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Abstract. We describe all blocks of the category of finite-dimensional q(3)-supermodules
by providing their extension quivers. We also obtain two general results about the represen-
tation of q(n): we show that the Ext quiver of the standard block of q(n) is obtained from
the principal block of g(n — 1) by identifying certain vertices of the quiver and prove a “vir-
tual” BGG-reciprocity for q(n). The latter result is used to compute the radical filtrations
of q(3) projective covers.
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1 Introduction

The “queer” Lie superalgebra q(n) is an interesting super analogue of the Lie algebra gl(n).
Other related queer-type Lie superalgebras include the subsuperalgebra sq(n) obtained by taking
odd trace 0, and for n > 3, the simple Lie superalgebra psq(n) obtained by taking the quotient of
the commutator [q(n), q(n)] by the center. These queer superalgebras have a rich representation
theory, partly due to the Cartan subsuperalgebra h not being abelian and hence having nontrivial
representations, called Clifford modules.

Finite-dimensional representation theory of q(n) was initiated in [16] and developed in [20].
Algorithms for computing characters of irreducible finite-dimensional representations were ob-
tained in [21, 22] using methods of supergeometry and in [3, 4] using a categorification approach.
Finite-dimensional representations of half-integer weights were studied in detail in [5, 6, 7].
In [18], the blocks in the category of finite-dimensional q(2)-modules semisimple over the even
part were classified and described using quivers and relations. A general classification of blocks
was obtained in [24] using translation functors and supergeometry.

In this paper, we describe the blocks in the category of finite-dimensional ¢(3) and sq(3)
modules semisimple over the even part in terms of quiver and relations. We found that to
describe blocks of q(n) in general, it remains to consider the principal block. For n = 3, this is
the first example of a wild block in q. Our main tools are relative Lie superalgebra cohomology
and geometric induction.

In Section 2, we describe some background information for q(n) and quivers, and we formu-
late our main theorems, Theorems 2.7 and 2.8. In Section 3, we introduce geometric induction
and prove a “virtual” BGG reciprocity law, Theorem 3.9, that generalizes [13] to the queer
Lie superalgebras. This result allows us to describe radical filtrations of all finite-dimensional
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indecomposable projective modules for sq(3) and q(3). Diagrams of these are provided in Ap-
pendix A. In Section 4, we prove a result on self extensions of simples for g = q(n), Theorem 4.1,
and for g = sq(n), Theorem 4.5. In Section 5, we show the standard block for q(n) is closely
related to the principal block of q(n — 1), Proposition 5.1, and in particular deduce the quiver
for sq(3) and q(3) standard block. Finally in Section 6, we compute the quiver for principal
block of sq(3) and q(3).

2 Preliminaries and main theorem

2.1 General definitions

Throughout we work with C as the ground field. We set Zy = Z/2Z. Recall that a vector
superspace V = Vg @ V7 is a Za-graded vector space. Elements of Vi; and V7 are called even and
odd, respectively. If V| V' are superspaces, then the space Homg(V, V') is naturally Zs-graded
with grading f € Homg(V, V') if f(V;) C V], for all r € Zo.

A superalgebra is a Zo-graded, unital, associative algebra A = Az ® A7 which satisfies
A, As C Args. A Lie superalgebra is a superspace g = gg @ g7 with bracket operation [, |: g® g
— g which preserves the graded version of the usual Lie bracket axioms. The universal en-
veloping algebra U(g) is Zo-graded and satisfies a PBW type theorem [16]. A g-module is a left
Zs-graded U(g)-module. A morphism of g-modules M — M’ is an element of Homc (M, M');
satisfying f(zm) = xf(m) for all m € M,z € U(g). We denote by g-mod the category of g-
modules. This is a symmetric monoidal category. The primary category of interest F consists of
finite-dimensional g-modules which are semisimple over gz. We stress that we only allow for par-
ity preserving morphisms in F. In this way, F is an abelian rigid symmetric monoidal category:
for V,W € F, define V@ W and V* using the coproduct and antipode of U(g), respectively:

fr)=r1+1®x, S(z)=—=x V€ g.

For V' € g-mod, we denote by S(V) the symmetric superalgebra. As a gg-module, S(V) is
isomorphic to S(V) = S(V5) ® A(Vi), where A(V7) is the exterior algebra of Vi in the category
of vector spaces. For V a gi-module and W a go-module, we define the outer tensor product
VKW to be the g & go-module with the action for (g1, ¢2) € g1 ® g2 given by

(q1, ) (v R w) := (=12 (g1v X gaw).

We define the (super)dimension of V' € g-mod as follows. Let C[e] be polynomial algebra
with variable £ and denote two-dimensional C-algebra C[e]/(e? — 1) as C. Then

dim(V) := dim¢(V;) + dimg(Vy)e € C.

The parity change functor II: A-smod — A—smod is defined as follows: For M € A-smod,
II(M)g := M7 and II(M)1 := Mg and the action on m € II(M) is a - m = (—1)%m. Lastly, if
f: M — N is a morphism of supermodules, then I1f: IIM — 1IN is IIf = f.

2.2 The queer Lie superalgebra q(n)

By definition, the queer Lie superalgebra q(n) is the Lie subsuperalgebra of gl(n|n) leaving
invariant an odd automorphism of the standard representation p with the property p> = —1. In
matrix form,

q(n):{(g ﬁ):A,Begrn(C)}, if pz(_(in 10”).



Extension Quiver for Lie Superalgebra q(3) 3

Let g = q(n). The even (resp. odd) subspace of g consists of block matrices with B = 0 (resp.
A =0). For 1 <1i,j <n, we define the standard basis elements as

0 E,; 0 - 0 E .
o _ (Eij ) T i) ¢ g
“i ( 0 Eu) So and ey (Ew 0 > <o

where E; ; denote the elementary matrix. Observe the odd trace otr (4 §) := tr(B) annihilates
the commutator [q(n), q(n)]. Let

sq(n) ={X € q(n): otr(X) = 0}.

Furthermore, otr(XY") defines a nondegenerate g-invariant odd bilinear form on g. In particular,
we have an isomorphism q(n)* = Ilq(n) of q(n)-modules.

All Borel Lie superalgebras b C g are conjugate to the “standard” Borel, i.e., block matrices
where A, B € gl(n) are upper triangular. The nilpotent subsuperalgebra n consists of block
matrices where A, B are strictly upper triangular.

In the standard basis, the supercommutator has the form

led ek) = ket — (—1)”62-162;.”,

where 0,7 € Zy. The Cartan superalgebra b has basis ef; for 1 < ¢ < n, 0 € Zz. The elements
H;:=¢€), H; :=el;, 1 <i<n, form a basis for by, by, respectively. Let {e;|i =1,...,n} C b

denote the dual basis of {H;}. There is a root decomposition of g with respect to the Cartan
subalgebra b given by

g=bho e,

acd

where ® = {g; — ;|1 < i # j < n} is the same as the set of roots of gl,(C). For a root
a = g; —¢; we have dimg, = 1+ ¢ because g, = span{egj: o € Zs}. The positive roots are
dt :={g;, —¢j: 1 <i < j <n}. The simple roots are {&; —€;41: 1 < i < n —1}. The Weyl
group for q(n) is W = S,,, the symmetric group on n letters.

By b’ we denote the Cartan subsuperalgebra of sq(n). A weight is by definition an element
A € b and we write it in the form A = (Aq, ..., A,) with respect to the standard basis (¢1, ..., n).
We say A is integral if \; € Z for all 1 <i <n. Wesay (A1,...,\n) € b is typical if \i +X; #0
for all 1 <4 # j < n. We introduce partial ordering on b7 via A < p if and only if p— A € NoT.
Finally, we define pg := 1/2% cq+ .

2.3 Irreducible h and g-representations

Following [20, Proposition 1], we now define for each A € bi a simple h-supermodule. Define an
even superantisymmetric bilinear form F: hixh; — Cas F)\(u,v) := A\([u,v]). Let K\ = Ker F),
and Ey = hy/K). The restriction of Fy to b’ will be denoted by F} and we set K} = Ker F}
and B\ = h7/K}.

Lemma 2.1. Let A = (A1,...,\,) € b
(a) If there exists i such that \; =0, then
dim £, = dim E = [{i: \; # 0}|.
(b) If all Ai # 0 and 3= + -+ 4 3= # 0, then

dimE\ =n — 1, dim E\ = n.
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(¢) If all \i # 0 and 5= + -+ 5= =0, then
dim E\ = n — 2, dim E\ = n.

Proof. It is straightforward that K is the span of H; for all 4 such that \; # 0. Hence
dim Ey = [{i: A\; # 0}].
To compute K4, consider the basis {H; — Hiy1|i=1,...,n — 1} of b}. Then

Kﬁ\:{uef)/i|>\([uaffi—f_fi+1]):0for alll1 <i<n-—1}
={(u1,...,un) €b1|ur + - +up = 0,u\; = Ujp1 Aip1 for all 1 <i <n —1}.

Suppose first without loss of generality A\ = --- = Ay = 0, where k > 1. This forces up;1 =
c-=u,=0and ug +---+u, =0, so K} has a basis

{f_fl —I:IQ,...,f_Ik_l —FIk}

and dim K\ = k — 1. Thus, dim E} = dimb} — dim K, =n — k.
Next, suppose all \; # 0. Then similarly we compute

1 1 1 1 e 1 1 _
0 if £+ L0

Let dim Ey, = m > 0. On the vector superspace E), F) induces a nondegenerate bilinear
form, also denoted F). Let Cliff(\) be the Clifford superalgebra defined by E) and F). Then
(1) Cliff(\) is isomorphic to Cliff(m), the Clifford superalgebra with generators ey, ..., e, and
relations e = 1, (2) dim Cliff(\) = 2"~ (1 +¢), and (3) the category Cliff(\)-mod is semisimple
(e.g., [19]).

