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Abstract. We describe all blocks of the category of finite-dimensional q(3)-supermodules
by providing their extension quivers. We also obtain two general results about the represen-
tation of q(n): we show that the Ext quiver of the standard block of q(n) is obtained from
the principal block of q(n− 1) by identifying certain vertices of the quiver and prove a “vir-
tual” BGG-reciprocity for q(n). The latter result is used to compute the radical filtrations
of q(3) projective covers.
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1 Introduction

The “queer” Lie superalgebra q(n) is an interesting super analogue of the Lie algebra gl(n).
Other related queer-type Lie superalgebras include the subsuperalgebra sq(n) obtained by taking
odd trace 0, and for n ≥ 3, the simple Lie superalgebra psq(n) obtained by taking the quotient of
the commutator [q(n), q(n)] by the center. These queer superalgebras have a rich representation
theory, partly due to the Cartan subsuperalgebra h not being abelian and hence having nontrivial
representations, called Clifford modules.

Finite-dimensional representation theory of q(n) was initiated in [16] and developed in [20].
Algorithms for computing characters of irreducible finite-dimensional representations were ob-
tained in [21, 22] using methods of supergeometry and in [3, 4] using a categorification approach.
Finite-dimensional representations of half-integer weights were studied in detail in [5, 6, 7].
In [18], the blocks in the category of finite-dimensional q(2)-modules semisimple over the even
part were classified and described using quivers and relations. A general classification of blocks
was obtained in [24] using translation functors and supergeometry.

In this paper, we describe the blocks in the category of finite-dimensional q(3) and sq(3)
modules semisimple over the even part in terms of quiver and relations. We found that to
describe blocks of q(n) in general, it remains to consider the principal block. For n = 3, this is
the first example of a wild block in q. Our main tools are relative Lie superalgebra cohomology
and geometric induction.

In Section 2, we describe some background information for q(n) and quivers, and we formu-
late our main theorems, Theorems 2.7 and 2.8. In Section 3, we introduce geometric induction
and prove a “virtual” BGG reciprocity law, Theorem 3.9, that generalizes [13] to the queer
Lie superalgebras. This result allows us to describe radical filtrations of all finite-dimensional
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indecomposable projective modules for sq(3) and q(3). Diagrams of these are provided in Ap-
pendix A. In Section 4, we prove a result on self extensions of simples for g = q(n), Theorem 4.1,
and for g = sq(n), Theorem 4.5. In Section 5, we show the standard block for q(n) is closely
related to the principal block of q(n − 1), Proposition 5.1, and in particular deduce the quiver
for sq(3) and q(3) standard block. Finally in Section 6, we compute the quiver for principal
block of sq(3) and q(3).

2 Preliminaries and main theorem

2.1 General definitions

Throughout we work with C as the ground field. We set Z2 = Z/2Z. Recall that a vector

superspace V = V0̄ ⊕ V1̄ is a Z2-graded vector space. Elements of V0 and V1 are called even and
odd, respectively. If V , V ′ are superspaces, then the space HomC(V, V

′) is naturally Z2-graded
with grading f ∈ HomC(V, V

′)s if f(Vr) ⊂ V
′
r+s for all r ∈ Z2.

A superalgebra is a Z2-graded, unital, associative algebra A = A0 ⊕ A1 which satisfies
ArAs ⊂ Ar+s. A Lie superalgebra is a superspace g = g0̄ ⊕ g1̄ with bracket operation [ , ] : g⊗ g

→ g which preserves the graded version of the usual Lie bracket axioms. The universal en-

veloping algebra U(g) is Z2-graded and satisfies a PBW type theorem [16]. A g-module is a left
Z2-graded U(g)-module. A morphism of g-modules M → M ′ is an element of HomC(M,M ′)0̄
satisfying f(xm) = xf(m) for all m ∈ M,x ∈ U(g). We denote by g-mod the category of g-
modules. This is a symmetric monoidal category. The primary category of interest F consists of
finite-dimensional g-modules which are semisimple over g0̄. We stress that we only allow for par-
ity preserving morphisms in F . In this way, F is an abelian rigid symmetric monoidal category:
for V,W ∈ F , define V ⊗W and V ∗ using the coproduct and antipode of U(g), respectively:

δ(x) = x⊗ 1 + 1⊗ x, S(x) = −x ∀x ∈ g.

For V ∈ g-mod, we denote by S(V ) the symmetric superalgebra. As a g0̄-module, S(V ) is
isomorphic to S(V ) = S(V0̄)⊗ Λ(V1̄), where Λ(V1̄) is the exterior algebra of V1̄ in the category
of vector spaces. For V a g1-module and W a g2-module, we define the outer tensor product
V ⊠W to be the g1 ⊕ g2-module with the action for (q1, q2) ∈ g1 ⊕ g2 given by

(q1, q2)(v ⊠ w) := (−1)q2v(q1v ⊠ q2w).

We define the (super)dimension of V ∈ g-mod as follows. Let C[ε] be polynomial algebra
with variable ε and denote two-dimensional C-algebra C[ε]/

(
ε2 − 1

)
as C̃. Then

dim(V ) := dimC(V0) + dimC(V1̄)ε ∈ C̃.

The parity change functor Π: A-smod → A−smod is defined as follows: For M ∈ A-smod,
Π(M)0̄ := M1̄ and Π(M)1̄ := M0̄ and the action on m ∈ Π(M) is a ·m = (−1)āam. Lastly, if
f : M → N is a morphism of supermodules, then Πf : ΠM → ΠN is Πf = f .

2.2 The queer Lie superalgebra q(n)

By definition, the queer Lie superalgebra q(n) is the Lie subsuperalgebra of gl(n|n) leaving
invariant an odd automorphism of the standard representation p with the property p2 = −1. In
matrix form,

q(n) =

{(
A B
B A

)
: A,B ∈ gln(C)

}
, if p =

(
0 1n
−1n 0

)
.
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Let g = q(n). The even (resp. odd) subspace of g consists of block matrices with B = 0 (resp.
A = 0). For 1 ≤ i, j ≤ n, we define the standard basis elements as

e0̄i,j =

(
Ei,j 0
0 Ei,j

)
∈ g0̄ and e1̄i,j =

(
0 Ei,j
Ei,j 0

)
∈ g1̄,

where Ei,j denote the elementary matrix. Observe the odd trace otr
(
A B
B A

)
:= tr(B) annihilates

the commutator [q(n), q(n)]. Let

sq(n) = {X ∈ q(n) : otr(X) = 0}.

Furthermore, otr(XY ) defines a nondegenerate g-invariant odd bilinear form on g. In particular,
we have an isomorphism q(n)∗ ∼= Πq(n) of q(n)-modules.

All Borel Lie superalgebras b ⊂ g are conjugate to the “standard” Borel, i.e., block matrices
where A,B ∈ gl(n) are upper triangular. The nilpotent subsuperalgebra n consists of block
matrices where A, B are strictly upper triangular.

In the standard basis, the supercommutator has the form

[eσij , e
τ
kl] = δjke

σ+τ
il − (−1)στδile

σ+τ
kj ,

where σ, τ ∈ Z2. The Cartan superalgebra h has basis eσii for 1 ≤ i ≤ n, σ ∈ Z2. The elements
Hi := e0̄ii, H i := e1̄ii, 1 ≤ i ≤ n, form a basis for h0̄, h1̄, respectively. Let {εi | i = 1, . . . , n} ⊂ h∗

0̄
denote the dual basis of {Hi}. There is a root decomposition of g with respect to the Cartan
subalgebra h given by

g = h⊕
⊕

α∈Φ

gα,

where Φ = {εi − εj | 1 ≤ i 6= j ≤ n} is the same as the set of roots of gln(C). For a root
α = εi − εj we have dim gα = 1 + ε because gα = span{eσi,j : σ ∈ Z2}. The positive roots are
Φ+ := {εi − εj : 1 ≤ i < j ≤ n}. The simple roots are {εi − εi+1 : 1 ≤ i ≤ n − 1}. The Weyl
group for q(n) is W = Sn, the symmetric group on n letters.

By h′ we denote the Cartan subsuperalgebra of sq(n). A weight is by definition an element
λ ∈ h∗

0̄
and we write it in the form λ = (λ1, . . . , λn) with respect to the standard basis (ε1, . . . , εn).

We say λ is integral if λi ∈ Z for all 1 ≤ i ≤ n. We say (λ1, . . . , λn) ∈ h∗
0̄
is typical if λi+ λj 6= 0

for all 1 ≤ i 6= j ≤ n. We introduce partial ordering on h∗
0̄
via λ ≤ µ if and only if µ−λ ∈ NΦ+.

Finally, we define ρ0 := 1/2
∑

α∈Φ+ α.

2.3 Irreducible h and g-representations

Following [20, Proposition 1], we now define for each λ ∈ h∗
0̄
a simple h-supermodule. Define an

even superantisymmetric bilinear form Fλ : h1̄×h1̄ → C as Fλ(u, v) := λ([u, v]). LetKλ = KerFλ
and Eλ = h1̄/Kλ. The restriction of Fλ to h′ will be denoted by F ′

λ and we set K ′
λ = KerF ′

λ

and E′
λ = h′

1̄
/K ′

λ.

Lemma 2.1. Let λ = (λ1, . . . , λn) ∈ h∗
0̄
.

(a) If there exists i such that λi = 0, then

dimEλ = dimE′
λ = |{i : λi 6= 0}|.

(b) If all λi 6= 0 and 1
λ1

+ · · ·+ 1
λn
6= 0, then

dimE′
λ = n− 1, dimEλ = n.
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(c) If all λi 6= 0 and 1
λ1

+ · · ·+ 1
λn

= 0, then

dimE′
λ = n− 2, dimEλ = n.

Proof. It is straightforward that Kλ is the span of H̄i for all i such that λi 6= 0. Hence

dimEλ = |{i : λi 6= 0}|.

To compute K ′
λ, consider the basis {H̄i − H̄i+1 | i = 1, . . . , n− 1} of h′

1̄
. Then

K ′
λ = {u ∈ h′1̄ |λ([u, H̄i − H̄i+1]) = 0 for all 1 ≤ i ≤ n− 1}

= {(u1, . . . , un) ∈ h1̄ |u1 + · · ·+ un = 0, uiλi = ui+1λi+1 for all 1 ≤ i ≤ n− 1}.

Suppose first without loss of generality λ1 = · · · = λk = 0, where k ≥ 1. This forces uk+1 =
· · · = un = 0 and u1 + · · ·+ uk = 0, so K ′

λ has a basis

{
H̄1 − H̄2, . . . , H̄k−1 − H̄k

}

and dimK ′
λ = k − 1. Thus, dimE′

λ = dim h′
1̄
− dimK ′

λ = n− k.
Next, suppose all λi 6= 0. Then similarly we compute

K ′
λ =

{
C
(

1
λ1
, 1
λ2
, 1
λ3
, . . . , 1

λn

)
if 1

λ1
+ · · ·+ 1

λn
= 0,

0 if 1
λ1

+ · · ·+ 1
λn
6= 0.

�

Let dimEλ = m > 0. On the vector superspace Eλ, Fλ induces a nondegenerate bilinear
form, also denoted Fλ. Let Cliff(λ) be the Clifford superalgebra defined by Eλ and Fλ. Then
(1) Cliff(λ) is isomorphic to Cliff(m), the Clifford superalgebra with generators e1, . . . , em and
relations e2i = 1, (2) dimCliff(λ) = 2m−1(1+ε), and (3) the category Cliff(λ)-mod is semisimple
(e.g., [19]).

