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ABSTRACT. For each integer t a tensor category V; is constructed, such that exact tensor
functors V, — C classify dualizable t-dimensional objects in C not annihilated by any
Schur functor. This means that V; is the “abelian envelope” of the Deligne category
D; = Rep(GL;). Any tensor functor Rep(GL;) — C is proved to factor either through
V; or through one of the classical categories Rep(GL(m|n)) with m—n = ¢. The universal
property of V, implies that it is equivalent to the categories Reth1®Dt2 (GL(X),e),
(t = t1 + to, t1 not integer) suggested by Deligne as candidates for the role of abelian
envelope.

1. INTRODUCTION

1.1. In this paper we construct, for each integer ¢, a tensor category V, satisfying a
remarkable universal property: given a tensor category C, the exact tensor functors V;, — C
classify the t-dimensional objects in C not annihilated by any Schur functor.

In [DM], Deligne and Milne constructed a family of rigid symmetric monoidal categories
Rep(GL;) (denoted Dy in this paper), parameterized by t € C; for ¢ non-integer, these are
semisimple tensor categories satisfying the mentioned above universal property.

For t € Z the category D, is Karoubian but not abelian. The category V, is abelian; it is
built of pieces of categories of representations of Lie supergroups GL(m|n) with m—n = t,
and D; admits an embedding into V, as a full rigid symmetric monoidal subcategory.

1.2.  Representation theory has evolved from the study of representations of groups by
matrices to the study of the categories of representations of groups and, more generally
supergroups. The Tannaka reconstruction theory allows one to recover the original (super)
group from the category of its finite-dimensional representations, and Deligne’s results
([Dell, Del2]) give criteria on a tensor category to be the category of representations of a
(super) group.

Not all tensor categories are categories of representations of groups or supergroups;
obviously, a category with objects of non-integer dimensions are not such. In the category
of finite dimensional representations of a group, the objects will obviously have non-
negative integral dimensions, while for the supergroups, this dimension might be negative,
but will still be an integer.

In [DM], [Del3], Deligne and Milne constructed families of rigid symmetric monoidal
categories Rep(GL;), Rep(Osp), Rep(S;) (t € C) whose objects have not necessarily inte-
gral dimension. These categories possess some nice universal proerties in the 2-category
of symmetric monoidal categories. Additionally, their explicit description reflects many
features of the classical representation theory.

The above categories are all Karoubian; they are semisimple at generic values of the
parameter ¢ (in particular, when ¢ ¢ Z).

When t € Z (t € Zso for the family Rep(S;)), the categories in question are not
abelian; for t = n € Zsq, they admit a symmetric monoidal (SM for short) functor to the

1The condition on Schur functors is void in this case.
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classical categories Rep(GL,), Rep(O,,), Rep(S,), so that the classical categories appear
as quotients of the respective Deligne categories.

On the other hand, there exist faithful SM functors from the Deligne categories at
special values of ¢ to tensor (abelian) categories. Deligne conjectured that for each family
and each value of ¢, there exists a universal tensor category admitting an embedding of
the Deligne category, and suggested a construction of such a tensor category. In the case
of the family Rep(.S;), this conjecture was proved by Comes and Ostrik in [COJ]. They also
gave an alternative construction of the tensor category using t-structures, which leads to
a rather explicit description of the abelian envelope of Rep(S;) (see [En]).

1.3. From now on, we will concentrate on the family Rep(GL;) which we denote D, for
the sake of simplicity. The starting point of the present paper is the study of singular
support for representations of Lie superalgebras, due to Duflo and Serganova, [DS].

Let g be a Lie superalgebra, and let = € g be an odd element satisfying [z, z] = 0. One
can define a functor H from the category of g-modules to the category of g,-modules,
where g, := Kerad, /Imad,. This functor sends a g-module M to M, := Kerz/Imz. It
is easy to see that this functor is symmetric monoidal.

We will apply this construction to g = gl(m|n) and x an (m+n) X (m+ n) matrix with
1 in the upper-right corner and zero elsewhere. Then g, is isomorphic to gl(m — 1jn —1).

This yields a collection of SM functors

H : Rep(gl(m|n)) — Rep(gl(m — 1jn — 1))

The functors H are not exact, but are exact on certain subcategories of Rep(gl(m|n)).
This allows us to construct a new tensor category V;, t := m—n, together with a collection
of SM functors F,,, : V; — Rep(gl(m|n)) which are compatible with the functors H.
Note that the SM functors £}, ,, are not exact.

The category V; should be seen as an inverse limit of the system (Rep(gl(m|n)), H).

1.4. The category V; is the main object of our study. We study the properties of this
category using a variety of tools from the representation theory of the Lie supergroup
GL(m|n) and the Lie algebra gl(co) (see [DPS]). We give a description of the isomorphism
classes of simple objects in V, classify the blocks of this category, and show that V; is a
union of highest weight categories.

The category V; admits a distinguished object V; of dimension ¢ coming from the stan-
dard representation C™" of gl(m|n) (m —n =t). One has F,,(V;) = C™" for all m,n.

Since the category D, is freely generated as a Karoubian symmetric monoidal category
by an object of dimension ¢, there is a canonical SM functor I : D, — V,. We prove that
this functor is fully faithful (see Proposition 8.1.2).

The tensor category V; enjoys the following remarkable universal property (see Theo-
rems 9.2.1, 9.2.2).

Theorem 1. Let C be a tensor category with an object C' of integral dimension t which is
not annihilated by any Schur functor. There exists an essentially unique exact SM functor
V, — C carrying V; to C.

The proof of this theorem is based on two properties of the category V;:

e Any object in V; can be presented as an image of an arrow I(f), f € Mor(D;).
e For any epimorphism X — Y in )V, there exists a nonzero object 1" € D, such that
the epimorphism X ® I(T) — Y ® I(T) splits.
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1.5.  Another important result proved in this paper is connected to Deligne’s philosophy
of “abelian envelope”: for special (that is, integral) values of ¢, one should not expect
to find a universal SM functor from D; to a tensor category A so that any SM functor
D, — B to a tensor category B factors through an exact SM functor A — B. Instead,
one has a collection of such functors D; to A; so that any SM functor D; — B factors
through one of A;. Among the functors D; — A; only one is faithful, and it is called
the abelian envelope of D;.

If one considers the Deligne category Rep(S:) (t = n € N) instead of Dy, then it was
shown in [CO] that only two categories A; appear: the classical category Rep(S,) and
the abelian envelope Rep®(S,—,). Here is our second result (see Theorem 11.1.2).

Theorem 2. Let T be a tensor category, and let X be an object in T of integral dimension
t. Consider the canonical SM functor

FX . Dt — T
carrying the t-dimensional generator of Dy to X.

(a) If X is not annihilated by any Schur functor then Fx uniquely factors through the
embedding I : Dy — V; and gives rise to an exact SM functor

VtHT

sending V; to X.

(b) If X is annihilated by some Schur functor then there ezists a unique pair m,n €
Zy, m—mn =t, such that Fx factors through the SM functor D, — Rep(gl(m|n))
and gives rise to an exact SM functor

Rep(gl(m|n)) — T
sending the standard representation C™" to X.

This answers a question posed by Deligne in [Del3, Section 10]. The proof of this
theorem is based on Theorem 1 (in the form of Theorem 9.2.1) and on the Tannakian
formalism as described by Deligne in [Dell].

We remind once again that when ¢ ¢ Z, the Deligne category D, is semisimple, and
thus a tensor category. This clearly implies that for ¢ ¢ Z, D, satisfies a property similar
to Theorem 1 (the condition on Schur functors is void in this case). This was detailed by
Ostrik in [Del3, Appendix B].

As a corollary, we identify ), with the following category constructed by Deligne. Let
t1 € C—Z and let t5 = t —t;. The category D;, ® D;, has a canonical object X of
dimension ¢; One has

Corollary 3. (see Corollary 11.58.2) For any t; € C — 7Z, there is a unique canonical
equivalence
V. — Repp, o, (GL(X),¢)

carrying Vi to X.

1.6.  Our results can be illustrated as follows.

The description of functors from Deligne categories to tensor categories looks like a
category-theory version of the description of homomorphisms from a commutative ring
to fields. Homomorphisms between fields are injective, simlarly to exact SM functors
between tensor categories. This indicates that tensor categories should be considered as
analogues of fields.

If A is a commutative ring, any ring homomorphism A — K to a field uniquely factors

through a homomorphism A — k(p) where p is a prime ideal of A and k(p) is the residue
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field of the localization A,. If A is a domain, there is a fraction field k(p) with p = 0, the
only one for which the map A — k(p) is injective. This is analogous to abelian envelope
in our context (see 1.5). From this point of view, Rep(S;) looks like a local domain of
dimension one.

On the other hand, D; = Rep(GL;) is more curious. The existence of SM functors
H : Rep(gl(m|n)) — Rep(gl(m — 1|n — 1)) carrying the standard representation to the
standard representation, implies that the kernels of SM functors D; — Rep(gl(m|n)) form
an infinite descending chain. The functor D; — Rep(GL(m|n)) is surjective when m = 0
or n = 0 — this is the case where the category of representations of the supergroup
(superalgebra) is semisimple. This means that the “prime spectre” of D, consists of the
zero ideal (corresponding to V;) and an infinite decreasing sequence of the kernels of the
functors D; — Rep(GL(t + i|i)) or for all ¢ € N such that t +i € N.

1.7. Structure of the paper. Sections 3, 4, 5, we give a short overview of the required
results from the theory of representations of superalgebras and the theory of Deligne
categories. Section 6 sets the scene for the construction of the category V;. Section 6
describes the specialization functor from the category of representations of gl(oo|oc) to
Rep(gl(m|n)). Section 6.2 studies the standard objects in the subcategories Rep” (gl(m|n))
of the categories Rep(gl(m|n)) of which V; will be “glued”. This section contains some
technical results which are important for the proofs of Theorem 7.1.1 and Proposition
8.4.1.

In Section 7 we construct the Duflo-Serganova homology functors H : Rep(gl(m|n)) —
Rep(gl(m — 1|n — 1)). We study their behaviour on the subcategories Rep®(gl(m|n)),
showing that for m,n >> k, they induce equivalences Rep*(gl(m|n)) — Rep*(gl(m —
1jn —1)).

In Section 8 we construct the category V;. We then study the properties of V;: the
functor from the Deligne category, blocks, translation functors, the highest weight struc-
ture of the ind-completion, and some auxilary results which are crucial in the proof of
Theorem 1 (such as Proposition 8.4.1).

In Section 9 we formulate the universal property of V; (Theorem 1) in its most general
form. The proof itself is contained in Section 10.

In Section 11 we recall Deligne’s theory of Tannakian formalism, formulate and prove
Theorem 2 in its most general form.

2. NOTATION

The base field throughout this paper will be C.

2.1. Tensor categories. In this paper a tensor category is a rigid symmetric monoidal
abelian C-linear category, where the bifunctor ® is bilinear on morphisms, and End(1) =
C. An explicit definition can be found in [Dell, EGNO]. Note that in such a category
the bifunctor ® is biexact.

A functor between symmetric monoidal (SM) categories will be called a SM functor if
respects the SM structure in the sense of [Dell, 2.7] (there it is called ”foncteur ACU”);
similarly, an ®-natural transformation between SM functors is a transformation respecting
the monoidal structure in the sense of [Dell, 2.7].

Notice that any such natural transformation is an isomorphism.

As in [Dell, 2.12], a pre-Tannakian category is a tensor category satisfying finite-
ness conditions: namely, every object has finite length and every Hom-space is finite-

dimensional over C.
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2.2. Partitions. Given an integer n > 0, a weakly-decreasing sequence

= (p1, f2, - - -, g ) of non-negative integers such that > p; = n is called a partition of
n. The integer n will be called the size of the partition, and k will be called the length of
the partition. We will often identify partitions which differ only by a tail of zeros.

Given a partition p, we denote by p + [ the set of all partitions v such that the vector
i — v (considered as an infinite vector) is a vector in the standard basis of Z*: this
corresponds to the fact that the Young diagram of v is obtained from the Young diagram
of u by adding one square.

A bipartition is an ordered pair of partitions: A = (A%, A*®).

For a bipartition A = (A°, A*), we will denote by A 4+ [0 (respectively, A + H) the set of
bipartitions A’ = (A\°, \'*) such that \'° € A\° + 0, N'* = A® (resp., \° = \°, N* € A*+ ).

3. PRELIMINARIES ON DELIGNE CATEGORIES

Let Dy be the free rigid symmetric monoidal C-linear category generated by one object
of dimension ¢ (denoted by Deligne as Repy(G L), see [Del3, Section 10]). We denote by X;
and X; the t-dimensional generator and its dual; we will also denote X" := XP @ X;®4
the mixed tensor powers of X;.

These describe all the objects in Dy up to isomorphism. The morphisms are generated
by morphisms Idy,, evx, and symmetric braiding under the operations o, ®, *, [BCNR14].
An explicit description of the spaces of morphisms in Dy in terms of walled Brauer algebras
can be found in [Del3, CW].

