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Abstract. We prove an analogue of the Kac-Wakimoto conjecture for the periplectic
Lie superalgebra p(n), stating that any simple module lying in a block of non-maximal
atypicality has superdimension zero.

1. Introduction

1.1. Consider a complex vector superspace V , and let C0|1 be the odd one-dimensional
vectors superspace.

The (complex) periplectic Lie superalgebra p(V ) is the Lie superalgebra of endomor-
phisms of a complex vector superspace V equipped with a non-degenerate symmetric form
ω : S2V → C

0|1 (this form is also referred to as an “odd form”). An example of such
superalgebra is p(n) = p(Cn|n) for V = C

n|n with ωn : Cn|n⊗C
n|n → C

0|1 pairing the even
and odd parts of the vector superspace C

n|n.
The periplectic Lie superalgebras has an interesting non-semisimple representation the-

ory; some results on the category Fn of finite-dimensional integrable representations of
p(n) can be found in [BDE+16, Che15, Cou16, DLZ15, Gor01, Moo03, Ser02].
In [BDE+16], the blocks of the category Fn were classified: it was shown that (up to

change of parity) the blocks can be enumerated by integers −n,−n + 2,−n + 4, . . . , n−
4, n − 2, n. We say that a block has maximal atypicality if it contains one-dimensional
even or odd representation of p(n). Such block has number 0 for even n and ±1 for odd
n.

In this paper we prove the following version of the Kac-Wakimoto conjecture:

Theorem 1. Every object of a block which is not of maximal atypicality has zero superdi-
mension, where the superdimension sdimM is defined as dimM0̄ − dimM1̄.

The main ingredients in the proof of this theorem, are the translation functors acting on
Fn, and the Duflo-Serganova functorDS : Fn → Fn−2. The translation functors are direct
summands of the functor−⊗V , whose action on the blocks Fn was described in [BDE+16];
the functor DS : Fn → Fn−2 is a symmetric monoidal (SM) functor which preserves
superdimension. Using this functor we reduce the problem of computing superdimensions
in Fn to a similar problem in Fn−2.
We also prove the following statement:

Theorem 2. Let M ∈ Fn be an object lying in a certain block as described in Section
2.3.5 and [BDE+16].

(1) The object M∗ also lies in the same block of Fn.
(2) We have a natural isomorphism

Θk(M
∗) ∼= Π(Θ−k(M))∗
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where Θk is the k-th translation functor on Fn (see Definition 2.3.5).

1.2. Acknowledgements. I.E.-A. was supported by the ISF grant no. 711/18. V.S. was
supported by NSF grant 1701532.

2. Preliminaries

2.1. General. Throughout this paper, we will work over the base field C, and all the
categories considered are C-linear.
A vector superspace will be defined as a Z/2Z-graded vector space V = V0̄ ⊕ V1̄. The

parity of a homogeneous vector v ∈ V will be denoted by p(v) ∈ Z/2Z = {0̄, 1̄} (whenever
the notation p(v) appears in formulas, we always assume that v is homogeneous).
By Π we denote the functor −⊗ C

0|1 on the category of vector superspaces.

2.2. Tensor categories. In the context of symmetric monoidal (SM) categories, we will
denote by ✶ the unit object, and by σ the symmetry morphisms.
A functor between symmetric monoidal categories will be called a SM functor if it

respects the SM structure.
Given an object V in a SM category, we will denote by

coev : ✶ → V ⊗ V ∗, ev : V ∗ ⊗ V → ✶

the coevaluation and evaluation maps for V . We will also denote by gl(V ) := V ⊗ V ∗ the
internal endomorphism space with the obvious Lie algebra structure on it. The object V
is then a module over the Lie algebra gl(V ); we denote the action by act : gl(V )⊗V → V .
For two functors F,G we write F ⊢ G if F is left adjoint of G.