If m is odd, then there exists a unique simple Cliff(m)-module, denoted by v(m), which is
invariant under parity change (this follows from existence of an odd automorphism). If m is
even, then there exists 2 nonisomorphic simple Cliff(m)-modules v(m) and ITv(m) which are
swapped by the parity change functor. Using the surjective homomorphism U(h) — Cliff())
with kernel (H; — A, Ky), we lift v(m) to an h-module which we denote by v(\). Lemma 2.1
implies

dimv()\) = dim(v(m)) = 2L=D/2(1 4 ¢),

where |z] denotes the integer part of x € R. Furthermore, this construction provides a complete
irredundant collection of all finite-dimensional simple h-supermodules.
Next define the Verma module

Mg(A) == U(g) @u ) v(N),

where the action of n™ on v(\) is trivial.
Let

A= {)\: (/\17-“7)\71) S f)g A —Az’_;,_l S Z}.
The set of g-dominant integral weights is
A+:{>\: ()\1,...,>\n) S h(i; )\i*)\iJrl €Z20 and )\z:)\] :>)\z:)\] :0}

Below is the main theorem about irreducible g-modules, first proven by V. Kac.
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Theorem 2.2 ([16]).

1. For any weight A € by, My()\) has a unique mazimal submodule N(X), hence a unique
simple quotient, Lg(X).

2. For each finite-dimensional irreducible g-module V , there exwists a unique weight X € AT
such that V is a homomorphic image of Mg(\).

3. Lg(A) := Mg(X\)/Ng(X) is finite dimensional if and only if A € A™.

We will often omit the subscript g in the notation for Verma, simple, and projective modules.

2.4 The category F

Let g = q(n). Denote by F", or simply F the category consisting of finite-dimensional g-
supermodules semisimple over gg (so the center of gg acts semisimply), with morphisms being
parity preserving. The full subcategory of F consisting of modules with integral weights is
equivalent to the category of finite-dimensional G-modules, where G is the algebraic supergroup
with Lie(G) = g and G5 = GL(n).

Let Z(g) be the center of the universal enveloping algebra U(g). A central character is
a homomorphism x: Z(U(g)) — C. We say that a g-module M has central character x if for
any z € Z(g), m € M, there exists a positive integer n such that (z — x(2)id)".m = 0. It
is well known from linear algebra that any finite-dimensional indecomposable g-module has a
central character, hence F" = @F}, where F is the subcategory of modules admitting central
character x. In the most cases FY is indecomposable, i.e., a block in the category F™. The only
exception is FY for even n and typical central character y. In this case F 1s semisimple and
has two non-isomorphic simple objects L(A) and IIL(\).

Similarly to the Lie algebra case, there is a canonical injective algebra homomorphism, the
Harish-Chandra homomorphism [8, 25],

HC: Z(g) < S(hy)".

Given any A € b3, we define x): Z(g) — C to be the unique homomorphism making

t—>S

\A

commute, where A" is the natural homomorphism induced by A € by If x = x for some A, we
denote F,, by F\. Given a central character x, with A = (A1,...,\,), we define its weight to
be the formal sum

Wt(A) := 0y, + -+ 0,
where §; = —0_; and dp = 0. A fundamental result by Sergeev [25] implies:
Theorem 2.3. For A\, u € b3, xn = Xy if and only if wt(X) = wt ().

The following classification theorem about blocks in F? is important for us. It is an immediate
consequence of [24, Theorem 5.8].

Theorem 2.4. A\ = (A1, A2, A3) € AT NZ3 be a dominant integral weight and |\| be the number
of non-zero coordinates in wt(\).
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e (the strongly typical block) If |\| = 3, then F3 is semisimple and contains one up to
1somorphism simple module;

e (the typical block) If |\| = 2, then Fs is equivalent to the block ]:(10) for q(1);

e (the standard block) If |\| = 1, then F is equivalent to ]-"(317070) ;

e (the principal block) If |[\| = 0, then F3 is equivalent to ]-"(307070).
Furthermore, if A € At but A ¢ Z3, then either \ is typical, so \; + Aj # 0 Vi, j, or A
has atypicality 1. In the former case the block is semisimple and has one up to isomorphism
simple object. In the latter case all such blocks are equivalent to the “half-standard” block
f(3/2’1/27,1/2) by [5, Theorem 521]
Finally, it is well known there are enough projective and injective objects in F [23]. Let Py(\)
denote the projective cover of Lg(\).

2.5 Quivers

Let F be any abelian C-linear category with enough projectives, finite-dimensional morphism
spaces, and finite-length composition series for all objects. For us, F will be as in the previous
subsection. The following properties are as stated in [11, Section 1], which are just slight
generalizations of results in [1, Section 4.1].

An Ext-quiver @ for F is a directed graph with vertex set consisting of isomorphism classes
of finite-dimensional simple objects of F. In our case, the vertex set is Qo = {L(X\),IIL(\)} for
A € AT. In particular, Qg is not A*T. The number of arrows between two objects L, M € Qg will
be dr, ar := dim Ext}_-(L, M). We define a C-linear category CQ with objects being vertices Qg
and morphisms Homcg(A, 1) being space of formal linear combinations of paths between the
two objects A\, . Composition of morphisms is concatenation of paths.

A system of relations on @) is a map R which assigns a subspace R(\, 1) C Homcg(A, p) to
each pair of vertices (A, u) € Qo X Qo such that for any A\, u, v € Qo

R(Va /’L) ° HOchQ()\, V) - R()‘a :U‘) and HOIHCQ(V, :u) 0 R()‘v V) - R()‘v :u)

A representation of @ is a finite-dimensional vector space V' = @©xeq, V) together with linear
maps ¢: Vy — V), for every arrow ¢: A\ — u. Representations of ) form an Abelian category
denoted by @-mod. Given quiver @) and relations R, define the category CQ/R consisting of
objects A € Qo and morphisms Homgg,/ (A, ) := Homeg (A, p)/R(A, ). We then denote by
CQ/R-mod the full subcategory of CQ-mod consisting of representations V' such that for any
vertices A, u, we have Im(R(A, p) = Homg(Vy, V,)) = 0.

The next proposition gives an explicit description of the relations of an Ext-quiver given
the category F, its spectroid G, and its Ext-quiver ). The spectroid G is defined as the
full subcategory of F consisting of objects which are indecomposable projectives. Let G°P
denote the opposite category: objects are that of G and morphisms are Homgop (P(\), P(u)) 1=
Homg(P(u), P(N)). Let rad(P(\), P(u)) denote the set of all noninvertible morphisms from P(\)
to P(p). Since P(u) is projective, such a morphism cannot be surjective and we thus con-
clude rad(P(X), P(1)) = Homgz(P(A),rad P(u)). Let rad™(P(\), P(1)) be the subspace of
rad(P(X), P(u)) consisting of sums of products of n noninvertible maps between P(\) and P(u).
For A\, u € AT we have a canonical isomorphism [11, Lemma 1.2.1]

Exty(L(\), L(p)) & Homg (P(u),rad P(\)/rad® P(\))".

Proposition 2.5. Given category F with Ext-quiver Q) and spectroid G, let Ry, denote the

dk,#

bijection from the dy , arrows of X to p to the family {¢§\7M}Z:1 of morphisms in rad(P(u), P(\))
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that map onto a basis modulo rad?(P (), P()\)). Then there is a unique well-defined family of
linear maps

Rau: Homeq(A, i) = Homp(P(p), P(A),

such that Ry, ( g\’M) =R ul( g\,u) and which is compatible with composition.
Moreover, the map

R: (A u) = KerRy ,
is a system of relations on @ and the categories CQ/R and G°P are equivalent.

The system of relations is determined up to a choice of R) , which is not canonical in general.
But, we may multiply the R ,( f\ M) by nonzero scalars to make the relations “look nice”. There
is then an additional proposition, [11, Proposition 1.2.2], which states G°P is equivalent to F.
This then implies the following important theorem of Ext-quivers we use.

Theorem 2.6 ([11, Theorem 1.4.1]). Let F be as above, Q its Ext-quiver, and R be a system
of relations as defined in Proposition 2.5. Then there exists an equivalence of categories

e: F 5 CQ/R—mod
such that

e(M) = @ Homz(P()),M).
AEAT

2.6 Main theorem

In the statement of the main theorems, we will provide the Ext-quivers of various blocks. The
relations are given by labelling the dimExté(L()\),L(,u)) arrows between L(\),L(p) € Q by
a € Homg(L(A), L()) which is then identified (by some choice of scalar) with o € Homg(P(X),
rad P(u)/ rad? P(u)) via Proposition 2.5.

Theorem 2.7. Every block Fy of the category F of finite-dimensional sq(3)-modules semisimple
over 5q(3)g is equivalent to the category of finite-dimensional modules over one of the following
algebras given by a quiver and relations:

1. A typical block X = (A1, A2, A3) such that X\; + X\; # 0 for any i # j, and )\% + )%2 + %3 # 0
or exactly one \j =0

..
2. A strongly typical block X = (A1, A2, A3) such that \j + X\j # 0, A\; # 0 for any i, j and
1 1 1
priabrinab vl
Ce
with relations

h? = 0.

3. The “half-standard” block A = (3,1, -3)

a a a
./—\,L./—N./—ﬁ___
f—— *~— — T ’
b b b

where vertices are labeled qu(%, %, —%), qu(%, %, —%), qu(%, %, —%), ... with relations

a2 =bv* =0, ab = ba.
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4. The standard block A = (1,0,0)

) /_N./_\) /—\)./—\,\ B
% % % )
b b b b

where vertices are labeled ..., TLgq(3,1,=3), T1Leq(2,1,—-2), Lsq(1,0,0), Lsq(2,1, —2),

Lsq(3,1,=3), ... with relations

a2 =v=0, ab = ba.