If m is odd, then there exists a unique simple Cliff(m)-module, denoted by v(m), which is
invariant under parity change (this follows from existence of an odd automorphism). If m is
even, then there exists 2 nonisomorphic simple Cliff(m)-modules v(m) and Πv(m) which are
swapped by the parity change functor. Using the surjective homomorphism U(h) → Cliff(λ)
with kernel (Hi − λi,Kλ), we lift v(m) to an h-module which we denote by v(λ). Lemma 2.1
implies

dim v(λ) = dim(v(m)) = 2⌊(m−1)/2⌋(1 + ε),

where ⌊x⌋ denotes the integer part of x ∈ R. Furthermore, this construction provides a complete
irredundant collection of all finite-dimensional simple h-supermodules.

Next define the Verma module

Mg(λ) := U(g)⊗U(b) v(λ),

where the action of n+ on v(λ) is trivial.
Let

Λ = {λ = (λ1, . . . , λn) ∈ h∗0̄ : λi − λi+1 ∈ Z}.

The set of g-dominant integral weights is

Λ+ = {λ = (λ1, . . . , λn) ∈ h∗0̄ : λi − λi+1 ∈ Z≥0 and λi = λj ⇒ λi = λj = 0}.

Below is the main theorem about irreducible g-modules, first proven by V. Kac.
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Theorem 2.2 ([16]).

1. For any weight λ ∈ h∗
0̄
, Mg(λ) has a unique maximal submodule N(λ), hence a unique

simple quotient, Lg(λ).

2. For each finite-dimensional irreducible g-module V , there exists a unique weight λ ∈ Λ+

such that V is a homomorphic image of Mg(λ).

3. Lg(λ) :=Mg(λ)/Ng(λ) is finite dimensional if and only if λ ∈ Λ+.

We will often omit the subscript g in the notation for Verma, simple, and projective modules.

2.4 The category F

Let g = q(n). Denote by Fn, or simply F the category consisting of finite-dimensional g-
supermodules semisimple over g0̄ (so the center of g0̄ acts semisimply), with morphisms being
parity preserving. The full subcategory of F consisting of modules with integral weights is
equivalent to the category of finite-dimensional G-modules, where G is the algebraic supergroup
with Lie(G) = g and G0̄ = GL(n).

Let Z(g) be the center of the universal enveloping algebra U(g). A central character is
a homomorphism χ : Z(U(g)) → C. We say that a g-module M has central character χ if for
any z ∈ Z(g), m ∈ M , there exists a positive integer n such that (z − χ(z)id)n.m = 0. It
is well known from linear algebra that any finite-dimensional indecomposable g-module has a
central character, hence Fn = ⊕Fnχ , where F

n
χ is the subcategory of modules admitting central

character χ. In the most cases Fnχ is indecomposable, i.e., a block in the category Fn. The only
exception is Fnχ for even n and typical central character χ. In this case Fnχ is semisimple and
has two non-isomorphic simple objects L(λ) and ΠL(λ).

Similarly to the Lie algebra case, there is a canonical injective algebra homomorphism, the
Harish-Chandra homomorphism [8, 25],

HC: Z(g) →֒ S(h0̄)
W .

Given any λ ∈ h∗
0̄
, we define χλ : Z(g)→ C to be the unique homomorphism making

Z(g) S(h0̄)
W

C

HC

χλ λW

commute, where λW is the natural homomorphism induced by λ ∈ h∗
0̄
. If χ = χλ for some λ, we

denote Fχλ
by Fλ. Given a central character χλ with λ = (λ1, . . . , λn), we define its weight to

be the formal sum

wt(λ) := δλ1 + · · ·+ δλn ,

where δi = −δ−i and δ0 = 0. A fundamental result by Sergeev [25] implies:

Theorem 2.3. For λ, µ ∈ h∗
0̄
, χλ = χµ if and only if wt(λ) = wt(µ).

The following classification theorem about blocks in F3 is important for us. It is an immediate
consequence of [24, Theorem 5.8].

Theorem 2.4. λ = (λ1, λ2, λ3) ∈ Λ+ ∩Z3 be a dominant integral weight and |λ| be the number

of non-zero coordinates in wt(λ).
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❼ (the strongly typical block) If |λ| = 3, then F3
λ is semisimple and contains one up to

isomorphism simple module;

❼ (the typical block) If |λ| = 2, then F3
λ is equivalent to the block F1

(0) for q(1);

❼ (the standard block) If |λ| = 1, then F3
λ is equivalent to F3

(1,0,0);

❼ (the principal block) If |λ| = 0, then F3
λ is equivalent to F3

(0,0,0).

Furthermore, if λ ∈ Λ+ but λ /∈ Z3, then either λ is typical, so λi + λj 6= 0 ∀ i, j, or λ
has atypicality 1. In the former case the block is semisimple and has one up to isomorphism
simple object. In the latter case all such blocks are equivalent to the “half-standard” block
F(3/2,1/2,−1/2) by [5, Theorem 5.21].

Finally, it is well known there are enough projective and injective objects in F [23]. Let Pg(λ)
denote the projective cover of Lg(λ).

2.5 Quivers

Let F be any abelian C-linear category with enough projectives, finite-dimensional morphism
spaces, and finite-length composition series for all objects. For us, F will be as in the previous
subsection. The following properties are as stated in [11, Section 1], which are just slight
generalizations of results in [1, Section 4.1].

An Ext-quiver Q for F is a directed graph with vertex set consisting of isomorphism classes
of finite-dimensional simple objects of F . In our case, the vertex set is Q0 = {L(λ),ΠL(λ)} for
λ ∈ Λ+. In particular, Q0 is not Λ+. The number of arrows between two objects L,M ∈ Q0 will
be dL,M := dimExt1F (L,M). We define a C-linear category CQ with objects being vertices Q0

and morphisms HomCQ(λ, µ) being space of formal linear combinations of paths between the
two objects λ, µ. Composition of morphisms is concatenation of paths.

A system of relations on Q is a map R which assigns a subspace R(λ, µ) ⊂ HomCQ(λ, µ) to
each pair of vertices (λ, µ) ∈ Q0 ×Q0 such that for any λ, µ, ν ∈ Q0

R(ν, µ) ◦HomCQ(λ, ν) ⊂ R(λ, µ) and HomCQ(ν, µ) ◦R(λ, ν) ⊂ R(λ, µ).

A representation of Q is a finite-dimensional vector space V = ⊕λ∈Q0
Vλ together with linear

maps φ : Vλ → Vµ for every arrow φ : λ → µ. Representations of Q form an Abelian category
denoted by Q-mod. Given quiver Q and relations R, define the category CQ/R consisting of
objects λ ∈ Q0 and morphisms HomCQ/R(λ, µ) := HomCQ(λ, µ)/R(λ, µ). We then denote by
CQ/R-mod the full subcategory of CQ-mod consisting of representations V such that for any
vertices λ, µ, we have Im(R(λ, µ)→ HomC(Vλ, Vµ)) = 0.

The next proposition gives an explicit description of the relations of an Ext-quiver given
the category F , its spectroid G, and its Ext-quiver Q. The spectroid G is defined as the
full subcategory of F consisting of objects which are indecomposable projectives. Let Gop

denote the opposite category: objects are that of G and morphisms are HomGop(P (λ), P (µ)) :=
HomG(P (µ), P (λ)). Let rad(P (λ), P (µ)) denote the set of all noninvertible morphisms from P (λ)
to P (µ). Since P (µ) is projective, such a morphism cannot be surjective and we thus con-
clude rad(P (λ), P (µ)) = HomF (P (λ), radP (µ)). Let radn(P (λ), P (µ)) be the subspace of
rad(P (λ), P (µ)) consisting of sums of products of n noninvertible maps between P (λ) and P (µ).
For λ, µ ∈ Λ+ we have a canonical isomorphism [11, Lemma 1.2.1]

Ext1F (L(λ), L(µ))
∼= HomF

(
P (µ), radP (λ)/ rad2 P (λ)

)∗
.

Proposition 2.5. Given category F with Ext-quiver Q and spectroid G, let Rλ,µ denote the

bijection from the dλ,µ arrows of λ to µ to the family {φiλ,µ}
dλ,µ
i=1 of morphisms in rad(P (µ), P (λ))
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that map onto a basis modulo rad2(P (µ), P (λ)). Then there is a unique well-defined family of

linear maps

Rλ,µ : HomCQ(λ, µ)→ HomF (P (µ), P (λ)),

such that Rλ,µ(φ
i
λ,µ) = Rλ,µ(φ

i
λ,µ) and which is compatible with composition.

Moreover, the map

R : (λ, µ)→ KerRλ,µ

is a system of relations on Q and the categories CQ/R and Gop are equivalent.

The system of relations is determined up to a choice of Rλ,µ which is not canonical in general.
But, we may multiply the Rλ,µ(φ

i
λ,µ) by nonzero scalars to make the relations “look nice”. There

is then an additional proposition, [11, Proposition 1.2.2], which states Gop is equivalent to F .
This then implies the following important theorem of Ext-quivers we use.

Theorem 2.6 ([11, Theorem 1.4.1]). Let F be as above, Q its Ext-quiver, and R be a system

of relations as defined in Proposition 2.5. Then there exists an equivalence of categories

e : F
∼
−→ CQ/R−mod

such that

e(M) =
⊕

λ∈Λ+

HomF (P (λ),M).

2.6 Main theorem

In the statement of the main theorems, we will provide the Ext-quivers of various blocks. The
relations are given by labelling the dimExt1g(L(λ), L(µ)) arrows between L(λ), L(µ) ∈ Q by
α ∈ HomQ(L(λ), L(µ)) which is then identified (by some choice of scalar) with α ∈ Homg(P (λ),
radP (µ)/ rad2 P (µ)) via Proposition 2.5.

Theorem 2.7. Every block Fλ of the category F of finite-dimensional sq(3)-modules semisimple

over sq(3)0̄ is equivalent to the category of finite-dimensional modules over one of the following

algebras given by a quiver and relations:

1. A typical block λ = (λ1, λ2, λ3) such that λi + λj 6= 0 for any i 6= j, and 1
λ1

+ 1
λ2

+ 1
λ3
6= 0

or exactly one λi = 0

•.

2. A strongly typical block λ = (λ1, λ2, λ3) such that λi + λj 6= 0, λi 6= 0 for any i, j and
1
λ1

+ 1
λ2

+ 1
λ3

= 0

•h
%%

with relations

h2 = 0.

3. The “half-standard” block λ = (32 ,
1
2 ,−

1
2)

•
a

((
•

b

hh

a
((
•

b

hh

a
++
· · · ,

b

hh

where vertices are labeled Lsq

(
3
2 ,

1
2 ,−

1
2

)
, Lsq

(
5
2 ,

3
2 ,−

5
2

)
, Lsq

(
7
2 ,

3
2 ,−

7
2

)
, . . . with relations

a2 = b2 = 0, ab = ba.
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4. The standard block λ = (1, 0, 0)

· · ·
α

((
•

b

jj

a
((
•

b

hh

a
((
•

b

hh

a
++
· · · ,

b

hh

where vertices are labeled . . . , ΠLsq(3, 1,−3), ΠLsq(2, 1,−2), Lsq(1, 0, 0), Lsq(2, 1,−2),
Lsq(3, 1,−3), . . . with relations

a2 = b2 = 0, ab = ba.

