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We study quantum fluctuations of macroscopic parameters of a nonlinear Schrödinger breather—a
nonlinear superposition of two solitons, which can be created by the application of a fourfold quench of the
scattering length to the fundamental soliton in a self-attractive quasi-one-dimensional Bose gas. The
fluctuations are analyzed in the framework of the Bogoliubov approach in the limit of a large number of
atoms N, using two models of the vacuum state: white noise and correlated noise. The latter model, closer
to the ab initio setting by construction, leads to a reasonable agreement, within 20% accuracy, with
fluctuations of the relative velocity of constituent solitons obtained from the exact Bethe-ansatz
results [Phys. Rev. Lett. 119, 220401 (2017)] in the opposite low-N limit (for N ≤ 23). We thus
confirm, for macroscopic N, the breather dissociation time to be within the limits of current cold-atom
experiments. Fluctuations of soliton masses, phases, and positions are also evaluated and may have
experimental implications.
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Introduction.—The nonlinear Schrödinger equation
(NLSE) plays a fundamental role in many areas of physics,
from Langmuir waves in plasmas [1] to the propagation of
optical signals in nonlinear waveguides [2–6]. A variant of
the NLSE, in the form of the Gross-Pitaevskii equation
(GPE), provides the mean-field (MF) theory for rarefied
Bose-Einstein condensates (BECs). Experimentally, bright
solitons predicted by the GPE with the self-attractive
nonlinearity were observed in ultracold 7Li [7–9] and
85Rb [10,11] gases in the quasi-one-dimensional (1D)
regime imposed by a cigar-shaped potential trap.
Because the GPE-based MF approximation does not
include quantum fluctuations, one needs to incorporate
quantum many-body effects to achieve a more realistic
description of the system. The simplest approach is to
employ the linearization method first proposed by
Bogoliubov [12] in the context of superfluid quantum
liquids. For more than two decades, this method has been
successfully used to describe excitations in BECs [13–16].
Another approach deals with the Lee-Huang-Yang (LHY)
corrections [17] to the GPE induced by quantum fluctua-
tions around the MF states [18,19]. The so improved GPEs
produce stable 2D and 3D solitons (including ones with
embedded vorticity [20,21]), which have been created in

experiments with binary [22–25] and single-component
dipolar [26,27] BECs.
The focusing nonlinearity in the NLSE corresponds to

attractive interactions between atoms in BEC. The NLSE
in 1D without external potentials belongs to a class of
integrable systems [28–30], thus maintaining infinitely
many dynamical invariants and infinitely many species
of soliton solutions. The simplest one, the fundamental
bright soliton, is a localized stationary mode which can
move with an arbitrary velocity. The next-order solution,
i.e., a two soliton, which is localized in space and oscillates
in time, being commonly called a breather, can be found by
means of an inverse-scattering transform [31]. This solution
may be interpreted as a nonlinear bound state of two
fundamental solitons with a 1∶3mass ratio and exactly zero
binding energy [29,32]. The two-soliton breather can be
created by a sudden quench of the interaction strength,
namely, its fourfold increase, starting from a single funda-
mental soliton, as was predicted long ago in the analytical
form [31], and recently demonstrated experimentally in
BEC [33].
Quantum counterparts of solitons and breathers can be

constructed as superpositions of Bethe ansatz (BA) eigen-
states of the corresponding quantum problem [5] which
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recover MF properties in the limit of large number of atoms
(N). While an experimental observation of the quantum
behavior of the center-of-mass (COM) coordinate of a
(macro or meso)-scopic soliton (e.g., effects analyzed in
Refs. [34–36]) remains elusive, several groups have been
making progress towards this goal [33,37]. Certain quan-
tum features of NLSE breathers, such as correlations and
squeezing [38–40], conservation laws [41], development of
decoherence [42], and nonlocal correlations [43], have been
analyzed and discussed. The non-MF breatherlike solutions
were also considered in open Bose-Hubbard, sine-Gordon,
and other models [44,45]. Note that in the semiclassical
limit the instability of quantum breathers carries over into
the MF regime that was explored for NLSE in various
settings in Ref. [46].
At the MF level, the relative velocity of the fundamental

