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We present a new class of electrostatics problems that are
exactly solvable by adding finitely many image charges. Given
a charge at some location inside a cavity bounded by up to
four conducting grounded segments of spheres: if the spheres
have a symmetry derived via a stereographic projection from a
4D finite reflection group, then this is a solvable generalization
of the familiar problem of a charge inside a spherical cavity.
There are 19 three-parametric families of finite groups formed by
inversions relative to at most four spheres, each member of each
family giving a solvable problem. We solve a sample problem
that derives from the reflection group D4 and requires 191 image
charges.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In electrostatics, an important category of exactly solvable problems consists of those that can
e solved by the method of images [1,2]. We will restrict ourselves to the subcategory where only
initely many image charges are needed and where the boundary conditions correspond to grounded
onductors. So far, to the best of our knowledge [3–6], the list of problems known to belong to this
undamental subcategory has been unchanged since at least Maxwell’s 1873 treatise [7], where it
ppears as follows (Art. 167, p. 206):
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The method of electrical images may be applied to any space bounded by plane or spherical
surfaces all of which cut one another in angles which are submultiples of two right angles. In
order that such a system of spherical surfaces may exist, every solid angle of the figure must
be trihedral, and two of its angles must be right angles, and the third either a right angle or
a submultiple of two right angles. Hence the cases in which the number of images is finite
are—(1) A single spherical surface or a plane. (2) Two planes, a sphere and a plane, or two
spheres intersecting at an angle π/n. (3) These two surfaces with a third, which may be either
plane or spherical, cutting both orthogonally. (4) These three surfaces with a fourth cutting
the first two orthogonally and the third at an angle π/n′. Of these four surfaces at least one
must be spherical.

According to Ref. [4] (p. 302), some of the best-known expositions of the method of images are
the textbooks by Jeans [5] and Smythe [6]. Remarkably, we were unable to find any post-Maxwell
sources that treat cases (3) and (4), with the sole exception of Jeans, who only mentions the case
of three planes all intersecting at right angles (Art. 211, p. 188).

In the present work, we will substantially enlarge Maxwell’s list. Our workhorse is the well-
eveloped mathematical theory of finite reflection groups [8]. For our purposes, we will need only
few basic facts from this theory. Nevertheless, since the theory is perhaps unfamiliar to many

eaders, we will explain these relevant facts in detail. Reflection groups also underlie the exact
olvability, via Bethe ansatz, of certain models in many-body 1D quantum mechanics [9–11].
Finite reflection groups concern planar mirror reflections. The connection to spherical surfaces is

rovided by the stereographic projection, through the following fact: if we stereographically project
planar mirror reflection in N dimensions, we obtain a sphere inversion in N − 1 dimensions.
We will show that the method of images can be used to find the field induced by a point charge

placed at an arbitrary location inside a grounded conducting cavity) if the shape of the cavity has
he following properties. First, the walls of the cavity should be segments of up to four spheres
which may have an infinite radius, i.e. may be planes). Second, the spheres in question should be
and we will devote a good portion of the text explaining what all of this means) stereographic
rojections, from 4D to 3D, of great hypercircles that lie on the planes that are the generating
irrors of a 4D finite reflection group.
The locations and values of the image charges are then derived, in effect, by a repeated

pplication of the familiar formula used to find the image charge that solves the problem of a point
harge next to a conducting sphere. The properties of reflection groups (and of the stereographic
rojection) guarantee that there will be only finitely many image charges and that the charge values
an be unambiguously assigned.

. Outline

The construction we have just briefly described includes as special cases many (but not all)
lements from Maxwell’s list. We will introduce the basic concepts of finite reflection groups in
ection 3, illustrating them in Section 3.1 with the help of a case that is on the Maxwell’s list.
e will proceed in Section 3.2 to explain some further properties of reflection groups, including

heir direct products (Section 3.3) and Coxeter diagrams (Section 3.4). We will then be ready to
resent, in Section 4, the first example of a solvable problem that is not on Maxwell’s list. This
ill use nontrivial properties of reflection groups, but it will be entirely in 3D, so the stereographic
rojection will not be used yet. The specific example is treated in Sections 4.1 and 4.2. In order to
dvance to 4D finite reflection group, we will need to discuss the stereographic projection, which
e do in Section 5. At that point, we will be ready to present, in Section 6, an outline of our

ull 4D procedure. This will also be the point, in Section 6.1, where we contrast our method to
hat of the Kelvin transform. In Section 7, we review the sphere inversion for a single spherical
avity, and proceed to explain, in Section 8, how to construct solvable problems using piecewise-
pherical conducting cavities. Section 9 gives computational details. In Section 10, we provide a
orked nontrivial example of our procedure. Finally, we conclude with a summary and outlook in

ection 11.
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3. A crash course in finite reflection groups (and what they have to do with the method of
images)