5. The principal block λ = (0, 0, 0)

•
a // •

c
��

b // •
x

((

d��

•
y

hh

x
**
· · ·

y
hh

• a
// •

b
//

c
__

•

d
__

x
((
•

y
hh

x
++
· · · ,

y
hh

where vertices are labeled Lsq(1, 0,−1), Lsq(0), Lsq(2, 0,−2), Lsq(3, 0,−3), . . . in top row

and ΠLsq(1, 0,−1), ΠLsq(0, 0, 0), ΠLsq(2, 0,−2), ΠLsq(3, 0,−3), . . . in bottom row. Then

the relations are

x2 = y2 = 0, xb = dy = bd = ca = 0,

xy = yx, yx = bacd, dbac = acdb.

Theorem 2.8. Every block Fλ of the category F of finite-dimensional q(3)-modules semisimple

over q(3)0̄ is equivalent to the category of finite-dimensional modules over one of the following

algebras given by quiver and relations:

1. A strongly typical block: λ = (λ1, λ2, λ3) such that λi + λj 6= 0 and λi 6= 0 for any i, j

•.

2. A typical block: λ = (λ1, λ2, λ3) such that some λi = 0 and λj + λk 6= 0 for any j, k

•
a

((
•

b

hh

with relations

ab = ba = 0.

3. The “half-standard” block λ =
(
3
2 ,

1
2 ,−

1
2

)

•
a

((
•

b

hh

a
((
•

b

hh

a
((. . . ,

b

hh

where vertices are labeled L
(
3
2 ,

1
2 ,−

1
2

)
, L

(
5
2 ,

3
2 ,−

5
2

)
, L

(
7
2 ,

3
2 ,−

7
2

)
, . . . with relations

a2 = b2 = 0, ab = ba.
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4. The standard block λ = (1, 0, 0)

•h
%%

a
((
•

b

hh

x
((
•

y
hh

x
((. . . ,

y
hh

where vertices are labeled L(1, 0, 0), L(2, 1,−2), L(3, 1,−3), . . . with relations

x2 = y2 = 0, xa = by = ab = 0,

h2 = 0, xy = yx, bah = hba.

5. The principal block λ = (0, 0, 0)

•
a //

��

•

��
c

��

b // •

��

x
((

d��

•

��

y
hh

x
**
· · ·

��

y
hh

•

OO

a
// •

OO

b
//

c
__

•

OO
d

__

x
((
•

OO

y
hh

x
++
· · · ,

y
hh

OO

where vertices are labeled L(1, 0,−1), L(0), L(2, 0,−2), L(3, 0,−3), . . . in top row and

ΠL(1, 0,−1), ΠL(0, 0, 0), ΠL(2, 0,−2), ΠL(3, 0,−3), . . . in bottom row. Then labelling all

vertical arrows by θ, the relations are:

x2 = y2 = 0, xb = dy = bd = ca = 0,

xy = yx, yx = bacd, dbac = acdb,

θ2 = 0, θγ = γθ for γ ∈ {a, b, c, d, x, y}.

Corollary 2.9. All blocks of sq(3) are tame. The typical and standard q(3) blocks are tame.

The principal q(3) block is wild.

Proof. Observe that all blocks of sq(3) have special biserial quivers and hence are tame [9]. The
same holds for the two typical and standard blocks of q(3). We show the q(3) principal block
is wild by “duplicating the quiver” [14, Chapter 9]. Namely, label the vertices of the quiver by
Q0 = {1, 2, 3, . . . }∪{−1,−2,−3, . . . } corresponding to top and bottom row, respectively. Let Q1

denote the arrows and R the relations. Define Q′
0 := Q0 ∪ {1

′, 2′, 3′, . . . } ∪ {−1′,−2′,−3′, . . . }
and set of arrows as

Q′
1 = {(i→ j′) : (i→ j) ∈ Q1}.

Let Q = (Q0, Q1, R) and Q′ = (Q′
0, Q

′
1). Then k(Q)/R′, R′ being relation defined by any

product of 2 arrows is 0, is a quotient of k(Q)/R. Note that the indecomposable representations
of (Q0, Q1, R

′) are in bijection with that of Q′. But Q′ is not a union of affine and Dynkin
diagrams of type A, D, E (each vertex i, i > 3 has 3 edges coming out), so it is wild and this
implies Q is wild. �

One can also see from the description of quivers and radical filtrations of indecomposable
projective modules in Appendix A which of the blocks are highest weight categories.

Corollary 2.10. For sq(3), only the blocks in cases (1) (typical), (3) (half-standard) and

(4) (standard) of Theorem 2.7 are highest weight categories. For q(3), only the blocks in cases

(1) (typical) and (3) (half-standard) are highest weight categories.
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Proof. For different types of typical blocks the statement is obvious from the quiver. A half-
integral block is a highest weight category both for q(3) and sq(3). The former is also a
consequence of general result in [5] for blocks in the category of finite-dimensional represen-
tations of q(n) with half-integral weights. The sq(3) standard block is also a highest weight
category since it is equivalent to well known A∞ quiver which also defines the principal block
for gl(1|1) [11].

The standard block for q(3) is not highest weight due to existence of self-extension.

Let us prove now that the principal blocks for q(3) and sq(3) are not highest weight categories.
Note that all simple objects except L(0) and ΠL(0) have zero superdimension and all projective
modules have zero superdimension. Assume for the sake of contradiction that the principal block
is a highest weight category. The isomorphism classes of simple objects Lµ are enumerated by
poset M. Let Aµ and Pµ denote the standard and projective cover, respectively, of a simple
object Lµ. If the standard cover of L(0) contain a simple constituent ΠL(0) then the standard
cover of ΠL(0) can not contain a simple constituent L(0). Thus, at least one standard object
has a non-zero superdimension. On the other hand, P (a) and ΠP (a) for a ≥ 3 do not have L(0)
and ΠL(0) among its simple constituents. Thus, the set of µ such that sdim aµ 6= 0 is finite. Let
us choose a maximal µ such sdimAµ 6= 0. Then

sdimPµ = sdimAµ +
∑

ν>µ

cν sdimAν 6= 0.

A contradiction. �

3 Geometric preliminaries and BGG reciprocity

3.1 Relative cohomology of Lie superalgebras

Let t ⊂ g be a Lie subsuperalgebra and M a g-module. For p ≥ 0, define

Cp(g, t;M) = Homt(∧
p(g/t),M),

where ∧p(g) is the super wedge product. The differential maps dp : Cp(g, t;M)→ Cp+1(g, t;M)
are defined in the same way as for Lie algebras, see for example [2, Section 2.2]. The relative

cohomology are defined by

Hp(g, t;M) = Ker dp/ Im dp−1.

We will be interested in the case when t = g0̄. Then the relative cohomology describe the
extension groups in the category F of finite-dimensional g-modules semisimple over g0̄. More
precisely, we have the following relation:

ExtpF (M,N) ∼= Hp(g, g0̄;M
∗ ⊗N).

From here on out, we will use Extig(−,−) to denote ExtiF (−,−). For conciseness, we often
write Extq or Extsq to denote Extq(n) or Extsq(n).

Theorem 3.1. Let g = q(n). Then

Extiq(n)(C,C) ∼=

{
Si(g∗

0̄
)g0̄ if i even,

0 else,
and Extiq(n)(C,ΠC) ∼=

{
Si(g∗

0̄
)g0̄ if i odd,

0 else.
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Proof. Note that g1 ∼= Πg1 as a g0̄-module and therefore Λi(g∗
1̄
) ∼= ΠiSi(g∗

0̄
). Therefore

Ci(g, g0̄;C) ∼=

{
Si(g∗

0̄
)g0̄ if i even,

0 else,
and Ci(g, g0̄; ΠC) ∼=

{
Si(g∗

0̄
)g0̄ if i odd,

0 else.

The differential is obviously zero and the statement follows. �

Remark 3.2. One can also use the Z2-graded version of relative cohomology like in [2]. It is
more suitable for the superversion of the category F where odd morphisms are allowed.

3.2 Geometric induction

We next provide a few facts about geometric induction following the exposition in [12, 22].
Let p be any parabolic subsuperalgebra of g containing b. Let G = Q(n), and P , B be the
corresponding Lie supergroups of p, b. For a P -module V , we denote by the calligraphic
letter V the vector bundle G ×P V over the generalized grassmannian G/P . See [17] for the
construction. Note that the space of sections of V on any open set has a natural structure of
a g-module; in other words the sheaf of sections of V is a g-sheaf. Therefore the cohomology
groups H i(G/P,V) are g-modules. Define the geometric induction functor Γi from category of
p-modules to category of g-modules as

Γi(G/P, V ) := H i(G/P,V∗)∗.

It is also possible to define Γi(G/P, V ) without the need of proving the rather technical
question of existence of G/P . Namely, consider the Zuckerman functor from the category of
P -modules to G-modules defined by

H0(G/P, V ) := Γg0̄(HomU(p)(U(g), V )),

where Γg0̄(M) denotes the set of g0̄-finite vectors of g-module M . One can show easily that
H0(G/P, V ) has a unique G-module structure compatible with the g-action. It is also straight-
forward that H0(G/P, V ) is left exact and the right adjoint to the restriction functor G-mod→
P -mod. We define H i(G/P, ·) to be its right derived functors. Using this definition we can
define Γi(G/P, V ) for any V whose weights are in Λ.

We state some well known results.

Proposition 3.3 ([12, 15]). The functor Γi satisfies the following properties.

1. For any short exact sequence of P -modules

0→ U → V →W → 0,

there is a long exact sequence of g-modules

· · · → Γ1(G/P,W )→ Γ0(G/P,U)→ Γ0(G/P, V )→ Γ0(G/P,W )→ 0.

2. For a P -module V and a g-module M ,

Γi(G/P, V ⊗M) = Γi(G/P, V )⊗M.

3. Γ0(G/P, V ) is the maximal finite-dimensional quotient of Mp(V ) := U(g) ⊗U(p) V in the

sense that any finite-dimensional quotient of Mp(V ) is a quotient of Γ0(G/P, V ).
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If G = Q(n), then all parabolic subgroups containing the standard Borel subgroup B are in
bijection with those of GL(n). Hence they are enumerated by partitions. The Levi subgroup L
of parabolic P is isomorphic to Q(m1) × · · · × Q(mk) with m1 + · · · + mk = n. A weight
λ = (λ1, . . . , λn) is called p-typical if

λi + λj = 0 implies m1 + · · ·+ms < i, j ≤ m1 + · · ·+ms+1.

Proposition 3.4 (typical lemma, [22, Theorem 2]). Let P be any parabolic supergroup contain-

ing B and suppose λ ∈ Λ+ is p-typical, where p := Lie(P ). Then

Γi(G/P,Lp(λ)) =

{
L(λ) if i = 0,

0 if i > 0.

Now, for any parabolic supergroup P containing B, define the multiplicity

mi
P (λ, µ) := [Γi(G/P,Lp(λ)) : Lg(µ)].

Proposition 3.5. If λ > µ, then

m0
B(λ, µ) ≥ dimExt1g(L(λ), L(µ)).

Proof. Suppose 0→ L(µ)→ V → L(λ)→ 0 is an extension. Then V contains a highest weight
vector vλ of weight λ coming from the inverse image of that of L(λ). Since V is indecomposable,
V is generated by vλ and since µ < λ, V = U(g).vλ is annihilated by n+. Thus V is a highest
weight module of weight λ, so it is a finite-dimensional quotient of M(λ) and consequently
by Proposition 3.3(3), it is a quotient of Γ0(G/B,Lb(λ)). Each such isomorphism class of
extension V thus gives rise to a distinct subquotient L(µ) in Γ0(G/B,Lb(λ)). Consequently,
dimExt1g(L(λ), L(µ)) ≤ [Γ0(G/B,Lb(λ)) : L(µ)] = m0

B(λ, µ). �

Remark 3.6. In [22], the authors work in gΠ-mod consisting of Π-invariant g-modules (and even
morphisms) and define mi

PΠ(λ, µ) accordingly. For g = q(n), the simple gΠ-modules are L(λ)
when |{i : λi 6= 0}| is odd and L(λ)⊕ΠL(λ) when |{i : λi 6= 0}| is even.