5. The principal block A = (0,0,0)

) Lsq(0), Lsq(2,0,—2), Lsq(3,0,=3), ... in top row

where vertices are labeled Lgq(1,0,—1
. in bottom row. Then

and ITLg(1,0,—1), I1L4(0,0,0), Hqu(Z,O, -2), Hqu(S,O, -3),
the relations are

xb=dy = bd = ca =0,

2 = y2 =0,
yx = bacd, dbac = acdb.

Ty =y,

Theorem 2.8. FEvery block Fy of the category F of finite-dimensional q(3)-modules semisimple
over q(3)g is equivalent to the category of finite-dimensional modules over one of the following

algebras given by quiver and relations:
1. A strongly typical block: X\ = (A1, A2, A3) such that \j + X\; # 0 and A\; # 0 for any i, j

2. A typical block: X\ = (A1, A2, A3) such that some X\ =0 and X\j + A\ # 0 for any j, k

with relations

ab =ba = 0.

3. The “half-standard” block A = (3,3, —1)

—%), L(%, %,—%), ... with relations

e
NI —
N —
~—
-

—~
DOt
[\GI[V]

where vertices are labeled L(

a2 =p=0, ab = ba.
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4. The standard block A = (1,0,0)

}L_/.f\_/ — — Y~ )

where vertices are labeled L(1,0,0), L(2,1,-2), L(3,1,-3), ... with relations

z? =y =0, ra =by =ab=0,

h? =0, Ty = Yy, bah = hba.

5. The principal block A = (0,0,0)

where vertices are labeled L(1,0,—1), L(0), L(2,0,-2), L(3,0,—3), ... in top row and
I1L(1,0,—1), IIL(0,0,0), ITL(2,0,—2), TIL(3,0,—3), ... in bottom row. Then labelling all
vertical arrows by @, the relations are:

22 =y? =0, xb=dy = bd = ca = 0,
Ty = yx, yx = bacd, dbac = acdb,
0% =0, Oy = ~0 for ~v€{a,b,c,d, z,y}.

Corollary 2.9. All blocks of sq(3) are tame. The typical and standard q(3) blocks are tame.
The principal q(3) block is wild.

Proof. Observe that all blocks of 5q(3) have special biserial quivers and hence are tame [9]. The
same holds for the two typical and standard blocks of q(3). We show the ¢(3) principal block
is wild by “duplicating the quiver” [14, Chapter 9]. Namely, label the vertices of the quiver by
Qo={1,2,3,...}U{—1,-2,-3,... } corresponding to top and bottom row, respectively. Let Q1
denote the arrows and R the relations. Define Q) := Qo U {1',2/,3,...y U {-1,-2",-3,...}
and set of arrows as

Qv ={(—j"): (i —j) €@}

Let @ = (Qo,Q1,R) and Q" = (Q),Q}). Then k(Q)/R’, R’ being relation defined by any
product of 2 arrows is 0, is a quotient of k£(Q)/R. Note that the indecomposable representations
of (Qo,Q1, R') are in bijection with that of '. But @’ is not a union of affine and Dynkin
diagrams of type A, D, E (each vertex i,7 > 3 has 3 edges coming out), so it is wild and this
implies @ is wild. |

One can also see from the description of quivers and radical filtrations of indecomposable
projective modules in Appendix A which of the blocks are highest weight categories.

Corollary 2.10. For sq(3), only the blocks in cases (1) (typical), (3) (half-standard) and
(4) (standard) of Theorem 2.7 are highest weight categories. For q(3), only the blocks in cases
(1) (typical) and (3) (half-standard) are highest weight categories.
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Proof. For different types of typical blocks the statement is obvious from the quiver. A half-
integral block is a highest weight category both for q(3) and sq(3). The former is also a
consequence of general result in [5] for blocks in the category of finite-dimensional represen-
tations of q(n) with half-integral weights. The sq(3) standard block is also a highest weight
category since it is equivalent to well known A., quiver which also defines the principal block
for gl(1|1) [11].

The standard block for q(3) is not highest weight due to existence of self-extension.

Let us prove now that the principal blocks for ¢(3) and sq(3) are not highest weight categories.
Note that all simple objects except L(0) and IIL(0) have zero superdimension and all projective
modules have zero superdimension. Assume for the sake of contradiction that the principal block
is a highest weight category. The isomorphism classes of simple objects L, are enumerated by
poset M. Let A, and P, denote the standard and projective cover, respectively, of a simple
object L,. If the standard cover of L(0) contain a simple constituent IIL(0) then the standard
cover of IIL(0) can not contain a simple constituent L(0). Thus, at least one standard object
has a non-zero superdimension. On the other hand, P(a) and IIP(a) for a > 3 do not have L(0)
and IIL(0) among its simple constituents. Thus, the set of 1 such that sdima,, # 0 is finite. Let
us choose a maximal y such sdim A, # 0. Then

sdim P, = sdim A, + Z ¢y sdim A, # 0.
v>p

A contradiction. [ |

3 Geometric preliminaries and BGG reciprocity

3.1 Relative cohomology of Lie superalgebras

Let t C g be a Lie subsuperalgebra and M a g-module. For p > 0, define
C?(g,t; M) = Hom¢(A"(g/t), M),

where AP(g) is the super wedge product. The differential maps d?: CP(g,t; M) — CP*(g, t; M)
are defined in the same way as for Lie algebras, see for example [2, Section 2.2]. The relative
cohomology are defined by

HP(g,t; M) = Kerd? /ITmdP~!.

We will be interested in the case when t = gg. Then the relative cohomology describe the
extension groups in the category F of finite-dimensional g-modules semisimple over gz. More
precisely, we have the following relation:

Extb.(M, N) = HP(g,gg5; M* @ N).

From here on out, we will use Exté(—, —) to denote Ext’-(—,—). For conciseness, we often

write Exty or Extgq to denote Ext or Ext

q(n) sq(n) -

Theorem 3.1. Let g = q(n). Then

S'(gz)% if i odd,

0 else.

i - Si(g%)%  ifi even, ; -
Extq(n)(C,C)z{ 0 and  Extl,(C,1IC) =

0 else,
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Proof. Note that g1 = IIg; as a gg-module and therefore A(g¥) = II'S*(g%). Therefore

S'(gz)% if i even,

i N Si(gh)% if i odd,
C'(g,95:C) = {o (50)

and  C'(g, g; TIC) =
0 else.

else,
The differential is obviously zero and the statement follows. |

Remark 3.2. One can also use the Zs-graded version of relative cohomology like in [2]. It is
more suitable for the superversion of the category F where odd morphisms are allowed.

3.2 Geometric induction

We next provide a few facts about geometric induction following the exposition in [12, 22].
Let p be any parabolic subsuperalgebra of g containing b. Let G = Q(n), and P, B be the
corresponding Lie supergroups of p, b. For a P -module V, we denote by the calligraphic
letter V the vector bundle G xp V over the generalized grassmannian G/P. See [17] for the
construction. Note that the space of sections of V on any open set has a natural structure of
a g-module; in other words the sheaf of sections of V is a g-sheaf. Therefore the cohomology
groups H(G/P,V) are g-modules. Define the geometric induction functor I'; from category of
p-modules to category of g-modules as

I:(G/P, V) := H(G/P,V*)*.

It is also possible to define I';(G/P,V) without the need of proving the rather technical
question of existence of G/P. Namely, consider the Zuckerman functor from the category of
P-modules to G-modules defined by

H°(G/P,V) := Ty, (Homy ) (U(g), V),

where I'y; (M) denotes the set of gg-finite vectors of g-module M. One can show easily that
H°(G/P,V) has a unique G-module structure compatible with the g-action. It is also straight-
forward that H°(G/P,V) is left exact and the right adjoint to the restriction functor G-mod —
P-mod. We define H(G/P,-) to be its right derived functors. Using this definition we can
define I';(G/P, V) for any V whose weights are in A.

We state some well known results.

Proposition 3.3 ([12, 15]). The functor I'; satisfies the following properties.

1. For any short exact sequence of P-modules
0=-U—->V—->W-=0,
there is a long eract sequence of g-modules

=T (G/P,W) - To(G/P,U) —» To(G/P,V) = T'o(G/P,W) — 0.

2. For a P-module V and a g-module M,

I:(G/P,V @ M) =T;(G/P,V) ® M.

3. To(G/P,V) is the mazimal finite-dimensional quotient of My(V') := U(g) Ry ) V in the
sense that any finite-dimensional quotient of My(V') is a quotient of I'o(G/P,V).
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If G = Q(n), then all parabolic subgroups containing the standard Borel subgroup B are in
bijection with those of GL(n). Hence they are enumerated by partitions. The Levi subgroup L
of parabolic P is isomorphic to Q(my) X --- x Q(mg) with m; + --- + mg = n. A weight
A= (A1,...,Ay) is called p-typical if

Ai+A=0 implies mi+-+ms<i,j<mip+---+mgyr.

Proposition 3.4 (typical lemma, [22, Theorem 2]). Let P be any parabolic supergroup contain-
ing B and suppose \ € AT is p-typical, where p := Lie(P). Then

L\ ifi=0,

Li(G/P, Ly(N)) = {0 if i > 0.

Now, for any parabolic supergroup P containing B, define the multiplicity
mis(\, ) = [Di(G/P, Ly(N) : Ly(p)]
Proposition 3.5. If A > pu, then
mp (X, i) > dim Extg (L(A), L(w)).

Proof. Suppose 0 — L(u) - V — L(\) — 0 is an extension. Then V' contains a highest weight
vector vy, of weight A coming from the inverse image of that of L()). Since V is indecomposable,
V is generated by vy and since u < A\, V = U(g).v) is annihilated by n*. Thus V is a highest
weight module of weight A, so it is a finite-dimensional quotient of M(\) and consequently
by Proposition 3.3(3), it is a quotient of I'g(G/B, Ly(\)). Each such isomorphism class of
extension V' thus gives rise to a distinct subquotient L(u) in I'o(G/B, Ly(A)). Consequently,
dim Ext}(LO\), L(1)) < [To(G/B, Ly(N) : ()] = m%y (A, ). .