We assume the reader is familiar with the two simplest examples of the method of images,
each of which requires just one image charge: a point charge next to a grounded conducting plane,
and a point charge either inside or outside a grounded conducting sphere. In the first example, the
location of the image charge is the mirror reflection (with respect to the conducting plane) of the
original charge; in the second, it is the spherical inversion (relative to the conducting sphere) of the
riginal charge.
For now, we will be considering a single point charge next to a system of planar conductors, a class

of problems that uses only mirror reflections; we will return to spherical inversions in Section 6,
after we have discussed the stereographic projection in Section 5.

When it comes to systems of planar conductors, the key question is under what circumstances
e get finitely many images after we have reflected the original charge – and then, iteratively, also

reflected each newly obtained image charge – relative to each of the planes of the conductors. The
definite answer to this question comes from the mathematical theory of finite reflection groups. All
mathematical facts concerning that theory will come from Ref. [8].

When a line or a plane (or, in higher dimensions, a hyperplane) is used to reflect objects, we will
efer to it as a ‘mirror’. It will be convenient to identify the mirror by a unit vector α̂ that is normal
o it. Thus, when we reflect a vector λ⃗ with respect to the plane characterized by α̂, the result is
iven by λ⃗ − 2 (λ⃗ · α̂) α̂. This same formula holds in any number of spatial dimensions.
Let us now consider a simple example in 2D.

.1. A simple example: group A2 (a.k.a. I2(3))

Consider the following problem, which belongs to case (2) from Maxwell’s list: two planes
intersecting at an angle π/n, with n = 3; see Fig. 1. Our region of interest is the orange wedge,
hich is bounded by two conducting half-planes. A charge (the solid black dot) is placed in this
edge, at some arbitrary, generic location. This location defines the radius-vector r⃗0. The full planes

that contain the conducting half-planes will be called the generating mirrors, shown in solid green
and dashed red in the Figure. (The term ‘generating mirrors’ is a technical term from the theory
of finite reflection groups. In this section, we will introduce several additional technical terms, just
to see to what sorts of objects they refer. Then, in the following sections, we will explain in more
detail what these terms really mean.) The unit normal vectors α̂1 and α̂2 are chosen so that a vector
⃗ (whose initial point is the origin) lies in the orange wedge if and only if the projections r⃗ · α̂1 and
⃗·α̂2 are both positive. When the unit normal vectors are chosen this way, they are called the simple
oots of the reflection group.

Now we start iteratively reflecting r⃗0 and its images with respect to the generating mirrors. More
recisely, let Sold be a set in which we will be collecting the distinct image charges. Let us initially
lace just the vector r⃗0 in that set. Let Snew be another set, which will be a temporary storage
or the outcomes of reflections during each iteration; let it initially be empty. Now we iterate the
ollowing process: for each element of Sold, we reflect that element once through each generating
irror, adding the outcome of each reflection to Snew. Once this is done, we check to see if Snew
ontains any vectors that are not already in Sold. If yes, we add those vectors to Sold (i.e. we set
old = Sold ∪ Snew), make the set Snew empty again, and repeat the procedure. If no, we stop. In
he present case, we will find that once we generate the five image charges, so that Sold contains
ix charges total, the process stops: a reflection of any one of these charges with respect to either
enerating mirror produces one of the charges that is already in Sold. One can prove that if the
ngle between the generating mirrors were something other than π/n, with n a positive integer,
he process would never stop: there would be an infinity of image charges.

The six images are called the orbit of the initial charge under the action of the reflection group.
n other words, every image charge is connected to the original charge by the action of an element
f the group. Thus, this particular group has six elements (including the identity, which maps the
nitial charge to itself); we say that the order of the group is six.
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r