Proposition 3.7. Let P be the parabolic subgroup of Q(3) defined by roots {ε1 − ε2, ε1 − ε3,
ε2 − ε3, ε3 − ε2}. Suppose λ ∈ Λ+ \ {(t, a,−a)}. Then for all µ ∈ Λ+,

mi
P (λ, µ) = mi

B(λ, µ).

Proof. There is a canonical projection G/B → G/P with kernel P/B = Q(2)/B ∩ Q(2). By
our assumption, the weights λ is B-typical in P . Thus the Leray spectral sequence

H i(G/P,Hj(P/B,Lb(λ)))⇒ H i+j(G/B,Lb(λ))

collapses by the typical lemma. �

3.3 Virtual BGG reciprocity

We now formulate a “virtual” BGG reciprocity theorem for g = sq(n) or q(n) which will be used
to compute composition factors of indecomposable projective covers, Pg(λ) of Lg(λ). This result
is a generalization of Theorem 1 in [13] in the case when Cartan subalgebra is not purely even.
In this section we consider the quotient KΠ(F) of the Grothendieck ring K(F) by the relation
[X] = [ΠX]. Then KΠ(F) has a basis {[L(λ)] |λ ∈ Λ+} and [X : L(λ)]Π is the coefficient aλ in
the decomposition [X] =

∑
aλ[L(λ)].
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Denote by Λ+
0 := {λ ∈ h∗0 | 〈λ, β̌〉 ∈ Z>0, ∀β ∈ ∆+

0
}. For g = q(n), Λ+

0 consists of dominant

integral weights for which at most one λi is zero. For M ∈ FΠ, define R := Z[eµ]µ∈Λ and the
character of M

Ch(M) :=
∑

µ∈Λ

dim(Mµ)e
µ ∈ R,

where we put dimX := dimX0̄ + dimX1̄. Then Ch defines an injective homomorphism
KΠ(F)→ R.

For any λ ∈ Λ we define an Euler characteristic as

E(λ) :=
∑

µ

dim(G/B)0̄∑

i=0

(−1)i[Γi(G/B, v(λ)) : L(µ)]Π[L(µ)],

where Γi is the dual to geometric induction functor as defined in Section 2.2. It is straightforward
to check (see, e.g., [3, Theorem 4.25]) that for λ ∈ Λ such that wt(λ) = γ, then [E(λ)] ∈ KΠ(Fγ).

Let us comment on the relation between this Euler characteristic the one defined in [4]. There,
the author considered an induction from the maximal parabolic Pλ to which v(λ) extends, i.e.,

EP (λ) :=
∑

µ

dim(G/Pλ)0̄∑

i=0

(−1)i[Γi(G/Pλ, v(λ)) : L(µ)][L(µ)].

If λ ∈ Λ+ is regular then P = B and EP (λ) = E(λ) and if λ is not regular E(λ) = 0 while
EP (λ) 6= 0. It was shown in [4] that EP (λ) form a basis of the Grothendieck group of F .

The following result is a straightforward generalization of [12, Lemma 1.2].

Lemma 3.8. The Euler characteristic E(λ) satisfies

1.

Ch(E(λ)) = dim v(λ)D
∑

w∈Sn

ε(w)ew.λ,

where

D =
∏

α∈Φ+

eα/2 + e−α/2

eα/2 − e−α/2
.

2. For all w ∈W ,

E(λ) = ε(w)E(w.λ).

3. Let Λ+
0 denote the set of regular dominant weights with respect to g0̄. The set

{Ch(E(λ)), λ ∈ Λ+
0 }

is linearly independent in the ring R.

We call a simple g-module L(λ) of type M if ΠL(λ) is not isomorphic to L(λ) and of type Q

if ΠL(λ) ∼= L(λ). Note that the type of L(λ) is the same as the type of v(λ). Furthermore, for
g = q(n) the type depends on the number of non-zero entries in λ: the type is M , if this number
is even, and Q if it is odd. For example, L(1, 0, 0) is of type Q and L(0) is of type M. We set

t(ν) =

{
1 if L(ν) type M,

0 if L(ν) type Q.
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Theorem 3.9. Let g = q(n) or sq(n). Let µ ∈ Λ+ and bµ,λ be the coefficients occurring in the

expansion

E(µ) =
∑

λ∈Λ+

bµ,λ[L(λ)].

Then there exists coefficients aλ,µ such that for λ ∈ Λ+,

[P (λ)] =
∑

µ∈Λ+
0

aλ,µE(µ)

and

aλ,µ = 2t(µ)−t(λ)γµbµ,λ,

where

γµ =

{
1 if g = q(n) and

∏
µi 6= 0, or g = sq(n) and

∑ 1
µi
6= 0,

2 otherwise.

Proof. We follow the proof of [13, Theorem 1]. First, we have the Bott reciprocity formula

dimHomg(P (λ),Γi(V )) = dimExtiB(V, P (λ)) = dimH i(b, h0̄;V
∗ ⊗ P (λ)). (3.1)

Let Ci(n,−) stand for the i-th term of the cochain complex computing H•(n,−). Note that P (λ)
and hence Ci(n;V ∗ ⊗ P (λ)) is projective and injective in the category of h-modules semisimple
over h0̄. Hence H

j(h, h0̄;C
i(n, V ∗ ⊗ P (λ))) = 0 for any i and j ≥ 1. Therefore the first term of

the spectral sequence for the pair (b, h) implies that

∞∑

i=0

(−1)i dimExtiB(v(µ), P (λ)) =
∞∑

i=0

(−1)i dimHomh(v(µ), C
i(n, P (λ))). (3.2)

Furthermore, we have

[M : L(λ)]Π =

{
dimHomg(P (λ)⊕ΠP (λ),M) if L(λ) type M,

dimHomg(P (λ),M) if L(λ) type Q.
(3.3)

Define biµ,λ by

biµ,λ :=

{
dimHomh(v(µ)⊕Πv(µ), Ci(n, P (λ))) if L(λ) type M,

dimHomh(v(µ), C
i(n, P (λ))) if L(λ) type Q.

By application of (3.2) and (3.3) we obtain

bµ,λ =

∞∑

i=0

(−1)ibiµ,λ.

For any module M ∈ F projective over h we have the equality

dimMµ

dim v̂(µ)
=

{
dimHomh(v(µ)⊕Πv(µ),M) if v(µ) type M,

dimHomh(v(µ),M) if v(µ) type Q,
(3.4)
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where v̂(µ) is the corresponding indecomposable injective h-module. In other words we get

Ch(M) =
∑

µ type M

dimHomh(v(µ)⊕Πv(µ),M)eµ +
∑

µ type Q

dimHomh(v(µ),M)eµ.

If λ is of type Q we obtain

Ch(Ci(n, P (λ))) =
∑

µ type M

2biµ,λ dim v̂(µ)eµ +
∑

µ type Q

biµ,λ dim v̂(µ)eµ

=
∑

µ

2t(µ)−t(λ)biµ,λ dim v̂(µ)eµ.

If λ is of type M we obtain

Ch(Ci(n, P (λ))) =
∑

µ type M

biµ,λ dim v̂(µ)eµ +
∑

µ type Q

1

2
biµ,λ dim v̂(µ)eµ

=
∑

µ

2t(µ)−t(λ)biµ,λ dim v̂(µ)eµ.

Taking alternating sum over i we get

∞∑

i=1

(−1)iCh(Ci(n, P (λ))) =
∑

µ

2t(µ)−t(λ)bµ,λ dim v̂(µ)eµ.

On the other hand, we have

∞∑

i=1

(−1)iCh(Ci(n, P (λ))) = Ch(P (λ))
∏

α∈Φ+

1− e−α

1 + e−α
= D−1Ch(P (λ)).

This implies

Ch(P (λ)) = D
∑

µ∈Λ

bµ,λ dim v̂(µ)2t(µ)−t(λ)eµ.

By Sn-invariance of Ch(P (λ)), we get

bµ,λ = ε(w)bw.µ,λ ∀w ∈ Sn.

This together with dim v̂(µ) = dim v̂(w.µ) implies

Ch(P (λ)) = D
∑

w∈W

∑

µ∈Λ+
0

bµ,λε(w) dim v̂(µ)2t(µ)−t(λ)ew.µ

=
∑

µ∈Λ+
0

dim v̂(µ)

dim v(µ)
2t(µ)−t(λ)bµ,λCh(E(µ)).

Therefore we obtain the relation

aλ,µ =
dim v̂(µ)

dim v(µ)
2t(µ)−t(λ)bµ,λ. (3.5)

Since µ ∈ Λ+
0 at most one µi = 0. Therefore, we get: for g = q(n), v(µ) = v̂(µ) if all µi 6= 0;

for g = sq(n), v(µ) = v̂(µ) if
∑n

i=1
1
µi
6= 0. In remaining cases dim v̂(µ)

dim v(µ) = 2. �
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Remark 3.10. Theorem 3.9 holds for any Lie superalgebra g such that h = h0̄ and g1̄ = g∗
1̄
. In

this case, we get γµ = 1.

Let KΠ
P (F) be the subgroup of KΠ(F) generated by the classes of all projective modules. It

is an ideal in KΠ(F) since tensor product of projective with any finite-dimensional module is
projective. Let KΠ

E(F) be the subgroup of KΠ(F) generated by the Euler characteristics. Then
KΠ
P (F) ⊂ K

Π
E(F) ⊂ K

Π(F) and the inclusions are in general strict. The bν,µ express the basis
of KΠ

E(F) in terms of the basis of KΠ(F) and aλ,ν express the basis of KΠ
P (F) in terms of the

basis of KΠ
E(F). Thus for two g-dominant weights λ, µ, we have

[P (λ) : L(µ)]Π =
∑

ν∈Λ+
0

aλ,νbν,µ. (3.6)

Remark 3.11. In [3] the coefficients bµ,λ and the multiplicities [P (λ) : L(µ)] were computed
using the action of the Kac–Moody superalgebra B∞ on F via translation functors. Since [P (λ)]
and [L(λ)] form a dual system in KΠ(F) (dimHomq(P (λ), L(µ)) = δλ,µ) the action of translation
functors on [P (λ)] is related to the action on [L(λ)] in the natural way via this duality. Applying
translation functors repeatedly starting from a typical representation, the author obtains a nice
combinatorial formula for bµ,λ. In addition, it gives another way to prove Theorem 3.9 in this
particular case.

3.4 General lemma

To study relations between block for sq(n) and q(n) we consider the induction and restriction
functors

Ind: Fsq(n) → Fq(n), M 7→ Ind
q(n)
sq(n)M,

Res: Fq(n) → Fsq(n), M 7→ Ressq(n)M.

The Frobenius reciprocity implies that Ind is left adjoint of Res.

Lemma 3.12. Let M be a projective sq(n)-module with ΠM ∼=M and let A = Endsq(M), A′ =
Endq(IndM). Assume that there exists θ ∈ A′ such that Ker θ = Im θ and Ker θ∩(1⊗M) = {0}.
Then A′ ∼= A⊗C[θ]/

(
θ2
)
.

Proof. Note that our assumptions imply Res IndM = M ⊕M . Consider injective homomor-
phism Ind: A → A′ and Res: A′ → Mat2 ⊗A. Furthermore, for γ ∈ A, we have

Res Ind γ =

(
γ γ′

0 γ

)

for some γ′ ∈ A. The condition θ2 = 0 implies

Res θ =

(
0 0
Id 0

)
.