2.3. The periplectic Lie superalgebra.

2.3.1. Definition of the periplectic Lie superalgebra. Let n ∈ Z>0, and let Vn be an (n|n)-
dimensional vector superspace equipped with a non-degenerate odd symmetric form

β : Vn ⊗ Vn → C, β(v, w) = β(w, v), and β(v, w) = 0 if p(v) = p(w).(1)

Then EndC(Vn) inherits the structure of a vector superspace from Vn. We denote by
p(n) the Lie superalgebra of all X ∈ EndC(Vn) preserving β, i.e. satisfying

β(Xv,w) + (−1)p(X)p(v)β(v,Xw) = 0.

Remark 2.3.1. Choosing dual bases v1, v2, . . . , vn in V0̄,n and v1′ , v2′ , . . . vn′ in V1̄,n, we can
write the matrix of X ∈ p(n) as

(

A B
C −At

)

where A,B,C are n × n matrices such that
Bt = B, Ct = −C.

There is a grading p(n) ∼= p(n)−1 ⊕ p(n)0 ⊕ p(n)1 where

p(n)0
∼= gl(n), p(n)−1

∼= Π ∧2 (Cn)∗, p(n)1
∼= ΠS2

C
n.

Note that the action of p(n)±1 on any p(n)-module is p(n)0-equivariant.

2.3.2. Weights for the periplectic superalgebra. We choose a Cartan subalgebra of p(n)
equal to the subalgebra of diagonal matrices in p(n)0 = gl(n) and fix the standard basis
{ε1, . . . , εn} in the dual space. The lattice of integral weights is by definition spanZ{εi}

n
i=1.

⋆ We fix a set of simple roots ε2 − ε1, . . . , εn − εn−1,−εn−1 − εn, the last root is odd
and all others are even.
With respect to this choice dominant integral weights are of the form λ =

∑

i λiεi
with λ1 ≤ λ2 ≤ . . . ≤ λn.

2



⋆ We fix an order on the weights of p(n): for weights µ, λ, we say that µ ≥ λ if
µi ≤ λi for each i.

Remark 2.3.2. It was shown in [BDE+16, Section 3.3] that if ≤ corresponds to a
highest-weight structure on the category of finite-dimensional representations of
p(n). Note that in the cited paper we use a different set of simple roots −ε1 −
ε2, ε1 − ε2, . . . , εn−1 − εn.

⋆ The simple finite-dimensional representation of p(n) with highest weight λ and
even highest weight vector will be denoted by Ln(λ).

Example 2.3.3. Let n ≥ 2. The natural representation Vn of p(n) has highest
weight −ε1, with odd highest weight vector; hence Vn

∼= ΠLn(−ε1). The repre-
sentation

∧2 Vn has highest weight −2ε1, and the representation S2Vn has highest
weight −ε1 − ε2; both have even highest weight vectors, so

∧2Vn ։ Ln(−2ε1), Ln(−ε1 − ε2) →֒ S2Vn.

⋆ Set ρ(n) :=
∑n

i=1(i− 1)εi, and for any weight λ, let

λ̄ := λ+ ρ(n).

⋆ We will associate to λ a weight diagram dλ, defined as a labeling of the integer
line by symbols • (“black ball”) and ◦ (“empty”) such that j has label • if j ∈
{λ̄i | i = 1, 2, . . .}, and label ◦ otherwise.

⋆ We use the notations |λ| := −
∑

i λi and κ(λ) :=
∑

i(−1)λ̄i .

2.3.3. Representations of p(n). Let Fn be the category of finite-dimensional representa-
tions of p(n) whose restriction to p(n)0̄ ∼= gl(n) integrates to an action of GL(n).
By definition, the morphisms in Fn will be grading-preserving p(n)-morphisms, i.e.,

HomFn
(X, Y ) is a vector space and not a vector superspace. This is important in order

to ensure that the category Fn be abelian.
The category Fn is not semisimple. It is a highest-weight category, having simple,

standard, costandard, and projective modules (the latter are also injective and tilting, per
[BKN10]). Given a simple module Ln(λ) in Fn, we denote the corresponding standard,
costandard, and projective modules by ∆n(λ), ∇n(λ), Pn(λ) respectively.

