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ABSTRACT. We prove an analogue of the Kac-Wakimoto conjecture for the periplectic
Lie superalgebra p(n), stating that any simple module lying in a block of non-maximal
atypicality has superdimension zero.

1. INTRODUCTION

1.1. Consider a complex vector superspace V, and let C%' be the odd one-dimensional
vectors superspace.

The (complex) periplectic Lie superalgebra p(V') is the Lie superalgebra of endomor-
phisms of a complex vector superspace V' equipped with a non-degenerate symmetric form
w : S?V — C (this form is also referred to as an “odd form”). An example of such
superalgebra is p(n) = p(C"") for V = C"" with w, : CI" @ C"" — C°" pairing the even
and odd parts of the vector superspace C"I".

The periplectic Lie superalgebras has an interesting non-semisimple representation the-
ory; some results on the category F, of finite-dimensional integrable representations of
p(n) can be found in [BDE16, Chel5, Coul6, DLZ15, Gor01, Moo03, Ser(2].

In [BDE"16], the blocks of the category F, were classified: it was shown that (up to
change of parity) the blocks can be enumerated by integers —n, —n +2,—n+4,...,n —
4,n — 2,n. We say that a block has maximal atypicality if it contains one-dimensional
even or odd representation of p(n). Such block has number 0 for even n and +1 for odd
n.

In this paper we prove the following version of the Kac-Wakimoto conjecture:

Theorem 1. Fvery object of a block which is not of maximal atypicality has zero superdi-
mension, where the superdimension sdimM 1is defined as dim Mz — dim M7.

The main ingredients in the proof of this theorem, are the translation functors acting on
Fn, and the Duflo-Serganova functor DS : F,, — F,,_s. The translation functors are direct
summands of the functor —®V', whose action on the blocks F,, was described in [BDE*16];
the functor DS : F, — F,_o is a symmetric monoidal (SM) functor which preserves
superdimension. Using this functor we reduce the problem of computing superdimensions
in F,, to a similar problem in F,_s.

We also prove the following statement:

Theorem 2. Let M € F, be an object lying in a certain block as described in Section
2.3.5 and [BDE116].

(1) The object M* also lies in the same block of F,.
(2) We have a natural isomorphism

Or(M") = I1(O_,(M))"
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where Oy, is the k-th translation functor on F, (see Definition 2.5.5).

1.2. Acknowledgements. I.LE.-A. was supported by the ISF grant no. 711/18. V.S. was
supported by NSF grant 1701532.

2. PRELIMINARIES

2.1. General. Throughout this paper, we will work over the base field C, and all the
categories considered are C-linear.

A wector superspace will be defined as a Z/2Z-graded vector space V = V5 @ V5. The
parity of a homogeneous vector v € V will be denoted by p(v) € Z/2Z = {0,1} (whenever
the notation p(v) appears in formulas, we always assume that v is homogeneous).

By II we denote the functor — ® C°* on the category of vector superspaces.

2.2. Tensor categories. In the context of symmetric monoidal (SM) categories, we will
denote by 1 the unit object, and by ¢ the symmetry morphisms.

A functor between symmetric monoidal categories will be called a SM functor if it
respects the SM structure.

Given an object V' in a SM category, we will denote by

coev: 1= VeV, ev: V'V = 1

the coevaluation and evaluation maps for V. We will also denote by gl(V) := V ® V* the
internal endomorphism space with the obvious Lie algebra structure on it. The object V'
is then a module over the Lie algebra gl(V'); we denote the action by act : gl(V)®@V — V.
For two functors F, G we write F' - G if F' is left adjoint of G.

2.3. The periplectic Lie superalgebra.

2.3.1. Definition of the periplectic Lie superalgebra. Let n € Z, and let V,, be an (n|n)-
dimensional vector superspace equipped with a non-degenerate odd symmetric form

1) B:Va®Vy—C, pBv,w)=pF(wv), and B(v,w)=0if p(v) = p(w).
Then Endc(V;,) inherits the structure of a vector superspace from V,,. We denote by
p(n) the Lie superalgebra of all X € Endc¢(V,,) preserving 3, i.e. satisfying
B(Xv,w) + (=1)PFP (0, Xw) = 0.

Remark 2.3.1. Choosing dual bases vy, va, ..., v, in V5, and vy, vy, ... vy in Vi, we can
write the matrix of X € p(n) as (é fzt) where A, B,C' are n x n matrices such that
B'=B,C'=-C.

There is a grading p(n) = p(n)_, ® p(n), ® p(n), where
p(n)y = gl(n), p(n)_, ZILA*(C")", p(n), = IS*C".
Note that the action of p(n)+; on any p(n)-module is p(n),-equivariant.