We will denote by D, the Karoubi (additive) envelope of Df, which is obtained from Dy
by adding formal direct sums and images of idempotents. The category D; is a Karoubian
rigid symmetric monoidal category, also called the Deligne category Rep(GL;); it is the
universal Karoubian additive symmetric monoidal category generated by a dualizable
object of dimension ¢. Its structure is studied in [Del3, CW].

We list below a few properties of D;:

e For m,n € Zxy, the category D,—,,—, admits a full, essentially surjective, sym-
metric monoidal additive functor £, ,, : Di—y,—, —> Rep(gl(m|n)).

e For t ¢ 7Z, the category D, is a semisimple abelian tensor category.

e For any ¢, the indecomposable objects (up to isomorphism) in the category D; are
parametrized by bipartitions (equivalently, pairs of Young diagrams of any size).

Let t = m € Zso. The functor F,,o : Di—, — Rep(GL,,(C)) sends an inde-
composable object Xye yo to the irreducible G L,,(C)-representation with highest
weight >, Afe; — 35 Ajem—jt1 whenever £(A®) + £(A°) < m (here £ is the number
of rows in the Young diagram). Otherwise F;, o(Xye ro) = 0.

e In particular, for any partition A\° of n, we have the corresponding idempotent
exe € Endp,(X") whose image S*°X; is the Schur functor S** applied to X;.
The object S* X, is indecomposable, and eyo form a complete set of primitive
idempotents of Endp, (X*") for different partitions \° of n.

4. PRELIMINARIES ON REPRESENTATIONS OF FINITE-DIMENSIONAL LIE
SUPERALGEBRAS

In this section, we remind the reader of some representation theory of Lie superalgebras
gl(oco|oc0), gl(m|n).

4.1. Superspaces and Lie superalgebras. Let V' be a super-vector space. We denote

by Vg the even part of V' and by V; the odd part of V.
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Let m,n be the dimensions of the vector spaces Vj, V. We denote by gl(m|n) the
general linear Lie superalgebra of all endomophisms of V.

Similarly, let V = C>® & [IC*™ be the super vector space whose even and odd parts are
isomorphic to the countably-dimensional spaces C* = [ J, C". We denote by gl(oo|oo) =
li_I>n gl(m|n) for the finitary general linear Lie superalgebra of endomophisms of V.

In what follows we denote g = gl(oco|oo) and g = gl(m|n) for short.
Both Lie algebras g, g are equipped with a Z-grading

0=01P00D01,0=9-1Dg Do
with go =~ gl(o0) @ gl(c0), go = gl(m) ® gl(n), g1 = Vo @ V', g1 = V5 @ V1.

4.2. Representations of Lie superalgebras. We now describe the category of repre-
sentations of these superalgebras which we will consider.

The category of (all) representations of any Lie superalgebra g is left-tensored over
the category of finite dimensional super vector spaces sVect. This means that, given a
super vector space U and a representation X, the tensor product representation U ®@ X
is defined. In particular, the parity change functor II is the tensor product with the odd
one-dimensional super space.

It is often possible to define a smaller category of representations Rep(g) such that the
full category of representations has form sVect ® Rep(g).

The objects of the category sVect ® Rep(g) are formal direct sums U @& IIW with
U, W € Rep(g), with

(1) Hom (U & TIW, U’ ® TIW') = Homgep(q) (U, U") @& Homgep(q) (W, W).

Remark 4.2.1. Such "halved” categories of representations are a special case of Deligne’s
categories Rep(G, €) of representations sVect ® Rep(g) of algebraic groups in a tensor
category, see details in Section 11.

The category Rep(gl(m|n)) can be defined as the category of finite-dimensional (super)
representations of g, integrable over the algebraic supergroup G'L(m|n), on which the
action of the element Idy; —Idy; € GL(m|n) is compatible with the grading given by the
super structure.

4.3. Mixed tensor powers. The Lie superalgebra g acts on V' (this action is called the
natural g-module) and on V* = (V*)5 @ (V*)1 (the conatural g-module).
We denote by TP := Ve @ (V*)®7 the mixed tensor powers of the natural module.
The category Rep(g) can be described as the full subcategory of category of finite-
dimensional (super-)representations of g which are subquotients of direct sums of TP
p,q = 0.

4.4. Highest weight structure. The category Rep(g) has a highest weight structure.

We will use the standard basis of weights in g: consider the standard Cartan subalgebra
h C go (h=C™ @ C"), with basis {e1,...,&m,01,...,0,}. We write weights of modules
in Rep(g) in the form

A=A N, — ;,...,—)\;):iAfei—i)\;@, \ €7
=1 =1

It will be convenient to us to use a slightly unusual choice of simple roots for g:

€1 —€9y.v s Em — Opy 0y — Op1, ..., 00 — O7.
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Then the set of dominant weights is given by

n

A= ialfi — ijéj
i=1 j=1

for some integers a; > --- > a,,, by > -+ > b,,.

Simple objects in g are parametrized up to isomorphism by dominant weights: we
denote by L(\) the simple highest weight g-module with dominant highest weight \.

We also have the standard and costandard objects in the highest weight category
Rep(g), again parameterized up to isomorphism by dominant weights. These are called
Kac and dual Kac modules respectively, and are denoted by K()), K()\). Each simple
module L()) is the unique irreducible quotient of the appropriate Kac module.

The Kac modules are defined as usual via induction: consider the subalgebra go®g; C g,
and let Lo(\) be the simple go-module with highest weight A and trivial action of g;. Then
the induced module U( ) ®u(gomar) Lo(A) is defined to be the Kac module K'()). Similarly,
the dual Kac module K ()\) can be defined via coinduction.

We call A positive if a; > 0, b; > 0foralli=1,...,m, 7 =1,...,n and negative if both
a., and b, are negative.

There is a bijection between the set of positive weights and the bipartitions (we denote
both by the same symbol), A = (A\°, A®), with A\° = (aq,...,am), A* = (b1,...,by).

4.5. Weight diagrams and block decomposition. Recall the notion of weight dia-
gram fy associated with any dominant weight A\. Let t = m—n, ¢; = a; +t—1, d; = b; —j.
The weight diagram corresponding to A is the function fy : Z — {x,>, < o} deﬁned by

o, if¢; # s, dj # sfor alli, j,
>, if¢; = s, for somei, d; # sfor all 7,
2 f(s) = 17 sty

<, ifd; = s, for some j, ¢; # sfor allz,
x, ifc; = dj = sfor somed, j.

Usually a weight diagram is represented by a picture. For instance, if m = 2,n = 1 and
A is the highest weight of the standard module, we have A = £ and f) is

0---0X0>o0...,

with fy(1) =>. If p is the highest weight of the costandard module, then y = —4; and
fuis
00> Xo0...,
with f,(0) = x. B
The core diagram f, is obtained from fy by replacing all x by o. The core diagrams

enumerate the blocks in Rep(g), since x» = x, if and only if fr= fu. So we have a block
decomposition

(3) Rep(g) = €P Rep(g)*

where summation is taken over all core diagrams Y.

Remark 4.5.1. It is useful to note that A is positive if and only if f\(s) = o for all s < —n.
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4.6. On translation functors. If y is a core diagram, we denote by wu(y) the total

number of symbols > and < in x. The degree of atypicality of x equals mnT_“(X) We
will need the following lemma from [GS, Lemma 7] and [Ssd, Theorem 3.2].

Lemma 4.6.1. Let g = gl(m|n) and Rep(g)X and Rep(g)® be two blocks associated with
core diagrams x and 0. Consider the translation functors T\ ¢, Ty 4 : Rep(g)X — Rep(g)?
defined by

To(M)=(Ma V), To(M)=(MeV*)
where (-)? stands for projection onto the block with core 0.
The functors Ty g, Ty, are biadjoint and satisfy the following properties:

(a) If u(x) = u(f) and 0 is obtained from x by moving > one position right or <
one position left, then T, ¢ defines an equivalence between the abelian categories
Rep(g)X and Rep(g)’.

(b) If u(x) = u(f) and 0 is obtained from x by moving < one position right or > one
position left, then T , defines an equivalence between abelian categories Rep(g)X
and Rep(g)?.

(c) Assume u(0) = u(x) — 2 and there exists s such that 0(r) = x(r) if r # s,s + 1,
X(s) =<, x(s+ 1) => and 0(s) = 0(s+ 1) = o. If P()\) is the projective cover of
L()) in Rep(g), then T ,(P(\)) = P(u), where

), ifr#s,s+1
f#(r) =935 ifTZS
o, ifr=s+1

(d) Assume u(0)

= u(x) — 2 and there exists s such that 6(r) = x(r) if r # s,s + 1,
x(s) =>, x(s +1

) =< and 0(s) =0(s+ 1) =o. Then T} o(P(\)) = P(u), where

), ifr#s,s+1
fu(r) =< %, ifr=s
o,ifr=s5+1

(e) Let u(x) > u(f) and L be a simple module in Rep(g)’. Then Ty, (L) (or Ty (L)
is either simple or zero. Furthermore, if Ty, (L) =~ Tp (L) # 0 (or Ty (L) ~
Ty (L) #0) for some simple L and L' in Rep(g)?, then L ~ L'.

Let us recall that the multiplicity of a simple module in a Kac module is at most one
and it can be calculated using cap diagrams (see, for instance, [MS]). We equip f\ with
caps following the rule

(1) The left end of a cap is at x and the right end is at o;

(2) Caps do not overlap;

(3) There is no o inside a cap which is not the endpoint of some other cap;
(4) Every x is the left end of exactly one cap.

Let us recall the following [MS].

Proposition 4.6.2. The multiplicity [K(X) : L(p)] is at most one. It is 1 if and only if
one can obtain X from p by moving some X from the left end of its cap to the right end.

4.7. Contragredient duality. In what follows we also use the contragredient duality
functor *: Rep(g) — Rep(g) defined as follows. For any M € Rep(g) we set

M = (M),
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where the automorphism o of g is the negative supertransposition. We will use the
following facts, which are well-known:

Lemma 4.7.1.

e If L € Rep(g) is simple, then L ~ L. Moreover, any highest weight module L such
that L is isomorphic to L is simple.

e The contragredient duality interchanges the Kac module K(X) and the dual Kac
module K(X).

4.8. A filtration on Rep(g). Finally, we define a filtration on Rep(g) by full subcat-
egories Rep”(g). Let Rep®(g) be the abelian subcategory of Rep(g) consisting of all
subquotients of finite direct sums of EB P,
p+q<k
We call a weight \ k-admissible if L(\) belongs Rep”(g). A central character y is
k-admissible if x = y, for some k-admissible \.
Note that 774 ~ TP hence Rep”(g) is closed under contragredient duality.

Remark 4.8.1. If a block Rep(g)X is k-admissible for some k then the core diagram y must
satisfy x(s) = o for all s < —n.

5. THE CATEGORY Tj

5.1. Recall that the natural representation V of § is countably-dimensional. We will
consider its restricted dual V, (also countably-dimensional), and the non-degenerate pair-
ing ev: V ® V, — C. The superspace V, obviously carries an action of § induced by the
action on V, and is called the conatural representation. By TP4 we denote the g-module
Ve @ (V,)®9, analogue of the mixed tensor power 774,

Let Tj be the full subcategory of g-modules consisting of all subquotients of finite
direct sums of 774, p,q > 0. This category has an intrinsic characterization: it consists
of integrable g-modules of finite length with prescribed parity of weight spaces such that
the annihilator of any vector is a finite corank subalgebra in g, see [Sr].

Remark 5.1.1. Note that we have the natural identification g = V @ V.. One can see that
in contrast with the finite-dimensional case Homg(C, g) = 0 since g does not contain the
identity matrix. It is proven in [PS] that in general Homg(C, T??) = 0 if (p,q) # (0,0).

Remark 5.1.2. This subcategory is of course not rigid.

It is proved in [Sr| that Tj is equivalent, as a monoidal category, to the similar category
Tyi(o) for the Lie algebra gl(co).

This category was also studied by Sam and Snowden and they proved that it is universal
in the class of symmetric monoidal categories satisfying additional properties, see [SS].

5.2. Abelian structure. The module P TP is an injective cogenerator in Ty Ifpisa
partition of length p, then we denote by V(1) (respectively, V, (1)) the image of a Young
projector 7, in TP0 (respectively, T0P).

It follows from [DPS, Sr] that for any bipartition A = (A°,A*) of length (p,q), the
module Y'()\) := V()\°) ®@ Vi(\*) € T? is indecomposable injective in T; with simple
socle which we denote by V()).

It was proved in [DPS] that these modules V()), where X is a bipartition, describe
all the isomorphism classes of simple objects in T3. The module Y (\) will then be the
injective hull of V().
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We will use the fact that the simple socle V()) is the intersection of kernels of all
contraction maps Y (\) — TP — TP~14~1 Moreover, one can describe the socle filtration

of Y/(\), see [PS].