The Frobenius reciprocity implies for any ϕ ∈ A′,

if Resϕ =

(
0 σ
0 τ

)
then Resϕ = 0.

We have

[Res Ind γ,Res θ] =

(
γ′ 0
0 −γ′

)
, [Res Ind γ,Res θ]− Res Ind γ′ =

(
0 −γ′′

0 −2γ′

)
,

hence γ′ = 0.
Thus, we have proved that Ind(A) commutes with θ. Thus there is an injective homomor-

phism A⊗C[θ]/
(
θ2
)
→ A. The dimension argument implies that it is an isomorphism. �
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4 Self extensions

4.1 Self extensions for q(n)

The goal of this section is to prove the following theorem.

Theorem 4.1. Let λ = (λ1, . . . , λk, 0, . . . , 0,−λk+m+1, . . . ,−λn) ∈ Λ+ such that all λi > 0 be

a dominant integral weight in q(n). Then

Ext1q(n)(L(λ),ΠL(λ)) =

{
C if m > 0,

0 if m = 0.

If L(λ) 6= ΠL(λ), then

Ext1q(n)(L(λ), L(λ)) = 0.

Theorem 4.1 implies parts (1) and (2) of our main theorem 2.8. Namely, Ext1(L(λ), L(µ)) 6=
0 ⇒ wt(λ) = wt(µ). Thus, by Theorem 4.1, there are no extensions in the strongly typical

block, and there is a unique extension L(λ)
ΠL(λ) in the typical block. Thus in the typical block, the

projective cover of L(λ) is P (λ) = L(λ)
ΠL(λ) (Theorem 3.9). Then a ∈ Homq(P (λ),ΠP (λ)) implies

a2 = 0.

Proof. The key idea is to take parabolic invariants to reduce the problem to finding extensions
between trivial modules. Let λ be as in the theorem. Define the parabolic subalgebra of g by

p := h⊕
⊕

1<i<j≤n

gεi−εj ⊕
⊕

k<i<j≤k+m

gεj−εi .

Its Levi subalgebra l ⊂ p is isomorphic to q(m)⊕ h′ where h′ ⊂ h is the centralizer of q(m) in h.
Let

np :=
⊕

i≤k<j≤n

gεi−εj ⊕
⊕

k<i≤k+m<j≤n

gεi−εj

be the nilpotent radical of p.
We first observe that taking np invariants is a functor from q(n)-mod to l-mod. Next, suppose

L(λ)np had a nontrivial l-invariant subspace N . Because l preserves the λ-weight space, and
the lower parabolic nilpotent part only lowers the λ-weight space, we must have U(q(n))Nλ (

L(λ)λ ⇒ U(q(n))N ( L(λ) ⇒ N = 0, contradiction. Thus L(λ)np is simple l-module. On the
other hand, L(λ)λ is also an irreducible l-module of highest weight λ. So by the characterization
of the simple highest weight l-modules, L(λ)np = L(λ)λ.

Lemma 4.2. Using the above notation, the following linear maps are injective

Ext1q(n)(L(λ), L(λ)) →֒ Ext1l (L(λ)
np , L(λ)np),

Ext1q(n)(L(λ),ΠL(λ)) →֒ Ext1l (L(λ)
np ,ΠL(λ)np).

Proof. Suppose we had a sequence of q(n)-modules 0 → L(λ) → M → L(λ) → 0 such that
taking np invariants results in a split short exact sequence of l-modules

0→ L(λ)np
φ
−→Mnp

ψ
−→ L(λ)np → 0.

From before, we know this sequence is the same as

0→ L(λ)λ
φ
−→Mλ

ψ
−→ L(λ)λ → 0.
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Existence of a splitting maps means there exists an l-module homomorphism δ : L(λ)λ →Mλ

such that ψ ◦ δ = idL(λ)λ . Thus, we know

Mλ = φ(L(λ)λ)⊕ δ(L(λ)λ).

Let L′ = U(q(n)).δ(L(λ)λ). Then

M = U(q(n)).Mλ = U(q(n)).(φ(L(λ)λ)⊕ δ(L(λ)λ))

⊂ U(q(n))φ(L(λ)λ) + U(q(n))δ(L(λ)λ)

= φ(L(λ)) + L′

where in the last line we use that φ is a q(n)-module homomorphism and U(q(n))L(λ)λ = L(λ).
Thus M = φ(L(λ)) + L′.

To show the sum is direct, observe φ injective and L(λ) simple implies φ(L(λ)) is simple, so
φ(L(λ)) ∩ L′ = 0 or φ(L(λ)). The case φ(L(λ)) ∩ L′ = φ(L(λ)) is impossible, as

(L′ ∩ Φ(L(λ)))λ = L′
λ ∩ (Φ(L(λ)))λ = 0.

This shows that the sequence of q(n) modules splits also. �

If m = 0, then Ext1q(n)(L(λ), L(λ)) = 0. This follows from

dimExt1q(n)(L(λ),ΠL(λ)) ≤ dimExt1h(n)(L(λ)
np ,ΠL(λ)np) = 0,

where we used m = 0 ⇒ l = h and Lemma 4.2 for the first step, and the well known fact that
Clifford supermodules are semisimple when λ is nondegenerate, for the second step [19].

Lemma 4.3. If λ is as in Theorem 4.1 and m > 0 and v(λ) is considered as a simple l-module,

then Ext1l (v(λ),Πv(λ)) = C and Ext1l (v(λ), v(λ)) = 0 if v(λ) is of Type M.

Proof. We start with general observation.

Lemma 4.4. Suppose g = A ⊕ B, where A,B are Lie superalgebras and M = MA ⊠MB is

a g-supermodule. Then

H1(g, g0;M) = H1(A,A0;MA)⊠H0(B,B0;MB)⊕H
1(A,A0; ΠMA)⊠H0(B,B0; ΠMB)

⊕H0(A,A0;MA)⊠H1(B,B0;MB)

⊕H1(A,A0; ΠMA)⊠H1(B,B0; ΠMB).

Now write v(λ) = C⊠ v(λ′) for l = q(m)⊕ h′. Then since v(λ′) is a projective h′-module we
have

Ext1l (v(λ),Πv(λ)) = Ext1q(m)(C,C)⊗Homh′(v(λ
′),Πv(λ′))

⊕ Ext1q(m)(C,ΠC)⊗Homh′(v(λ
′), v(λ′))

and

Ext1l (v(λ), v(λ)) = Ext1q(m)(C,C)⊗Homh′(v(λ
′), v(λ′))

⊕ Ext1q(m)(C,ΠC)⊗Homh′(v(λ
′),Πv(λ′)).

By Theorem 3.1 we have Ext1q(m)(C,C) = 0 and Ext1q(m)(C,ΠC) = C. The lemma follows. �



Extension Quiver for Lie Superalgebra q(3) 19

By Lemmas 4.2 and 4.3 we have that

dimExt1q(n)(L(λ),ΠL(λ)) ≤ 1 and Ext1q(n)(L(λ), L(λ)) = 0

if L(λ) is not isomorphic to ΠL(λ).
It remains to show that there exists a non-trivial extension between L(λ) and ΠL(λ). For this

we consider an indecomposable (1|1)-dimensional q(n)-module U with a basis u ∈ U0̄, ū ∈ U1̄

and with action given by

Xū = 0, Xu = otrXū, ∀ X ∈ q(n).

Then we have an exact sequence of q(n)-modules

0→ ΠL(λ)→ L(λ)⊗ U → L(λ)→ 0.

To see that it does not split take p such that λp = 0. On the weight space (L(λ)⊗U)λ the odd
basis element Hp acts non-trivially while its action on (L(λ)⊕ΠL(λ))λ is obviously trivial. The
proof of Theorem 4.1 is complete. �

4.2 Self extensions for sq(n)

Theorem 4.5. Let λ = (λ1, . . . , λk, 0, . . . , 0,−λk+m+1, . . . ,−λn) such that all λi > 0 be a dom-

inant integral weight in q(n).

1. Ext1sq(n)(Lsq(n)(λ), Lsq(n)(λ)) = 0 if L(λ) 6= ΠL(λ);

2. Ext1sq(n)(Lsq(n)(λ),ΠLsq(n)(λ)) = Ext1sq(n)(Lsq(n)(λ), Lsq(n)(λ)) = 0 if m > 0 or m = 0 and
1
λ1

+ · · ·+ 1
λn
6= 0;

3. Ext1sq(n)(Lsq(n)(λ),ΠLsq(n)(λ)) = C if 1
λ1

+ · · ·+ 1
λn

= 0.

Proof. Note that Lemma 4.2 can be generalized to the case of sq(n), namely if p′ = p ∩ sq(n),
l′ = l ∩ sq(n) and v′(λ) is the irreducible l′-module, the map

Ext1sq(n)(Lsq(n)(λ), (Π)Lsq(n)(λ)) →֒ Ext1l′(v
′(λ), (Π)v′(λ))

is injective. We claim that Ext1l′(v
′(λ), (Π)v′(λ)) = 0 for all λ which do not satisfy (3). Indeed,

if m = 0 and 1
λ1

+ · · · + 1
λn
6= 0, K ′

λ = 0 (see Section 2.3) and hence v′(λ) is projective. If
m > 0, then sq(m) is an ideal in l′ which acts trivially on v′(λ) and Πv′(λ) and the quotients
l′/sq(m) ∼= l/q(m) ∼= h′. Since

Ext1sq(m)(C,C) = Ext1sq(m)(C,ΠC) = 0,

using spectral sequence we get

H1(l′, l′0̄, v
′(λ)∗ ⊗ (Π)v′(λ)) ∼= H1(h′, h′0̄, v

′(λ)∗ ⊗ (Π)v′(λ)) = 0.

It remains to consider the case 1
λ1

+ · · ·+ 1
λn

= 0. In this case one-dimensional K ′
λ lies in the

radical of the corresponding Clifford algebra, therefore we have

Ext1l′(v
′(λ),Πv′(λ)) = C.

To construct a non-trivial extension over sq(n) consider the induced module Ind
q(n)
sq(n)Lsq(n)(λ)

isomorphic to L(λ) = Lq(n)(λ). It is the middle term of an exact sequence of sq(n)-modules

0→ Lsq(n)(λ)
ϕ
−→ L(λ)→ ΠLsq(n)(λ)→ 0.
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Let us check that the sequence does not split. Using Frobenius reciprocity, we compute

Homsq(n)(ΠLsq(n)(λ), L(λ)) = Homq(n)(ΠL(λ), L(λ)).

If n is odd, then Lsq(n)(λ) is isomorphic to ΠLsq(n)(λ) and L(λ) is isomorphic to ΠL(λ) as
a q(n)-module. So

Cϕ = Homsq(n)(ΠLsq(n)(λ), L(λ)) = Homq(n)(ΠL(λ), L(λ)).

If n is even then Lsq(n)(λ) is not isomorphic to ΠLsq(n)(λ) and L(λ) is not isomorphic to ΠL(λ)
as an q(n)-module. Therefore

Homsq(n)(ΠLsq(n)(λ), L(λ)) = Homq(n)(ΠL(λ), L(λ)) = 0.

In both cases, the sequence does not split. �

Corollary 4.6. Let λ ∈ Λ+ and let Res, Ind denote Resqsq, Ind
q
sq respectively.

(a) If there exists i such that λi = 0, then

ResL(λ) = Lsq(λ), IndLsq(λ) =
L(λ)

ΠL(λ)
.

(b) If all λi 6= 0 and 1
λ1

+ · · ·+ 1
λn
6= 0, then

ResL(λ) = Lsq(λ)⊕ΠLsq(λ), IndLsq(λ) = L(λ).