2.3.2. Weights for the periplectic superalgebra. We choose a Cartan subalgebra of p(n)
equal to the subalgebra of diagonal matrices in p(n)o = gl(n) and fix the standard basis
{e1,...,e,} in the dual space. The lattice of integral weights is by definition spanz{e;}1,

* We fix a set of simple roots eo —€1,...,6, —€p_1, —En_1 — €n, the last root is odd
and all others are even.
With respect to this choice dominant integral weights are of the form A = >, \;e;
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* We fix an order on the weights of p(n): for weights p, A\, we say that pu > A if
w; < \; for each 1.

Remark 2.3.2. Tt was shown in [BDE"16, Section 3.3] that if < corresponds to a
highest-weight structure on the category of finite-dimensional representations of
p(n). Note that in the cited paper we use a different set of simple roots —e; —
€9,81 —€92,...,Epn—1 — En.

x The simple finite-dimensional representation of p(n) with highest weight A\ and
even highest weight vector will be denoted by Ly, (\).

Example 2.3.3. Let n > 2. The natural representation V;, of p(n) has highest
weight —ep, with odd highest weight vector; hence V,, = IIL,(—¢1). The repre-
sentation /\2 V,, has highest weight —2¢;, and the representation S?V,, has highest
weight —e1 — €9; both have even highest weight vectors, so

AV, = Lp(—2¢1), Ly(—e1 —g3) < S*V,.
* Set p(™ :=3"" (i — 1)e;, and for any weight A, let
A=A+ p™.

* We will associate to A\ a weight diagram d), defined as a labeling of the integer
line by symbols e (“black ball”) and o (“empty”) such that j has label o if j €
{\i]i=1,2,...}, and label o otherwise.

* We use the notations [A| := —>". \; and k()) := >, (—1)*.

2.3.3. Representations of p(n). Let F, be the category of finite-dimensional representa-
tions of p(n) whose restriction to p(n)g = gl(n) integrates to an action of GL(n).

By definition, the morphisms in F,, will be grading-preserving p(n)-morphisms, i.e.,
Homz, (X,Y) is a vector space and not a vector superspace. This is important in order
to ensure that the category F,, be abelian.

The category JF,, is not semisimple. It is a highest-weight category, having simple,
standard, costandard, and projective modules (the latter are also injective and tilting, per
[BKN10]). Given a simple module L,()) in F,,, we denote the corresponding standard,
costandard, and projective modules by A, (), V,(A), P,(\) respectively.

2.3.4. Tensor Casimir and translation functors. In [BDET16] we construct the following
natural endomorphism Q™ of the endofunctor (=) ® V,, on F,.
Consider the involutive automorphism 7 of gl(V},) defined by

rag)=(25).
Then p(n) is the subalgebra of fixed points of 7 and we have a p(n)-invariant decomposition
gl(Va) = p(n) © p(n)*

where p(n)* is the eigenspace of 7 with eigenvalue —1. Both p,, and p; are maximal
isotropic subspaces of gl(V},) with respect to the invariant symmetric form

(X,Y) =str XY.

Definition 2.3.4 (Tensor Casimir). For any M € F,, let Qg\? be the composition

Id ®coev®I1d 1+ ®1d act®act,
_—

Vi, @ M Veopn)* @pn) oM — V,gl(V,)@p(n) @ M —— V, @ M

where i, : p(n)* — gl(V,) is the p(n)-equivariant embedding defined above.
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Definition 2.3.5 (Translation functors). For k € C, we define a functor ©’ 59”) cFn — Fu
as the functor ™ = (—=)®V,, followed by the projection onto the generalized k-eigenspace
for QM ie.

(2) o' (M) = | J Ker(Qf}) — k1d)p"

[Mevy,
m>0

and set @,(gn) = H’“@’,&") in case k € Z (it was proved in [BDET16] that Vk ¢ Z, @,(gn) = ().
We use the following results from [BDE*16] throughout the paper:

Theorem 2.3.6 (See [BDE"16].). The relations on the translation functors @§n)’ JjEZ
induce a representation of the infinite Temperley-Lieb algebra TL.(q = i) on the

Grothendieck ring on F,. Furthermore, for any k € Z, @,in) - @,271_)1, i.e., @](:) is left
adjoint to @,(:L_)l and right adjoint to @,(ﬁr)l.

The functors @,(Cn) are exact, since — ® V,, is an exact functor.

Theorem 2.3.7 (See [BDET16].). Let P be an indecomposable projective module in J,.
Then for any i, @gn)P s indecomposable projective or zero.