5.3. A filtration on Tj. By analogy with the finite-dimensional case, we define a filtra-
tion on Ty by full subcategories T’g . We denote by T’g the full abelian subcategory of Tj

with injective cogenerator EB TP,
p+a<k
Clearly, Tg is the direct limit lim T%.
—

6. THE FUNCTOR R, AND THE FILTRATION Rep(g) OF Rep”(g)

In this section we describe the specialization functor R, between the categories of
representations of g := gl(oo|oo) and g := gl(m|n). This functor is left-exact, and takes
the natural representation V to V. We prove that this is an SM functor, which respects
the filtrations on Ty, Rep(g). Furthermore, we show that for £ small enough, the functor
Ry - T’g — Rep” (g) is exact, and use it to describe a highest-weight structure on the

subcategories Rep”(g).

6.1. The functor R,. Let V be a (m|n)-dimensional subspace of V and W be a com-
plementary infinite-dimensional subspace such that V =V @ W. Consider the dual de-
composition V, = W+ @ VL. Then W+ ~ V* and V+ ~ W,. We identify g with V @ V*
and consider the subalgebra ¢ C g, defined as € := W @ W,. Clearly, £ is isomorphic to g
and g is the centralizer of £ in g. We define the functor

R, : Ty — Rep(g)
by

Ry(M) == M,

the space of ¢-invariants of M.

Lemma 6.1.1.
(1) If M is a submodule in TP, then Ry(M) = M N TP9;
(2) Ry(T§) C Rep"(g);
(3) Ry is a SM functor.

Remark 6.1.2. As it was shown in [SS], there is an essentially unique SM left-exact functor
Tz — Rep(g) taking V to V.
Proof. Consider the decomposition of V and V, with respect to g @ ¢ action. We have
V=VaoWw, V.=V'oW.
Note that (W @ (W,)®?)* = 0 for all p,q # 0 by Remark 5.1.1.
(Tp,qy — TP

Since R is left exact, we obtain (1).
The assertion (2) is an immediate consequence of (1).

To prove (3) it suffices to consider the case M C 7%, N C T"*. Then
Ry(M ® N) = (M @ N) N TP = (M ATP) @ (NN T™) = Ry(M) ® Ry(N).
0J

Theorem 6.1.3.
10



(1) If k < min(m,n), then the functor Ry : T’g — Rep”(g) is exact.

(2) Let 2k < min(m,n) and A be a bipartition with |A| := [X°| +[\*| <k and V(}) :=
RyV(X). Then V(X) is a highest weight module with unique irreducible quotient
L(\).

(3) Let 2k < min(m,n), then any simple module in Rep®(g) is isomorphic to L(\) for
some bipartition \ with |\ < k.

Proof. Let go, £y and go be the even parts of g, € and g respectively. One defines Ty,
T’go, Rep(go) and Rep”(go) similarly to the corresponding categories for g and g. General
results about Tj, can be found in [Sr]. Taking -invariants defines the SM functor Ry, :

T3, — Rep(go). A simple direct calculation shows that
Rgo (Tp,q) =T™ = RB(Tp,qL

hence
Rgo (M) = Ry(M)
for any M € Ty. In particular, the following diagram of functors

T¢ " Rep*(g)

l l

R
Tgo s Repk (90)

where the vertical arrows are the restriction functors, is commutative.
To show (1) it suffices to prove that Rg, : Ts — Rep”(go) is exact. Note that

k __ T s
T5, = U Toeo) B Tt
r4+s=k
where X stands for exterior tensor product and Ry, = Rgiim) B Rygi(n)-
We will show first that if s <1, then Rg) : Tyyo) — Rep(gl(l))* is exact. Simple ob-

jects of Ty, are of the form V(\) for some bipartition \ such that |A| < s. Furthermore
we have

Rany(V(N) =V (A,

and V(A) is a simple gl(/)-module. Recall that the multiplicity of V(\) in T;’(io) (for

p+q < s) equals the multiplicity of V/(\) in 7%, see [PS]. Since @ TP is an injective
p+q<s
cogenerator of Tz[(oo), Rg[(l)(fp’q) = TP% and Ry is left exact, we obtain the statement.
In fact, since Repg,) is semisimple, the functor R is the semisimplification functor.
Then Ry, = Ryim) X Rygi(n) s also the semisimplification, and (1) follows.
Let us prove (2). Recall the decomposition g = g_1 @ go® g1, where go = gl(Vp) ®gl(V7)
and
g1 = Vg RVg
as a go-module. Set
U() = V(A R 7 (M%),
Then U()) is a simple highest weight go-submodule of V' (\) and (2) is equivalent to the
fact that
V(A) =U(g-1)U(N).
Next set
S = VO@;PI X (V)@



Let ¢ be the direct sum of all contraction maps 7?9 — TP~%4~1 Then by definition Ker ¢
is a direct sum of V() with some multiplicities and similarly S(\) is a direct sum of U(\)
with the same multiplicities. To prove (2) it suffices to show that for all p, ¢ such that
p+q < k we have

U(g-1)S"" = Ker ¢,
Note that U(g_;) is isomorphic to the exterior algebra A(g_1). Define a go-map
1 Algr) @ U(Y) = Kerg
by setting v(x ® u) := zu. It is easy to see that
AP (g)  57) = 0
Hence we need to show that
v ASPT(g_ ) ® SP — Ker ¢

is surjective. 3 3 . .
Let SP7 := VP (V;)29, ¢ be the direct sum of all contraction maps 779 — TP~ 11,
Consider the map

5 ASPRU(g ) @ SPY— Ker

defined in the manner similar to 7. It is proved in [Sr] that ¥ is surjective. Note that
both ASPT4(§_;) ® 5P and Ker ¢ are objects of T2*, furthermore

Ry (A=PH(g_1) @ S71) = ASPH(g_1) @ 5P, Ry, (0) = 6.

Since Ry, : ']I%f — Rep(go)?* is exact by (1), we obtain that Ry, (Ker¢) = Ker¢ and

7 = Rg (7). Again the exacteness of Ry, : T3 — Rep?*(go) implies that v is also
surjective.

To prove (3) we will show that under assumption 2k < min(m,n) any simple subquo-
tient in V' (A) with |A| < k is isomorphic to L(u) with || < k. We proceed by induction
in [ := min(p, ¢), where p = |A°|, ¢ = |A*|. Note that the case [ = 0 follows from Sergeev—
Schur-Weyl duality.

Consider the submodule Z(\) := V(\°) ® V*(X*) in TP4. Note that Z(\) ~ Z()\)
and V(A) = Z(A) N Ker¢. Let I(A) be the sum of images of all coevaluation maps
Tr-Ya=t 5 Tpa By Z()\), here p denotes the Young projector on Z()\). Consider the
contragredient invariant form w : Z(\) x Z(A) — C. Then V(\)* = I()), hence the
restriction of w on V(A) has the kernel I(A) N V(A). Therefore V(A\)/(I(A\) NV (X)) is
a contragredient highest weight module, hence it is isomorphic to L(A). Since I(\) is
a submodule in a direct sum of several copies of TP~%4~! we conclude by induction
assumption that all simple subquotients of I(\) are isomorphic to L(u) with |u] < k.
That implies the statement for V().

U

Remark 6.1.4. As follows from Theorem 6.1.3(3), if 2k < min(m,n) then any k-admissible
weight is positive with additional condition ay +---+a,, + 01+ -+ b, < k.

6.2. Standard modules in subcategories Rep”(g). In Theorem 6.1.3, we have defined
modules V' (\) which play the role of standard modules in the subcategories Rep®(g). We
now describe the actions of translation functors @V, @V* on them, and show that V(\)
is the maximal quotient of the Kac module K()) lying in Rep®(g). This will be used in

the proof of Theorem 7.1.1 and in Proposition 8.4.1.
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6.2.1. Action of the translation functors on modules V(). Recall the following statement
from [DPS].

Lemma 6.2.1. Let A\ be a bipartition. Let A + O (respectively X + B) be the set of
all bipartitions obtained from X\ by adding a box to \° (respectively to \*) and A — O
(respectively X\ — M) is the set of all bipartitions obtained from X by removing a box from
X (respectively from X*). For any simple object V(\) of Ty, there are exact sequences

0—- P vin—-Vvevin) - @ Vi -0,

nex+0 nex—m
0= P vin = VeV — @ Vin —o.
nex-+m nex—0

Corollary 6.2.2. If 2k < min(m,n) — 2 and V()\) € Rep®(g), then there are exact
sequences

0—- P vin=vevi) - @ Vi —o,

nex+0 nex—m

0= B v =V eV - @ Vi —o.

nex+M nex—0

6.2.2. Comparison of V() with Kac modules.

Proposition 6.2.3. If 2k < min(m,n) and V(\),V(u) € Rep™(g), then
(1) The module V(\) is the mazimal quotient of K(\) lying in Rep®(g) and V(i) is
the mazimal submodule of K (i) in Rep®(g);
(2) dim Hom(V (), V(1)) = 1.
(3) Ext!(V/(A), V(u)) = 0.
Proof. Part (1) is a direct consequence of Lemma 6.2.4 below and Theorem 6.1.3.

Part (2) follows from the fact that dim Hom(K ()\), K (u)) = 6, and (1).

Let us prove (3). Since V() is the maximal quotient of & (\) which belongs to Rep®(g),
we have that V/(\) is projective in the Serre subcategory of Rep®(g) containing simples
L(7) for all 7 < X. Therefore Ext'(V(\), V(1)) # 0 implies A < . On the other hand,
V(1) is a maximal submodule of K (y) lying in Rep®(g); hence V(i) is injective in the
corresponding Serre subcategory, and therefore Ext'(V()\),V(u)) # 0 implies u < .

Therefore Ext!(V(\), V(1)) = 0. O

Lemma 6.2.4. Assume that 2k < min(m,n). Then for any k-admissible weights A\ and
W we have

KN : L)) = [V : L))

Proof. We will prove the following equivalent statement: for any k-admissible A

(KW =V =) [LW)],

where all v in the righthand side are non-positive (hence not k-admissible).

Let A be some k-admissible weight, €2 be the set of all dominant weights of the form
A+ e or A+ 6; and QF be the subset of all positive weights in ©Q and O~ = Q\ Q7.
Corollary 6.2.2 implies that

vy eVi= ) [V(u)

neQt
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On the other hand,
[K(\) @ V] = [K(u).
HES
If o is not positive and [K (u) : L(v)] # 0, then v < p and therefore v is also non-positive.
We prove the statement by induction on |A| starting with the trivial case A = 0.
Suppose

(K] = V] =D all®).
By induction assumption all v are non-positive. Observe that all v are negative, since v

and A lie in the same block and hence f, = fy, see Remark 4.5.1. But, then L(v) @ V
does not have simple subquotients with positive highest weights. Therefore

KN @V -V @V =) alLr)eV]

also does not have positive terms. Therefore, if the statement is proved for V(\), it is also
true for any V' (u) which occurs in the tensor product V() ® V. Similarly it is true for
any V'(u) which occurs in the tensor product V(\) ® V*. Since starting from the trivial
module we can obtain any V(\) by tensoring with V' and V* (see Corollary 6.2.2), the
statement follows. O

7. HOMOLOGY FUNCTOR

7.1. Recall from [DS] that for any Lie superalgebra g and an odd element x € g such
that [z, 2] = 0, one can define a functor from the category of g-modules to the category of
g,-modules, where g, := Kerad, /Imad,. This functor sends M to M, := Kerx/Imz.
It is easy to see that this functor is symmetric monoidal: for g-modules M, N one has a
natural isomorphism

M, ® N, - (M & N),
coming from Kiinneth formula, see [Ssd].

In this paper we are interested in the case when g = gl(m|n) and = € g; is a matrix of
rank 1. Then g’ = g, is isomorphic to gl(m — 1|n — 1). To see this, use the identification
g=V ®V* choose x = v® ¢ for some v € V and ¢ € V*. Then g, can be identified
with ot @ v+ ~ gl(m — 1jn — 1). We denote the corresponding functor by H.

In what follows we denote by V', V/(\) and (T79)" the analogues of V', V(\) and T4
in Rep(g'). By a simple calculation one can see that H(V) ~ V’ and H(V*) ~ (V')*, and
hence

H(Tp’q) — (Tp,q)/.

It is easy to see that the restriction functor maps Rep”(g) to sVect @ Rep®(g’). Hence
the restriction of H defines the functor H : Rep®(g) — sVect ® Rep”(g’). Our next goal
is to prove the following result.

Theorem 7.1.1. If 4k < min(m,n), then H maps Rep”(g) to Rep™(g') and establishes
an equivalence of these categories.

The proof will be done in several steps. First, let us prove the following general state-
ment.

Lemma 7.1.2. Consider an exact sequence
0—-A—-B—->C—=0

in the category Rep(g), and the sequence in Rep(g’)

(4) 0— H(A) - H(B) = H(C)—0
14



obtained by application of H.
(1) If H(A) — H(B) is an injection or H(B) — H(C) is a surjection, then (4) is
exact.
(2) For any simple S in Rep(g’) we have
(H(B) : S] — [H(B) : 11S] = [H(A) : S|+ [H(C) : S| = [H(A) : ILS] — [H(B) : I15].