(c) If all λi 6= 0 and 1
λ1

+ · · ·+ 1
λn

= 0, then

ResL(λ) =
ΠLsq(λ)

Lsq(λ)
, IndLsq(λ) = L(λ).

Proof. By PBW theorem for q(n), sq(n), given a finite-dimensional sq(n) module M ,
dimRes IndM = 2dimM . Suppose we are in case (a). By Lemma 2.1(a), ResL(λ) = Lsq(λ)
and IndLsq(λ) is the middle term of the exact sequence of q(n) modules

0→ L(λ)
φ
−→ IndLsq(λ)→ ΠL(λ)→ 0.

Now, since there some λi = 0, Lsq(λ) ∼= ΠLsq(λ) if and only if L(λ) ∼= ΠL(λ). Then repeating
the argument from Theorem 4.5, we conclude the sequence is nonsplit. For case (b), note that
Lemma 2.1(b) implies L(λ) ∼= ΠL(λ) if and only if Lsq(λ) 6∼= ΠLsq(λ), and Theorem 4.5 implies

there is no self extension
Lsq(λ)
ΠLsq(λ)

. Finally, case (c) was done in Theorem 4.5. �

5 Standard block

In this section, we compute the Ext-quiver for the standard block of g = q(3) and g = sq(3).
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5.1 Induction and restriction functors

Our goal is to establish a connection between the standard block Fn(1,0,...,0) and the principal

block Fn−1
(0) . As a first step we use the geometric induction in the case when it is an exact functor.

Consider the parabolic subalgebra

p = h⊕
⊕

2≤i≤n

gε1−εi ⊕
⊕

2≤i 6=j≤n

gεi−εj .

Its Levi subalgebra l is isomorphic to q(1)⊕ q(n− 1). Let

np =
⊕

2≤i≤n

gε1−εi

denote the nilpotent radical of p.
Let t be a positive integer. A dominant integral weight λ ∈ Λ+ of q(n) is called t-admissible if

λ = (t, λ2, . . . , λn) such that t+λi 6= 0, in other words the first mark of λ is t and λ is p-typical.
Let Fl(t) denote the category of finite-dimensional l-modules on which H1 acts by t and

all weights of q(n − 1) have integral marks strictly less than t. Let Fn(t) denote the Serre
subcategory of Fn generated by L(λ) for all t-admissible λ. Define the functors

Γt : Fl(t)→ F
n(t), Rt : Fn(t)→ Fl(t)

by

Γt(M) := Γ0(G/P,M), Rt := Ker(H1 − t).

Proposition 5.1. The functors Γt and Rt define an equivalence between Fl(t) and F
n(t).

Proof. By Proposition 3.4, Γi(G/P,M) = 0 for i > 0 and every M ∈ Fl(t). Furthermore,
Γ0(G/P,M) is simple ifM is simple. On the other hand, Rt(N) = H0(np, N) for any N ∈ Fn(t).
That implies Γt is left adjoint to Rt, both functors are exact and establish bijection on the sets
of isomorphism classes of simple objects in both categories. Hence these functors provide an
equivalence between the two categories. �

5.2 Reduction to q(n − 1)

Note that every module in Fl(t) is of the form Lq(1) ⊠M for some M ∈ Fn−1.

Corollary 5.2. Let λ = (λ1, . . . , λk, 1, 0, . . . , 0,−λk, . . . ,−λ1), µ = (µ1, . . . , µk′ , 1, 0, . . . , 0,
−µk′ , . . . ,−µ1) be q(n) dominant weights in the standard block. For t >> max{λ1, µ1},

Ext1q(n)(L(λ), L(µ)) = Ext1q(n)
(
L
(
t, λ̃

)
, L(t, µ̃)

)

= Ext1q(1)⊕q(n−1)

(
L(t)⊠ L

(
λ̃
)
, L(t)⊠ L(µ̃)

)

= Ext1q(n−1)

(
L
(
λ̃
)
, L(µ̃)

)
⊕ Ext1q(n−1)

(
L
(
λ̃
)
,ΠL(µ̃)

)
,

where λ̃ = (λ1 − 1, . . . , λk − 1, 0, . . . , 0, 1− λk, . . . , 1− λ1) and µ̃ = (µ1 − 1, . . . , µk′ − 1, 0, . . . , 0,
1− µk′ , . . . , 1− µ1). If k = 0, then λ = (1, 0, . . . , 0) and λ̃ = 0, and similarly for k′ = 0.

Proof. The first equality follows from [24, Lemma 5.12], which shows there is an equivalence
of categories between Fn(1,0,...,0) (“standard block”) and Fn(t,0,...,0) given by a composition of

translation functors. Under this equivalence, L(λ) maps to L
(
t, λ̃

)
. The second equality follows

from Proposition 5.1. The last equality follows from Lemma 4.4. �
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Now, using the q(2) Ext quiver in [18, Theorem 27], this corollary computes all extensions
occurring in Theorem 2.8(4).

Remark 5.3. In the standard block, the sq(3) extensions are the same as the q(3) extensions.
Indeed, lemma 4.6 shows if λ = (a, 1,−a), µ = (b, 1,−b), then ResL(λ) = Lsq(λ)⊕ΠLsq(λ) and
IndLsq(λ) = L(λ). Now Shapiro’s lemma implies

Ext1q(IndLsq(λ), L(µ)) = Ext1sq(Lsq(λ), Lsq(µ)⊕ΠLsq(µ)), and

Ext1q(IndΠLsq(λ), L(µ)) = Ext1sq(ΠLsq(λ), Lsq(µ)⊕ΠLsq(µ)).

Since L(λ) = ΠL(λ), we have Ext1q(L(λ), L(µ)) = Ext1sq(Lsq(λ), Lsq(µ)). Also ResL(1, 0, 0) =
Lsq(1, 0, 0), hence IndLsq(λ) = IndΠLsq(λ) implies by Shapiro’s lemma

Ext1q(L(λ), L(1, 0, 0)) = Ext1sq(Lsq(λ), Lsq(1, 0, 0)) = Ext1sq(ΠLsq(λ), Lsq(1, 0, 0)).

5.3 Relations

5.3.1 Relations for g = sq(3)

All irreducible modules and projective covers considered here will be for sq(3), and we will omit
the subscripts from Lsq(λ) and Psq(λ). If λ 6= (1, 0, 0), µ = (a, 1,−a), a > 1, then [P (λ) :
E(µ)] = [E(µ) : L(λ)] by Theorem 3.9. We note Lsq(a, 1,−a) 6= ΠLsq(a, 1,−a). If λ = (1, 0, 0),
then [P (λ) : E(µ)] = 2[E(µ) : L(λ)]. Now, the character formula for L(λ) : λ = (λ1, λ2, λ3) ∈ Λ+

is shown in [22] to equal the generic character formula for all λ 6= (1, 0, 0). This combined with
character formula for E(λ) (3.8) implies

E(1, 0, 0) = 0; E(2, 1,−2) = [L(1, 0, 0)] + [L(2, 1,−2)],

E(a, 1,−a) = [L(a, 1,−a)] + [L(a− 1, 1,−a+ 1)].

Thus, using (3.6), we find

[P (1, 0, 0)] = 2[L(1, 0, 0)] + 2[L(2, 1,−2)],

[P (2, 1,−2)] = [L(1, 0, 0)] + 2[L(2, 1,−2)] + [L(3, 1,−3)],

[P (a, 1,−a)] = [L(a− 1, 1, 1− a)] + 2[L(a, 1,−a)] + [L(a+ 1, 1,−a− 1)] for a > 2.

This forces the radical filtrations for P (λ) to be as shown in Appendix A, since we know all
possible extensions of simples, and hence radP (λ)/ rad2 P (λ).

Let V ∈ F have radical filtration V = rad0(V ) ⊃ rad1(V ) ⊃ · · · ⊃ radk(V ) = 0. Let
radi = radi / radi+1 and denote the radical filtration by

rad0 V
∣∣ rad1 V

∣∣ · · ·
∣∣ radk−1 .

Let

a1 ∈ HomCQ(L(1, 0, 0), L(2, 1,−2)),

b1 ∈ HomCQ(L(2, 1,−2)L(1, 0, 0)),

at ∈ HomCQ(L(t, 1,−t), L(t+ 1, 1,−t− 1)),

bt ∈ HomCQ(L(t+ 1, 1,−t− 1), L(t, 1,−t))

be paths on the quiver. We identify each γ ∈ HomCQ(L(λ), L(µ)) with a corresponding element
of Homg(P (λ), radP (µ)/ rad

2 P (µ)) as in Proposition 2.5. Then using the radical filtrations in
Section 6.1,

im(a1b1) = im(a1)(L(2, 1,−2)
∣∣L(1, 0, 0)) = L(2, 1,−2) and

im(b2a2) = im(b2)(L(2, 1,−2)
∣∣L(3, 1,−3)) = L(2, 1,−2)
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and hence a1b1 = b2a2. Likewise we find a2a1 = b1b2 = 0, at+1at = btbt+1 = 0 and btat =
at−1bt−1 for t ≥ 3. The computation for the a′t ∈ HomQ(ΠL(t + 1, 1,−t − 1),ΠL(t, 1, 1)) and
b′t ∈ HomQ(ΠL(t, 1,−t),ΠL(t+ 1, 1,−t− 1)) is identical.

5.3.2 Translation functor from the principal to the standard block

Consider the translation functors:

TV = pr1(V ⊗ L(1, 0, 0)) and T ∗W = pr2(W ⊗ L(0, 0,−1)),

where pr1 is projection to standard block and pr2 is projection to principal block. It is well
known T , T ∗ are both exact and left and right adjoint to each other.

Lemma 5.4. We have TLq(1, 0,−1) = 0 and TLq(a, 0,−a) ∼= Lq(a, 1,−a) for a ≥ 2.

Proof. For the first assertion we use

Homq((Lq(1, 0, 0), TLq(1, 0,−1)) = Homq(T
∗Lq(1, 0, 0), Lq(1, 0,−1)) = 0.

Since all simple constituents of TLq(1, 0,−1) are isomorphic to Lq(1, 0, 0) by the weight argu-
ment, the statement follows.

For the second assertion, use Lemma 3.3(2) to check that

TΓ0(G/B, v(a, 0,−a)) = Γ0(G/B, v(a, 1,−a)).

Information about the multiplicities of simple modules in

Γ0(G/B, v(a, 0,−a)) and Γ0(G/B, v(a, 1,−a))

allows to conclude that

T (TopΓ0(G/B, v(a, 0,−a))) = TopΓ0(G/B, v(a, 1,−a)). �

5.3.3 Relations for g = q(3)

As before, we use BGG reciprocity to find

[P (1, 0, 0)] = 4[L(1, 0, 0)] + 2[L(2, 1,−2)],

[P (2, 1,−2)] = 2[L(1, 0, 0)] + 2[L(2, 1,−2)] + [L(3, 1,−3)],

[P (a, 1,−a)] = [L(a− 1, 1, 1− a)] + 2[L(a, 1,−a)] + [L(a+ 1, 1,−a− 1)] for a > 2.

Recall functors Res, Ind from Section 3.4. It is easy to verify the following isomorphisms

Pq(λ) ∼= IndPsq(λ), ResPq(λ) ∼= Psq(λ)⊕ΠPsq(λ).