For more details on the structure of F,, we refer the reader to [BDE*16].

2.3.5. Blocks. Let FF be the full subcategory of JF,, consisting of modules whose composi-
tion functors are isomorphic to L, () or I1L,(\) with x(A) = k. Observe that x(\) takes
value in the set {—n,—n +2,...,n — 2,n}. It is proven in [BDE*16] that

Fo = & T

Furthermore
Fo=(F) & (F)
with the functor II establishing equivalence between (F¥)* and (F*)~. The subcategories

(FF)* are blocks of F,,. Since parity of a module is not important for this paper, by abuse
of terminology, we will just call F* “blocks”.

Remark 2.3.8. We call blocks F=" typical. If k() = £n then L,(\) = V,(}\), see

[BDE*16, Remark 9.1.3]. On the other hand, dim L, (\) = (1|0) implies A = a3}, ;)
hence k(\) = +£1 for odd n and 0 for even n. We call the corresponding blocks maximally

atypical.

Theorem 2.3.9 (See [BDET16].). Leti € Z, k € {—n,—n+2,...,n—2,n}. Then we
have

oz - Fr2ifiis odd
Lon FF=2 if i is even

Finally, we introduce some notation:

Notation 2.3.10. Let I = (iy, 12, ...,1;) be a sequence with iy, i,..., i € Z.
(1) We denote by
@gn) = @E?) o @E:) o...0 @E:)

the composition of the corresponding translation functors.
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(2) We set
HI) = (=1)=+".
s=0

The following is an immediate corollary of Theorem 2.3.9:
Corollary 2.3.11. For anyn > 1,1 € {—n,—(n — 2),...,n — 2,n} and any integer
sequence I = (iy,19,...,1) we have:

MeF —=o0"Me Flyonn)-

2.4. The Duflo-Serganova functor.
2.4.1. Definition and basic properties. Let n > 3, and let = € p(n) be an odd element
such that [z,z] = 0.
Definition 2.4.1 (See [DS05]). Let M € F,. We define

DS, (M) = Kerteh) [

The vector superspace p, := DS,p(n) is naturally equipped with a Lie superalgebra
structure. One can check by direct computations that p, is isomorphic to p(n — s) where
s is the rank of z. The above correspondence defines an SM-functor DS, : F,, — Fn_s,
called the Duflo-Serganova functor. Such functors were introduced in [DS05].

3. THE DUFLO-SERGANOVA FUNCTOR AND THE TENSOR CASIMIR

In this section we recall the definition of the Duflo-Serganova functor and prove that it
commutes with translation functors.

Let n > 3, and let = € p(n)7 be such that [z, z] = 0. Let s := rk(x).

Definition 2.4.1 then gives us a functor DS, : F,, — Fp_s.

Lemma 3.0.1. We have: DS,(Q™) = Q=9)DS,  where Q™ is the tensor Casimir for
p(n), and Q%) is the tensor Casimir for p(n — s).
That is, for any M € F,, DSI(QE\Z)) = Qgg:()M) as endomorphisms of V,,_s @ DS, (M).

Proof. This follows directly from the definition of the tensor Casimir (Definition 2.3.4),
as well as the fact that DS, is a symmetric monoidal functor. O

Corollary 3.0.2. The functor DS, commutes with translation functors, that is we have
a natural isomorphism of functors

DS,0M = 0" Dg,
for any k € Z.
Proof. Recall that DS, is a SM functor and DS,(V,) = V,,_,. Hence we have a natural
isomorphism 7 : DS,0" — ") DS, where ™ = (—)®V,, is as in Definition 2.3.5.

Now, consider DS, (™) (the tensor Casimir). By Lemma 3.0.1, the diagram below
commutes:

DS,0m ", gh-s9pg.
DSI(Q“‘))l lQ"—SDSI
DS,0m . gh-spg

Hence 7 induces an isomorphism DSxG),(Cn) = @lgn_s) DS, for any k € Z, as required.
O
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4. MAIN RESULT

Throughout this section, we will work with functors DS, : F,, — F,_o where x € p(n)_,
has rank 2 and satisfies [x,z] = 0. Here p(n)_; is as in Section 2.3.1.

Theorem 4.0.1. If M € FF and k # 0,£1 then sdimM = 0.

Proof. Let x € p(n)_y such that [z,z] =0, rk(x) = 2.

We prove the statement by induction on n.

The base case n = 1 is tautological (in that case, there are no non-zero blocks except
FEY); in the base case n = 2, it is enough to check for a simple module M € Fi2. The
blocks .7-"3[2 are typical, see Remark 2.3.8, hence any simple object in }'2iz is isomorphic
to V,(u), and hence has superdimension zero (cf. [BDE"16]).