Fig. 1. Two planes intersecting at an angle of π/3 and the associated system of images. In the terminology of finite
eflection groups, this is a group that belongs to two families and can be equivalently designated as either A2 or I2(3).
The solid green and dashed red lines are the generating mirrors of the group. The vectors α̂1 and α̂2 are the corresponding
normal vectors, whose orientation is chosen so that they constitute a system of simple roots this reflection group. The
orange wedge is the principal chamber of the group, which is where the original charge is located, denoted by a solid
black dot; the final solution will give the electric field in this wedge, assuming that the portions of the red and green lines
that bound it are grounded conductors. The group has another mirror, in dotted blue, whose action can be replicated by
sequences of reflections through the two generating mirrors. The set of all mirrors partitions the space into six chambers,
where six is the order of the reflection group. There is one image charge in each non-principal chamber. An image charge
is either the same as the original or the negative of it, and is respectively denoted either by a solid dot or by an open
circle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Note that there is a third plane, shown in dotted blue, that can also be considered a mirror. Its
location can be obtained by reflecting one of the two generating mirrors with respect to the other.
(Once we have the set of these three mirrors, reflecting any one of them with respect to any of the
other ones produces a mirror that is already in the set; we will call this set of three mirrors a full set
of mirrors.) As far as generating images, this third mirror does not add anything new: a reflection
of any point through this third mirror is equivalent to some sequence of reflections with respect
to the two generating mirrors. In particular, adding this extra mirror does not result in any extra
image charges. However, it is useful to consider the full system of mirrors, because it leads to the
concept of chambers. Note that the three mirrors in the Figure partition the ambient (2D) space into
six congruent regions, which are the chambers. It turns out there is one charge (image or original)
per chamber. Thus the order of the group is equal to the number of chambers. Note that all three
mirrors intersect at a point, which also means that all the chambers meet at a point.

There are several additional facts to notice. First, not every element of the reflection group is
a reflection—in other words, some sequences of reflections with respect to the mirrors are not
equivalent to any single reflection with respect to some mirror in the full set. Consider, for example,
the solid dot in the lower right chamber bounded by the solid green and dotted blue mirrors. It
cannot be obtained from the original charge by any single reflection; in fact, what links these two
is a rotation by 2π/3. Second, all the charges are at the same distance from the origin, and so lie
on a circle. Third, if we rotate the whole system of mirrors, none of the facts noted above change.
Therefore, as far as reflection groups are concerned, we will think of all the rotated versions of this
system of mirrors as being equivalent.
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3.2. A general description of reflection groups

The preceding discussion suggests a procedure for how one could, at least in principle if not in
practice, identify finite reflection groups in any number of spatial dimensions. We will now describe
that procedure in general terms. Then, in Section 4.1, we will go through it again on the example
of a specific 3D group.

Pick a dimensionality D of the ambient space (D = 2, 3, 4, 5, . . .). Pick some finite number
f hyperplanes in that space to serve as mirrors. Let us call these the ‘seed’ mirrors (which is not
technical term; these seed mirrors may or may not turn out to be what we will later call the
enerating mirrors, which is a technical term). Finally, pick a vector r⃗0. Introduce the sets Sold and

Snew. Initialize them so that Sold contains just r⃗0, while Snew is empty. Now iterate the following
procedure. First, reflect each element of Sold with respect to each of the seed mirrors, adding the
outcome to Snew. After this has been done, check if Snew contains any elements that are not in Sold
already. If yes, add all such elements to Sold (i.e. set Sold = Sold ∪ Snew), reset Snew so that it is again
empty, and repeat; if no, stop. For almost all choices of the seed mirrors, the procedure will never
stop and the size of Sold will grow without bound (for almost all choices of r⃗0). But for some special
choices of the seed mirrors, eventually the procedure stops no matter how we pick r⃗0. At that point,
Sold will contain a finite number of vectors such that, if we reflect any of them with respect to any
seed mirror, the result will already be in Sold. We say that such a system of seed mirrors produces a
finite reflection group. The order of the group is the maximal size that Sold can have no matter how
r⃗0 is picked. (In fact, a generic choice of r⃗0 results in the maximal size of Sold.)

Once we have identified a system of seed mirrors that produces a finite reflection group, it may
turn out that this reflection group has extra mirrors, beyond the seed ones with which we started.
The full set of mirrors of the reflection group can be obtained by initializing Sold with our seed
mirrors (Snew again starts as an empty set), and then iterating as follows. In each iteration, we first
reflect each element of Sold (which is a mirror) with respect to all the remaining elements of Sold
(which are also mirrors). The result is another mirror, which we add to Snew. After this has been
done, we check if there are any mirrors in Snew that are not already in Sold. If yes, add those mirrors
to Sold, reset Snew so that it is again empty, and repeat; if no, stop. If the seed mirrors produce a
finite reflection group, this process is guaranteed to stop, at which point Sold contains the full set
of mirrors of the reflection group: if we reflect any element of Sold with respect to any of the other
elements, the result is a mirror that is itself already in Sold. Note that the number of mirrors in the
full set of mirrors of a reflection group is, in general, smaller than the order of the group—sometimes
vastly so. The mirrors of the full set all intersect at a single point.

A key property of the full set of mirrors is that it partitions the ambient space into disjoint
congruent regions called chambers. The original vector r⃗0 is in one chamber, and all the other
chambers contain exactly one image. Thus, there are as many images as there are chambers, and
their number is called the order of the group.