Remark 3.6. In [22], the authors work in g''-mod consisting of II-invariant g-modules (and even
morphisms) and define m’,; (A, 1) accordingly. For g = q(n), the simple g'-modules are L(})
when [{i: A\; # 0}] is odd and L(\) @ IIL(A) when [{i: A\; # 0}] is even.

Proposition 3.7. Let P be the parabolic subgroup of Q(3) defined by roots {e1 — €2,e1 — €3,
€9 — 3,63 —e2}. Suppose X € AT\ {(t,a,—a)}. Then for all u € AT,
mp (A, p) = mp(A, ).

Proof. There is a canonical projection G/B — G/P with kernel P/B = Q(2)/B N Q(2). By
our assumption, the weights A is B-typical in P. Thus the Leray spectral sequence

H'(G/P, H/(P/B, Ly(\)) = H'"(G/B, L())

collapses by the typical lemma. |

3.3 Virtual BGG reciprocity

We now formulate a “virtual” BGG reciprocity theorem for g = sq(n) or q(n) which will be used
to compute composition factors of indecomposable projective covers, Py(A) of Lg(A). This result
is a generalization of Theorem 1 in [13] in the case when Cartan subalgebra is not purely even.
In this section we consider the quotient K''(F) of the Grothendieck ring IC(F) by the relation
[X] = [T1X]. Then K™(F) has a basis {[L(\)] |\ € AT} and [X : L(\)]n is the coefficient ay in
the decomposition [X] =Y ay[L(\)].
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Denote by AJ = {\ € b} | (\, B) € Z=o, VB € Ag}. For g = q(n), AJ consists of dominant
integral weights for which at most one ); is zero. For M € FU, define R := Z[e*] peh and the
character of M

Zdlm Jet € R,

where we put dim X := dim Xg + dim X7. Then Ch defines an injective homomorphism
KYF) — R.
For any A € A we define an Fuler characteristic as

dim(G/B)g

Z Z T4(G/B,v(N) : L)L),

where I'; is the dual to geometric induction functor as defined in Section 2.2. It is straightforward
to check (see, e.g., [3, Theorem 4.25]) that for A € A such that wt(\) = v, then [E(\)] € K(F,).

Let us comment on the relation between this Euler characteristic the one defined in [4]. There,
the author considered an induction from the maximal parabolic Py to which v(\) extends, i.e.,

dim(G/Py)5

Z Z (=1 [Ci(G/Pr,v(N) = L)L (w)]-

If A\ € AT is regular then P = B and Ep(\) = £(A) and if A is not regular £(\) = 0 while
Ep(A) # 0. It was shown in [4] that Ep(A) form a basis of the Grothendieck group of F.
The following result is a straightforward generalization of [12, Lemma 1.2].

Lemma 3.8. The Euler characteristic £(\) satisfies
1.
Ch(£(N)) = dimv(A\)D > e(w)e"?,
wWESy
where

a/2 —a/2
e +e
D= H e®/2 _ o—a/2’

acdt
2. For allw e W,
EN) =e(w)E(w.N).

3. Let Ag denote the set of reqular dominant weights with respect to gg. The set
{Ch(EN), A € Ag}
is linearly independent in the ring R.

We call a simple g-module L(X) of type M if IIL()) is not isomorphic to L(A) and of type Q
if TIL(A\) = L(\). Note that the type of L()\) is the same as the type of v(A). Furthermore, for
g = q(n) the type depends on the number of non-zero entries in A: the type is M, if this number
is even, and @ if it is odd. For example, L(1,0,0) is of type Q and L(0) is of type M. We set

{1 if L(v) type M,

tv) = 0 if L(v) type Q.
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Theorem 3.9. Let g = q(n) or sq(n). Let p € AT and by, 5 be the coefficients occurring in the
expansion

W) = 3 bualL(V).

AeA+
Then there exists coefficients ay, such that for X € AT,
[PV =Y arué(n)
uGAg
and

ayy = Qt(u)—t(/\)wbu’/\,

where

_{1 if g =q(n) and [[pi #0, or g=sq(n) and Ei#(),
W=

2 otherwise.

Proof. We follow the proof of [13, Theorem 1]. First, we have the Bott reciprocity formula
dim Homg(P(\), (V) = dim Ext’z(V, P(\)) = dim H*(b, hy; V* @ P(\)). (3.1)

Let C(n, —) stand for the i-th term of the cochain complex computing H®(n, —). Note that P(\)
and hence C%(n; V* ® P())) is projective and injective in the category of h-modules semisimple
over hg. Hence H’ (b, hg; C*(n, V* ® P(A))) = 0 for any i and j > 1. Therefore the first term of
the spectral sequence for the pair (b, h) implies that

> (—1)" dim Exti(v(p), P(A) = > _(—1)" dim Homy (v(p), C*(n, P(A))). (3.2)
=0 =0

Furthermore, we have

dim Homg(P(A\) @ IIP(A\), M) if L(A) type M,
dim Homg(P(\), M) if L(\) type Q.
Define bL,A by
;_ JdimHomy(v(p) @ Hu(w), C*(n, P(X))) if L(X) type M,
A dim Homyg (v(i), Ct(n, P(N))) if L(\) type Q.
By application of (3.2) and (3.3) we obtain
bux = Z(—l)ibz,,\-
=0
For any module M € F projective over h we have the equality
dim M,, ) dim Homg(v(p) ® Ho(p), M) if v(u) type M, (3.4)
dim () | dim Homy (v(n), M) if v(1) type Q, '



Extension Quiver for Lie Superalgebra q(3) 15

where 0(p) is the corresponding indecomposable injective h-module. In other words we get

Ch(M) = Z dim Homg (v(p) @ Iv(p), M)et + Z dim Homg (v(p), M)e*.
w type M u type Q

If X\ is of type Q we obtain

Ch(C'(n,P(N) = Y 2b) \dimd(u)e" + Y b, dimd(u)e”

i type M u type Q
= Z 2t(“)*t()‘)bi7)\ dim o(p)et.
I

If X\ is of type M we obtain

7 1 3 . ~
Ch(C"(n, P(\ Z b \dim o(p)et + Z 5()%)\ dim o(p)et
u type M u type Q
= Z Zt(“)_t()‘)bL,A dim o(p)et.
m

Taking alternating sum over ¢ we get

o0

D (1)'Ch(C(n, P(N))) = Y _ 2=V, \ dim d(p)e”,

=1 o

On the other hand, we have

D (=1)’Ch(Ci(n,P()))) = Ch(P(N) [] ;Za DICh(P(N)).
=1 acdt

This implies

Ch(P(\)) =D Z b, ) dim {;(N)Qt(#)—t(k)eu'
HEA

By Sp-invariance of Ch(P(\)), we get
b,u)\ = E(w)bw.,u,)\ Yw € S,.

This together with dim 0(x) = dim 9(w.p) implies

Ch( =D Z Z bure(w) dim o(p )L =t g
wEWueAJF
M2t(“)_t(’\)bu ACh(E(p)).
dim v(p) ’
peAd

Therefore we obtain the relation

dim O(p) 40—

— P\ at(w)—t(N)y, )
W dimv(p) b (3.5)
Since pu € A§ at most one p; = 0. Therefore, we get: for g = q(n), v(p) = 9(p) if all y; # 0;

for g = sq(n), v(p) = 9(p) if S, - # 0. In remaining cases Gmoit) = 2, |
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*

Remark 3.10. Theorem 3.9 holds for any Lie superalgebra g such that h = b5 and g7 = g7. In

this case, we get vy, = 1.

Let ICE(}" ) be the subgroup of IC''(F) generated by the classes of all projective modules. It
is an ideal in KC''(F) since tensor product of projective with any finite-dimensional module is
projective. Let K (F) be the subgroup of K(F) generated by the Euler characteristics. Then
KE(F) ¢ KIX(F) ¢ KM(F) and the inclusions are in general strict. The b,,, express the basis
of KY¥(F) in terms of the basis of K'(F) and a,, express the basis of K¥(F) in terms of the
basis of K% (F). Thus for two g-dominant weights A, i, we have

[P()‘) : L(M)]H = Z a)\,l/bu,,u- (36)

VGAg

Remark 3.11. In [3] the coefficients b, » and the multiplicities [P(X) : L(u)] were computed
using the action of the Kac-Moody superalgebra B, on F via translation functors. Since [P())]
and [L(A)] form a dual system in K(F) (dim Homg(P(X), L(1t)) = 0y ,,) the action of translation
functors on [P(\)] is related to the action on [L(\)] in the natural way via this duality. Applying
translation functors repeatedly starting from a typical representation, the author obtains a nice
combinatorial formula for b, ». In addition, it gives another way to prove Theorem 3.9 in this
particular case.

3.4 General lemma

To study relations between block for sq(n) and q(n) we consider the induction and restriction
functors

: (n)
Ind: Fogmy = Fomyy M = Indg) M,

Res: Fymn) = Fsqn) M — Resgq(n) M.
The Frobenius reciprocity implies that Ind is left adjoint of Res.

Lemma 3.12. Let M be a projective sq(n)-module with IIM = M and let A = Endgq(M), A’ =
Endq(Ind M). Assume that there exists € A’ such that Ker § = Im6 and Ker 6N (1@ M) = {0}.
Then A'= A® Cl6]/(6?).

Proof. Note that our assumptions imply ResInd M = M & M. Consider injective homomor-
phism Ind: A — A’ and Res: A’ — Maty ® A. Furthermore, for v € A, we have

/
ResIndy = (g ’;)
for some 7' € A. The condition 62 = 0 implies

0 0
Resf = <Id O)‘

The Frobenius reciprocity implies for any ¢ € A’,
if Resyp= (8 :) then Resp = 0.