2.3.4. Tensor Casimir and translation functors. In [BDE+16] we construct the following
natural endomorphism Ω(n) of the endofunctor (−)⊗ Vn on Fn.

Consider the involutive automorphism τ of gl(Vn) defined by

τ ( A B
C D ) =

(

−Dt Bt

−Ct −At

)

.

Then p(n) is the subalgebra of fixed points of τ and we have a p(n)-invariant decomposition

gl(Vn) ∼= p(n)⊕ p(n)∗

where p(n)∗ is the eigenspace of τ with eigenvalue −1. Both pn and p∗n are maximal
isotropic subspaces of gl(Vn) with respect to the invariant symmetric form

(X, Y ) = strXY.

Definition 2.3.4 (Tensor Casimir). For any M ∈ Fn, let Ω
(n)
M be the composition

Vn ⊗M
Id⊗coev⊗Id
−−−−−−−→ Vn ⊗ p(n)∗ ⊗ p(n)⊗M

i∗⊗Id
−−−→ Vn ⊗ gl(Vn)⊗ p(n)⊗M

act⊗act
−−−−→ Vn ⊗M

where i∗ : p(n)
∗ → gl(Vn) is the p(n)-equivariant embedding defined above.
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Definition 2.3.5 (Translation functors). For k ∈ C, we define a functor Θ′(n)
k : Fn → Fn

as the functor Θ(n) = (−)⊗Vn followed by the projection onto the generalized k-eigenspace
for Ω(n), i.e.

Θ′(n)
k (M) :=

⋃

m>0

Ker(Ω
(n)
M − k Id)m|M⊗Vn

(2)

and set Θ
(n)
k := ΠkΘ′(n)

k in case k ∈ Z (it was proved in [BDE+16] that ∀k /∈ Z, Θ
(n)
k

∼= 0).

We use the following results from [BDE+16] throughout the paper:

Theorem 2.3.6 (See [BDE+16].). The relations on the translation functors Θ
(n)
j , j ∈ Z

induce a representation of the infinite Temperley-Lieb algebra TL∞(q = i) on the

Grothendieck ring on Fn. Furthermore, for any k ∈ Z, Θ
(n)
k ⊢ Θ

(n)
k−1, i.e., Θ

(n)
k is left

adjoint to Θ
(n)
k−1 and right adjoint to Θ

(n)
k+1.

The functors Θ
(n)
k are exact, since −⊗ Vn is an exact functor.

Theorem 2.3.7 (See [BDE+16].). Let P be an indecomposable projective module in Fn.

Then for any i, Θ
(n)
i P is indecomposable projective or zero.

For more details on the structure of Fn we refer the reader to [BDE+16].

2.3.5. Blocks. Let Fk
n be the full subcategory of Fn consisting of modules whose composi-

tion functors are isomorphic to Ln(λ) or ΠLn(λ) with κ(λ) = k. Observe that κ(λ) takes
value in the set {−n,−n+ 2, . . . , n− 2, n}. It is proven in [BDE+16] that

Fn =
⊕

k∈{−n,−n+2,...,n−2,n}

Fk
n .

Furthermore

Fk
n = (Fk

n)
+ ⊕ (Fk

n)
−

with the functor Π establishing equivalence between (Fk
n)

+ and (Fk
n)

−. The subcategories
(Fk

n)
± are blocks of Fn. Since parity of a module is not important for this paper, by abuse

of terminology, we will just call Fk
n “blocks”.

Remark 2.3.8. We call blocks F±n
n typical. If κ(λ) = ±n then Ln(λ) = ∇n(λ), see

[BDE+16, Remark 9.1.3]. On the other hand, dimLn(λ) = (1|0) implies λ = a(
∑n

i+1 εi)
hence κ(λ) = ±1 for odd n and 0 for even n. We call the corresponding blocks maximally
atypical.

Theorem 2.3.9 (See [BDE+16].). Let i ∈ Z, k ∈ {−n,−n + 2, . . . , n − 2, n}. Then we
have

Θ
(n)
i Fk

n ⊂

{

Fk+2
n if i is odd

Fk−2
n if i is even

Finally, we introduce some notation:

Notation 2.3.10. Let I = (i1, i2, . . . , ik) be a sequence with i1, i2, . . . , ik ∈ Z.