Furthermore, we have an isomorphism Psq(λ) ∼= ΠPsq(λ) only for λ = (1, 0, 0). Moreover, from
relations for sq(3) we know

Homsq(Psq(λ),ΠPsq(µ)) = 0

if both λ and µ are not equal to (1, 0, 0). This implies

Ind: Homsq(Psq(λ), Psq(µ))→ Homq(Pq(λ), Pq(µ))
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is an isomorphism if λ, µ 6= (1, 0, 0). Therefore we have unique lift of the arrows at, bt to
ãt, b̃t for t ≥ 2 and the relations between them are the same as for sq(3). For the arrows
a1 : Psq(1, 0, 0)→ Psq(2, 1,−2) and b1 : Psq(2, 1,−2)→ Psq(1, 0, 0) we define

ã1 = Ind(a1 +Πb1), b̃1 = Ind(b1 +Πa1).

Then we immediately obtain ã1b̃1 = 0 and ã2ã1 = b̃1b̃2 = 0 from the relations for sq(3). From
multiplicities of simple modules in projectives and information about Ext1q, one can compute
the layers of the radical filtration in projective modules which are listed in Section 6.2.

There is one additional loop arrow h : Pq(1, 0, 0) → Pq(1, 0, 0). Let us show that we can
choose h in such a way that h2 = 0. We claim that there exists a q(3)-module R with radical
filtration

Lq(1, 0, 0) |Lq(2, 1,−2) |Lq(1, 0, 0).

Indeed, it is proven independently in Section 5 that there exists a q-module R′ with the radical
filtration

ΠC |Lq(2, 0,−2) |C.

Set R = TR′ where T is the translation functor from the principal to the standard block.
Lemma 5.4 ensures that the composition factors ofR are as desired. Furthermore, R′ is a quotient
of Pq(0) and hence R is a quotient of Pq(1, 0, 0). That settles the radical filtration of R.

Now we can use an exact sequence

0→ R→ Pq(1, 0, 0)→ R→ 0

to construct h ∈ Endq(Pq(1, 0, 0)) with image and kernel isomorphic to R. In fact from the
radical filtration of R we know that ResR ∼= Psq(1, 0, 0).

Now we can use Lemma 3.12 with M = R, Pq(1, 0, 0) = IndR and θ = h. The algebra
Endq(Pq(1, 0, 0)) is generated h and u := b̃1ã1 with u2 = 0. Lemma 3.12 implies hu = uh.

5.4 “Half-standard” block

We can compute the Ext quiver for q(3) half-standard block by just computing the radical
filtrations of the projective covers. The character formula for L(λ) when wt(λ) = δ 3

2
is the same

as the generic character formula. Hence, we find

E
(
3
2 ,

1
2 ,−

1
2

)
=

[
L
(
3
2 ,

1
2 ,−

1
2

)]
, E

(
5
2 ,

3
2 ,−

5
2

)
=

[
L
(
5
2 ,

3
2 ,−

5
2

)]
+

[
L
(
3
2 ,

1
2 ,−

1
2

)]
,

E
(
2a+1
2 , 32 ,

−2a−1
2

)
=

[
L
(
2a+1
2 , 32 ,

−2a−1
2

)]
+
[
L
(
2a−1
2 , 32 ,

−2a+1
2

)]
, for a > 2.

Now by our BGG reciprocity result, [P (λ) : E(µ)] = [E(µ) : L(λ)], hence
[
P
(
3
2 ,

1
2 ,−

1
2

)]
= 2

[
L
(
3
2 ,

1
2 ,−

1
2

)]
+
[
L
(
5
2 ,

3
2 ,−

5
2

)]
,[

P
(
5
2 ,

3
2 ,−

5
2

)]
=

[
L
(
3
2 ,

1
2 ,−

1
2

)]
+ 2

[
L
(
5
2 ,

3
2 ,−

5
2

)]
+
[
L
(
7
2 ,

3
2 ,−

7
2

)]
,[

P
(
2a+1
2 , 32 ,−

2a+1
2

)]
=

[
L
(
2a−1
2 , 32 ,−

2a−1
2

)]
+ 2

[
L
(
2a+1
2 , 32 ,−

2a+1
2

)]

+
[
L
(
2a+3
2 , 32 ,−

2a+3
2

)]
, a > 2.

Using these composition factors and that there are no self extensions, we find the radical filtration
for P

(
3
2 ,

1
2 ,−

1
2

)
. Then using Ext1q(3)(L(λ), L(µ)) = Ext1q(3)(L(µ), L(λ)) when wt(λ) = wt(µ)

= δ 3
2
, we inductively (on a) find the radical filtrations for P

(
2a+1
2 , 32 ,−

2a+1
2

)
. This computes

the possible extensions, and moreover determines the relations as written in the theorem. Finally,
the sq(3) half-standard block follows from Shapiro’s lemma (see Remark 5.3).

Remark 5.5. It was shown in [5] that half-integral blocks in Fq(n) of atypicality r are equivalent
to modules over the Khovanov are algebra K+∞

r . In our case, r = 1 and the arc algebra is the
zig-zag algebra of the semi-infinite linear quiver.
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6 Principal block

6.1 Ext quiver for the principal block for sq(3)

In this subsection we use the notation

g = sq(3), L(a) = Lsq(3)(a, 0,−a), P (a) = Psq(3)(a, 0,−a).

We start with the following

Lemma 6.1. If a > 0 then L(a)∗ ∼= ΠL(a) and P (a)∗ ∼= ΠP (a). Furthermore, P (0) ∼= P (0)∗.

Proof. If the highest weight h-module of L(a) is v(a, 0,−a) then the highest weight h-module
of L(a)∗ is v(−a, 0, a)∗ [10]. The first assertion follows from the isomorphism v(−a, 0, a)∗ ∼=
Πv(a, 0,−a) of h-modules when a > 0. If I(L), P (L) denote the injective, projective hull of a
simple g-mod L respectively, then by [23]

I(L) ∼= P (L)⊗ T,

where T ∼= Stop(g1̄). In our case Stop(g1̄) = S8(g1̄) is the trivial g0̄-module. Hence we have
I(L) ∼= P (L). On the other hand P (L)∗ ∼= I(L∗). Hence if a > 0, P (L(a))∗ ∼= P (L(a)∗) ∼=
ΠP (L(a)). If a = 0, then L(0)∗ = L(0) and consequently P (L(0))∗ ∼= P (L(0)∗) ∼= P (L(0)). �

Corollary 6.2. If a, b > 0, then

Ext1g(L(a), L(b))
∼= Ext1g(L(b), L(a)), Ext1g(L(a), L(0))

∼= Ext1g(ΠL(0), L(a)).

Note, in the case g = sq(3) and µ = (a, 0,−a), a > 0, we have [P (λ) : E(µ)] = [E(µ) : L(λ)]
by Theorem 3.9. Now, using the character formula for L(a, 0,−a) [21] and E(a, 0,−a) (3.8), we
find

E(0) = 0, E(1, 0,−1) = [L(1)], E(2, 0,−2) = [L(2)] + [L(1)] + 2[C],

E(a, 0,−a) = [L(a)] + [L(a− 1)] if a > 2.

Thus, using 3.6, we find

[P (0)] = 4[C] + 2[L(1)] + 2[L(2)],

[P (1)] = 2[C] + 2[L(1)] + [L(2)],

[P (2)] = 2[C] + [L(1)] + 2[L(2)] + [L(3)],

[P (a)] = [L(a− 1)] + 2[L(a)] + [L(a+ 1)] for a > 2.

Furthermore, it follows from [21] that Γi(G/B, v(a, 0,−a)) = 0 if a ≥ 2 and i ≥ 1. Therefore
if a ≥ 3, we obtain a non-split exact sequence

0→ L(a− 1)→ Γ0(G/B, v(a, 0,−a))→ L(a)→ 0,

which gives a non-trivial extension Ext1g(L(a), L(a− 1)). There are no more by Proposition 3.5.

Lemma 6.3. Let a ≥ 3, then

Ext1g(L(a), L(a− 1)) = Ext1g(L(a− 1), L(a)) = C

and Ext1g(L(a), L) = 0 for all simple L not isomorphic to L(a− 1).
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Proof. We do not have self-extensions by Theorem 4.5. If b < a, then a non-trivial extension
of L(a) by L(b) or ΠL(b) is a quotient of Γ0(G/B, v(a, 0,−a)) by Proposition 3.3(3). That forces
b = a− 1 and also implies Ext1g(L(a),ΠL(b)) = 0. The case b > a follows by Corollary 6.2. �

Remark 6.4. Our choice of labelling ΠL(a) vs L(a) for a ≥ 2 is determined by the above
lemma. For a = 1 we assume that L(1) is dual to the adjoint representation in psq(3). For a = 2
the choice will be clear from the following lemma. Note that in the same way using

[Γ0(v(2, 0,−2)) : L(1)]Π = 1,

we obtain

dimExt1g(L(2), L(1)⊕ΠL(1)) = dimExt1g(L(1)⊕ΠL(1), L(2)) ≤ 1. (6.1)

Lemma 6.5.

Ext1g(L(1),C) = C and Ext1g(ΠL(1),C) = 0, (6.2)

Ext1g(L(2),C) = 0 and Ext1g(ΠL(2),C) = C, (6.3)

Ext1g(L(1), L(2)) = 0 and Ext1g(ΠL(1), L(2)) = 0. (6.4)

Proof. Identify ΠL(1) with the simple Lie superalgebra psq(3), then Der psq(3) = ΠC [16].
This implies (6.2) by use of duality and Lemma 6.1.

In order to prove remaining identities we consider the projective module P (0). We know all
its simple constituents: L(1), ΠL(1), L(2), ΠL(2) and L(0), ΠL(0), the last two appear with
multiplicity 2. Since P (0) is projective, we know its super dimension is 0, so L(0) and ΠL(0)
occur with same multiplicity. Assume for the sake of contradiction that

Ext1g(L(2),C) = Ext1g(ΠL(2),C) = 0.

That would imply that

P (0)/ radP (0) = L(0), radP (0)/ rad2 P (0) = L(1).

Furthermore, since q(3)∗ is a quotient of P (0) we know that rad2 P (0)/ rad3 P (0) contains ΠL(0).
But it must contain L(2) or ΠL(2) (otherwise L(2) will not appear in P (0)). We have the
inequality

[
rad2 P (0)/ rad3 P (0) : L

]
≤ dimExt1g(L(1), L)

for any simple L. Therefore rad2 P (0)/ rad3 P (0) contains only one copy of ΠL(0) and one copy
of either L(2) or ΠL(2), (6.1). Without loss of generality we may assume

rad2 P (0)/ rad3 P (0) = ΠL(0)⊕ΠL(2).

Let M = P (0)/ rad3 P (0). Then by our assumption we have M∗ ⊂ P (0)∗ ∼= P (0), and we have
the exact sequence

0→M∗ → P (0)→M → 0.

Furthermore, it also follows from our assumptions that the radical and socle filtrations on M
are the same. In particular, it follows that M∗/ radM∗ = ΠL(0) ⊕ L(2). That would imply
Ext1g(ΠL(2)⊕ΠL(0), L(2)⊕ΠL(0)) 6= 0. But that contradicts our original assumption.
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The above argument implies that Ext1g(C,ΠL(2)) = C. Therefore

radP (0)/ rad2 P (0) = L(1)⊕ΠL(2) or

radP (0)/ rad2 P (0) = L(1)⊕ΠL(2)⊕ L(2).

However, it is easy to see that the latter case is impossible since otherwise by self-duality of P (0)
we have soc2 P (0)/ socP (0) = ΠL(1)⊕ΠL(2)⊕ L(2) and that would imply [P (0) : L(2)]Π > 2.
Therefore we have radP (0)/ rad2 P (0) = L(1)⊕ΠL(2), and that implies (6.3).