We have
¥ 0

[ResInd v, Res 6] = (0 oy

, 0 _,y//
> , [ResInd v, Resf] — ResIndv' = <0 27’) ,
hence 7/ = 0.
Thus, we have proved that Ind(.4) commutes with . Thus there is an injective homomor-
phism A @ C[]/(6%) — A. The dimension argument implies that it is an isomorphism. [
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4 Self extensions

4.1 Self extensions for q(n)
The goal of this section is to prove the following theorem.

Theorem 4.1. Let A = (A1,..., Ak, 0,...,0, —Xkmit, - - —An) € AT such that all \; > 0 be
a dominant integral weight in q(n). Then

C ifm>0,

Eixten) (L), TIL(A) = {0 if m = 0.

If L(\) #IIL(\), then
Exty, (L(A), L(X)) = 0.

Theorem 4.1 implies parts (1) and (2) of our main theorem 2.8. Namely, Ext!(L(\), L(u)) #
0 = wt(A\) = wt(p). Thus, by Theorem 4.1, there are no extensions in the strongly typical

block, and there is a unique extension %E\A)) in the typical block. Thus in the typical block, the

projective cover of L(\) is P(\) = HLL(?))\) (Theorem 3.9). Then a € Homg(P(X),IIP(X)) implies
a? = 0.

Proof. The key idea is to take parabolic invariants to reduce the problem to finding extensions
between trivial modules. Let A be as in the theorem. Define the parabolic subalgebra of g by

p = h @ @ GEi—sj @ @ gsj—si-
1<i<j<n k<i<j<k+m

Its Levi subalgebra [ C p is isomorphic to q(m) @ b’ where h’ C b is the centralizer of q(m) in b.

Let
ny 1= @ Oci—; D @ Oci—e;

i<k<j<n k<i<k+m<j<n

be the nilpotent radical of p.

We first observe that taking ny invariants is a functor from q(n)-mod to [-mod. Next, suppose
L(A)™ had a nontrivial [invariant subspace N. Because [ preserves the A\-weight space, and
the lower parabolic nilpotent part only lowers the A-weight space, we must have U(q(n))Ny C
L(A\)x = U(q(n))N € L(\) = N = 0, contradiction. Thus L(A)™ is simple [-module. On the
other hand, L(\), is also an irreducible [-module of highest weight A. So by the characterization
of the simple highest weight [-modules, L(\)™ = L(\),.

Lemma 4.2. Using the above notation, the following linear maps are injective
Exty ) (L(A), L(N)) < Ext{ (L(A)™, L(A)"™),
Eixt ) (L(A), TIL(A)) < Ext! (L(A)™, TIL(A)"™).

Proof. Suppose we had a sequence of q(n)-modules 0 — L(A\) - M — L(\) — 0 such that
taking ny, invariants results in a split short exact sequence of [-modules

0— LOY™ & M™ 4 L™ — 0.
From before, we know this sequence is the same as

0= L)y S My L LM\ — 0.
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Existence of a splitting maps means there exists an [-module homomorphism §: L(A)yx — M)
such that ¢ 0§ =idp(y),. Thus, we know

My = ¢(L(A)x) @ S(L(A)A).
Let L' = U(q(n)).0(L(\)y). Then

U(a(n))-(#(L(A)x) © 6(L(A)r))
U(a(n))o(L(A)x) +U(a(n))d(L(A)x)
A(L(N)) + L'

M = U(q(n)). M

N

where in the last line we use that ¢ is a q(n)-module homomorphism and U(q(n))L(A)x = L(\).
Thus M = ¢(L(\)) + L.
To show the sum is direct, observe ¢ injective and L(\) simple implies ¢(L(\)) is simple, so

G(LAN)NL =0 or ¢(L(N)). The case ¢p(L(N)) N L' = ¢(L(N)) is impossible, as
(L' N@(LA))x = Ly N (R(L(A)))r = 0.
This shows that the sequence of q(n) modules splits also. |

If m = 0, then Extcll(n) (L(A), L(X\)) = 0. This follows from

dim Extg .y (L(X), TIL(X)) < dim Extg .\ (L(A)™, TIL(A)™) = 0,
where we used m = 0 = [ = h and Lemma 4.2 for the first step, and the well known fact that
Clifford supermodules are semisimple when A is nondegenerate, for the second step [19].
Lemma 4.3. If A is as in Theorem 4.1 and m > 0 and v(X) is considered as a simple l-module,
then Ext{ (v()\),IIv(\)) = C and Ext] (v(\),v()\)) = 0 if v(\) is of Type M.
Proof. We start with general observation.

Lemma 4.4. Suppose g = A P B, where A, B are Lie superalgebras and M = My X Mp is
a g-supermodule. Then

H'(g,90; M) = H'(A, Ap; Ma) ] H°(B, Bo; M) & H' (A, Ag; TIM4) K H(B, By; 1IMp)
® H"(A, Ao; Ma) ¥ H' (B, Bo; Mp)
® H'(A, Ag;TIM ) K HY (B, By; TIMp).
Now write v(A) = CKo(X) for [ = q(m) @ h’. Then since v(\') is a projective h’-module we
have
Ext{ (v(\), TTv()\)) = Exté(m)(C, C) ® Homy (v(X), ITu(N))

@ Ext () (C, TIC) @ Homy (v(X'), v(X'))

and

Ext; (v(A),v(A)) = Exty,,,) (C, C) @ Homy (v(X), v(X))

@ Extcll(m)(C, II1C) ® Homy (v(X), ITu(X)).

By Theorem 3.1 we have Extcll(m)(C, C) =0 and Exté(m)(C, IIC) = C. The lemma follows. W
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By Lemmas 4.2 and 4.3 we have that
dim Extg,y (LX), TIL(A)) <1 and  Exty, (L(A), L(A) =0

if L(\) is not isomorphic to IIL(N\).

It remains to show that there exists a non-trivial extension between L(\) and ITL()). For this
we consider an indecomposable (1|1)-dimensional g(n)-module U with a basis u € Uy, u € Uz
and with action given by

Xu=0, Xu = otr Xu, vV X €q(n).
Then we have an exact sequence of q(n)-modules
0—TIIL(\) = L(A\) ®@U — L(\) — 0.

To see that it does not split take p such that A, = 0. On the weight space (L(\) ® U), the odd
basis element H,, acts non-trivially while its action on (L(X) & IIL())), is obviously trivial. The
proof of Theorem 4.1 is complete. |

4.2 Self extensions for sq(n)

Theorem 4.5. Let A = (A1,..., g, 0,00, 0, = Agmtts - - -, —An) such that all A\; > 0 be a dom-
inant integral weight in q(n).

L. Ext}y ) (Lsq(n) (A)s Lag(m) (X)) = 0 if L(A) # TIL(N);

2. Extaq(y (Lsq(n)(N)s Lgq(n) (X)) = Extyy () (Laq(n) (A); Leg(ny(A)) = 0 if m > 0 or m = 0 and

3. Extyy () (Lagn)(A)s TLgg(my(N)) = C if 5= 4+ + 5= = 0.

Proof. Note that Lemma 4.2 can be generalized to the case of sq(n), namely if p’ = p N sq(n),
I'=1Nsq(n) and v'(A) is the irreducible I'-module, the map

Eth}q(n) (qu(n)(/\)a (H)qu(n)()‘» — Ethl’(v/()‘)7 (H)U,O‘))

is injective. We claim that Extj (v'(\), (I1)v'(\)) = 0 for all A which do not satisfy (3). Indeed,
if m = 0 and % + -4 ﬁ # 0, K\ = 0 (see Section 2.3) and hence v'()) is projective. If
m > 0, then sq(m) is an ideal in I' which acts trivially on v'(\) and ITv/(\) and the quotients
'/sq(m) = [/q(m) = b’. Since

Ext g (m)(C, C) = Extl (., (C,TIC) = 0,
using spectral sequence we get
H (U, 15, 0" ()" @ (L)' (A) = H (0, by, o' (N)* @ ()’ (V) = 0.

It remains to consider the case /\% 4+ 4 i = 0. In this case one-dimensional K} lies in the
radical of the corresponding Clifford algebra, therefore we have

Ext{ (v/(\), v’ (\)) = C.

To construct a non-trivial extension over sq(n) consider the induced module Indgé?g)Lm(n)()\)
isomorphic to L(A) = Lq(ny(A). It is the middle term of an exact sequence of sq(n)-modules

0 = Leg(n)(A) 2 L(A) = MLgg(n)(A) — .
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Let us check that the sequence does not split. Using Frobenius reciprocity, we compute
Homﬁq(n) (Hqu(n) ()‘)7 L()‘)) = Homq(n) (HL()‘)’ L()‘))

If n is odd, then Lg,)(A) is isomorphic to I Lgg,)(A) and L(A) is isomorphic to TIL(A) as
a q(n)-module. So

Cyp = Homygy(p) (Hqu(n)()‘)v L(A) = Homy (ILL(A), L(A)).

If n is even then Lgq(,)(A) is not isomorphic to IILgq,)(A) and L(A) is not isomorphic to TIL(A)
as an q(n)-module. Therefore

Homsq(n) (Hqu(n)()\)a L)) = Homq(n) (ILL(A), L(A)) = 0.
In both cases, the sequence does not split. |

Corollary 4.6. Let A € AT and let Res, Ind denote Resgq, Imdgq respectively.

(a) If there exists i such that \; =0, then

ResL(A) = Leg(A),  IndLgg(\) =

b) Ifall \i 20 and = + - + = # 0, then
A1 An

Res L(A) = Lgg(A) & Lgg(A),  Ind Leg(A) = L(A).

(¢) If all \i # 0 and 5~ + -+ 5= =0, then

ITLgq(N)

Res L(\) = m,

Ind Lgg(A) = L(A).

Proof. By PBW theorem for q(n), sq(n), given a finite-dimensional sq(n) module M,
dimResInd M = 2dim M. Suppose we are in case (a). By Lemma 2.1(a), Res L(\) = Lgq())
and Ind Lgq(A) is the middle term of the exact sequence of q(n) modules

0= L(A) 2 Ind Leg(A) — IIL(A) — 0.