Note that if a system of mirrors of a group is rotated as a whole by any amount, the result still
constitutes the same finite reflection group. This property will be important below.

When the originally chosen seed mirrors do generate a finite reflection group, it may be possible
to discard some of the seed mirrors and yet have the iterative procedure (using just the retained
mirrors) still generate the same set of images as before. More generally, we may start with the
full set of mirrors, and do the following procedure. We start discarding the mirrors one by one;
whenever we discard one, we test to see if the remaining ones still generate all the images. If not,
we reinstate the mirror; if yes, we leave it out. Then we continue discarding mirrors, but any mirror
we had to reinstate at any previous step we do not attempt to discard again. Eventually we will end
up only with mirrors that we had to reinstate at some point, and we stop. The result is a system of
generating mirrors. Depending on the order in which we proceeded to discard the mirrors from the
full set, we will in general end up with different systems of generating mirrors. However, all them
are geometrically congruent to each other. In particular, given a full set of mirrors of a reflection
group, all systems of generating mirrors have the same number of mirrors, which is called the rank
of the reflection group; we will denote it by ℓ. Of course, given a system of generating mirrors, all
the other mirrors of the group can be obtained by initializing Sold with just the generating mirrors,
and iterating as before.
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For each mirror in a full set of mirrors, there are two unit normal vectors, which are negatives of
each other. These vectors are called the roots, and we see that there are twice as many roots as there
are mirrors. (Actually, in the full mathematical theory, it is useful to consider normal vectors which
are normalized to certain special values that are not necessarily unity. For our purposes, however,
we may assume that all roots are normalized to one.)

One consequence of what we have said so far is that in order to completely characterize a
reflection group, it is enough to know (at least one set of) its generating mirrors; thus, it is enough
to know the roots (unit normal vectors) of these generating mirrors. There are 2ℓ of them, two
per generating mirror. We will now show a useful way to pick just one root per generating mirror,
giving a set of roots we will call the simple roots. For any system of ℓ generating mirrors, at least
one chamber will be enclosed entirely by the generating mirrors in that set (if there is more than
one such chamber, just pick one of them); this will be the principal chamber. It is always possible to
pick, from the 2ℓ roots characterizing the generating mirrors, a set of ℓ of them, α̂i, i = 1, . . . , ℓ,
ne for each generating mirror, in such a way that a vector r⃗ belongs to the principal chamber if and
nly if r⃗ · α̂i > 0 for all i = 1, . . . , ℓ. In that case, the set of vectors α̂i is called a set of simple roots
f the reflection group, usually denoted by ∆. It is always a linearly independent set, but generally
ot an orthogonal one.
It follows that the rank ℓ of a reflection group is the lowest dimension that the ambient space

ust have in order for that reflection group to be realizable in it; the simple roots are a basis (though
ot an orthonormal one) for that minimally-dimensional ambient space. Since we will ultimately
e dealing with the 4D space, we can use any reflection group of rank 4 or lower.
All finite reflection groups, in all spatial dimensions, have been classified and their properties

re very well understood. In particular, we know all finite reflection groups of rank 4 or lower.
t turns out there are 19 of them, and we list all of them in Tables 1 and 2. As is clear from
he previous discussion, each reflection group is completely defined by its simple roots. There are
tandard choices for how to write the simple roots of all possible reflection groups. They can be
ooked up in any number of sources, and in particular in Ref. [8]. In Tables 1 and 2, for each reflection
roup we give a set of its simple roots, but we should note that the way we present them is not
he standard way of writing them. Why we did this will become clear below. In addition, for each
roup we also give its Coxeter diagram (a concept we will explain below), the number of mirrors,
nd the order.
Referring back to Maxwell’s list, the reflection groups corresponding to two planes meeting at

n angle of π/n are called I2(n). Four of them have aliases, because they also count as members
f other families of groups; see the caption of Table 1. In the group notation, the subscript always
enotes the rank. Note that the mirrors of I2(n) are the planes of symmetry of a regular n-gon.