Proof. Note that all modules in Rep(g) have a Z-grading compatible with the canonical
Z-grading of g. Hence (A, z), (B,x) and (C,z) can be considered as complexes. Then
the statement is a direct conseqgence of the long exact sequence of cohomology. 0

Lemma 7.1.3. If 2k < min(m,n), then

(1) HOV(N) = V/(A) for any V() in Rep(a),

(2) H(L(N)) ~ L'(\) for any simple L()\) in Rep™(g),

(3) H(Rep®(g)) C Rep®(g) and H : Rep®(g) — Rep™(g') is an exact functor.
Proof. First, we observe that (1) follows easily from Corollary 6.2.2 and Lemma 7.1.2
since H is an SM functor.

We prove (2) and (3) by induction on k assuming that both statements are true for

s < k. For kE = 0, 1 the first statement is trivial and the second follows from semisimplicity

of the involved categories.
Consider the exact sequence

0—=I(\) S V) S L) —0
in Rep®(g) and the similar exact sequence
0= I'\) S V') S L(A) =0

in Rep”(g). It follows from the construction of I(\) in the proof of Theorem 6.1.3, that
7" = H(7). By the induction assumption we have H(I()\)) ~ I'(\) and Lemma 7.1.2
ensures that / /

0—=I'N) S V') S H(IL(N) =0
is exact. Therefore H(L(X)) ~ L'(A).

Now, when we have (2) for Rep®(g), (3) follows by induction on length and Lemma 7.1.2.
0

Lemma 7.1.4. Let 2k < min (m,n). If an exact sequence

0— LA\ —M— L) —» 0
in Rep®(g) does not split, then the ezact sequence

0= L'\ —=>HM)— L(u) —0

does not split in Rep®(g').
Proof. We have only two possibilities, A < g or p < A. In the former case, Proposition
6.2.3(1) and the assumption of the lemma implies that M is a highest weight module
with highest weight u, and thus is a quotient of V' (u). Hence H(M) is a quotient of

V'(u) = H(V(u)) which is indecomposable. The second case can be reduced to the first
one using duality. 0

Corollary 7.1.5. Let M be an object in Rep”(g) with 2k < min(m,n). Then the natural
map
¢ : H(soc M) — soc(H(M))

s an isomorphism.
15



Proof. By exactness of H and Lemma 7.1.3, we know that ¢ is injective. Surjectivity of
¢ is a consequence of Lemma 7.1.4. 0

Corollary 7.1.6. For all M € Rep*(g) with 2k < min(m,n) we have an isomorphism
Hom,(C, M) ~ Homy (C, H(M)).

Proof. We note that
Homy(C, M) = Homg4(C, soc M).
Hence the statement follows from Corollary 7.1.5 and Lemma 7.1.3(2). U

Corollary 7.1.7. If 4k < min(m,n), then the functor H : Rep®(g) — Rep®(g') is fully
faithful.

Proof. Note that if M, N € Rep”(g), then Hom,(M, N) ~ Hom,(C, M* ® N). Therefore,
the statement is a direct consequence of Corollary 7.1.6. U

Lemma 7.1.8. If4k < min(m,n), then the functor H : Rep®(g) — Rep®(g') is essentially
surjective.

Proof. We have proved that H is exact and fully faithful and establishes bijection on
the isomorphism classes of simple modules. Therefore for any M € Rep®(g) and any
submodule or quotient N’ of H(M) there exists a submodule (resp. quotient) N of M
such that N’ = H(N). Since every M’ € Rep®(g') is a subquotient of 7" = @(T?%)" and
T' = H(EP TP"%), the statement follows. O

Corollary 7.1.7 and Lemma 7.1.8 imply that H : Rep”(g) — Rep®(g’) is an equivalence.
The proof of Theorem 7.1.1 is complete.

7.2. Compatability of specialization and homology functors. Recall now functors
Ry : Ty — Rep(g) and Ry : Ty — Rep(g’). We claim that there is a morphism of functors
U:Ry - HoR, Let € and ¥ be the centralizers in g of g and g’ respectively. Then
tECt, zet and E=¢ . For any M € Ty we set W), to be the composition

Wy o MY s (MY™ — (MYT/(xM N M.
This defines a ®-natural transformation of SM functors
v Rg/ —H ORE’ W Rg/<M) — HORQ(M)

Lemma 7.2.1. The restriction of ¥V : Ry — H o Ry to ']I"g 1s an isomorphism for 2k <
min(m, n).

Proof. Let 2k < min(m,n).

By Theorem 6.1.3 and Lemma 7.1.3, the restrictions of both functors Ry, H o Ry to
']I"g are exact functors. Therefore it is enough to prove the required statement for simple
objects in ’]I"g, and then use induction on the length of objects.

We prove that Wy, is an isomorphism by induction on s = [A[. For [A] = 0, the
statement is obvious. Assume that Wy, : V/(A) = H(V(}A)) is an isomorphism. Then
Uoner @ VA @V = H(V(A) ® V) is also an isomorphism since all involved functors
are SM. Consider the exact sequence

0 P Vi = VeV - @ Vg —o.
nex+0 nex—NA
16



Applying Ry to it we obtain the exact sequence
0= P Vi =vevn— @ v —o,
nex+0d nex—M

applying H o R, and using the induction assumption we get

0= P HoR(V(n) V' @V'(\) = @ V'(n) —0.

By Lemma 7.1.2 the latter sequence is also exact, which implies the isomorphism
Wy = V() = HoRy(V(n))

for all n € A + 0. Repeating the same argument for tensor product with V. gives an
isomorphism V() ~ H o R4(V(n)) for all n € A + M. Hence we have the statement for
all n such that |n| = s+ 1.

O

8. THE CATEGORY V;

8.1. A new tensor category. Now we fix an integer ¢ € Z and consider all pairs of
non-negative integers (m,n) with m —n = ¢t. We fix z in each gl(m|n) and consider SM
functors

Honn : Rep™(gl(m|n)) — Rep®(gl(m — 1|n — 1))
defined as in the previous subsection. Consider the inverse limit

VE = lim Rep® (gl(m|n)).

Theorem 7.1.1 implies that VF is an abelian category; furthermore it is equivalent to
Rep®(gl(m|n)) for sufficiently large m and n.

Now observe that for any k < [ we have an embedding of abelian categories V¥ C VI,
since we have such an embedding Rep®(gl(m|n)) C Rep'(gl(m|n)) for any m and n. So
we define a new abelian category

Next, observe that we have bifunctor VF x V! — V¥ given by tensor product
Rep®(gl(m|n)) x Rep'(gl(m|n)) — Rep"*'(gl(mn))

for sufficiently large m, n. Therefore, passing to direct limit we get a bifunctor V, xV; — V,
and the following is straightforward:

Lemma 8.1.1. The category V; is a tensor category.

OJ
We denote by V; the inverse limit of the natural objects for g = gl(m|n), such that
m —n = t. One can immediately see that dim(V;) = t.
By the universal property of Deligne’s category D;, there is a unique, up to unique
®-isomorphism, SM functor I : D; — V;, carrying the generator X; to V;.

Proposition 8.1.2. The functor I : D, — V; is fully faithful.
Proof. Let XP? = X" @ X®1. It is proved in [BS] that if g = gl(m|n), t = m — n,
then End(X!?) — End(777) is an isomorphism for sufficiently large m and n. Note

that X,;* X/ ! (respectively, T, T"*") can be realized as direct summands in X7

(respectively, T?7) for a suitable choice of p, g, so we also have that Hom (X", X} /’S,) —
17



Hom(T’”S,T?‘/’S/) are isomorphisms for sufficiently large m,n. Therefore, Theorem 7.1.1
implies that I : DF — V¥ is fully faithful, and hence I : D; — V; is also fully faithful by
passing to direct limit. ([l

Now fix m and n such that m —n = ¢ and consider the SM functor H;, ,, = Hmy1n41 0
-+ 0 Hpmysnts from Rep(gl(m + s|n+s)) to Rep(gl(m|n)). Then we define functor F,, ,, :
V; — Rep(gl(m|n)) by setting F,,,(M) = H;, (M) for sufficiently large s. It follows
from Theorem 7.1.1 that H;, , (M) stabilizes.

Lemma 8.1.3. The functor F,,,, : V; = Rep(gl(m|n)) is a SM functor and the composi-
tion F,n 01 : Dy — Rep(gl(m|n)) is the functor defined uniquely up to isomorphism by
universality of Dy.

Proof. Straightforward consequence of Theorem 7.1.1. O

Recall now the category Ty and the functor Ry : Tz — Rep(gl(m|n)). Lemma 7.2.1
implies that for a fixed k and sufficiently large m,n we have the canonical isomorphism
of functors

Rgi(m—1jn—1) : T’g — Rep®(gl(m — 1|n — 1))
and
H o Ryitmin) : T’g — Rep®(gl(m — 1|n — 1)).
Hence we can define a functor ®* : ’]I"g — Vf as the inverse limit liin Rgi(mjn), and therefore

® : Ty — V; by passing to direct limit.

Lemma 8.1.4. The functor ® is a SM functor. Furthermore, ® is exact, ®(V (X)) = Vi(\)
and Fm,n od = Rg[(m‘n).

Proof. First, ® is a SM functor since Rgi(m|n) is SM. The exactness of ® follows from
exactness of restriction Rgimjn) : T — Rep®(gl(m|n)) for sufficiently large m and n, see

Theorem 6.1.3(1). The identity ®(V()\)) = Vi()\) is a direct consequence of Theorem
6.1.3. Finally, the last assertion follows from the definition of ® as the inverse limit. [J

Corollary 8.1.5. For any injective object E € Ty, we have: ®(E) € I(D;).

Proof. The full subcategory of injective objects in Tj is the full Karoubian symmetric
monoidal subcategory of Ty generated by the objects V, V.. Similarly, I(D;) is the full
Karoubian symmetric monoidal subcategory of V; generated by the objects

Vi=2(V), V7 = o(V.)
This immediately implies the desired statement. 0J

8.2. Properties of the category V;. We now list several "local” and ”global” properties
of the categories V.

The local properties are properties of the subcategories V¥, and follow quite easily from
the fact that VF is equivalent to Rep®(gl(m|n)) for sufficiently large m and n such that
m—n =t.

The subcategories VF satisfy the following properties:

(1) Simple objects in VF are enumerated by bipartitions A with [\| < k. Every simple
object is isomorphic to L;(A) which we define as the inverse limit of simple gl(m|n)-
modules L(\);

(2) Any object in VF has finite length;

(3) The category V¥ has enough projectives and injectives.
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(4) The contragredient duality functor ~: Rep®(gl(m|n)) — Rep®(gl(m|n)) extends to
the corresponding functor “: V¥ — VF:

(5) For any bipartition A with |[A| < k we define V;(\) as the inverse limit of V'(\).
Then the cosocle of V;()\) and the socle of V;()) are isomorphic to L;(\);

(6) The tensor structure on V; is given by maps V¥ @ V! — VE and VF is closed
under the tensor duality contravariant functor (-)*

The only non-trivial statement in the above list is the existence of enough projective
and injective objects in V¥ (equivalently, in Rep”(gl(m|n))). The existence of projective
objects (and by duality, injective objects) can be seen as follows:

Consider the inclusion functor

7" : Rep®(gl(m[n)) < Rep(gl(m|n))

This functor has adjoints on both sides, its left adjoint j¥ being the functor which takes
a gl(m|n)-module to its maximal quotient which lies in Rep”(gl(m|n)).

This formally implies that this functor takes projective modules in Rep(gl(m|n)) to
projective objects in Rep®(gl(m|n)); since Rep(gl(m|n)) has enough projectives, so does
Rep®(gl(m|n)).

The category V), satisfies a similar list of "global” properties:

The simple objects of V; are L;(\) for all bipartitions A (the restriction on the size of
bipartition disappears) and properties (2), (4), (5) hold. One should stress that V; does
not have projective nor injective objects.

We conclude with a lemma which will be useful later; this lemma is a ”local” analogue
of the fact that given a tensor category, a projective object P and any object X, the
object P ® X is once again projective.

Denote by

ik : Vtk — V
the inclusion functor. This functor has left and right adjoints; its left adjoint i is the
functor which takes an object of V; to its maximal quotient lying in VF.

Lemma 8.2.1. Let k > 1> 0. Let P be a projective object in V¥, and let X be any object
in V!, Then i¥ (P ® X) is a projective object in Vi,

Proof. Denote Y := i* /(P ® X). Then we have isomorphisms of functors V;~" — Vect
Homyg(Y; (-)) & Homy, (P ® X, (-))  Homy (P, X* & ())

Using the fact that P is projective in V¥, we conclude that the functor Homvf(P, X*®
(-)) on V! is exact. O

8.3. Infinite weight diagrams, blocks and translation functors. In this subsection
we describe the block decomposition of the category V;. One can immediately see that
the blocks of V, correspond to the blocks of D, classified in [CW].

For the next result we need the analogues of weight diagrams and translation functors
for the category V;. Let t € Z and X\ = (A\°, A\*) be a bipartition. We associate to A two
infinite sequences ¢y, ca, ..., and dy,ds, ... defined by ¢; = Ay +t — 1, d; = A} — 7. Here
we assume that A\ = A? = 0 for sufficiently large i. We define the weight diagram d
associated to A by the same rule as in (2). The only difference with f) is that now our
sequences are infinite and hence d)(s) = x for all s << 0.