Now, since there some A\; = 0, Lsq(A) = I Lgq(A) if and only if L(A) = IIL(A). Then repeating
the argument from Theorem 4.5, we conclude the sequence is nonsplit. For case (b), note that
Lemma 2.1(b) implies L(A) = IIL(\) if and only if Lgq(A) 2 I1Lsq(A), and Theorem 4.5 implies

there is no self extension HL qu(?))\) Finally, case (c) was done in Theorem 4.5. [

5 Standard block

In this section, we compute the Ext-quiver for the standard block of g = q(3) and g = sq(3).
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5.1 Induction and restriction functors

Our goal is to establish a connection between the standard block (1 0,...0) and the principal

block .77” . As a first step we use the geometric induction in the case when 1t is an exact functor.
Con51der the parabolic subalgebra

p=bho @ Oe1—¢; © @ Bei—c;-

2<i<n 2<i#j<n

Its Levi subalgebra [ is isomorphic to q(1) @ q(n — 1). Let

= @ Jey—e;

2<i<n

denote the nilpotent radical of p.
Let ¢ be a positive integer. A dominant integral weight A € AT of q(n) is called ¢-admissible if
A= (t, A2, ..., Ay) such that ¢t + \; # 0, in other words the first mark of A is ¢ and A is p-typical.
Let Fi(t) denote the category of finite-dimensional [-modules on which H; acts by ¢t and
all weights of q(n — 1) have integral marks strictly less than t. Let F"(t) denote the Serre
subcategory of F,, generated by L(\) for all t-admissible A. Define the functors

I R(t)— Ft), R F(t)— A1)
by
(M) :=To(G/P, M), R' := Ker(H; — t).
Proposition 5.1. The functors I'* and R' define an equivalence between Fi(t) and F™(t).

Proof. By Proposition 3.4, I';(G/P,M) = 0 for i > 0 and every M € Fi(t). Furthermore,
[o(G/P, M) is simple if M is simple. On the other hand, RY(N) = H%(n,, N) for any N € F"(t).
That implies I'? is left adjoint to R!, both functors are exact and establish bijection on the sets
of isomorphism classes of simple objects in both categories. Hence these functors provide an
equivalence between the two categories. |

5.2 Reduction to q(n — 1)
Note that every module in F;(t) is of the form Lg(;) X M for some M € Fnol
Corollary 5.2. Let A = (A1,..., g, 1,0, .. .,0, = Agy ooy =N1), = (g1, i, 1,0,...,0,
— gty .-, —p1) be q(n) dominant weights in the standard block. For t >> max{A1, 1},
1 -
= Eth(l)@q ( ( )&L( ) L(t) (ﬂ))
Bl (), 12 & Extly o) (£ 1),
where A= (A1 —1,..., A — 1,0,...,0,1 = Ag,...,1 = \) and i = (1 — 1,..., uy — 1,0,...,0,
1—ppryeoos1—p1). If k=0, then A = (1,0,...,0) and A = 0, and similarly for k' = 0.

Proof. The first equality follows from [24, Lemma 5.12], which shows there is an equivalence
of categories between ]-"(”10_._ 0) (“standard block”) and ]:80_“0) given by a composition of

translation functors. Under this equivalence, L(\) maps to L(t, 5\) The second equality follows
from Proposition 5.1. The last equality follows from Lemma 4.4. |
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Now, using the q(2) Ext quiver in [18, Theorem 27], this corollary computes all extensions
occurring in Theorem 2.8(4).

Remark 5.3. In the standard block, the sq(3) extensions are the same as the q(3) extensions.
Indeed, lemma 4.6 shows if A = (a,1, —a), p = (b, 1, =b), then Res L(A\) = Lsq(A) ® IILgq(\) and
Ind Lsq(A) = L(A). Now Shapiro’s lemma implies

EXté (Ind qu()‘)a L(p)) = Ethlq (qu(/\)7 Lsq (1) ® I Lgg (1), and

EXt}] (Ind Hqu()\), L(p)) = Ethlq (Hqu()‘), Lgg (1) ® I Lgq ()

Since L(\) = TIL(\), we have Ext} g (L(A), L(p)) = Ext} q(Lsq(N), Lsq(1)). Also Res L(1,0,0) =
L4q(1,0,0), hence Ind Lgg(A) = Ind Hqu( ) implies by Shaplro s lemma

Ext; (L(X), L(1,0,0)) = Ext (Lsq(A), Lsq(1,0,0)) = Extl (I Leq(X), Lsq(1,0,0)).

5.3 Relations
5.3.1 Relations for g = sq(3)

All irreducible modules and projective covers considered here will be for sq(3), and we will omit
the subscripts from Lgg(A) and Pig(A). If A # (1,0,0), o = (a,1,—a),a > 1, then [P()) :
E(w)] = [E(p) : L(N)] by Theorem 3.9. We note Lgq(a, 1, —a) # Hqu( a,1,—a). If A = (1,0,0),
then [P(\) : E(u)] = 2[E(u) : L(N)]. Now, the character formula for L(X) : A = (A1, A2, Ag) € AT
is shown in [22] to equal the generic character formula for all A # (1,0,0). This combined with
character formula for £(\) (3.8) implies

£(1,0,0) = 0; £(2,1,-2) = [L(1,0,0)] + [L(2,1, —2)],
&(a,1,—a) =[L(a,1,—a)] + [L(a—1,1,—a + 1)].
Thus, using (3.6), we find
[P(1,0,0)] = 2[L(1,0,0)] + 2[L(2,1, —2)],
[P(2,1,=2)] = [L(1,0,0)] + 2[L(2,1, =2)] + [L(3, 1, =3)],
[P(a,1,—a)] = [L(a —1,1,1 —a)] + 2[L(a,1,—a)] + [L(a+ 1,1, —a — 1)] for a> 2.

This forces the radical filtrations for P(\) to be as shown in Appendix A, since we know all
possible extensions of simples, and hence rad P()\)/rad? P()).

Let V € F have radical filtration V = rad®(V) > rad’(V) D --- D rad®(V) = 0. Let
rad; = rad’ /rad’™! and denote the radical filtration by

radg V‘ rady V‘ e ‘ radg_1 .
Let

—~

1,0,0),L(2,1,-2)),
2,1,-2)L(1,0,0)),

t,1,—t), L(t+ 1,1, -t —1)),

t+1,1,—t —1),L(¢t,1,—t))

a; € HOHICQ(L
b € HOIDCQ L

A/‘\

(
ay € HOIHCQ(L
b € HOHICQ(L

—~

be paths on the quiver. We identify each v € Homgg(L(X), L)) with a corresponding element
of Homg(P(\),rad P(p)/ rad® P(11)) as in Proposition 2.5. Then using the radical filtrations in
Section 6.1,

im(a1by) = im(a1)(L(2, 1,~2)|L(1,0,0)) = L(2,1,—2)  and

im(baz) = im(b2)(L(2,1,-2)|L(3,1,-3)) = L(2,1,—2)
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and hence a1b; = baas. Likewise we find asa; = biby = 0, agp1as = biby1 = 0 and bray =
at—1b—1 for ¢ > 3. The computation for the a; € Homg(IIL(t + 1,1, —t — 1),I1L(¢,1,1)) and
by € Homg(ITL(¢, 1, —¢), IIL(t + 1,1, —t — 1)) is identical.

5.3.2 Translation functor from the principal to the standard block
Consider the translation functors:
TV = pry(V ® L(1,0,0)) and T*W = pry(W @ L(0,0,—1)),

where pr; is projection to standard block and pry is projection to principal block. It is well
known T, T* are both exact and left and right adjoint to each other.

Lemma 5.4. We have T'Lq(1,0,—1) =0 and TLq(a,0, —a) = Ly(a, 1, —a) for a > 2.
Proof. For the first assertion we use
Homq((Lq(la 07 0)7 TLCI(L 07 _1)) = Homq(T*Lq(la 07 0)7 Ll](17 07 _1)) =0.

Since all simple constituents of T'Lq(1,0,—1) are isomorphic to Lq(1,0,0) by the weight argu-
ment, the statement follows.
For the second assertion, use Lemma 3.3(2) to check that

TTy(G/B,v(a,0,—a)) =To(G/B,v(a,1,—a)).
Information about the multiplicities of simple modules in
I'y(G/B,v(a,0,—a)) and I'y(G/B,v(a,1,—a))
allows to conclude that
T(TopI'y(G/B,v(a,0,—a))) = Top'y(G/B,v(a, 1, —a)). [
5.3.3 Relations for g = q(3)
As before, we use BGG reciprocity to find

[P(2a 1a _2)] = Q[L(lv 07 0)] + 2[L(27 17 _2)] + [L(37 17 _3)]7
[P(a,1,—a)] =[L(a—1,1,1 —a)] +2[L(a,1,—a)] + [L(a + 1,1, —a — 1)] for a>2.
Recall functors Res, Ind from Section 3.4. It is easy to verify the following isomorphisms

Py(\) 2 Ind Pyg(\),  ResPy(\) 2 Pog(N) @ TPy (N).

Furthermore, we have an isomorphism Pyq(A\) = IIP(A) only for A = (1,0,0). Moreover, from
relations for sq(3) we know

Homgq(Peq(A), Psq(1)) =0
if both A and p are not equal to (1,0,0). This implies

Ind: Homygq(Psq(A), Peq(pt)) — Homg(Fq(A), Py(k))
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is an isomorphism if A,y # (1,0,0). Therefore we have unique lift of the arrows a, b: to
at, by for t > 2 and the relations between them are the same as for sq(3). For the arrows
ar: Pyq(1,0,0) = Pyq(2,1,-2) and by : Pyq(2,1,-2) — Ps(1,0,0) we define

ap = Ind(a; +1Iby), by = Ind(by + Iay).