solitons, whose bound state forms the breather, is identically
equal to zero, regardless of how hot the COM state of the
“mother” soliton was. Thus, if the breather spontaneously
splits in free space into a pair of constituent fundamental
solitons, intrinsicquantumfluctuations are expected tobe the
only cause of the fission (at the MF level, controllable
splitting of the breather can be induced by a local linear or
nonlinear repulsive potential [47]). This expectation sug-
gests a way to observe the splitting as a direct manifestation
of quantum fluctuations in amacroscopic object, whichmay
take place under standard MF experimental conditions.
The Bogoliubov linearization method was first applied to

fundamental solitons [48–50] in optical fibers. Later, Yeang
[51] extended the analysis for the COM degree of freedom
of a breather. The present work focuses on quantum
fluctuations of breather’s relative parameters. We deal with
two models for the halo of quantum fluctuations around the
MF states of the atomic BEC: conventional “white noise”
[42,48,49] of vacuum fluctuations, and the most relevant
scheme with correlated noise, assuming that the breather
has been created from a fluctuating fundamental soliton, by
means of the aforementioned factor-of-four quench, as
schematically shown in Fig. 1. For a small number of
atoms, up to N ¼ 23, estimates for the relative velocity
variance and splitting timewere obtained in Ref. [52], using
the exact many-body BA solution; however, available
techniques do not make it possible to run experiments
with such “tiny solitons.” The present Letter extends the
results for the experimentally relevant large values ofN and
provides variances of other breather parameters, which may
also be observable.
The system.—We consider a gas of bosons with s-wave

scattering lengthasc < 0 in an elongated trapwith transverse
trapping frequencyω⊥ [7,8,53]. The scattering length can be
tuned by a magnetic field, using the Feshbach resonance
[54]. Atoms with kinetic energy < ℏω⊥ may be considered
as 1D particles with the attractive zero-range interaction
between them, of strength −g ¼ 2ℏω⊥asc [55]. The 1D gas
is described by the quantum (Heisenberg’s) NLSE,

iℏ
∂Ψ̂ðx; tÞ

∂t ¼ −
ℏ2

2m
∂2Ψ̂ðx; tÞ

∂x2 − gΨ̂†ðx; tÞΨ̂ðx; tÞΨ̂ðx; tÞ;

ð1Þ

where m is the atomic mass. The creation and annihilation
quantum-field operators, Ψ̂† and Ψ̂, obey the standard
bosonic commutation relations.
The Bogoliubov theory represents the quantum field as

Ψ̂ðx; tÞ ¼
ffiffiffiffi
N

p
Ψ0ðx; tÞ þ δψ̂ðx; tÞ, where the first MF term

is a solution of classical NLSE representing the condensed
part of the boson gas. Operator δψ̂ðx; tÞ represents quantum
fluctuations, also obeying the standard bosonic commuta-
tion relations. The Bogoliubov method linearizes Eq. (1)
with respect to δψ̂ :

iℏ
∂δψ̂
∂t ¼ −

ℏ2

2m
∂2δψ̂
∂x2 − 2gNjΨ0j2δψ̂ − gNΨ2

0δψ̂
†: ð2Þ

Applying this to NLSE breathers, we use Gordon’s solution
of the NLSE [56] for two solitons with numbers of atoms
N1 and N2, which contains eight free parameters (see the
Supplemental Material [57] for derivation details, which
includes references to relevant papers [58–61]). Four
parameters represent the bosonic state as a whole: the total
number of atoms N ¼ N1 þ N2, overall phase Θ, COM
velocity V, and COM coordinate B. The other four
parameters are the relative velocity v of the constituent
solitons, initial distance between them, b, initial phase
difference, θ, and mass difference, n ¼ N2 − N1. The
particular case of n ¼ %N=2 and v ¼ b ¼ θ ¼ 0 corre-
sponds to the breather solution. In the COM reference
frame (V ¼ 0), the breather remains localized, oscillating
with period Tbr ¼ 32πℏ3=ðmg2N2Þ. On the other hand,
the fundamental soliton is obtained for n ¼ %N and
v ¼ b ¼ θ ¼ 0.