(1) We denote by

Θ
(n)
I := Θ

(n)
i1

◦Θ
(n)
i2

◦ . . . ◦Θ
(n)
ik

the composition of the corresponding translation functors.
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(2) We set

t(I) :=
k

∑

s=0

(−1)is+1.

The following is an immediate corollary of Theorem 2.3.9:

Corollary 2.3.11. For any n ≥ 1, l ∈ {−n,−(n − 2), . . . , n − 2, n} and any integer
sequence I = (i1, i2, . . . , ik) we have:

M ∈ Fn
l =⇒ Θ

(n)
I M ∈ Fn

l+2t(I).

2.4. The Duflo-Serganova functor.

2.4.1. Definition and basic properties. Let n ≥ 3, and let x ∈ p(n) be an odd element
such that [x, x] = 0.

Definition 2.4.1 (See [DS05]). Let M ∈ Fn. We define

DSx(M) = Ker(x|M)
/

Im(x|M).

The vector superspace px := DSxp(n) is naturally equipped with a Lie superalgebra
structure. One can check by direct computations that px is isomorphic to p(n− s) where
s is the rank of x. The above correspondence defines an SM-functor DSx : Fn → Fn−s,
called the Duflo-Serganova functor. Such functors were introduced in [DS05].

3. The Duflo-Serganova functor and the tensor Casimir

In this section we recall the definition of the Duflo-Serganova functor and prove that it
commutes with translation functors.

Let n ≥ 3, and let x ∈ p(n)1̄ be such that [x, x] = 0. Let s := rk(x).
Definition 2.4.1 then gives us a functor DSx : Fn → Fn−s.

Lemma 3.0.1. We have: DSx(Ω
(n)) = Ω(n−s)DSn, where Ω(n) is the tensor Casimir for

p(n), and Ω(n−s) is the tensor Casimir for p(n− s).

That is, for any M ∈ Fn, DSx(Ω
(n)
M ) = Ω

(n−s)
DSx(M) as endomorphisms of Vn−s⊗DSx(M).

Proof. This follows directly from the definition of the tensor Casimir (Definition 2.3.4),
as well as the fact that DSx is a symmetric monoidal functor. �

Corollary 3.0.2. The functor DSx commutes with translation functors, that is we have
a natural isomorphism of functors

DSxΘ
(n)
k

∼
−→ Θ

(n−s)
k DSx

for any k ∈ Z.

Proof. Recall that DSx is a SM functor and DSx(Vn) ∼= Vn−s. Hence we have a natural
isomorphism η : DSxΘ

(n) −→ Θ(n−s)DSx, where Θ
(n) = (−)⊗Vn is as in Definition 2.3.5.

Now, consider DSx

(

Ω(n)
)

(the tensor Casimir). By Lemma 3.0.1, the diagram below
commutes:

DSxΘ
(n) η //

DSx(Ω(n))
��

Θ(n−s)DSx

Ωn−sDSx

��

DSxΘ
(n) η // Θ(n−s)DSx

.

Hence η induces an isomorphism DSxΘ
(n)
k

∼= Θ
(n−s)
k DSx for any k ∈ Z, as required.

�
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4. Main result

Throughout this section, we will work with functorsDSx : Fn → Fn−2 where x ∈ p(n)−1

has rank 2 and satisfies [x, x] = 0. Here p(n)−1 is as in Section 2.3.1.

Theorem 4.0.1. If M ∈ Fk
n and k 6= 0,±1 then sdimM = 0.