For example, let ¢ = 2 and A is an empty bipartition, then the corresponding weight
diagram is

e X X >>00. ..
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with >> at the position 0 and 1. If A\° = (1) and A\* = (1) then d, is of the form
"X X >xXo0>o00...

with rightmost > at 2. Weight diagrams associated to bipartition always have finitely
many symbols > and < which we call core symbols. It is easy to see that t equals
the difference between the number of > and the number of < in dy. Furthemore, by
construction all sufficiently large positive positions are empty.

The core dy of the weight diagram d, is obtained by removing all x and replacing them
by o. In the first example dy is

c+ 00 >>00...
and in the second
++00>00>00...

The following is straightforward.

Lemma 8.3.1. Recall the equivalence between the categories VE and Repk(g), where g =
gl(m|n) for suﬁ’icz’ently large m,n such that m —n = t. Assume that \ is a bipartition
such that L(\) € Rep®(g) and denote fy the corresponding weight diagram. Then
(1) fr(s) =0 for s < —n;
(2) da(s) = X for s < —n;
(3) dx(s) = fa(s) for s > —n.
(4) dx = fa.
O
Next we define the cap diagram associated to a given weight diagram d, following the

same rule as in finite dimensional case. Note that in this case a cap diagram has infinitely
many caps.

Lemma 8.3.2. In the category V; we have [V(X\) : L(p)] < 1. Furthemore, [V(A) :
L(p)] = 1 if and only if dy is obtained from d, by moving finitely many crosses from the
left end of its cap to the right end.

Proof. Follows from Lemma 6.2.4 and Proposition 4.6.2. OJ

Lemma 8.3.3. (a) The category V, has a block decomposition. Two simple objects Ly(\)
and L(p) are in the same block if and only if dy = d,,. Thus,

=P
X

where x runs the set of all possible core diagrams and the simple objects of VX are iso-
morphic to Ly(\) with dy = X

(b) Recall the SM functor Fy, ., : Vi — Rep(gl(m|n)). Then F,,,,(VY) is a subcategory
in Rep(g)X.

(¢) Define the translation functors T&X,T;’X V0 — VX by

Tox(M) = (M@ V), T, (M)=(MaV])"
Then - -
Fm,noTG,x :TG,XOFm,n; Fm,noT;X :T;’XOFm,n~
As before, the functors Ty, and T;e are biadjoint for every x, 0.

Proof. Choose k such that both L(\) and L(u) belong to V¥ and m, n such that V¥ is equiv-
alent to Rep®(gl(m|n)). Then, the core diagrams are the same for V¥ and Rep”(gl(m|n))

and hence all assertions are straightforward. O
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Remark 8.3.4. Tt follows from above lemma that Lemma 4.6.1 (a),(b),(e) holds for Ty,
and T;,x if one uses d instead of fy.

8.4. Existence of presentation. The goal of this section is to prove the following state-
ment, which is crucial in the proof of universality of V;:

Proposition 8.4.1. For any object M € V; there exists a presentation
T — M — T"

where T',T" are in the image of D;.
Proof. Due to the existence of the duality contravariant functor (y) 2 Vy = V), it is enough
to show that for any object M € V), there exists an epimorphism 7" — M where T' is in
the image of D;.

We will prove the statement in several steps.

Step 1 : We prove the statement for M = P, (), the projective cover of 1 in VF.
Step 2 : We prove the statement for any standard object Vi(\) in V.

Step 3 : We prove the statement for any projective object P in V¥, for any k > 0.
Step 4 : We prove the statement for any object M in V.

Steps 1 and 2 are two independent special cases of the general statement, and will be
proved in Lemmas 8.4.3 and 8.4.4.

Step 3: It is enough to prove the statement for indecomposable objects Pg(\) (the
projective cover of L;()\) in VF), where |\ < k.

Let

Y = i (Py,(0) ® Li(N))

be the maximal quotient of Py () ® Li()\) lying in V¥ (c.f. Subsection 8.2).
By Lemma 8.2.1, Y is a projective object in V¥. The covering epimorphism Py (()) — 1
induces an epimorphism

Po(0) © Li(A) = Li(N)

which factors through an epimorphism Y — L;(A).
By definition of projective cover, the latter induces a split epimorphism

We now consider the composition

where the first map is induced by the epimorphism V;(\) — L;()\) (cf. Subsection 8.2).
Applying Steps 1 and 2, we conclude that there exists an epimorphism 7" — Pj(\) where
T is in the image of D;.

Step 4: Let k be such that M belongs to VF. The category V¥ has enough projectives,
so there exists an epimorphism P — M where P is a projective object in V¥. Applying
Step 3, we obtain an epimorphism 7" — P, with T" in the image of D;; composed with the
former, it gives an epimorphism

T — M

as wanted. O

We begin with the proof of Step 1 of Proposition 8.4.1.
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Lemma 8.4.2. Let t = m —n, g = gl(m|n) and P(0) € Rep(g) be the projective cover
of the trivial module. Then there exists® Y € Dy such that Fy,, o I(Y) = P(0) and the
cosocle of I(Y') in Vy is isomorphic to the unit object 1 € V;. Moreover,

Fon(I(Y)—1): P(0) — 1 € Rep(g)
18 a epimorphism.

Proof. We will prove the statement for ¢ > 0. The case of negative ¢ is similar. Consider
the weight diagram f; of the zero weight. It is

oXX>>O,
with n symbols x and ¢ symbols >. Let A be a weight with weight diagram f,
O<<>->O,

with n symbols < and m symbols >. In the language of bipartitions we have \° =
(n,n,...,n) (m times) and \* = ().

One can easily check that f; can be obtained from f, by a sequence of the following

elementary moves
e moving > to the adjacent left empty position;
e changing <> to xo;
e changing < X to x <.

By Lemma 4.6.1 this implies that there is a sequence of translation functors T3, ..., T,
(r = mn) such that P(0) =T o---oTy¥(P(X)). Here T; = Ty, for some cores 6, x such
that u(x) > u(f), and T} = T}, is its adjoint (on either side).

Note that A is a typical weight in Rep(g), hence P(\) = L(\).

Now we set R:=T, 0---0T;(L;(\)).

By definition, F,,(L:(A)) = L(\), so Lemma 8.3.3 implies: P(0) = F,,, ,(R).

On the other hand, L;(}) is a subquotient in V,** = V" Recall from [Del3], [CW]
that the object X" of D, is a direct sum of indecomposables S* X, which satisfy

dim Homp, (S* X, S Xy) = 0,

Therefore the object V;*™" in V; is semisimple, and L;()) is a direct summand of V;*"".
From the definition of R it follows that R is a direct summand in the mixed tensor
power V¥ @ (V;)®™". Hence R = I(Y) for some Y € D;.

Next we prove that the cosocle of R is simple.

Denote R; :=T; o---oT(L()\)). We prove by induction on i that cosoc(R;) is simple.

Assume that cosocle of R; is simple. By the biadjointness of the pair of functors (77, T: )
we have _ -

Homy, (T3, (R;), L) = Homy, (R, Ti1(L)).
for any simple L in the corresponding block of V.

By Remark 8.3.4 we can apply Lemma 4.6.1(e) for translation functors T;,; in V.
Hence T;, (L) is either simple or zero, and L C cosoc(R;y1) iff Ti1(L) C cosoc(R;).

By the induction hypothesis, cosoc(R;) is simple so it remains to check that there exists
at most one isomorphism class of simple objects L such that T;,1(L) = cosoc(R;). This
follows from Lemma 4.6.1(e).

Hence cosoc(R;,1) is simple, and T (cosoc(R;.1)) = cosoc(R;). Thus

Li(A\) =T 0 0T,(cosoc(R))

2We emphasize that the object Y constructed here depends on the integers m, n.
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We now prove that cosoc(R) = 1 € V;. Applying Lemma 4.6.1(e) again, we see that it
is equivalent to proving that

LA =Tyo0---0T,(1).

Both sides are simple objects in V; (see Lemma 4.6.1(e)), and the isomorphism holds since
their images under the functor F,,,, are not zero and coincide.

It remains to prove that F,,, ,(R — 1) : P(0) — 1 € Rep(g) is a epimorphism. Denote
T:=Tyo---0T,.
Notice that in V;, the epimorphism R — 1 can be defined as
T R=T oT(1) — 1

where 7 T is the counit for the adjunction (T",T). By Lemma 8.3.3, F,, (T T =TT,
where
T:=T10---01T,

in Rep(g) and €777 is the counit for the adjunction (7, T). In particular,

Frn(e™ Tl : R— 1) =77,
which is an epimorphism. ([l

Lemma 8.4.3. Let Py(()) denote the projective cover of 1 in VF. Then Py(() is a quotient
of some object in 1(Dy).

Proof. Let m,n be such that V¥ is equivalent to Rep”(g), g = gl(m|n). Let P(0) denote
the projective cover of the trivial module in Rep(g) and we set

Q = jE(P(0)) = Fun(Pr(0))

where jI is the left adjoint to the inclusion functor 5% : Rep®(g) — Rep(g) (cf. Subsection
8.2).

In particular, @ is the projective cover of the trivial module in Rep®(g).

Next we consider R := I(Y), where Y is the object obtained in Lemma 8.4.2 for the
pair (m,n).

Let
(notation as in Subsection 8.2). Then Z is the maximal quotient of R which lies in VF,
and we denote by ¢ the epimorphism R — Z:

¢

R——

A
1
We also note that cosoc(Z) = 1.

We now apply £}, to the above diagram.
The map Fy, 1 (¢) : Frn(R) = P(0) — F,,,(Z) factors uniquely through p : P(0) — @
and we obtain a map p’ : QQ = F},, ,(Z) such that

Fnn(®) =p' op

We shall prove that p’ is an isomorphism. We start by showing that it is an epimorphism.
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Consider the morphism
Fpn(R—1):P(0)—1
It is equal to F, ,(m) 0 Fyy, (@) = Fppn(m) 0/ 0 p.
By Lemma 8.4.2, F, ,(R — 1) is an epimorphism. Therefore F,,, ,(m)op' : Q — 1 is
an epimorphism. We obtain the following commutative diagram

P(0) Fonn(Z)
Fpn,n ()
=

Q 1

We now recall that cosoc(Fy,,(Z)) = 1 (since F,, : VF — Rep®(g) is an equivalence).
This implies that p’ is an eplmorphlsm

p

Next, we show that p’ is a monomorphism.

Recall that by definition of Rep®(gl(m|n)), Q is a subquotient (and thus a subobject,
since () is projective) of some finite direct sum of 7% p+ g < k. This implies that there
exists an inclusion f : Q < F, (D), where D is an object in I(DF).

Next, the functor F,,, oI : D; — Rep(gl(m|n)) is full ([BS], [CW]), so there exists
a: R — D such that F,, ,(a) = fop.

By definition of Z, « factors through ¢ and we obtain o/ : Z — D such that o/ 0 ¢ = «.

By definition of «,

fop=Fun(a)=Fn.(a) 0 Fpu(¢) = Fun(a)op op
Since p : P(0) — @ is surjective, by cancellation law we have:
f=Fund)op
In particular, we conclude that p’ : Q) — F},, ,(Z) is a monomorphism, since f = F, ,(a/)o
;-
g iEhe following commutative diagrams sum up the above constuctions:
In V,, we have

R—"~D
ol /
Vo
In Rep(gl(m|n)), we have
P(0) = Fpp(R) 2 F,y (D) =——Fnnfe)
N
= -

Thus p’ is an isomorphism and Z is isomorphic to P;()) (since Rep”(g) is equivalent to
VE), the projective cover of 1 in V¥, and is a quotient of R = I(Y), Y € D;.
O

We now prove Step 2 of Proposition 8.4.1.

Lemma 8.4.4. Let Vi(\) be a standard object in V;. There exists an object D € I(Dy)

such that Vi(X\) is a quotient of D.
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Proof. Recall the category Ty and the exact SM functor ® : Ty — V. This functor takes
simple objects V(\) in T; to standard objects V(A); furthermore, for any injective E € Ty,
®(F) € I(D,). Thus it is enough to show that for any simple object V(\) in Tj there
exists an injective object £/ and an epimorphism £ — f/()\) We will show that there
exists a bipartition v such that the injective object

Y(V) = f/(yo) ® V(l/')

has a quotient isomorphic to V().
We recall from [PS, Theorem 2.3] the following multiplicity formula for r > 1:

(5) [oc' (Y(r)) : VIN] = Y NE,NKE,

Yilyl=r=1

where 50¢" := soc” /soc’ ™" denotes the r-th Loewy layer in socle filtration of Y (v), Ng.
denote Littlewood—Richardson coefficients and v is a partition of size r — 1.

Let 0 be a rectangular partititon with height and width greater than |A|. Let v° be
obtained by adding \° to the right of 4 and v* by adding A® to the bottom of §.