.3. Direct products of reflection groups; reducible and irreducible groups

When we consider the problem in Fig. 1 (or indeed any problem where two planes meet at an
ngle π/n), it is clear that the problem remains solvable if we add another conducting plane parallel
o the xy-plane: all we have to do is reflect all the charges about that plane and invert their signs.
he resulting system of planes is also a reflection group, denoted by I2(n)×A1. Here A1 is the usual
otation for the rank-1 group consisting of a single mirror, and ‘×’ denotes the direct product of
roups. We will now explain, through an explicit construction, what that is in general. Namely,
iven two arbitrary reflection groups, for which we assume we know their simple roots, we will
how how to construct a system of simple roots for their direct product.
Note that a group is called irreducible if it cannot be written as a direct product of two other

roups; if it can, then it is reducible. In Tables 1 and 2, all the groups that are not written as direct
roducts are in fact irreducible.
Here is how to construct a direct product of reflection groups. Let g1 be a finite reflection group of

ank r1, order o1, and with a total ofm1 mirrors, and let g2 be a reflection group whose corresponding
umbers are r2, o2, and m2. To construct the system of mirrors, simple roots, and chambers for
1 × g2, we will need a space of at least r1 + r2 dimensions; for definiteness, let us choose Rr1+r2 .
he simple roots of g define an r -dimensional hyperplane in that space, while the simple roots of
1 1
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Table 1
The 19 finite reflection groups of rank 4 or less, part 1 of the list. The subscript
to the (bold capital) letter name of the group denotes the rank. Thus, the rank of
the group is the sum of the subscripts. For example, both H3 and I2(m)×A1 have
rank 3, and so they each have three simple roots. The variables m1 , m2 , and m
take integer values of 3 or more. In groups that contain I2(m), cm = cos π

m . In H4

and groups that contain H3 , a1 = −
1
4

(
1+

√
5
)
, b1 = 1

2

√
1
2

(
5−

√
5
)
, a2 = −

√
1
10

(
5+

√
5
)
,

b2 = 1
2

√
1+ 2√

5

(
3−

√
5
)
. Further, in H4 , c = 1

4

√
1+ 2√

5

(√
5−5

)
and d = 1

2

√
1
2

(
3−

√
5
)
.

Note the following: i. A2 , B2 , H2 , and G2 are included respectively as I2(3)
through I2(6); ii. Dn only exists for n ⩾ 4; iii. Fn only exists for n = 4; and, iv.
Hn only exists for n = 2, 3, 4.

g2 can always be chosen in Rr1+r2 so that they are all orthogonal to all simple roots of g1. An obvious
way to do this is to take the simple roots of g1 (which can always be taken as r1-dimensional row
vectors) and append r2 zeros to these row vectors; then we similarly pre-pend r1 zeros to the r2-
imensional row vectors that are the simple roots of g2. Once such a choice is made, collectively
he simple roots of g1 and g2 will be the simple roots of g1 × g2, which thus has rank r1 + r2,
nd whose total number of mirrors is m1 + m2. The order of the direct product turns out to be
he product of the orders, o1o2. To construct the direct product of more than two (but still finitely
any) reflection groups, proceed iteratively: first construct the direct product of two of them, then

he direct product of the result with the third, and so on. It turns out that the order in which we
o this does not matter (‘up to isomorphism’ of groups, as mathematicians say; for us, we may say
hat changing the order in which we construct the product of groups is equivalent to changing one’s
ind about which spatial dimension is called dimension 1, which one is called dimension 2, etc.).
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Table 2
The 19 finite reflection groups of rank 4 or less, part 2 of the list. As before,
in groups that contain I2(m), cm = cos π

m . The final entry in the table,
A1 , corresponds to the classic problem with one spherical cavity—the very
inspiration for this paper.

In the example of I2(n) × A1, the ‘hyperplane’ was chosen to be the xy-plane. Group I2(n) is of
rank 2 with simple roots (1, 0) and (−1/2,

√
3/2), while A1 is of rank 1 with simple root (1). So

the rank of I2(n) × A1 is 2 + 1 = 3. It is of order 4n and has a total of n + 1 mirrors. We obtain
its simple roots by appending 3 − 2 = 1 zeros to the simple roots of I2(n), obtaining (1, 0, 0) and
(−1/2,

√
3/2, 0), and by prepending 3 − 1 = 2 zeros to the simple root of A1, obtaining (0, 0, 1).

3.4. Coxeter diagrams

At this point we can introduce Coxeter diagrams, which are a basic tool in the theory of
finite reflection groups. In brief: since the relative orientation of simple roots is all that matters,
simple roots (and thus the finite reflection group as a whole) can be efficiently represented in a
diagrammatic form, as follows. Each simple root is represented by a node (i.e. a dot). In most finite
reflections groups, an overwhelming majority of simple roots are mutually orthogonal, and so we
connect two nodes by an edge only if the corresponding simple roots are not mutually orthogonal.
Each edge therefore corresponds to two mirrors intersecting at a dihedral angle which is not π/2.
The angle is, however, always of the form π/m, with m an integer. We place m above the edge,
signifying that the angle between the mirrors is π/m. It turns out that m = 3 is by far the most
common label, and so by convention we leave the edge unlabeled if m = 3 (whereas, as we said,
we omit drawing the edge altogether if m = 2). The result is called a Coxeter diagram.
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Using simple roots, the label m (which we place above the edge connecting the nodes that
epresent two simple roots α⃗i and α⃗j) is given by m = π/arccos