Then we immediately obtain &151 =0 and asa; = l~)1l~)2 = 0 from the relations for sq(3). From
multiplicities of simple modules in projectives and information about Exté, one can compute
the layers of the radical filtration in projective modules which are listed in Section 6.2.

There is one additional loop arrow h: Py(1,0,0) — F4(1,0,0). Let us show that we can
choose h in such a way that h? = 0. We claim that there exists a q(3)-module R with radical
filtration

LQ(LO?O) |L‘1(27 17 _2) | Lq(L O)O)

Indeed, it is proven independently in Section 5 that there exists a g-module R’ with the radical
filtration

IIC | Ly(2,0,—2) | C.

Set R = TR’ where T is the translation functor from the principal to the standard block.
Lemma 5.4 ensures that the composition factors of R are as desired. Furthermore, R’ is a quotient
of P;(0) and hence R is a quotient of P(1,0,0). That settles the radical filtration of R.

Now we can use an exact sequence

0— R — F4(1,0,00 = R—0
to construct h € Endq(F4(1,0,0)) with image and kernel isomorphic to R. In fact from the
radical filtration of R we know that Res R = P4(1,0,0).

Now we can use Lemma 3.12 with M = R, P(1,0,0) = IndR and § = h. The algebra
End,(P4(1,0,0)) is generated h and u := bya; with «> = 0. Lemma 3.12 implies hu = uh.

5.4 “Half-standard” block

We can compute the Ext quiver for q(3) half-standard block by just computing the radical

filtrations of the projective covers. The character formula for L(\) when wt(\) = d3 is the same
2

as the generic character formula. Hence, we find

£(3:5:=3) = [L(5:5:=3)]  €(5.5. 3

3) =[2(3.3, -3 +[L(: 3 —2)];
5(2a+17%7ﬁ) _ [L(2a+1 3 —2a 1)] _|_[ a+1
(

)= (25
T

2 2 2 2

Now by our BGG reciprocity result, [P(A) : E(p)] = [E(p) = L(N)], hence

| =
)]

[P(5:2:—2)] = 2[L(5, 5, —2)] + [L(5, 3. =3
(PG5 3 =5)] = [L(5:2, —9)] +2[L(5,5, -9)] + [L(5. 5. - 3)],
[P(Qag-l,%’ 2a+1)] _ [L(2a2—1,§7_2 )] +2[L(2a+1,§7_2a;-1)]

FLE L) o>

Using these composition factors and that there are no self extensions, we find the radical filtration
for P(3,3,—3). Then using Extl( y(L(A), L(p) = Extl( y (L), L(A)) when wt(A) = wt(pu)

2““, g, —%) This computes

the pos&ble extensions, and moreover determines the relations as written in the theorem. Finally,
the sq(3) half-standard block follows from Shapiro’s lemma (see Remark 5.3).

=9 3, we inductively (on a) find the radical filtrations for P(

Remark 5.5. It was shown in [5] that half-integral blocks in F, of atypicality r are equivalent
to modules over the Khovanov are algebra K;F*. In our case, r = 1 and the arc algebra is the
zig-zag algebra of the semi-infinite linear quiver.
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6 Principal block

6.1 Ext quiver for the principal block for sq(3)

In this subsection we use the notation

g= 5(3](3), L(CL) = qu(3) (CL, 07 —(l), P(a) = Psq(3) ((I, Oa —CL).
We start with the following
Lemma 6.1. Ifa > 0 then L(a)* 2 IIL(a) and P(a)* 2 IIP(a). Furthermore, P(0) = P(0)*.

Proof. If the highest weight h-module of L(a) is v(a, 0, —a) then the highest weight h-module

X AY

of L(a)* is v(—a,0,a)* [10]. The first assertion follows from the isomorphism v(—a,0,a)* =
ITv(a,0,—a) of h-modules when a > 0. If I(L), P(L) denote the injective, projective hull of a
simple g-mod L respectively, then by [23]

(L) P(L)®T,
where T = S%P(gq7). In our case S*P(g;) = S8(gq) is the trivial gg-module. Hence we have
I(L) =2 P(L). On the other hand P(L)* = I(L*). Hence if a > 0, P(L(a))* = P(L(a)*) =
IIP(L(a)). If a =0, then L(0)* = L(0) and consequently P(L(0))* = P(L(0)*) = P(L(0)). W
Corollary 6.2. If a,b > 0, then

Ext,(L(a), L(b)) = Ext}(L(b), L(a)), Ext}(L(a), L(0)) = Exty (I1L(0), L(a)).

Note, in the case g = sq(3) and p = (a,0,—a),a > 0, we have [P(\) : E(u)] = [E(p) : L(N)]

by Theorem 3.9. Now, using the character formula for L(a,0, —a) [21] and £(a, 0, —a) (3.8), we
find

£(0) =0, £(1,0,-1) = [L(1)], £(2,0,-2) = [L(2)] + [L(1)] + 2[C],
&(a,0,—a) = [L(a)] + [L(a — 1)] if a>2.

Thus, using 3.6, we find

[P(0)] = 4[C] + 2[L(1)] + 2[L(2)],

[P(1)] = 2[C] + 2[L(1)] + [L(2)],

[P(2)] = 2[C] + [L(D)] + 2[L(2)] + [L(3)];

[P(a)] = [L(a —1)] + 2[L(a)] + [L(a + 1)] for a> 2.

Furthermore, it follows from [21] that I';(G/B,v(a,0,—a)) =0 if a > 2 and ¢ > 1. Therefore
if @ > 3, we obtain a non-split exact sequence

0— L(a—1) —»T(G/B,v(a,0,—a)) = L(a) — 0,
which gives a non-trivial extension Exté (L(a), L(a —1)). There are no more by Proposition 3.5.
Lemma 6.3. Let a > 3, then

Ext}(L(a), L(a — 1)) = Exty(L(a — 1), L(a)) = C

and Exté (L(a), L) =0 for all simple L not isomorphic to L(a —1).
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Proof. We do not have self-extensions by Theorem 4.5. If b < a, then a non-trivial extension
of L(a) by L(b) or TIL(b) is a quotient of I'o(G/B,v(a, 0, —a)) by Proposition 3.3(3). That forces
b= a — 1 and also implies Exté (L(a),IIL(b)) = 0. The case b > a follows by Corollary 6.2. W

Remark 6.4. Our choice of labelling IIL(a) vs L(a) for a > 2 is determined by the above
lemma. For a = 1 we assume that L(1) is dual to the adjoint representation in psq(3). For a = 2
the choice will be clear from the following lemma. Note that in the same way using

[FO(U(Q’O’ _2)) : L(l)h—[ =1,
we obtain

dim Ext}(L(2), L(1) @ I1L(1)) = dim Ext}(L(1) @ IIL(1), L(2)) < 1. (6.1)
Lemma 6.5.

Ext,(L(1),C)
Ext,(L(2),C)
Ext(L(1), L(2)

I
< Q

and Ext! o(IIL(1),C) = 0, (6.2)
and Ext! o(IIL(2),C) = C, 6.3
=0 and Ext! o(IIL(1), L(2)) = 0.

~—

Proof. Identify IIL(1) with the simple Lie superalgebra psq(3), then Derpsq(3) = IIC [16].
This implies (6.2) by use of duality and Lemma 6.1.

In order to prove remaining identities we consider the projective module P(0). We know all
its simple constituents: L(1), IIL(1), L(2), IIL(2) and L(0), IIL(0), the last two appear with
multiplicity 2. Since P(0) is projective, we know its super dimension is 0, so L(0) and IIL(0)
occur with same multiplicity. Assume for the sake of contradiction that

Ext,(L(2),C) = Ext (IIL(2),C) = 0.
That would imply that
P(0)/rad P(0) = L(0),  rad P(0)/rad® P(0) = L(1).

Furthermore, since q(3)* is a quotient of P(0) we know that rad? P(0)/rad® P(0) contains ITL(0).
But it must contain L(2) or IIL(2) (otherwise L(2) will not appear in P(0)). We have the
inequality

[rad® P(0)/rad® P(0) : L] < dimExt}(L(1), L)

for any simple L. Therefore rad? P(0)/rad® P(0) contains only one copy of IIL(0) and one copy
of either L(2) or IIL(2), (6.1). Without loss of generality we may assume

rad? P(0)/rad® P(0) = TIL(0) @ TIL(2).

Let M = P(0)/rad?® P(0). Then by our assumption we have M* C P(0)* = P(0), and we have
the exact sequence

0— M"— P(0)— M — 0.

Furthermore, it also follows from our assumptions that the radical and socle filtrations on M
are the same. In particular, it follows that M*/rad M* = IIL(0) & L(2). That would imply
Exté(HL(2) @ I1L(0), L(2) & IIL(0)) # 0. But that contradicts our original assumption.
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The above argument implies that Exté(C, I1L(2)) = C. Therefore

rad P(0)/rad® P(0) = L(1) ® IIL(2)  or
rad P(0)/rad® P(0) = L(1) ® TIL(2) & L(2).

However, it is easy to see that the latter case is impossible since otherwise by self-duality of P(0)
we have soc? P(0)/soc P(0) = IIL(1) @ IIL(2) @ L(2) and that would imply [P(0) : L(2)] > 2.
Therefore we have rad P(0)/rad? P(0) = L(1) @ TIL(2), and that implies (6.3).

Moreover, we obtain the radical filtration of P(0) as shown in Appendix A. Since ITv(2,0, —2)
is the highest weight h-submodule of P(0), we have a homomorphism v: I'g(G/B, ITv(2, 0, —2))
— P(0) and from the socle filtration of P(0) (in this case we have soc® P(0) = rad®~* P(0)) we
obtain that v is injective. The socle filtration of I'¢(G/B,IIv(2,0,—2)) is inherited from that
of P(0). We get

socT'o(G/B,1Iv(2,0,-2)) = L(0),
soc?To(G/B,w(2,0, —2))/socTo(G/B, v (2,0, —2)) = TIL(1),
soc To(G/ B, w(2,0, —2))/soc? Ty(G /B, v (2,0, —2)) = TIL(0),
soc To(G /B, w(2,0,—-2))/ soc® To(G/ B, TIv(2,0, —2)) = I1L(2)

That proves (6.4). |

Note that Lemmas 6.3 and 6.5 prove that the Ext-quiver for the principal block for sq(3)
coincides with the one in Theorem 2.7.