Moreover, we obtain the radical filtration of P (0) as shown in Appendix A. Since Πv(2, 0,−2)
is the highest weight h-submodule of P (0), we have a homomorphism γ : Γ0(G/B,Πv(2, 0,−2))
→ P (0) and from the socle filtration of P (0) (in this case we have sock P (0) = rad5−k P (0)) we
obtain that γ is injective. The socle filtration of Γ0(G/B,Πv(2, 0,−2)) is inherited from that
of P (0). We get

soc Γ0(G/B,Πv(2, 0,−2)) = L(0),

soc2 Γ0(G/B,Πv(2, 0,−2))/ soc Γ0(G/B,Πv(2, 0,−2)) = ΠL(1),

soc3 Γ0(G/B,Πv(2, 0,−2))/ soc
2 Γ0(G/B,Πv(2, 0,−2)) = ΠL(0),

soc4 Γ0(G/B,Πv(2, 0,−2))/ soc
3 Γ0(G/B,Πv(2, 0,−2)) = ΠL(2).

That proves (6.4). �

Note that Lemmas 6.3 and 6.5 prove that the Ext-quiver for the principal block for sq(3)
coincides with the one in Theorem 2.7.

6.2 Relations for the principal block for g = sq(3)

We first compute the radical filtration of all indecomposable projectives. Using the self-duality
(up to parity) of P (a) and fact that we know all possible extensions of simples, we automatically
know the top 2 and bottom 2 layers. It turns out the other layers are fixed as well, as shown
below. Diagrams are in Appendix A. For P (0), we just obtained in the proof of Lemma 6.5.

For P (1), TopP (1) = L(1) and radP (1)/ rad2 P (1) = ΠC. The only extension with ΠC
is L(2).

For P (2), TopP (2) = L(2) and radP (2)/ rad2 P (2) = L(0) + L(3). Considering possible
extensions of L(0) and L(3), we find L(1) is subquotient of rad2 P (2) and socP (2) = L(2).

Finally, there only exists an extension L(1)
ΠC

and not L(1)
C

.

For P (a), a ≥ 3, TopP (a) = L(a) and radP (a)/ rad2 P (a) = L(a− 1) + L(a+ 1).

Now, we will use the radical filtrations to compute all relations. Note in all cases,

dimHomg(P (a, 0,−a),M) = [M : L(a, 0,−a)].

Let

a ∈ Homg(P (1), P (0)), c ∈ Homg(P (0),ΠP (1)),

d ∈ Homg(P (2),ΠP (0)), b ∈ Homg(P (0), P (2)),

and the a′, b′, c′, d′ be the corresponding parity-changed arrows. Since [P (1) : ΠL(1)] = [P (2) :
ΠL(2)] = 0, we obtain bd′ = ca = b′d = c′a′ = 0.

Let

at ∈ Homg(P (t, P (t+ 1)), bt ∈ Homg(P (t+ 1), P (t)).
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Then

[ΠP (0) : L(3)] = [P (3) : L(0)] = 0, [P (t+ 1) : L(t− 1)] = [P (t− 1) : L(t+ 1)] = 0

for t ≥ 3 implies the relations db2 = a2b = 0 and at+1at = bt+1bt = 0, t ≥ 2. By symmetry, we
get the parity-changed analogues of these relations.

Next consider the cycle paths in P (0): ac′a′c, d′b′a′c, d′b′db, ac′db We know from previous
paragraph that ac′a′c = 0 = db′db. Also, since dimHomg(P (0),ΠP (0)) = 2, a′c and db are not
scalar multiples. Thus

im(d′b′a′c) = L(0) = im(ac′db)

and dimEndg(P (0)) = 2, implies d′b′a′c = λ0ac
′db for λ0 ∈ C∗. Similarly we find dbac′ =

λ′0a
′cd′b′.

Next consider the nontrivial cycle paths in P (2): b2a2, bac
′d. Since

im(b2a2) = L(2) = im(bac′d),

and dimEndg(P (2)) = 2, we conclude b2a2 = λ2bac
′d, λ2 ∈ C∗.

Finally, for t ≥ 3, we find cycle paths in P (a) are atbt, bt+1at+1. Both have image L(t),
hence atbt = λtbt+1at+1. Observe we can sufficiently scale all arrows and hence normalize all
λt, λ

′
t ∈ C∗ to equal 1. The remaining dimHomg(P (a), P (b)) calculations shows there are no

other relations.

6.3 The principal block of q(3)

We start with the following general statement.

Lemma 6.6. Let λ, µ be two distinct weights in the principal block such that there exists

i, j : λi = µj = 0. If

dimExt1sq(n)(Lsq(λ), Lsq(µ)) + dimExt1sq(n)(Lsq(λ),ΠLsq(µ)) ≤ 1,

then

Ext1sq(n)(Lsq(λ), Lsq(µ)) = Ext1q(n)(L(λ), L(µ)).

Proof. By Corollary 4.6, ResL(λ) = Lsq(λ) and IndLsq(λ) =
ΠL(λ)
L(λ) . The nonsplit short exact

sequence 0→ L(λ)→ V → ΠL(λ)→ 0 of q(n)-modules, which exists by Theorem 4.1, gives rise
to long exact sequences (µ 6= λ)

0← Ext1q(n)(L(λ), L(µ))← Ext1q(n)(V, L(µ))← Ext1q(n)(ΠL(λ), L(µ))

← Ext2q(n)(L(λ), L(µ)) · · · ,

0← Ext1q(n)(L(λ),ΠL(µ))← Ext1q(n)(V,ΠL(µ))← Ext1q(n)(ΠL(λ),ΠL(µ))

← Ext2q(n)(L(λ),ΠL(µ)) · · · .

Now the lemma follows from Shapiro’s lemma, Ext1q(n)(V, L(µ)) = Ext1sq(n)(Lsq(λ), Lsq(µ)), and
the hypotheses. �

Lemma 6.6 implies that the Ext quiver for the principal block of q(3) is obtained from that
of sq(3) by adding a single arrow between each L(a) and ΠL(a) (Theorem 4.1).
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Lemma 6.7. Let g = q(3) and θ ∈ Homq(P (λ),ΠP (λ)) be the unique self extension for each λ in

the principal q-block. Let Psq (resp., Pq) denote the direct sum of all indecomposable projectives

in the principal block for sq(3) (resp., q(3)); A = Endsq(Psq) denote the algebra defined by the

quiver with relations in principal sq(3)-block. Then the algebra defined by quiver with relations

in principal q(3)-block is

A′ = Endq(Pq) ∼= A⊗C[θ]/
(
θ2
)
.

Proof. Recall the functors Res and Ind from Section 3.4. We would like to show that M = Psq

satisfies the assumptions of Lemma 3.12. Corollary 4.6 implies Pq
∼= IndM . It remains to show

the existence of θ. The BGG reciprocity implies for λ, µ in principal block, [Pq(λ) : L(µ)] =
2[Psq(λ) : Lsq(µ)]. Since IndPsq(λ) is projective,

IndPsq(λ) = Pq(λ) and ResPq(λ) = Psq(λ)⊕ΠPsq(λ).

If λ 6= 0 then Homsq(ΠPsq(λ), Psq(λ)) = 0 and therefore the above decomposition is unique.
By Frobenius reciprocity and fact that Homsq(Psq(λ),ΠPsq(λ)) = 0 for λ 6= 0, we have for

λ 6= 0

Homq(IndPsq(λ), IndΠPsq(λ)) = Homsq(Psq(λ),Res IndΠPsq(λ))

= Homsq(Psq(λ), Psq(λ)⊕ΠPsq(λ))

= Homsq(Psq(λ),Res IndPsq(λ)) = C.

We choose θλ : Pq(λ) → ΠPq(λ) corresponding to the identity map in Homsq(Psq(λ), Psq(λ))
and set P̄ (λ) = Im θ. Then we have an exact sequence

0→ ΠP̄ (λ)→ Pq(λ)→ P̄ (λ)→ 0,

with Res P̄ (λ) ∼= Psq(λ). Now let us prove that for λ = 0 we also have θ : Pq(0)→ ΠPq(0) with
(Πθ)θ = 0 and hence the exact sequence

0→ ΠP̄ (0)→ Pq(λ)→ P̄ (0)→ 0.

We use that Pq(0) = pr
(
Ind

q(3)
q(3)0̄

C
)
where pr denote the projection on the principal block. Let

l = q(3)0̄ ⊕CH̄ where H̄ = H̄1 + H̄2 + H̄3. Since H̄2 acts by zero on the modules of our block
we have an exact sequence of l-modules

0→ ΠC→ Indlq(3)0̄ C→ C→ 0,

and therefore the exact sequences

0→ Π Ind
q(3)
l C

α
−→ Ind

q(3)
q(3)0̄

C
β
−→ Ind

q(3)
l C→ 0,

0→ Ind
q(3)
l C

Πα
−−→ Π Ind

q(3)
q(3)0̄

C
Πβ
−−→ Π Ind

q(3)
l C→ 0.

By setting θ = pr(Παβ) pr we obtain the desired claim.
To finish the proof we just use Lemma 3.12. �

A Radical filtrations for Pg(λ) when g = sq(3), q(3)

In all radical filtrations, an edge denotes an extension. Observe for Pq(3)(a, 0,−a), the “left half”
corresponds to ker θ and the “right half” corresponds to im θ.
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A.1 g = sq(3)

The radical filtrations are (a ≥ 3):

P (1, 0, 0)

L(1, 0, 0)

ΠL(2, 1,−2) L(2, 1,−2)

L(1, 0, 0)

P (2, 1,−2)

L(2, 1,−2)

L(3, 1,−3) L(1, 0, 0)

L(2, 1,−2)

P (a, 1,−a)

L(a, 1,−a)

L(a+ 1, 1,−a− 1) L(a− 1, 1, 1− a)

L(a, 1, a)

P (0)

L(0)

L(1) ΠL(2)

ΠL(0) ΠL(0)

L(2) ΠL(1)

L(0)

P (1)

L(1)

ΠL(0)

L(2)

L(0)

L(1)

P (2)

L(2)

L(0) L(3)

L(1)

ΠL(0)

L(2)

P (a)

L(a)

L(a+ 1) L(a− 1)

L(a)

A.2 g = q(3)

The radical filtrations are (a ≥ 3):

P (1, 0, 0)

L(1, 0, 0)

L(1, 0, 0) L(2, 1,−2)

L(2, 1,−2) L(1, 0, 0)

L(1, 0, 0)

P (2, 1,−2)

L(2, 1,−2)

L(3, 1,−3) L(1, 0, 0)

L(1, 0, 0)

L(2, 1,−2)

P (a, 1,−a)

L(a, 1,−a)

L(a+ 1, 1,−a− 1) L(a− 1, 1, 1− a)

L(a, 1, a)
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The following radical filtrations are deduced from the fact that θ : P (a)→ ΠP (a) corresponds
to id : Psq(a)→ Psq(a) as seen from Lemma 6.7:

P (0)

L(0)

L(1) ΠL(2) ΠL(0)

ΠL(0) ΠL(0) ΠL(1) L(2)

L(2) ΠL(1) L(0) L(0)

L(0) ΠL(2) L(1)

ΠL(0)

P (1)

L(1)

ΠL(0) ΠL(1)

L(2) L(0)

L(0) ΠL(2)

L(1) ΠL(0)

ΠL(1)

P (2)

L(2)

L(0) L(3) ΠL(2)

L(1) ΠL(0) ΠL(3)

ΠL(0) ΠL(1)

L(2) L(0)

ΠL(2)

P (a)

L(a)

L(a+ 1) L(a− 1) ΠL(a)

L(a) ΠL(a+ 1) ΠL(a− 1)

ΠL(a)
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