Proof. Let x ∈ p(n)−1 such that [x, x] = 0, rk(x) = 2.
We prove the statement by induction on n.
The base case n = 1 is tautological (in that case, there are no non-zero blocks except

F±1
1 ); in the base case n = 2, it is enough to check for a simple module M ∈ F±2

2 . The
blocks F±2

2 are typical, see Remark 2.3.8, hence any simple object in F±2
2 is isomorphic

to ∇n(µ), and hence has superdimension zero (cf. [BDE+16]).
Next, for the inductive step, let n ≥ 3, and assume that our statement holds for n− 2.
Let M ∈ Fk

n , k /∈ {0,±1}. We use Proposition 4.0.2 below, which states that DSx

preserves blocks, to show that DSx(M) lies in the corresponding block Fk
n−2 (if n = k,

then DSx(M) = 0).
The fact that the functor DSx : Fn → Fn−2 is SM, and hence preserves superdimension,

allows us to use the inductive assumption to show that sdimDSx(M) = 0, and hence
sdimM = 0, as required.

�

Proposition 4.0.2. Let x ∈ p(n)−1 such that [x, x] = 0, rk(x) = 2. Let M ∈ Fk
n . Then

DSx(M) ∈ Fk
n−2 (if k = ±n, then DSx(M) = 0).

Proof. The proposition is proved in several steps.

(1) We prove that DSx commutes with translation functors. This is done in Lemma
3.0.2.

(2) We prove that it is possible to translate any simple module into a typical block;
that is, for any simple L ∈ Fn,

• There exists an integer sequence I = (i1, i2, . . . , is) such that

Θ
(n)
I L ∈ Fn

n and Θ
(n)
I L 6= 0.

• There exists an integer sequence I = (i1, i2, . . . , is) such that

Θ
(n)
I L ∈ Fn

−n and Θ
(n)
I L 6= 0.

This is proved in Lemma 4.0.3.
(3) We prove the statement in the case k = ±n. In that case, we need to show that

DSx(M) = 0 for any M ∈ F±n
n . Any simple module in such a block is also

costandard, see Remark 2.3.8. Hence it is a free U(p(n)−1)-module. Any p(n)-
module in F±n

n has a finite filtration with simple subquotients, hence is a free
U(p(n)−1)-module. This implies that DSx(M) = 0 for any M ∈ F±n

n .
(4) Consider a simple module L ∈ Fk

n , and a simple subquotient L′ of DSx(L). Let l
be such that L′ ∈ F l

n−2.
We will show that k = l.
Assume l < k. Recall that k ≡ l (mod 2), as explained in Section 2.3.5.
By (2), there exists an integer sequence I := (i1, i2, . . . , is) such that the trans-

lation functor

Θ
(n−2)
I := Θ

(n−2)
i1

◦Θ
(n−2)
i2

◦ . . . ◦Θ
(n−2)
is

on Fn−2 satisfies:

Θ
(n−2)
I DSxL

′ 6= 0 and DSxL
′ ∈ Fn−2

n−2 .
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Furthermore, by Corollary 2.3.11, we have: t(I) = (n− 2− l)/2.
Let

Θ
(n)
I := Θ

(n)
i1

◦Θ
(n)
i2

◦ . . . ◦Θ
(n)
is

be the corresponding translation functor on Fn.
By (1), we have an isomorphism

Θ
(n−2)
I DSxL ∼= DSxΘ

(n)
I L.

By our construction, this object has a non-zero direct summand in the typical
block Fn−2

n−2 .

Let us show that Θ
(n)
I L ∈ Fn

n . Indeed, we may apply Corollary 2.3.9 to get:

Θ
(n)
I L = Θ

(n)
i1

◦Θ
(n)
i2

◦ . . . ◦Θ
(n)
is

L ∈ Fk+2t(I)
n

We already computed that t(I) = (n − 2 − l)/2 hence F
k+2t(I)
n = F

n+(k−l)−2
n .

Recall that k > l and they have the same parity, so n + (k − l) − 2 ≥ n. Now, if

n+ (k − l)− 2 > n, then F
n+(k−l)−2
n = 0, so we can just say that Θ

(n)
I L ∈ Fn

n .

This implies that DSxΘ
(n)
I L = 0 (by (3)), and hence cannot have a non-zero

direct summand in the typical block Fn−2
n−2 . Thus we obtained a contradiction.

A similar proof shows that we cannot have l > k: in that case, we translate to

typical block F
−(n−2)
n−2 .