FIG. 1. A schematic representation of the fundamental “mother
soliton”, as the vacuum state including inherent correlated
quantum noise (the left panel), transformed into the breather
by means of the interaction quench (the right panel).
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The quantum correction to the two-soliton solution is

δψ̂ ¼
X

χ

fχðx; tÞΔχ̂0 þ ψ̂contðx; tÞ; ð3Þ

where χ is set of the eight parameters (N, Θ, V, B, n, θ, v,
and b), and fχðx; tÞ ¼ ∂ð ffiffiffiffi

N
p

Ψ0Þ=∂χ are derivatives of the
MF solution with respect to them. Then, the sum in Eq. (3)
is an exact operator solution of the linearized equation (2).
Hermitian operators Δχ̂0, introduced in Refs. [48,49], are
considered as quantum fluctuations of the parameters at
t ¼ 0, as they have the same effect on the density as
classical fluctuations of the MF parameters, see [57].
The set of eight parameters is related to breaking of the
Uð1Þ and translational symmetries of the underlying
Hamiltonian, hence they represent the Goldstone and “lost”
modes, in the framework of the Bogoliubov–de Gennes
description [36,62,63]. The operator term ψ̂ cont in Eq. (3)
represents fluctuations with a continuum spectrum (which
were analyzed for the fundamental soliton in Ref. [64]). In
this work, we assume orthogonality of the continuum
fluctuations ψ̂ cont to the discrete-expansion modes, leaving
a rigorous proof of this fact for subsequent work. Indeed,
there are good reasons for this conjecture: first, in the
context of nonlinear optics [49,51] it is supported by
the fact that, in the limit of t → ∞, continuum modes
completely disperse out, hence the orthogonality condi-
tion definitely holds. Second, the orthogonality of the
Goldstone and continuum modes is built into the procedure
of the construction of Bogoliubov eigenstates [65].
Operators δψ̂† and δψ̂ may be interpreted as creation and

annihilation operators, respectively, of the quantum fluc-
tuations. To properly define the action of the operators, one
has to specify the nature of the vacuum state. The breather
is initialized as a mother soliton, which defines the vacuum
state of the quantum-fluctuation operators around the
breather. Below we address two different physically rel-
evant schemes for incorporating the vacuum state into the
Bogoliubov method.
The white-noise vacuum.—The most common approach

to introduce the vacuum state for the δψ̂† and δψ̂ operators
(in particular, in optics [6,49–51,64]) is to consider one
with fluctuations in the form of uncorrelated random noise.
Such a formulation is also adopted in atomic physics [42],
and has the following interpretation: the mother soliton is a
Hartree product of noninteracting single-particle wave
functions, all having the shape of the mother soliton.

Thus, only the product hδψ̂ðx; 0Þδψ̂†ðx0; 0Þi ¼ δðx − x0Þ,
where the averaging h…i is taken over the vacuum state,
yields nonzero correlations (see [57]). At t ¼ 0, quantum
fluctuations of eight parameters, Δχ̂0, can be expressed in
terms of overlaps of functions fχðx; tÞ as

hΔχ̂20i ∝
Z

þ∞

−∞
dxjfχ̃ðx; 0Þj2 ð4Þ

(see [57]), with eight parameters combined in four pairs
(χ; χ̃Þ, viz., (N,Θ), (V,B), (n,θ), and (v,b). The relationships
between them resemble canonical conjugation (up to
constant factors). (See [57] for details.) Derivatives of
Gordon’s solution and the overlap integrals were evaluated
analytically (using Wolfram Mathematica). The so evalu-
ated initial values of the fluctuations are presented in
Table I, where scales of the length and velocity are x̄ ¼
ℏ2=ðmgÞ and v̄ ¼ g=ℏ. For 7Li atoms with m ¼ 7 AMU,
ω⊥ ¼ 254 × 2πHz, and asc ¼ −4a0 (a0 is the Bohr radius),
we have x̄ ≈ 1.34 cm and v̄ ≈ 6.75 × 10−5 cm=s, while the
breather’s oscillation period is Tbr ≈ 4 × 106=N2 s.
Next, we compare these uncertainty expressions with the

standard (Heisenberg’s) ones:

hΔN̂2
0ihΔΘ̂2

0i ≈ 0.678 > 0.25 ð5aÞ

N2m2hΔV̂2
0ihΔB̂2

0i=ℏ2 ≈ 0.274 > 0.25; ð5bÞ

hΔθ̂20ihΔn̂20i=4 ≈ 0.41 > 0.25; ð5cÞ

N2ð3m=16Þ2hΔv̂20ihΔb̂
2
0i=ℏ2 ≈ 0.3243 > 0.25; ð5dÞ

where the rightmost bound comes from the exact commu-
tation relations between −Θ, B, −θ, and b, and the
corresponding “momenta” ℏN, NmV, ℏn=2, and 3Nmv=
16, respectively, see [57].
Note that the uncertainty value for the relative momen-