(
−α⃗i · α⃗j

)
, where we assumed

the simple roots are normalized.
A group is irreducible just in case its Coxeter diagram is connected. It should now be easy to

verify that the Coxeter diagrams in the two tables do correspond to the simple roots of the group.
For example, for A1, ; for I2(m), m ; for I2(n) × A1, m ; for A3, ; etc. Let us look at the
last example in detail. Note the inner products of the simple roots of A3: α⃗1 · α⃗2 = α⃗2 · α⃗3 = −1/2
nd α⃗1 · α⃗3 = 0. This corresponds to m = 3, 3, 2. We see that there are indeed two unlabeled edges
orresponding to the two instances of m = 3, and that the first and last nodes are not connected
y an edge, corresponding to m = 2.

. First extension of Maxwell’s list of solvable problems: irreducible finite reflection groups of
ank 3

Considering how we solved the electrostatics problem associated with I2(n) × A1, we might
suspect that all finite reflection groups of rank 3 will generate a similar solvable electrostatics
problem for a point charge in a cavity bounded by three grounded conducting planar walls. This
is in fact correct, as we will show momentarily. Looking at Tables 1 and 2, we see that, besides the
reducible groups of rank 3 (namely, A1 × A1 × A1 and the family I2(n) × A1), there are also three
irreducible ones: A3, B3 (alias C3), and H3. It is these that give solvable problems that were not
on Maxwell’s list. To construct the generating mirrors in 3D, we need the 3D simple roots of these
groups. These can be obtained from Table 2. True, they are given there as 4D vectors, but we actually
originally obtained them as 3D vectors, and then embedded them in 4D space by appending a zero
as the fourth coordinate. Thus, now we are just reversing this, discarding the zero fourth coordinate.

We should emphasize that all of the solvable problems we are presently discussing, which are
related to reflection groups in 3D, can also be obtained as special cases of our general 4D procedure,
which we will be explaining shortly. Nevertheless, it may be helpful to outline how one constructs
a solvable problem in this simpler 3D case, where we do not use a stereographic projection.

After that, we will proceed to use these 3D reflection groups to illustrate the method of
stereographic projection in the simpler case of mapping 3D to 2D. Once we have done this, we
will proceed to our final goal, which is the method of stereographic projection from 4D to 3D.

4.1. An example: group A3 (without stereographic projection)

For definiteness, let us pick the group A3, which is the symmetry group of the regular tetrahe-
dron. For the groups An, the standard form of the simple roots is given as embedded in the space of
n+1 dimensions, where they define an n-dimensional hyperplane. The three simple roots of A3 are
given in the literature as (1, −1, 0, 0), (0, 1, −1, 0), and (0, 0, 1, −1). To find what these vectors
are in 3D space, we apply the Gram–Schmidt process to them to generate an orthonormal basis
for the 3D space that they span, and then find their coordinates relative to that basis. The result
(after normalization) is α̂1 = (1, 0, 0), α̂2 = (−1/2,

√
3/2, 0), and α̂3 = (0, −1/

√
3,

√
2/3). This

is exactly what appears in Table 2, after we discard the fourth (zero) coordinate. It is clear that none
of the simple roots is orthogonal to both of the other ones, so this case indeed is not on Maxwell’s
list.

As we said, this group is a symmetry group of the regular tetrahedron. We can start from the
three simple roots we have just written down; see Fig. 2(a).

They define three generating mirrors. We can iteratively (as we described above) reflect the
enerating mirrors about each other until no new mirrors are produced. In this case, we will get
hree extra mirrors, for a total of six. They are depicted in Fig. 2(b). The six mirrors will be the
ix planes of symmetry of the regular tetrahedron, and so may be described as follows. Consider
tetrahedron. Pick a pair of vertices, and consider the edge that connects them. Now look at the
emaining pair of vertices, and consider the midpoint of the edge that connects them. The former
dge and the latter midpoint define a plane. It should be clear from the construction that this is
plane of symmetry of the tetrahedron. There are