�

Lemma 4.0.3. For any simple module L ∈ Fn,

(1) There exists a composition of translation functors Θ
(n)
I where I = (i1, i2, . . . , is) is

an integer sequence, such that Θ
(n)
I L 6= 0 sits in the typical block Fn

n .

(2) There exists a composition of translation functors Θ
(n)
I where I = (i1, i2, . . . , is) is

an integer sequence, such that Θ
(n)
I L 6= 0 sits in the typical block F−n

n .

Proof. We use the results of [BDE+16] on the action of translation functors. In particular,
we use the description of the action of translation functors on projective modules given in

[BDE+16, Section 7.2] as well as the adjunction Θ
(n)
i ⊢ Θ

(n)
i−1 for any i ∈ Z, see Theorem

2.3.6.
We first prove (1).
Let λ be the highest weight of L (hence L = Ln(λ)), let P = Pn(λ) be the projective

cover of L.
Fix a typical weight µ of p(n) with µi < λi and µi ∈ 2Z for all i. Such a weight clearly

exists: take for example µn ∈ Z such that µn−n ∈ 2Z and µn < λ1. Set µk := µn−(n−k)
for any k = 1, 2, . . . , n− 1. Then µk < µn < λ1 < λk for any k = 1, . . . , n, and

µk + k ≡ µn − n (mod 2)

which implies µk + k ∈ 2Z. Hence µ is a typical weight, and P ′ := Pn(µ) sits in Fn
n .

By [BDE+16, Section 7.2], we have an integer sequence J = (j1, j2, . . . , js) such that

Θ
(n)
J P ′ = P .

Set I = (js − 1, js−1 − 1, . . . , j2 − 1, j1 − 1). Then Θ
(n)
J ⊢ Θ

(n)
I , and we have:

Homp(n)(P
′,Θ

(n)
I L) = Homp(n)(Θ

(n)
J P ′, L) = Homp(n)(P, L) = C.

Therefore, Θ
(n)
I L is a non-trivial quotient of P ′. This proves (1).

7



Similarly, we prove (2). Fix a typical weight µ of p(n) with µi < λi and µi ∈ 2Z+1 for
all i. Again, such a weight can be constructed very explicitly. Then P ′ := Pn(µ) sits in
F−n

n , and we can apply exact the same arguments as before.
�

5. Dual modules and blocks

In this section we prove Theorem 2.

Proposition 5.0.1. Let M ∈ Fk
n . Then M∗ also lies in the block Fk

n .

Proof. First of all, notice that it is enough to prove the statement for a simple module
M = L(λ) ∈ Fk

n .
Consider the costandard module ∇n(λ) having Ln(λ) as its socle. This module is

indecomposable, so ∇n(λ) ∈ Fk
n . Consider the dual module ∇(λ)∗. This is also an

indecomposable costandard module, with cosocle L(λ)∗, so it is enough to check that
∇(λ)∗ ∈ Fk

n as well. Now, by [BDE+16, Lemma 3.6.1], ∇(λ)∗ ∼= ∇(µ), where µ + ρ =
−w0(λ + ρ), where w0 is the longest element in the Weyl group. That is, dµ is obtained
from dλ by reflecting the diagram with respect to zero.

Hence, κ(λ) = κ(µ), and so L(µ) ∈ Fk
n . �

Proposition 5.0.2. There exists a natural isomorphism

ΠΘ
(n)
−k(−)∗

∼
−→

(

Θ
(n)
k (−)

)∗

.

Proof. Consider the functor −⊗ Vn : Fn → Fn, M 7→ M ⊗ Vn. We have natural isomor-
phisms

M∗ ⊗ Vn ⊗ ΠC
Id⊗η−1

−−−−→ M∗ ⊗ V ∗
n

σM∗,V ∗
n−−−−→ V ∗

n ⊗M∗ ∼= (M ⊗ Vn)
∗

where η : V ∗
n → Vn ⊗ ΠC is the isomorphism defined by the odd bilinear form on Vn.