Next, for the inductive step, let n > 3, and assume that our statement holds for n — 2.

Let M € FF, k ¢ {0,+£1}. We use Proposition 4.0.2 below, which states that DS,
preserves blocks, to show that DS,(M) lies in the corresponding block F* , (if n = k,
then DS, (M) = 0).

The fact that the functor DS, : F,, — F,,_2 is SM, and hence preserves superdimension,
allows us to use the inductive assumption to show that sdimDS,(M) = 0, and hence
sdimM = 0, as required.

OJ

Proposition 4.0.2. Let x € p(n)_; such that [x,z] = 0, rk(z) = 2. Let M € F*. Then
DS, (M) e F* ., (if k = +n, then DS,(M) =0).

Proof. The proposition is proved in several steps.

(1) We prove that DS, commutes with translation functors. This is done in Lemma
3.0.2.

(2) We prove that it is possible to translate any simple module into a typical block;
that is, for any simple L € F,,,

e There exists an integer sequence I = (i, 49, ..., i) such that
oL e F* and ©/"L £ 0.
e There exists an integer sequence I = (i, g, ..., i) such that

oL e F" and ©/L +£0.

This is proved in Lemma 4.0.3.

(3) We prove the statement in the case k = £n. In that case, we need to show that
DS, (M) = 0 for any M € Fr". Any simple module in such a block is also
costandard, see Remark 2.3.8. Hence it is a free U(p(n)_1)-module. Any p(n)-
module in FZ" has a finite filtration with simple subquotients, hence is a free
U(p(n)_1)-module. This implies that DS,(M) =0 for any M € Fm.

(4) Consider a simple module L € F*, and a simple subquotient L' of DS, (L). Let [
be such that L' € F._,.

We will show that k& = [.

Assume [ < k. Recall that £ = [ (mod 2), as explained in Section 2.3.5.

By (2), there exists an integer sequence I := (iy,1s,...,1is) such that the trans-
lation functor

@(n—Q) — @(n—Q) o @(n—Q) o o G(n—2)

I 1 12 ce 1s
on JF,,_o satisfies:

0" DS, L' £0 and DS,L' € F'2.
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Furthermore, by Corollary 2.3.11, we have: t(I) = (n —2—1)/2.

Let
@gn) = @E?) o @Eg) 0...0 @ZL)
be the corresponding translation functor on F,,.
By (1), we have an isomorphism

e ?ps,L =~ DS,0"L.
By our construction, this object has a non-zero direct summand in the typical
block F' 3.
Let us show that 9§n)L € F. Indeed, we may apply Corollary 2.3.9 to get:

0L =0"00"0o...00"L e Fr+2D

We already computed that ¢(I) = (n — 2 — [)/2 hence Farl) — preh=2
Recall that k£ > [ and they have the same parity, so n + (k — 1) — 2 > n. Now, if
n+(k—1)—2>n, then Fn* 72 =0, so we can just say that O L € Fr.
This implies that DSm@gn)L = 0 (by (3)), and hence cannot have a non-zero
direct summand in the typical block F"~2. Thus we obtained a contradiction.
A similar proof shows that we cannot have [ > k: in that case, we translate to

typical block F, %72,

O
Lemma 4.0.3. For any simple module L € F,,
(1) There exists a composition of translation functors @(In) where I = (i, iz, ...,1s) 1S
an integer sequence, such that @gn)L # 0 sits in the typical block F)'.
(2) There exists a composition of translation functors @(I") where I = (iy,49,...,1s) 1

an integer sequence, such that @Y‘)L # 0 sits in the typical block F, ™.

Proof. We use the results of [BDET16] on the action of translation functors. In particular,
we use the description of the action of translation functors on projective modules given in
[BDE*16, Section 7.2] as well as the adjunction ©™ F ©!") for any i € Z, see Theorem
2.3.6.

We first prove (1).

Let A be the highest weight of L (hence L = L,())), let P = P,()\) be the projective
cover of L.