(4)
= 6 ways to pick a pair of vertices, and
2
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Fig. 2. Geometry of A3 . (a) The simple roots and the corresponding generating mirrors. A part of the principal chamber
is shown in red. (b) The full system of mirrors, with part of the principal chamber in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

thus there are six planes of symmetry. Any three can be taken as generating mirrors, and the three
simple roots we have written down will indeed give a triplet of such planes. All the mirrors meet at
a point (this is the case with all finite reflection groups, in all dimensions), and we will set the origin
of our coordinate system at that point. Note that we still have the freedom to rotate our system
of mirrors about the origin. The full set of mirrors partitions the space into chambers, which are
visible in Fig. 2(b). To determine their number, note that a tetrahedron has 4 faces, and on each
face we see into six chambers. So there are 24 chambers total, which is also the order of A3. One
of the 24 chambers is the principal chamber, defined as the set of points r⃗ such that all of r⃗ · α̂i
is positive for i = 1, 2, 3. In Fig. 2(a) and (b), a part of the principal chamber is shown in red. All
other chambers are the images of the principal chamber ‘under the action’ of the reflection group.
This means that if we start iteratively reflecting the entire principal chamber about the generating
mirrors, we will eventually generate the remaining 23 chambers, and after that we will generate
no further ones.

4.2. Constructing a solvable electrostatics problem

To construct a solvable electrostatic problem, consider the principal chamber. It is enclosed by
parts of the generating mirrors. Suppose these parts are grounded conducting surfaces. Place a point
charge inside the principal chamber: our electrostatics problem is to find the electric field inside
this chamber. To solve it by the method of images, iteratively reflect that point charge through the
generating mirrors until 23 distinct images are created, one in each non-principal chamber; further
reflections will not generate any new ones. For future reference, note that all charges are the same
distance from the origin, and so lie on the surface of a sphere. The magnitudes of all the charges
are the same; the only nonobvious question is whether it is possible to assign the charge signs in a
consistent manner. What is required is that any pair of charges related by a single reflection have
opposite signs. That way, their contribution to the potential at the mirror between them will be zero.
Furthermore, our iterative construction guarantees that for every charge and every mirror, there is
a charge that is the reflection of the first charge relative to that mirror. Thus, at every mirror, the
potentials due to all the charges will cancel out.

Here is how to assign the charge signs. Note that every image charge is the result of some
sequence of reflections from the original charge. Let the image charge have the same sign as the
original if it takes an even number of reflections to generate it from the original, and let it have
the opposite sign if it takes an odd number. This guarantees any pair of charges related by a single
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eflection have opposite signs: after all, they will be reachable from the original charge through
eflection sequences whose lengths differ by one. Thus the sequence lengths will have opposite
arities, and so the image charges will have opposite signs.
The only possible problem is this: note that each image charge is reachable from the original

ne through a variety of reflection sequences, which generally have unequal lengths. And if some of
hese sequence lengths are odd numbers while others are even, we are in trouble. Luckily, a general
heorem of reflection groups guarantees that no matter which sequence of reflections we use to get
rom the original charge to any given image, the parity of the sequence length will always be the
ame. Thus the signs of the image charges can be unambiguously assigned, and the full system of
harges will solve our electrostatics problem in the principal chamber.

. Stereographic projection

Our main result concerns reflection groups in 4D, and the way we will go from the abstract 4D
pace to our physical 3D one will be via a stereographic projection. Here we will first describe our
rocedure in the more familiar 3D setting. For an account of the stereographic projection from 3D
o 2D, we refer to Ref. [12], which contains basic facts and proofs using Euclidean geometry.

Choose a system of generating mirrors in 3D, e.g. corresponding to A3. The generating mirrors
ll meet at a point. Choose a sphere whose center is at that point, of any radius R′. Form the
ntersections of this sphere and the generating mirrors. The result is three great circles, as shown
n Fig. 3(a). The region corresponding to the principal chamber is a spherical triangle. Now choose
ome point on the sphere to be the ‘South Pole’; the point diametrically opposite is then the ‘North
ole’. Consider the 2D plane S tangent to the sphere at the South Pole. The stereographic projection
f points on the sphere to this plane is then found as follows. Pick a point of interest, P ′, on the

sphere. Consider the line L that passes through both the North Pole and the point of interest. The
tereographic projection of the point of interest is the point P on the tangent plane S at which the
line L crosses the that plane. This is shown in Fig. 3(b). The ‘North Pole’ is marked by the red point
n the topmost end of the black line. This line shows the projection of a point on the blue great
ircle. Note that the system of mirrors was tilted so that the spherical triangle corresponding to the
rincipal chamber is near the South Pole, but also so that no great circle passes through the South
ole. The resulting projection is shown in (c). If the system of mirrors were tilted so that two of the
enerating mirrors passed through the South Pole, then two of the arcs become straight lines. The
hird one still must be a circular ark, because the three great circles corresponding to the generating
irrors never all meet at one point.
If we pick a coordinate system such that its origin is at the center of the sphere, so that the

outh Pole is at (0, 0, −R′), it is easy to show that the stereographic projection (x, y) of a point
x′, y′, z ′) on the sphere (i.e. such that (x′)2 + (y′)2 + (z ′)2 = (R′)2) is given by

(x, y) =
2R′

R′ − z ′

(
x′, y′

)
.