We claim that by (5),

(6) Y(): V=1 and  [Y(v):V(w)]=0

for any bipartition p with [u| < [A|. If we prove this, then (5) would imply that V(N
lies in the cosocle of V'()), and we are done.
The equalities (6) follow from the following facts:

o If N F’jfﬁ # 0 then the number of rows of 7 is less or equal the number of rows of .

o If N ;’.‘ ~ # 0 then the number of columns of ~ is less or equal the number of columns
of 9.

The first statement can be easily obtained from the combinatorial description of the
Littlewood-Richardson coefficients (see [FH]) ®. The second statement follows from the
first by the transpose symmetry of the Littlewood Richardson coefficients.

The above statements imply that if N} v , # 0, then 7 is a Young subdiagram
of the rectangle diagram ¢. On the other hand smce the above Littlewood-Richardson
coefficients are non-zero, we have

= o =1t = [°] = [

and so ) |
vl = (IV! ul) = 5 (fv] = |Al) = 19]
Hence [Y () : V(p)] = NY NY 0 iff v = 6, which is possible only when || = |A[.

Moreover, N¥: 5 = N{. 5 = 1, hence [Y(v): V(N =1.
U

Remark 8.4.5. Tt is worth mentioning that Proposition 8.4.1 implies that the functors
Frn : Viem—n — Rep(g)

are full. This follows from the fact that the functors F,,, o I : Dy—,,—, —> Rep(g) are
full (cf. [CW]).

3Alternatively, one can show that for any bipartition x such that || < |A|, N /jf ~ # 0 implies that
L(y) < L(v°) = £(0) (here £ denotes the number of rows in a partition). This is a straightforward
consequence of the definition of Littlewood-Richardson coefficients.
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8.5. Highest weight structure.

Lemma 8.5.1. An indecomposable projective object Py(\) has filtration by the standard
objects Vi(p) with p > A.

Proof. By abuse of notation, we will denote X7 := V;*” @ V,**? throughout this proof.

We have proved in the previous subsection that there exists an object T' € I(D;) such
that Py()) is the maximal quotient of 7' which belongs to VF. We also know that T is
a direct summand in X}*? for some p,q. To describe the kernel N C T of the surjection
T — Py()\) choose a basis 1; in

- Hom(XP4, XP~517%),

min(p,q)>s>LHI=F

We can choose this basis from the diagram bases for these walled Brauer algebras (see
[BS] or [CW]). First, we show that

N =Tn(Keryy

The inclusion C is obvious, so we only need to prove D.
Denote K := (), Kert;. With the notation as in Subsection 8.2, we have:

K = Kert; = Ker(XP7) — i (X})

Thus the composition
K CXP?'— T — i (T) = Pu(N\)

is zero, which implies TN K C N.

Next, fix r = P%*k] Note that any diagram d with p, ¢ nodes in the top row and
p — s,q — s nodes in the bottom row (min(p,q) > s > r) has at least r horizontal links in
the top row. So d can be written as a product of diagrams d = ds o d; such that d; has
no horizontal links in the bottom row and has p, ¢ nodes in the top row and p — r,q —r
nodes in the bottom row.

If we recall ® : Ty — V), this implies that any 1); factors as

Vi = @0 p;
where ¢; € ® Hom(T?9, TP~""), and ¢}, € Hom(XP™ """ XP~517%),

Moreover, for any ¢ € ® Hom(T pd T P=m4=") represented by a diagram of type d; one
can find ¢ such that ¢, = ¢

Thus we have
ﬂ Ker; = ﬂ Ker .

0e® Hom(TP-a,TpP—ra-7)
Let
K = ﬂ Ker ¢
$p€Hom(TP-a,TP—ra-r)

be the corresponding object in Ty. This is the r 4- 1-th term in the socle filtration of TP
(see [PS]).

Recall that the functor @ is exact (see Lemma 8.1.4), so it preserves finite limits and
thus



Let XP?9 =T, @®--- @ T, be a direct sum of indecomposable objects with 77 = T. Set
FY(XP7) = ﬂ Keryp, F'(T}):= ﬂ Ker .

pEHom(XP-a,XP=ha) peHom(T;,XP—i:a—7)
In particular, F"(X?9) = K, F"(T) = N.
If we denote by e; the projector X4 — T}, then for any ¢ € Hom(XP4, XP~517) we
have

ﬂ Ker(poej) = @KergpﬂTj C Ker .
Jj=1 Jj=1
That implies
F(Ty) = FA(XP) N T, FX) = €D F(T;),
j

since
ﬂ Kerp = ﬂ ﬂKer(gpoej).
peHom (X P-4, XP—14-1) p€Hom(X P4, XP—i:a=1) j

On the other hand, F*(X?4)/F='(XP1) is a direct sum of standard objects V;(u) for
some 4, hence by Krull-Schmidt theorem F(T)/F~Y(T) is a direct sum of standard
objects. As it was shown above, P,(\) ~ T/F"(T). Hence Pj()) has a filtration by
standard objects.

[t remains to prove that all V;(u) which occur in P,(\) satisfy the condition g > A. For
this we use Proposition 6.2.3, which claims

dim Hom(V; (1), Vi(v)) = b, Ext! (Vi(), Vi(v)) = 0.

If Vi(p) occurs in Py()), then Hom(Py()\), Vi(1)) # 0, hence [Vi(u) : Ly(\)] # 0. The
latter implies © > A. 0

Corollary 8.5.2. For any k > 0 the category V¥ is a highest weight category with duality,
in the sense of [CPS], with standard objects (up to isomorphism) Vi(X\), |\| < k. Hence the
inductive completion of V; is also a highest weight category (with infinitely many weights).

Remark 8.5.3. The objects X € I(D;) which lie in V¥ are both standardly filtered and
self dual, making them tilting objects in the highest weight category VF¥. This is similar
to the situation in the abelian envelope of the Deligne category Rep(S:), see [CO].

8.6. Epimorphisms in V;. Let us calculate the spaces Homp, (X" @ X;®", 1).
Recall that Schur functors S* X, are indecomposable in D, and

(7) Homp, ($*X,, $"X,) = 4 " A
C-Id, A=pu.
(see [Del3, CW]).
Schur-Weyl decomposition

X = Prie sy,
Ar

with A running over the set of all partitions of r, and Y) being an irreducible .S,-
representation corresponding to A, gives us a decomposition

(8) Homp, (X ® X", 1) = (D (YA @ 1) - evgax;
A7
where the evaluation map evgrxr is a generator of the one-dimensional space

Homp, (S*X; ® S* X[, 1).
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Epimorphisms in V; satisfy a very agreeable property.

Proposition 8.6.1. For any epimorphism M —s M’ in V, there exists a nonzero object
Z in Dy such that the epimorphism M ® I(Z) il Vs I(Z) is split. A similar property
18 valid for monomorphisms.

Proof. We start by considering the case M’ = 1. We can choose an epimorphism I(X) —»
M with X € D;. We obtain an epimorphism g : I(X) — 1.

It would then be enough to find a nonzero object Z € D, so that the epimorphism
g@Idy :T(X)®T(Z) - T(Z) is split.

Since any object of D; is a retract of the mixed tensor power of the generator X, it is
enough to verify the above statement in the case when I(X) = V;*” @ V,**%. Moreover,
since g is a epimorphism , we need to have p = q.

Formula (8) tells us that there exists an embedding

i S)\‘/t ® S)\‘/t* N ‘/t®p ® V;;k@p

such that the composition g o is a nonzero multiple of evgay,. Therefore, it is enough to
verify that given a Young diagram A, there exists an nonzero object Z € Dy, such that
the epimorphism

Id» ®evs/\ Vt*

I(Z)® SNV, @ SNV ———5 Z
is split. But this is obviously true, for instance, for Z := S*X;, when the statement

follows from the definition of a dual object.

In the general case, we have an epimorphism g : M — M’. Consider the pullback of
the epimorphism

g Idy - M@ M™* — M @ M™

along coev : 1 — M’ ® M"™. We obtain an epimorphism
(M @ M"™) Xypgpe 1 — 1.
We already know that there exists a nonzero Z € D; such that the epimorphism
I(Z) @ (M & M™) Xprgye 1) - 1(Z)

splits.
This gives us a morphism ¢ : I(Z) — I(Z)® (M & M) such that the following diagram
1s commutative:

Id ®RgId y 7+
[(Z)o Mo M2 "M (7)o M' @ M™ .

\ ] Idz ®coev

1(2)
Denote the image of ¢ under the isomorphism
Homy, (I(2),1(Z) @ M @ M"™) — Homy, (I(Z) @ M"™*,1(Z) @ M)
by ¢. The above commutative diagram implies that (Idzzy ®g) © o = Idyz) @M™, ie.

the epimorphism Id;(z) ®g splits. 0]
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9. UNIVERSAL PROPERTY

In this section we will prove a universal property of the functor I : D; — V,. We use
only a few facts about the categories D; and V;. This is why we believe the universality
theorem we prove will be applicable to other contexts. Therefore, we present it as a
general theorem for a pair of SM categories satisfying certain properties we now list.

Remark 9.0.1. The results below are stated for C-linear categories, but hold for k-linear
categories, where k is any field.

9.1. Assumptions. In what follows I : D — V is a symmetric monoidal functor from an
additive C-linear rigid SM category D to a tensor C-linear category V.
We assume the following.

(1) I:D — V is fully faithful.
(2) Any X € V can be presented as an image of a map I(f) for some f: P — @ in
D.
(3) For any epimorphism X — Y in V there exists a nonzero 7' € D such that the
epimorphism X ® I(T) — Y ® I(T) splits.
Our functor I : D; — V; satisfies the above properties by Proposition 8.1.2, Proposition
8.4.1 and Proposition 8.6.1.
Our main theorem asserts that if a functor I : D — ) satisfies the above properties, it
is universal in the sense we will now formulate.

Universality of the functor I : D — V is naturally 2-categorical. We will note that
2-category (in this paper) 3 means a category enriched over categories. Thus, 3 has
objects, and a category of morphisms Maps(z,y) between each pair of objects z,y € 3
with a strictly associative composition.

3 is enriched over groupoids if all Maps(z,y) are groupoids. A groupoid is called
contractible if there is a unique arrow (it is automatically an isomorphism) between any
two objects.

9.2. Main universality result. We define a 2-category X, more precisely, a category
enriched over groupoids, as follows.
The objects of X are pairs (F,.A) where A is a C-linear tensor category and F': D — A
is a faithful symmetric monoidal (SM) C-linear functor.
Given two objects (F,.A) and (G, B) in X, the groupoid Map(F, G) is defined as follows.
e Its objects are pairs (U, #) where U : A — B is an exact SM C-linear functor and
0:UoF — G is a SM isomorphism of functors.
e A morphism from (U,6) to (U',0) is a SM isomorphism of functors U — U’
commuting with 6 and 6'.

We are now able to formulate our main universality result.

Theorem 9.2.1. Assume that the functor I : D — V satisfies the assumptions (1)—(3).
Then I is an initial object in X. The latter means that for any object F' : D — A the
groupoid Mapy (1, F) is contractible.

The following result can be easily shown to be equivalent to Theorem 9.2.1.

Theorem 9.2.2. Under the same assumptions the functor I induces for any tensor cat-
egory A an equivalence of the following categories

o Fun®(V, A), the category of exact SM C-linear functors ¥V — A,

o Fun/™(D, A), the category of faithful SM C-linear functors D — A.
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Remark 9.2.3. One can weaken the condition that A is a tensor category by not requiring
rigidity: namely, A is an abelian C-linear SM category with biexact, bilinear bifunctor
— ® — and a simple unit object 1 € A (hence End4(1) = k). In that case any dualizable
object in A is faithfully flat on the full subcategory of dualizable objects in A.

Proof. The categories of functors in question are groupoids (see for example [Dell, Section
2.7). A functor f : G — H between groupoids is an equivalence if and only if for each
h € H the fiber
fin=A{(9,0)lg € G0 f(g) — h}

is contractible (in particular, non-empty).

The composition with the functor I : D — V yields the functor Fun®(V, A) —
Fun™(D, A). Its fiber over F': D — A is precisely Mapy (I, F).

This proves the theorem. 0

9.2.1. Under the same assumptions (1)—(3) the functor I : D — V satisfies another
universal property which we will now formulate. It has nothing to do with the SM
structure of the categories involved and it would not be very appealing, would it not
appear as an intermediate step in the proof of Theorem 9.2.1.

9.3. Pre-exact functors. Let C be an additive category endowed with two collections
of arrows: inflations (playing the role of monomorphisms) and deflations (playing the
role of epimorphisms). The only important example for us is the category D with in-
flations defined as the arrows becoming monomorphisms in )V, and deflations becoming
epimorphisms in V.

An additive functor C — B to an abelian category B is called pre-ezact if it takes
inflations to monomorphisms and deflations to epimorphisms. We will also call an additive
functor C — B between two abelian categories pre-exact, if it preserves monomorphisms
and epimorphisms.

9.3.1. We define a 2-category 2) as follows.

[ts objects are pairs (F, A) where A is a C-linear abelian category and F': D — A is a
C-linear faithful pre-exact functor.