6.2 Relations for the principal block for g = sq(3)

We first compute the radical filtration of all indecomposable projectives. Using the self-duality
(up to parity) of P(a) and fact that we know all possible extensions of simples, we automatically
know the top 2 and bottom 2 layers. It turns out the other layers are fixed as well, as shown
below. Diagrams are in Appendix A. For P(0), we just obtained in the proof of Lemma 6.5.

For P(1), Top P(1) = L(1) and rad P(1)/rad® P(1) = IIC. The only extension with TIC
is L(2).

For P(2), Top P(2) = L(2) and rad P(2)/rad® P(2) = L(0) + L(3). Considering possible
extensions of L(0) and L(3), we find L(1) is subquotient of rad® P(2) and soc P(2) = L(2).
Finally, there only exists an extension &g and not %

For P(a), a > 3, Top P(a) = L(a) and rad P(a)/rad® P(a) = L(a — 1) + L(a + 1).

Now, we will use the radical filtrations to compute all relations. Note in all cases,

dim Homgy(P(a,0,—a), M) = [M : L(a,0, —a)].
Let

a € Homy(P(1), P(0)), ¢ € Homgy(P(0),I1P(1)),
d € Homgy(P(2),I1P(0)), b € Homgy(P(0), P(2)),
and the a’, V', ¢/, d’ be the corresponding parity-changed arrows. Since [P(1) : IIL(1)] = [P(2) :
I1L(2)] = 0, we obtain bd’ = ca =b'd = da’ = 0.
Let

a; € Homg(P(t, P(t + 1)), by € Homg(P(t+ 1), P(t)).
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Then
[IIP(0) : L(3)] = [P(3) : L(0)] =0, [P(t+1): L(t—1)]=[P(t—1): L{t+1)]=0

for ¢ > 3 implies the relations dbs = asb = 0 and a;41a; = byr1by = 0, t > 2. By symmetry, we
get the parity-changed analogues of these relations.

Next consider the cycle paths in P(0): acd'd’c, d'V'a’c, d't'db, ac’db We know from previous
paragraph that ac’a’c = 0 = db'db. Also, since dim Homy(P(0),IIP(0)) = 2, a’c and db are not
scalar multiples. Thus

im(d'V'a’c) = L(0) = im(ac'db)

and dim Endg(P(0)) = 2, implies d'b'a’c = Apac'db for \g € C*. Similarly we find dbac’ =
ha'ed'tl.
Next consider the nontrivial cycle paths in P(2): baag, bac’d. Since

im(boas) = L(2) = im(bac'd),

and dim Endg(P(2)) = 2, we conclude baaz = Agbac’d, Ay € C*.

Finally, for ¢ > 3, we find cycle paths in P(a) are aby, biyia,41. Both have image L(t),
hence atby = Abryri1arr1. Observe we can sufficiently scale all arrows and hence normalize all
At; A € C* to equal 1. The remaining dim Homg(P(a), P(b)) calculations shows there are no
other relations.

6.3 The principal block of q(3)

We start with the following general statement.

Lemma 6.6. Let A\, p be two distinct weights in the principal block such that there exists
z’,j:)\i:uj:O. If

dim Exty,,y (Lsq(A), Leq (1)) + dim Ext}y , (Leq(A), TLeq (1)) < 1,

then

Extyq () (Lsq(A), Laq(1)) = Extggy (L(A), L(w)).

Proof. By Corollary 4.6, Res L(\) = Lgq(A) and Ind Leg(\) = HLL(%‘) The nonsplit short exact
sequence 0 — L(A) — V — IIL(A) — 0 of q(n)-modules, which exists by Theorem 4.1, gives rise

to long exact sequences (u # A)

0 = Exty, (L(A), L)) 4= Excty ) (V, L(p)) <= Extgq,y (IL(A), L(1))
— Ext2 (L L)) - |
0 = Exty,) (L(A), TL (1)) = Excty i,y (V, TIL () < Excty,,) (TLL(A), TIL (1))
¢ ExtZ(,y (L(A), TIL(p)) - -
Now the lemma follows from Shapiro’s lemma, Extcll(n)(V, L(p)) = Extiq(n)(Lﬁq(A), Lsq(1)), and
the hypotheses. [ |

Lemma 6.6 implies that the Ext quiver for the principal block of ¢(3) is obtained from that
of 5q(3) by adding a single arrow between each L(a) and IIL(a) (Theorem 4.1).
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Lemma 6.7. Let g = q(3) and 6 € Homq(P(X),IIP()\)) be the unique self extension for each X in
the principal q-block. Let Pyq (resp., Pq) denote the direct sum of all indecomposable projectives
in the principal block for sq(3) (resp., q(3)); A = Endsq(Psq) denote the algebra defined by the
quiver with relations in principal 5q(3)-block. Then the algebra defined by quiver with relations
in principal q(3)-block is

A’ = Endq(Pg) = A® C[0]/(6?).

Proof. Recall the functors Res and Ind from Section 3.4. We would like to show that M = Pg,
satisfies the assumptions of Lemma 3.12. Corollary 4.6 implies Py = Ind M. It remains to show
the existence of #. The BGG reciprocity implies for A, p in principal block, [Py(A) @ L(u)] =
2[Pyq(A) @ Lsg(p)]. Since Ind Pyq(A) is projective,

Ind Pyy(\) = P4(\)  and  Res Py(A) = Pag(\) @ [Py (N).

If X # 0 then Homgq(ITPsq(), Psq(A)) = 0 and therefore the above decomposition is unique.
By Frobenius reciprocity and fact that Homgq(Psq(A), [IPsq(A)) = 0 for A # 0, we have for
A#£0

Homg(Ind Pyg(A), Ind I Psq(\)) = Homgq(Psq(A), Res Ind ITP;q (X))
= Homgq(Psq(A), Psqg(A) @ ILPsq(N))
= Homgq(Psq(A), ResInd Pyg(X)) = C.

We choose 0: Py(A) — I1P;(A) corresponding to the identity map in Homsq(Fsq(A), Psq(A))
and set P(A) = Im#. Then we have an exact sequence

0 — IIP(\) — Py(A\) = P(\) — 0,

with Res P(X) 2 Psq()\). Now let us prove that for A = 0 we also have §: P;(0) — ILP;(0) with
(I16)8 = 0 and hence the exact sequence

0 — IIP(0) = Py(\) — P(0) — 0.

3
We use that Py(0) = pr (IndgES

[ =q(3)g ® CH where H = Hy + Hy + Hs. Since H? acts by zero on the modules of our block
we have an exact sequence of [-modules

;6 C) where pr denote the projection on the principal block. Let

0 —IIC — Ind',, C— C —0,
q(3)5

and therefore the exact sequences

0= Ind{¥ ¢ & mdly) C 2 md™® ¢ - o,

0 Ind{®¥ ¢ &% 1ndly) ¢ =5 Mmd}® € — 0.

By setting 6 = pr(Ilaf) pr we obtain the desired claim.
To finish the proof we just use Lemma 3.12. |

A Radical filtrations for Py(A) when g = sq(3), q(3)

In all radical filtrations, an edge denotes an extension. Observe for Py3)(a,0, —a), the “left half”
corresponds to ker # and the “right half” corresponds to im 6.
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Al g=sq(3)

The radical filtrations are (a > 3):

P(1,0,0) P(2,1,-2)
L(1,0,0) L(2,1,-2)
~ \ ~
HL(2, 1,-2) L(2,1,-2) L(3,1,-3) L(1,0,0)
— \ —
L(1, 0 0) L(2,1,-2)
P(a,1,—a) P(0)
L(a,1,—a) L(0)
\ T - ~
La+1,1,-a—1) L(a—1,1,1—a) L(1) I1L(2)
S | |
L(a,1,a) IT1L(0) I1L(0)
L(‘2) HL‘(l)
N ~
L(0)
P(1) P(2) P(a)
L(1) L(2) L(a)
| ~ N ~ N
I1L(0) L(0) L(3) L(a+1) L(a—1)
| | >~ ~
L(‘2) L(‘l) L(a)
L(0) I1L(0)
\ N
L(1) L(2)
The radical filtrations are (a > 3):
P(1,0,0) P(2,1,-2)
L(1,0,0) L(2,1,-2)
\ ~ [ ~
L(1,0,0) L(2,1,-2) L(3,1,-3) L(1,0,0)
L(2,1‘ —2) (1,‘0,0) L(l,‘O 0)
\ — —
L(1,0,0) L(2,1,-2)
P(a,1,—a)
L(a,1,—a)
\ T
L(a+1,1,-a—1) L(a—1,1,1—a)
-

L(a,1,a)
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The following radical filtrations are deduced from the fact that #: P(a) — IIP(a) corresponds
to id: Pyq(a) — Psq(a) as seen from Lemma 6.7:

P(0) P(1)

L(0) L(1)
L(1) /HL|(2)\HL(O) HLI(O)\HL(l)
HL(O)% HL(l)\ L) L(2) \L(‘O)
L) L L) L(0) L(0) \HL‘(Q)

N \ [ NG
L(0) THLE) T L L(1) L)
~ 1 ~
I1L(0) ITL(1)
P(2) P(a)
L(2) L(a)
\
L(‘O) \L(S) % L(a‘—l— MHL(@
==
(1) L) TIL(3) L(a) mL(a ~1)
1L (0) () = IL(a)
A L)~ L(0)
\\
1L(2)
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