimers show that the degree of this stabilization could be 

predicted by the shape and also by the electrostatic and hydrophobic surface properties of the dimer. 

Interestingly, dimers that deviate from spherical shapes show reduced stabilization in crowded 

environments (Figure 2) [55,57]. Moreover, the crucial role of the cytoplasm in maintaining weak protein-

protein interactions and their function is evident from our recent study where the proper ATP-dependent 

heat shock function of Hsp70 on substrate PGK was enabled inside the cell, whereas in vitro crowded 

environments predominantly caused ATP-independent sticking of the unfolded substrate to the chaperone 

[58]. In addition, structurally similar chaperones can operate by different mechanisms inside the cell, for 

example binding proteins only after or also before they unfold [59]. 

Quinary interactions play an important role in organizing the highly crowded and complex cellular 

environment, sometimes even resulting in phase separation and formation of microenvironments called 

‘liquid droplets’ (Figure 2). This phenomenon is mostly exhibited by disordered proteins (IDPs) that self-

assemble or associate with RNA molecules [60]. The sensitivity of this association to variations in salt 

concentration and temperature [56] can be utilized in tuning assembly or disassembly of droplets for 

quantitative studies in mammalian cells. In vivo measurements of IDPs of opposite charge has revealed the 

importance of electrostatic interactions in modulating binding of nascent chains to their cellular targets [61]. 

Real-time in-cell NMR experiments to better understand RNA-mediated quinary interactions revealed 

ribosomes as major components that mediate protein quinary interactions [62,63]. The ribosome acts as a 

hub for nascent proteins and many factors to associate. For small proteins this may not modulate the energy 

landscape much [37], but for large proteins it could critically reshape the folding funnel to avoid 

unproductive routes. 

 

Towards a match 

Physics-based folding simulations of small proteins are encountering much success in vitro. In-cell, all-

atom force fields still require calibration to balance self-interaction that leads to folding vs. electrostatic or 

hydrophobic sticking to the environment. To make an initial match, the key again will be timescales: as 

full-atom simulations of the cytoplasm ramp up towards the millisecond time, folding experiments in the 

cell will need to move from the current ms into the µs time scale (Figure 3). This will require parallelizing 

equilibrium techniques such as fluorescence correlation spectroscopy so that the whole cell can be imaged 

at once or speeding up relaxation techniques such as in-cell temperature jumps. The solution of the 

‘sticking’ problem will also be important for simulating protein interactions because they are reduced by 
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excessive non-competitive binding. Current experiments do show, however, that binding in the cell can be 

reduced by orders of magnitude compared to in vitro measurements attempting to replicate physiological 

conditions [65], so a direct comparison of in-cell simulations and measurements will be important. 

 

Figure 3: Timescales of notable biological processes (top) [13,23,24,64] and experimental and computational methods 
(bottom) [24,27,28,64]. In order to converge, the timescales of these techniques must overlap with each other and the 
process of interest.  

In the realm of protein-protein interactions, a key question is how the cell deploys protein surfaces to avoid 

unwanted interactions and optimize useful interactions, as well as how the former (sticking) can evolve into 

the latter (quinary structure). A protein surface encodes only a finite amount of information [30] that can 

be used to optimize recognition of multiple binding partners and at the same time avoid non-specific 

binding. Overall electrostatic tuning of cytoplasmic surfaces clearly plays an important role [33], but over 

the next several years it will become important to understand at the residue level how protein surfaces 

evolve in the cell to maximize function and minimize interference. 

In the meantime, ‘whole cell’ simulation techniques have been developed that merge coarse-grained real-

space dynamics on a lattice with reaction networks for small solutes and chemical reactions that cannot be 

handled on the lattice [66]. This work is being extended from bacterial to eukaryotic cells [64]. As coarse-

graining approaches the all-atom scale, it remains important to include reaction networks. Quantum 

mechanical treatments of reactions in the cell are the gold standard, but more efficient methods to combine 

weak interactions with chemistry (e.g. bond breaking and making in metabolism or replication) will be 

needed to bring a cell to life on the computer. 

The ultimate goal of biomolecular folding and interaction dynamics in the cell is to merge with gene 

expression and replication, ribosomal structure formation [67], essential metabolism [68], and phase 

transitions that compartmentalize the cell with or without membranes, to produce simplified real-life and 

computational cells capable of replication and survival. While this is a lofty goal, the many fields of 
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computational and experimental biophysics that need to merge are making swift progress to put the 

necessary pieces in place. 
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