tum, 3mNv=16, and distance, b, is ≈20% larger than that
for COM momentum-position pair. One can also evaluate
averages of the cross products of the operators, using
formulas similar to Eq. (4), see [57]. Nonvanishing values

hΔN̂0ΔΘ̂0i ¼ i=2; hΔB̂0ΔV̂0i ¼ iℏ=ð2NmÞ;

hΔn̂0Δθ̂0i ¼ i; hΔb̂0Δv̂0i ¼ 8iℏ=ð3NmÞ; ð6Þ

are purely imaginary due to properties of modes fχ̄ , and
hΔχ̂0Δχ̂00i ¼ −hΔχ̂00Δχ̂0i due to the hermiticity. Note that

TABLE I. Initial values of the quantum fluctuations hΔχ̂20i of the overall and relative parameters of the breather,
obtained for the white-noise vacuum state.

Number Phase Velocity Coordinate

Overall N ð105þ 11π2Þ=ð315NÞ Nv̄2=192 16π2x̄2=ð3N3Þ
Relative N=5 4ð420þ 23π2Þ=ð315NÞ 23Nv̄2=420 256π2x̄2=ð15N3Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔN̂2

0ihΔΘ̂2
0i

q
≈ 0.82,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔV̂2

0ihΔB̂2
0i

q
≈ 2.1ℏ=ðNmÞ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔn̂20ihΔθ̂

2
0i

q
≈ 1.3, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔv̂20ihΔb̂

2
0i

q
≈ 3ℏ=ðNmÞ.

Then, the cross term hΔB̂0ΔV̂0i may be neglected, while
others are non-negligible.
Contributions from mother-soliton’s continuum

fluctuations.—The predictions for fluctuations of the
breather’s parameters are significantly different if field
fluctuations of the mother (prequench) soliton are
included. In contrast to the white-noise vacuum case,
we cannot keep only one product of the fluctuating
operators, δψ̂ðxÞδψ̂†ðx0Þ, therefore the correlated-quan-
tum-noise vacuum leads to different expectation values. In
turn, quantum fluctuations of the fundamental mother
soliton can be separated into discrete and continuum parts
[36,62,63]. Further, expectation values of the continuum
creation or annihilation operator products can be calcu-
lated using known exact expressions [36,66] for the
Bogoliubov modes of the fundamental soliton (see
[57]). Fluctuations of discrete parameters of the mother
soliton are determined by derivatives of the mean field
with respect to these parameters. They coincide with the
breather’s overall (COM) fluctuations, as the soliton’s and
breather’s mean fields are the same at t ¼ 0. Because
fluctuations of the discrete parameters of the mother
soliton are decoupled from the relative degrees of freedom
of the breather, they do not affect the corresponding
variances. Uncertainties of the overall degrees of freedom
of the breather are determined by parameters of the
experiment that creates the mother soliton. Note also that,
due to phase-diffusion effects [62,63], fluctuations of the
discrete parameters of the mother soliton depend on time
between the creation of the soliton and the application of
the interaction quench to it.
In Table II we compare initial variances of the relative

parameters for different vacuum states. Due to the com-
plicated form of the expressions, the variances for the
correlated-noise vacuum were evaluated numerically. The
difference, while not being enormous, is evident and it may
manifest itself in the observable dynamics of the breather.
The cross-product averages are the same as for the white-
noise vacuum, see Eq. (6).
The BA estimates for the relative velocity variance

obtained for small N [52], 0.035Nv̄2, is within 20% of
the correlated-vacuum prediction. This conclusion is a

significant result of the present work, as it demonstrates
that the crucially important characteristics of the fluctua-
tional dynamics are close for different vacuum states and in
the opposite limits of small and large N, thus revealing
universal features of the dynamics, which should be
amenable to experimental observation.
In Fig. 2 we display the evolution of the variances

of quantum operators of the relative parameters of the

FIG. 2. Variances of fluctuations of the relative parameters of
the breather, as a function of time (from top to bottom): the
number of atoms hΔn̂2ðtÞi, phase hΔθ̂2ðtÞi, velocity hΔv̂2ðtÞi,
and position hΔb̂2ðtÞi, as found for the white-noise vacuum state
(red dashed lines) and prequench correlated vacuum state (black
solid lines).