Given two objects (F,A) and (G,B) in 2, the groupoid Mapy(F,G) is defined as
follows.

e Its objects are pairs (U, §) where U : A — B is a C-linear pre-exact functor (that
is, the one preserving monomorphisms and epimorphisms) and 6 : U o F' — G is
an isomorphism of functors.

e A morphism from (U, #) to (U’,¢') is an isomorphism of functors U — U’ com-
muting with 6 and ¢'.

We claim the following

Theorem 9.3.1. Under the assumptions (1)—(3), the functor I : D — V is an initial
object in ; that is, for any object F': D — A the groupoid Mapy (I, F) is contractible.

9.4. The assumptions (1)—(3) are assumed throughout this and the next section.

We will prove in Lemma 9.4.2 below that a faithful SM functor F : D — A to a
tensor category is necessarily pre-exact. This implies that an obvious forgetful functor
# : X — %) is defined. The following result justifies our interest to the 2-category 2).

Proposition 9.4.1. The forgetful functor X — Q) induces for any F : D — A in X an
equivalence
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We proceed as follows. Proposition 9.4.1 is proved in Subsection 9.6. It implies that
our main universality theorem 9.2.1 follows from Theorem 9.3.1.
The proof of Theorem 9.3.1 is presented in Section 10.

Lemma 9.4.2. Any faithful SM functor F : D — A to a tensor category is pre-exact.

Proof. Let A — B be a deflation in D. By property (3), there exists a nonzero object
Z € D such that the map A ® Z — B ® Z is split. This implies that F(A) ® F(Z) —
F(B) ® F(Z) is surjective. The object F(Z) is nonzero, therefore, faithfully flat. This
implies that F'(A) — F(B) is surjective.

The second part of the claim is proved similarly. 0

Lemma 9.4.3. Let U : V — A be a pre-exact additive C-linear SM functor, whose
restriction to D s faithful. Then U is exact and faithful.

Proof. We use the “splitting of epimorphisms” property (3) of the categories D, V. Indeed,
given a short exact sequence

0=-X—-Y—-27—-0

in )V, we need to show that its image under U is exact. The “splitting of epimorphisms”
property implies that there exists an object D € D such that Y ® D — Z® D — 0 splits.
Since U is C-linear (hence preserves direct sums) and SM, the sequence

0-UD)@UX)=>UD)oUY)—=>UD)oU(Z)—=0

is split exact. Since U(D) # 0, the object U(D) is fully faithful in A, and we conclude
that the sequence

0-UX)=UY)—-UZ) =0

is exact as well.

To show that U is faithful, we recall that an exact functor U is faithful iff for any object
L eV, U(L)#0. Let L € V. Due to the presentation property (2), there exist T,7" € D
and f € Homp(7,7T") such that Im(f) = L. Since U is faithful on D, U(f) # 0 and hence
U(L) = Im(U(f)) #0. 0

9.5. Language of multicategories. The best way to avoid taking care of various com-
mutativity and associativity constrains, while working with SM categories, is to use the
language of multicategories.

Let us remind some basic definitions.

Definition 9.5.1. A multicategory C consists of the following data.

e A collection of objects ObC.

e A set Home({x;},y) assigned to any collection of objects {x;};c; numbered by a
finite set I and to an object y.

e Compositions

(10) Home ({y;}, 2) x | [ Home({w:}ie -1y, v5) = Home ({2 }ier, 2),
jeJ
for any map f: I — J of finite sets.
The compositions should be associative and the sets Home({x}, z) should have unit ele-

ments with the standard properties, see [L, 2.1.1].

Any multicategory C has an underlying category C; obtained by discarding all non-unary

operations. Any collection {z;};c; defines a functor C; — Set carrying y to Hom({z;}, v).
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If this functor is (co)representable, a representing object can be called ). ; x;. Finally,

for each map f : I — J of finite sets a canonical map in C; is defined

() R(® ) Qe

JeJ iif(i)=j iel

el

Definition 9.5.2. A multicategory C is called SM category if all functors described above
are corepresentable, and if all maps (11) are isomorphisms.

A functor C — D between multicategories is defined in an obvious way. Such a functor
between SM categories is what is usually called a lax SM functor. It is a SM functor if a
canonical morphism

(12) ® f(xi) — f(® ;)

iel iel
defined for any lax SM functor by universal property of tensor products, is an isomorphism.

Finally, given two SM functors f,g : C — D, a morphism 6 : f — g is just a collection
of morphisms 0, : f(x) — g(z) for each z € C giving rise the the commutative diagrams

Home({x;},v) AN Homyp ({ f (2}, f(y))

| Jo

Homp ({g(z:)}, 9(y)) o Homp ({ f(z:)}, 9(y))

for all z;, y € C.

9.6. Proof of Proposition 9.4.1. We have to verify that for any F : D — A in X the
functor Mapy (1, F') — Mapg (I, F) induced by the forgetful functor # : X — 9, is fully
faithful and essentially surjective.

Full faithfulness. Let us verify that, given two arrows (U, #) and (U’,0") in Map (I, F),
any 2-arrow ¢ : (U,0) — (U’,0') in Q) is automatically symmetric monoidal.

In other words, we have to verify that for any M; and N in V the diagram

Homy, ({M;},N) —Z— Homy, ({UM;},UN)

U’l lwv)

Hom 4, ({U'M;},U’'N) m Homy, ({UM;},U'N)

is commutative. This is so for M;, N belonging to I(D) as ¢ commutes with 6 and ¢’. In
order to verify the commutativity of the diagram (13) in general, choose epimorphisms
I(X;) — M; and a monomorphism N — I(Y') with X;, Y in D. The diagram (13) will
map injectively to the similar diagram for X; and Y which is commutative. This proves
the claim.

Essential surjectivity. Now, given a morphism (U, 0) : I — F of functors, we have to
extend it, up to isomorphism, to a morphism of SM functors. The functor U : V — A is
given by a map U : Ob ¥V — Ob A and a compatible collection of maps

(13) Homy, (M, N) — Hom4(UM,UN).
We have to extend these data to a compatible collection of maps

(14) Homy ({M;}, N) — Hom 4 ({UM;},UN).
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Choose for each finite collection of objects {X;} in D a tensor product ®X; with the
universal element x € Homp({X;},®X;). Similarly, we choose tensor product of each
finite collection of objects in V and in A.

Choose now for each M; € V a presentation I(X;) - M; — I(Y;). We get (by
universality of tensor products) the unique presentation

(15) ® I(X;) —» @M; < QI(Y;).

We can now apply to (15) the functor U and compare it to the tensor product of presen-
tations UI(X;) - U(M;) — UI(Y;). Taking into account that the functors I and F are
symmetric monoidal, we get a canonical isomorphism U(®M;) — QU (M;).

We can now define the maps (14) as compositions

(16) Homy,({M;}, N) = Homy,(®@M;, N) — Hom,(U(®M;),U(N)) =
= Hom(®U(M;),U(N)) = Hom4({UM;},UN).

Here we used the = signs to denote canonical isomorphisms. Compatibility of maps (14)
with the compositions (10) directly follow (this is a long sequence of canonical morphisms)
from the compatibility of the maps (13) with the (usual) compositions. This means that
U extends to a SM functor, which we will denote U as well. By Lemma 9.4.3, such a
functor U is exact.

The isomorphism of functors 6 : UI — F'is given by a collection of maps 0x : UI(X) —
F(X) making the diagrams

Homp(X,Y)  —Z Homyu(UI(X),UI(Y))

(17) Fl Oy
Hom (F(X), F(Y)) —— Homa(UI(X), F(Y))
X
commutative. The natural transformation # is automatically symmetric monoidal since
the maps (14) are expressed via (13).

Remark 9.6.1. As it was proved in Lemma 9.4.3, extending a pre-exact faithful functor
U :D — A we obtain a faithful exact functor V — A.

10. ProoOF oF THEOREM 9.3.1

We have a symmetric monoidal functor / : D — V satisfying the requirements (1)—(3).
In this section we will prove that the groupoid Map@([ , ) is contractible for any C-linear
faithful pre-exact functor F' : D — A into a C-linear abelian category. This means that
a C-linear pre-exact functor F' : D — A extends to a C-linear pre-exact functor V — A
in an essentially unique way. We will prove this in two steps. First of all, we will verify
that Mapy (1, F') is nonempty, that is that the functor F': D — A extends to a pre-exact
functor U : V — A. Then we will prove that any two such extensions are connected by a
unique isomorphism.

The idea of the construction of U is very simple: we use existence of presentation of
an object X € V as an image of I(f), f : P — @ in D, to define U(X) as an image
of F(f): F(P) — F(Q). One should be careful, however, keeping track of the choices
involved.

We will first describe our bookkeeping device — the collection of categories of presen-
tations for each arrow of V.

10.1. Categories Cyq 3.0/ -
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10.1.1.  Assign to each map f : M — N in V), together with a choice of presentations
I(X) i VA I(Y) and I(X") LN I(Y") a category Cy.a.0,5 defined as follows.
e Its objects are the diagrams

(18) 1(X) 2 M= 1(Y)

e N

I(X') = N I(Y

(pay attention which of the arrows are supposed to be injective and which are
surjective!). Such diagram will be usually denoted for simplicity as (R, S).

e An arrow (Ry,S1) — (Rg, Ss) is given by a pair of arrows Ry — Ry and Sy — S
in D so that the diagram below is commutative.

(19) 1(X) 2 M2 (v

/ \\

I(R1) — I(R») ! 1(S2) —=1(51)

T e

I(X") _’>>N7 I(Y")

Composition of the arrows is obvious.

10.1.2.  We will prove later that the categories Cyq /5 are nonempty and have con-
nected nerve, see Proposition 10.2.1.
Let us now show how contractibility of the nerves can be used in constructing the lifting

of F.

e Choose for each object M € V a presentation I(X) Ry VRN I(Y) and define
U(M) by a decomposition F(X) 5 U(M) 2, F(Y). The object U(M) so defined
is defined uniquely up to unique isomorphism.

e For any map f: M — N, define U(f) by the diagram

(20) F(X) =% U(M)—~ F(Y)

v N
N 7

F(X') —m U(N) = F(Y)
This is possible as the category Cy o g,o s is nonempty. The result is independent of
the choice of an object (R, S) € Cj o, as the nerve of the category is connected
and any arrow (19) in it induces the same map U(M) — U(N).
It remains to verify a number of properties of the construction. It is done in the

following subsection.
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10.2. End of the proof.

10.2.1. U is a functor. We have to verify that U(g) o U(f) =U(go f).
Let (R1,S1) be an object in the category Cy o g5 and let (Ry, S2) be an object in the
category Cy o g .am g7, see (21). We then have triples

R1—>X/«—R2, SQFY/(—)SI.

Consider the fiber product I(R;) xy(xn I(Rz) and the cofiber coproduct
I(Sy) U7 [(S,); the existence of presentations implies that we can choose objects R, S
in D with morphisms

I(R) — I(Ry) xx1y [(Ra), I(Sy) U I(Sy) = I(S).

Since epimorphisms in A are preserved by base change, and monomorphisms are pre-
served by cobase change, we obtain the following commutative diagram.

(21) [(X) —% M2 1(Y)

This commutative diagram implies that (R, S) is an object in the category Cy.a 5,07 57
Diagram (21) gives rise to a diagram
(22)
F(X) —% UM)~"~ F(Y)

/ \
F(R)) u(f) F(S1)
F(R) F(X') == UN)—= F(Y) F(S)
F(R,) U(g) F(S2)
\ /

F(X") - U(L)

where U(f) and U(g) are uniquely determined by the condition that they make the

diagram commutative. This implies that their composition coincides with U(gf).
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10.2.2. Independence of the choice of presentations. The functor U constructed above

used a choice of presentation /(X)) R A I(Y) and of decomposition F'(X) 5 U(M) A

F(Y) for each object M € V.
Any (other) presentation

(23) x5 m S 1y

of M, and, accordingly, a decomposition F'(X’) % U'(M) Z F(Y"), gives rise to an
isomorphism U(M) — U’(M), once more, since the category Cig g4 has connected
nerve.
This allows us to claim that any presentation (23) gives rise to a unique decomposition
FXYSuon s ray.
That is, our construction does not depend, up to unique isomorphism, on the choices.

10.2.3. Isomorphisms UolI(X) — F(X). Choosing a trivial presentation [(X) — I(X) —
I(X) for I(X), we get a canonical isomorphism U(I(X)) — F(X).

10.2.4. Pre-exactness. We claim that the functor U preserves injective and surjective
morphisms. In fact, if, for instance, f is surjective, one can choose o = f o «, so that we
can choose R = X’ = X in the notation of (20). This implies U(f) is surjective,. The
dual statment us similar.

We still have to prove that the nerves of the categories Cy 4 5,0 3 are connected.
Proposition 10.2.1. The category Cy o g, is nonempty and has a connected nerve.

Proof. We will first of all present an explicit construction of an object in Cs 4 g,,8. Then
we will prove that any other object of this category is connected to it by a zigzag of
arrows.

Existence of an object.