Consider the tensor Casimir Ω
(n)
M : M ⊗ Vn → M ⊗ Vn as in Definition 2.3.4. Choosing

dual bases {Xi}, {X
i} in p(n) and p(n)∗ ⊂ gl(n|n), we can write Ω

(n)
M =

∑

i Xi|M ⊗X i|Vn
.

Denote by

(Ω
(n)
M )∗ : V ∗

n ⊗M∗ → V ∗
n ⊗M∗

the dual map. Then for any homogeneous u ∈ V ∗
n , f ∈ M∗, we have:

(Ω
(n)
M )∗(u⊗ f) =

∑

i

(−1)p(Xi)p(X
i)(−1)p(X

i)p(f)
(

X i|Vn

)∗
(u)⊗ (Xi|M)∗ (f).

We now construct the commutative diagram

V ∗
n ⊗M∗

(Ω
(n)
M

)∗
// V ∗

n ⊗M∗

σ−1
M∗,V ∗

n
��

M∗ ⊗ V ∗
n

σM∗,V ∗
n

OO

φ // M∗ ⊗ V ∗
n

Id⊗η

��
M∗ ⊗ Vn ⊗ ΠC

Id⊗η−1

OO

φ′

// M∗ ⊗ Vn ⊗ ΠC

and we compute the lower two horizontal arrows.
We begin with the horizontal arrow φ : M∗ ⊗ V ∗

n → M∗ ⊗ V ∗
n .

By definition, φ = σ−1
M∗,V ∗

n
◦ (Ω

(n)
M )∗ ◦ σM∗,V ∗

n
.
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For any homogeneous f ∈ M∗, u ∈ V ∗
n , applying the map (Ω

(n)
M )∗◦σM∗,V ∗

n
to the element

f ⊗ u we get:

(Ω
(n)
M )∗

(

(−1)p(f)p(u)u⊗ f
)

=

=
∑

i

(−1)p(f)p(u)(−1)p(Xi)p(X
i)(−1)p(X

i)p(u)+1(−1)p(X
i)p(f)X i.u⊗ (−1)p(X

i)p(f)+1Xi.f =

=
∑

i

(−1)p(Xi)p(X
i)+p(f)p(u)+p(Xi)p(u)X i.u⊗Xi.f

Hence,

φ(f ⊗ u) =
∑

i

(−1)p(Xi)p(X
i)+p(f)p(u)+p(Xi)p(u)(−1)(p(Xi)+p(f))(p(Xi)+p(u))Xi.f ⊗X i.u =

=
∑

i

(−1)p(X
i)p(f)Xi.f ⊗X i.u

Next, we compute the horizontal arrow φ′ : M∗ ⊗ Vn ⊗ ΠC → M∗ ⊗ Vn ⊗ ΠC.
The elements X i ∈ gl(n|n) satisfy the following property (cf. [BDE+16, Proof of

Proposition 4.4.1]):

V ∗
n

Xi
//

η

��

V ∗
n

η

��
Vn ⊗ ΠC

−Xi

// Vn ⊗ ΠC

Given homogeneous f ∈ M∗, v ∈ Vn ⊗ ΠC, we have

φ′(f ⊗ v) = −(−1)p(X
i)p(f)Xi.f ⊗X i.v

Hence, φ′ = −ΠΩ
(n)
M∗ . Thus the natural isomorphism σM∗,V ∗

n
◦ (Id⊗η−1) establishes a

natural isomorphism between the eigenspace of (Ω
(n)
M )∗ corresponding to eigenvalue k and

the eigenspace (shifted by Π) of Ω
(n)
M∗ = −Πφ′ corresponding to eigenvalue (−k). This

implies the statement of the proposition. �

Example 5.0.3. Let n ≥ 2 and set M = Vn. Then V ∗
n
∼= ΠVn and Θ

(n)
−1Vn

∼= ∧2Vn and
hence

(

Θ
(n)
−1Vn

)∗
∼= S2Vn

∼= ΠΘ
(n)
1 (ΠVn) ∼= ΠΘ

(n)
1 V ∗

n .
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