TABLE II. Initial quantum fluctuations of relative parameters
of the breather for the white-noise and prequench correlated-
vacuum states.

Noise hΔn̂20i hΔθ̂20i hΔv̂20i hΔb̂20i
White 0.2N 8.22=N 0.0548Nv̄2 168x̄2=N3

Correlated 0.3N 6.26=N 0.0429Nv̄2 198x̄2=N3

PHYSICAL REVIEW LETTERS 125, 050405 (2020)

050405-4



breather, and compare the results for the white-noise and
prequench correlated-noise vacuum states.
The splitting of the breather can be detected once the

constituent solitons are separated by a distance comparable
to the breather’s width, which is lbr ¼ 8ℏ2=ðmgNÞ ≈
36 μm [28] under realistic experimental conditions
(N ¼ 3 × 103 7Li atoms with the parameters mentioned
above). Therefore, the time of dissociation due to quantum
fluctuations, τ ¼ lbr=

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔv20i

p
, depends on the vacuum state

(see Table II), namely, τwhite ≈ 4.16 s, and τcorr ≈ 4.7 s.
Thus, the inclusion of the continuum fluctuations of the
mother soliton increases the dissociation time by more than
a breather’s period (≈0.22 s). Note that the BA estimate for
small N [52], ≈3 s, used a different technical definition of
the dissociation time; using the present definition, the BA
yields τBA ≈ 5.18 s. Eventually, the results again clearly
corroborate the inference that the fluctuational dynamics
reveals universal features, amenable to experimental obser-
vation, in both limits of small and large N.
As noted above, the spontaneous dissociation is for-

bidden in the integrable 1D axially uniformMF model. The
integrability maintains robustness of solitons and “debris,”
such as radiation or additional small-amplitude solitons,
created in the experiment. The “debris” cannot bind into the
breather, and would disperse by themselves. In principle,
dissociation may be induced by integrability-breaking 3D
effects, decoherence, or an axial potential, which all are
unavoidable in the experiment. However, 3D MF calcu-
lations [67], as well as analytical and numerical analyses
[68–71] of the decoherence, induced by the linear loss, do
not reveal any dissociation. Besides, the relative motion of
the constituent solitons is rather insensitive to long-scale
potentials since linear potentials depend only on the COM
coordinate and the quadratic ones cannot induce dissoci-
ation due to parity conservation. Calculations [47] dem-
onstrated dissociation due to a narrow potential barrier
(of the width δx ≪ lbr) above certain threshold, namely,
the potential δU does not induce dissociation if
δUδx≲ 10−4gN. This condition is not too strong in real
experiments with large N. Thus, the dissociation into
daughter solitons can only be a result of quantum noise.
Conclusions.—The Bogoliubov linearization approach

makes it possible to estimate variances of the quantum
fluctuations of the breather’s discrete parameters, including
its COM and relative degrees of freedom. We consider two
cases of the vacuum state: an easier, tractable uncorrelated
quantum noise, alias “white noise,” and a state with the
correlated quantum noise, that takes into account quantum
fluctuations of the mother soliton. The comparison shows
that the correlated noise noticeably changes initial values
and the evolution of the variances. Disagreement between
the relative-velocity variance for the correlated noise and
BA results [52], obtained for the small number of atoms,
N ≤ 23, is< 20%. The present analysis produces variances
of other breather parameters as well. A fundamental

observable effect that quantum fluctuations can induce is
dissociation of the breather. This effect is essentially the
same, irrespective of the choice of the noise pattern.
Namely, the dissociation time, estimated for realistic
experimental parameters as τcorr ≈ 4.7 s for the corre-
lated-noise vacuum, is about one breather period larger
than for the uncorrelated noise and closer to the BA
estimate ≈5.18 s for small N. The proximity of the basic
results obtained for small and large N and for different
vacuum states is a strong indication that the quantum
dynamics of breathers is dominated by the universal
features. Thus, the results reveal the feasibility of the
observation of direct manifestations of quantum fluctua-
tions in macroscopic degrees of freedom—in particular, the
relative velocity of the two initially bound solitons. Note
also that the proximity of the uncertainty relation (5d) to the
lower limit of the Heisenberg’s position-momentum uncer-
tainty relation indicates that the state of the relative motion
is probably a macroscopically quantum one: if it were
spread over a large phase-space area, it would—while
remaining formally a pure state—become chaotic in the
course of the subsequent quantum evolution, while we see
that it does not do that.
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