Fix a typical weight p of p(n) with p; < A\; and p; € 27Z for all 4. Such a weight clearly
exists: take for example p,, € Z such that p, —n € 2Z and p, < M. Set py := p, — (n—k)
forany k=1,2,...,n—1. Then pp < p, < Ay < A\ forany k=1,... n, and

pr +k = p, —n(mod2)

which implies ug + k € 2Z. Hence p is a typical weight, and P’ := P, () sits in F).
By [BDE'16, Section 7.2], we have an integer sequence J = (ji,ja, ..., js) such that
(n

oy pP = P.
Set I = (js—1,js-1—1,...,52 — 1,71 —1). Then @Sn) + @gn), and we have:

Homp(n)(P’, @gn)[/) = Homp(n)(@gn)P’, L) = Homp(n)(P, L) = C

Therefore, @gn)L is a non-trivial quotient of P’. This proves (1).
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Similarly, we prove (2). Fix a typical weight p of p(n) with pu; < \; and p; € 2Z + 1 for
all 7. Again, such a weight can be constructed very explicitly. Then P’ := P,(u) sits in
F,. ", and we can apply exact the same arguments as before.

[

5. DUAL MODULES AND BLOCKS
In this section we prove Theorem 2.

Proposition 5.0.1. Let M € F¥. Then M* also lies in the block F*.

Proof. First of all, notice that it is enough to prove the statement for a simple module
M = L()\) € Fk.

Consider the costandard module V,(A) having L,(\) as its socle. This module is
indecomposable, so V,(\) € F*. Consider the dual module V(\)*. This is also an
indecomposable costandard module, with cosocle L(A)*, so it is enough to check that
V(A\)* € F* as well. Now, by [BDET16, Lemma 3.6.1], V(\)* & V(u), where p+ p =
—wo(A + p), where wy is the longest element in the Weyl group. That is, d, is obtained
from d, by reflecting the diagram with respect to zero.

Hence, x(\) = r(u), and so L(pu) € FF. O

Proposition 5.0.2. There exists a natural isomorphism
o)) (6{”(-) -
Proof. Consider the functor — ® V,, : F, — F,, M — M ® V,,. We have natural isomor-
phisms
* 1d®77’1 * w TM* Vi * * AU *
M@V, lIC —— M@V — S V' M*=(M®V,)
where 1 : V' — V,, ® IIC is the isomorphism defined by the odd bilinear form on V/,.
Consider the tensor Casimir QE(}) M ®V, - M®YV, as in Definition 2.3.4. Choosing
dual bases {X;},{X"} in p(n) and p(n)* C gl(n|n), we can write QEZ) =3 Xilm @ Xy,
Denote by
Q) VEe M = Vo M
the dual map. Then for any homogeneous u € V,*, f € M*, we have:
()" (s ) = SO LD (X )" ) @ (Xilar) (£).

We now construct the commutative diagram

Vee M — O e e
Tare v T jaMl*,V,;
M*@V* ¢ M@V

1d ®n1T lld ®n
M@V, TIC — M* ®V, @ TIC

and we compute the lower two horizontal arrows.
We begin with the horizontal arrow ¢ : M* @ V) — M* @ V"
By definition, ¢ = 01741*7‘/* ° (Qﬁ(}))* O O+ V-
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For any homogeneous f € M*,u € V., applying the map (QS\Z))* o0 +v+ to the element
f ® u we get:

(QS\Z))* ((_1)p(f)p(U)u ® f) —
= Z(_1>p(f)p(U)(_1)p(Xi)p(Xi)(_1)p(Xi)p(U)+1(_1)p(Xi)p(f)Xi.u ® (—1)PX PN+ X, =

- Z(_1)p(Xi)p(Xi)+p(f)p(u)+p(Xi)p(U)Xi_u @ X,.f

Hence,

H(f ®u) = Z(_1)p(Xi)p(Xi)+p(f)p(U)+p(Xi)p(u)(_1)(p(Xi)er(f))(p(Xi)+P(U))XZ.'f ® Xu=
— Z<_1)p(Xi)p(f)Xi.f ® Xtu

Next, we compute the horizontal arrow ¢' : M* @ V,, @ IIC — M* ® V,,  IIC.
The elements X' € gl(n|n) satisfy the following property (cf. [BDET16, Proof of
Proposition 4.4.1]):

Xt

Vi Vi

§ §

V, @ [IC —V, @ TIC

Given homogeneous f € M*, v € V,, ® I[IC, we have
#(f@v)=—(—1PXPIX fo X

Hence, ¢ = —HQE\Z)*. Thus the natural isomorphism oz, v o (Id®n~!) establishes a
natural isomorphism between the eigenspace of (QS\Z))* corresponding to eigenvalue k& and
the eigenspace (shifted by II) of QE\Z) = —II¢' corresponding to eigenvalue (—k). This
implies the statement of the proposition. 0

Example 5.0.3. Let n > 2 and set M =V,,. Then V* = IIV,, and @(fl)Vn >~ A%V, and
hence

(6%v,) = s2v, = e (11v,) = 11e{"v;;.
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