Given presentations

I(X) =2 M —25 1(v)

and

I(x) -+ N 2 1v")s
choose an epimorphism I(R) — I(X) xx I(X’) and a monomorphism
IYYUM I(Y") —2 1(5)-
It is easy to see that the resulting commutative diagram

Xyl y

SN

R f

N e

X/ﬁN(—>Y/

bGIOHgS to Cf,a,ﬁ,oc’,ﬁ"
Connectedness.

Consider the object (R, S) in Cy 4 p.4,5 We have just constructed.
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Let (R, S’) be any object in Cy o 54,3 We will now prove that there exists an object
(R",S") in Cf o p . p together with arrows (R”,S”) — (R, S"), (R",5") — (R, S5).
By definition of objects in C¢ g, s, there are canonical morphisms
R— XxyX+—R, 9«—YUuyY —8

Moreover, the construction of the object (R, S) tells us that R — X x X’ is an epimor-
phism and Y Ly, Y/ — S is a monomorphism.
We then consider the objects

/ !
R Xxxyx R, S Uyyy,y S

in A. Since fiber products preserve epimorphisms in abelian categories, the canonical
morphism

R XXXNX’ R, — R/
is an epimorphism. For the same (dual) reason the canonical morphism

S — 9 Ly uY! S

is a monomorphism.
Now fix two objects R”,S” in V with arrows

R"—- R XX xnX' R,, S’ |—|YLIMY’ S — 5"
Thus we obtain the following commutative diagram:

R—=X Moy o5
R / >< f >< \ S
R — X' —= N> Y S’/
a/ ﬁ/
It remains to show that (R”,S"”) is indeed an object in Cfq g4/ 4, i.6. that R” — X is
an epimorphism and that Y’ — S” is a monomorphism.

The construction of (R”,S”) described above implies that we have the following com-
mutative squares:

R'——R }lﬁ’% S
R —= X S5 g
so the above statement clearly holds. This completes the proof. O

11. DELIGNE’S CONJECTURE

11.1. Introduction. In this section we show that universality of tensor category V; in
the sense of Theorem 9.2.1 easily implies positive answer to Deligne’s question [Del3,
Question (10.18)].

Let t € C. Let T be a tensor category, and let X be an object in T of dimension t.
Consider the category Rep(GL(X),¢) of (T )-equivariant representations of the affine
group scheme GL(X) in T, see [Del3, Section 10.8] or below. This category is a tensor
category containing X. Since X has dimension ¢, it gives rise to a SM functor

Fx : Dy — Repy(GL(X),e) Xy — X
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Lemma 11.1.1. The functor Fx is faithful if and only if the object X € T is not anni-
hilated by any Schur functor.

Proof. Schur functors are given by idempotents ey € End(X®*) which are images under
Fx of the corresponding idempotents ¢y € End(X;” \/\I). Thus

Fx(ex) #0 & S*X #0
for any A. We need to show that
VA, Fx(ey) #0 < Fy is faithful
Indeed, recall that we have canonical isomorphisms
Homp, (X" ® X9, X" @ X;®) = Homp, (X, XP7'*)

The latter space is generated by idempotents {ex}x=r+s if 7+ = 1" + s, and is zero
otherwise (cf. [Del3, Section 10]). O

Theorem 11.1.2.

(a) If X is not annihilated by any Schur functor then Fx uniquely factors through the
embedding I : Dy — V; and gives rise to an equivalence of tensor categories

Vi — Repr(GL(X),¢)

sending V; to X.

(b) If X is annihilated by some Schur functor then there exists a unique pair m,n €
Z, m—n =t, such that Fx factors through the SM functor D; — Rep(gl(m|n))
and gives rise to an equivalence of tensor categories

Rep(gl(m|n)) — Repr(GL(X),¢)
sending the standard representation C™™ to X.
A proof will be given in Subsection 11.3.

Remark 11.1.3. Note that for ¢t ¢ Z, this theorem was proved by V. Ostrik in [Del3,
Appendix BJ, in a similar manner. Our proof relies only on the universal property of V;,
and therefore works for any ¢ € C.

11.2. Algebraic groups in tensor categories and their representations: re-
minder. The content of this subsection is mostly taken from [Dell], Sect. 7.

11.2.1. Let T be a tensor category. The category Ind 7 inherits a symmetric monoidal
structure. Algebraic groups in 7 (or T-algebraic groups) are group objects in the category
of T-affine schemes; thus, these are just commutative Hopf algebra objects in Ind 7.
Yoneda lemma allows one to identify T -algebraic groups with the corresponding ” functors
of points” — these are corepresentable functors Com(Ind 7)) — Grps from commutative
algebras in Ind 7 to groups. A representation V' of a T-algebraic group is an object V' € T
endowed with a structure of left comodule of the appropriate Hopf algebra.

Given a tensor functor F' : 7 — T’ and a T-algebraic group G, the image F/(G) is
obtained by applying the functor F' to the corresponding Hopf algebra object of Ind 7.

In case the tensor functor F' : T — T’ is right exact, the 7 -algebraic group F(G)
can be also described in terms of the functor of points. Recall that a right exact tensor
functor F' : T — T’ induces a tensor functor F' : Ind 7 — Ind 7’ commuting with small
colimits.

By the Adjoint Functor Theorem (see [F]), F admits a right adjoint functor F' :
Ind7" — IndT which is automatically lax symmetric monoidal (see Definition 9.5.2

and a discussion following it).
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Then the T'-algebraic group F'(G) defines a functor Com(Ind 7') — Grps given by the
formula

(24) F(G)(B) = G(F'(B)).

11.2.2. For an algebra A € Com(Ind 7") the category of A-modules Mod, is defined in a
standard way. The functor 14 : 7 — Mod,4 carries X € T to A ® X.

The fundamental group 7(7) is defined as the T-algebraic group defined by the functor
of points by the formula

(25) A Aut®(ia : T — Mod ).

The fundamental group of a tensor category is affine (that is, the functor of points is
corepresentable) if, for instance, the base field is perfect and the category is pre-Tannakian
(see [Dell, Section 8.1] for definition).

11.2.3. Let X € T. Define a functor Com(Ind 7)) — Grps by the formula

A= Aut(is(X)).

Again, if the base field is perfect and the category is pre-Tannakian, then this functor in
corepresentable by a T-algebraic group denoted GL(X). One has an obvious evaluation
map € : m(7T) — GL(X) given, on the level of functors of points, by the assignment of
O(X) :ia(X) — ia(X) to an automorphism € of the functor i4 : 7 — Mod,.

In particular, the homomorphism ¢ described above endows any object X € T with a
canonical action of 7(7T).

For example, m(sVect) is the group of two elements, with the nontrivial element acting
on any super space V by 1 on its even part and by —1 on the odd part.

11.2.4. Functoriality. Given an exact SM functor F': T — T’ and an object X € T, one
has a natural homomorphism

(26) F(GL(X)) —» GL(F(X))

defined by the functors of points as follows. For a fixed B € Com(Ind7’) the group
GL(F(X))(B) is the automorphism group of the free B-module B ® F(X). The group
F(GL(X))(B) is the automorphism group of the free F*(B)-module F'(B) ® X. Given
o € Autpyp) (F'(B) ® X), we can apply F to get F(a) € Autppmp)(FF'(B) ® F(X)).
Making base change along the ring homomorphism FF'(B) — B, we get an element of
GL(F(X))(B).

The homomorphism F(GL(Z)) — GL(F(Z)) is an isomorphism — this follows from
the explicit construction of the Hopf algebras in 7 and 7' corresponding to the affine
group scheme GL(Z) and GL(F(Z)) (see for example [Et]).

The functor F': T — T’ induces a map of the respective fundamental groups

(27) m(T') = F(x(T))
defined as follows. The algebraic group F(7 (7)) defines, according to (24), the functor
of points carrying B € Com(Ind 7”) to the group Aut®(¢p) where the functor ¢p : T —
Mod g () is defined by the formula ¢p(Y') = F'(B)®Y. Deligne suggests another functor
of points

B Aut®(¢3),
with 5 : T — Modg defined by the formula ¢¥5(X) = B ® F(X). One has a canonical

morphism Aut®(¢) — Aut®(y)) defined in the same way as (26). It is proven in [Dell,

8.6, that this map is also an isomorphism.
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Taking into account the alternative description of the functor of points for F'(7 (7)), one
defines the map (27) in terms of functors of points as follows. Denote ¢/5 : 7' — Modp the
functor carrying Y € 7’ to B® Y, so that 7(7”) is defined by the tensor automorphisms
of ¢'. Given B € Com(7”’) and o € Aut®(¢’z), we construct its image in Aut®(¢)) by
composing « with F : T — T".

11.2.5. Given a T-algebraic group G and a homomorphism ¢ : 7(7) — G, one defines
the tensor category Rep, (G, €) as the full subcategory of representations of G such that
the representation of 7(7) obtained via the pullback along €, is the standard one.

In case T = sVect and G = GL(m|n), the category Rep,(G, €) is precisely the ”small”
category Rep(gl(m|n)) defined in Section 4.2.

The following result of Deligne is a relative version of the Tannakian reconstruction
(Deligne, [Dell, Theorem 8.17]):

Proposition 11.2.1. Let 7,7’ be two pre-Tannakian tensor categories and let F : T —
T’ be an exact SM functor. This functor induces an equivalence T — Repr(F(w(T)),€).

11.3. Proof of the Deligne conjecture. The following result is an easy consequence
of Proposition 11.2.1.

Corollary 11.3.1. Let T, T’ be two pre-Tannakian tensor categories and let Z be a gen-
erating object of T in the sense that the canonical map w(T) — GL(Z) is an isomorphism.
Let F': T — T’ be an exact SM functor. This functor induces an equivalence of tensor
categories

F:T — Repr(GL(F(2)),¢).

Proof of Corollary 11.3.1: By Proposition 11.2.1, we only need to prove that there is a
7(T")-equivariant isomorphism F (7 (7)) = GL(F(Z)).

Since 7(T) = GL(Z), it remains to verify that the following diagram of affine groups
schemes over T7 is commutative.

(28) F(?TT(T)) — F(GT(Z))
m(T") —— GL(F(2))

Let us write down the respective functors Com(7”) — Grps.
We get the diagram where the functors ¢p, ¢ and 15 have the same meaning as in
11.2.4.

(29) (B — Aut®(¢p)) — (B + Autpp)(F'(B) ® Z))

Lg

(B — Aut®(vp))

| e

(B > Aut®(¢5)) — 2+ (B — Autp(B @ F(Z)))

and the maps €, €, and ep(z) are defined as evaluations at Z, Z, and F(Z) respectively.
One easily verifies that the diagonal arrow €/, cuts the diagram into a commutative

triangle and a commutative square. This implies the commutativity of the whole diagram.
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11.3.1.

Proof of Theorem 11.1.2: (a) Assume X is not annihilated by any Schur functor. By
Theorem 9.2.1, the functor Fx extends uniquely (up to unique isomorphism) to
an exact SM functor

Ux : Vi — Rep(GL(X),¢).

The statement of Theorem 11.1.2 will follow from Proposition 11.3.1 once we show
that the canonical homomorphism of affine group schemes in V;

is an isomorphism.

Let us compare the respective functors of points Com();) — Grps.

The functor represented by m(V;) carries A € Com();) to the automorphism
group of the tensor functor i : V; — Mod 4.

The functor represented by GL(V;) carries A to the automorphism group of
A ® V; considered as A-module.

The map 7(V;) — GL(V;) is defined by evaluation of any automorphism of i4
at V; € V;. This is an isomorphism by universality of V;, see Theorem 9.2.2: we
have an equivalence

Fun® (V,, Mod(A)) — Fun/(D,, Mod(A))
which yields an isomorphism
Aut®(z'A) — AutA(A & W)

This completes the proof of Part (a).

(b) Assume X is annihilated by some Schur functor S*. By [Del2, Proposition 0.5(ii)],
this means that any subquotient of a finite direct sum of mixed tensor powers of
X is annihilated by some Schur functor.

Recall that the objects of the category Rep;(GL(X),€) are subquotients of
direct sums of mixed tensor powers of X. Therefore, the category Rep,(GL(X),¢)
satisfies the conditions of [Del2, Theorem 0.6] and thus is super-Tannakian, i.e.
possesses a super-fiber functor

S :Repr(GL(X),e) — sVect.

The image of the object X under the super-fiber functor is then isomorphic to
the super vector space C™" for some m,n € Z such that m —n = t.

Applying Proposition 11.3.1 to the super-fiber functor S, we obtain an equiva-
lence of categories

Repr(GL(X), €) — Repyyece (GL(m[n), €) = Rep(gl(m|n)).
This completes the proof of Theorem 11.1.2. O

We can apply Theorem 11.1.2 to the following construction, due to Deligne (see [Del3,
Section 10]).

Choose t; € C — Z. Consider the tensor category T := Dy, ® D;_4, and the object
X =V, @1l V4.

The object X has dimension %, so it gives rise to a tensor functor D; — 7. Deligne
proves [Dell, Conjecture (10.17)] that this functor is fully faithful. By Theorem 11.1.2,

we obtain:
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Corollary 11.3.2. For any t; € C — Z, there is a unique canonical equivalence
Vt — Reth1®Dt7t1 (GL(X), 6)
carrying Vi to X.
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