If the point on the sphere has spherical coordinates (R′, θ ′, φ′) so that (x′, y′, z ′) = R′ (sin θ ′ cosφ′,

sin θ ′ sinφ′, cos θ ′), then the polar coordinates (ρ, φ) of the projected point are ρ = 2R′

⏐⏐⏐cot θ ′

2

⏐⏐⏐ and
φ = φ′ (and of course the z-coordinate, if we choose to include it, is −R′). Relevant properties of
the stereographic projections are as follows.

First, a great circle on the sphere that passes through the poles is mapped to a line in the plane
(but it will be convenient to consider this a limiting case of a circle of as its radius goes to infinity).
If the great circle does not pass through the poles and lies in the plane whose unit normal is
n = (nx, ny, nz) = (sin θn cosφn, sin θn sinφn, cos θn), then it is mapped to a circle C in the plane,
whose radius is R = 2R′ |sec θn| and whose center is O⃗ = −2R′(sec θn) (nx, ny, 0) + (0, 0, −R′).

Second, recall that the great circle is an intersection of a mirror and the chosen sphere. Pick a
oint p⃗′

1 on the sphere and reflect it through this mirror. The reflection p⃗′

2 is also on the surface of
the sphere. Now consider the stereographic projections p⃗ and p⃗ of the two points. It turns out that
1 2
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Fig. 3. Stereographic projection of reflection group geometry from 3D to 2D, on the example of A3 . The regions
corresponding to the principal chamber are marked by the red letters ‘p.c.’ (a) The great circles on a sphere that are
he intersections of the sphere and the generating mirrors. (b) The stereographic projection of the great circles from (a)
nto a plane tangent to the sphere at the sphere’s ‘South Pole’, which is marked by the point in magenta. The solid lines
orrespond the generating mirrors, while the dotted ones correspond to the other mirrors (c) The resulting 2D system
f circles. The ‘South Pole’ is marked by the point in magenta. The region corresponding to the principal chamber is
ounded by circular arcs. (d) If the system of mirrors were tilted so that two of the generating mirrors passed through
he South Pole, then two of solid arcs become straight lines. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

ne of the points is inside the circle C , one outside, and that they are circle inversions of each other,
ith C as the inversion circle. This means that p⃗1, O⃗, and p⃗2 lie on a line, and that the distances

from the points to the center of the circle satisfy d(p⃗1, O⃗) d(p⃗2, O⃗) = R2, where d(p⃗, O⃗) = |p⃗ − O⃗|.
Here for any vector v⃗, |v⃗| is its norm, defined as |v⃗| =

√
v⃗ · v⃗.

Third, stereographic projection is conformal, meaning that if two curves on the surface of the
phere intersect at some angle, the curves that are their projections will intersect at the same angle.
Fourth, the stereographic projection is reversible; it defines a one-to-one correspondence be-

ween the sphere (without the North Pole) and the plane.
We should mention that we were unable to find an explicit mention of the second property in

the literature, except for the special case where the great circle is parallel to the plane to which we
are projecting. In particular, it is not mentioned in Ref. [12]. Our explicit proofs (for 3D→2D and
4D→3D cases) are, so far, brute-force computations which we will not reproduce.
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6

d

. An outline of our procedure in 4D

We will now have to repeat the procedure of the previous section with all numbers of spatial
imensions raised by one. Pick a reflection group g; let ℓ be its rank and |g| its order. Place its ℓ

generating mirrors in the 4D space. This means that ℓ must be 4 or less. There are 19 finite reflection
groups of rank 4 or less, and they are all listed in Tables 1 and 2. The generating mirrors of g always
meet at a point, and we choose a coordinate system whose origin is at that point. We are free to
rotate our system of mirrors about the origin; below, we will briefly discuss how to parametrize
4D rotations.

Now pick a radius R and consider a 4D hypersphere (a 3D object), centered at the origin, of that
radius. The intersections of the hypersphere and the generating mirrors are great hypercircles S ′

i ,
i = 1, . . . , ℓ. The intersection of the sphere and the principal chamber, which we will denote A′, is
a 3D region on the hypersphere. Choose a point P ′

1 in A′, and find all its images P ′

j , j = 2, . . . , |g|,
relative to the generating mirrors.

Now we stereographically project to the 3D hyperplane tangent to the hypersphere at its South
Pole, (0, 0, 0, −R). The ℓ projections of the great hypercircles are Si, each of which is either a plane
(if it comes from a great hypercircle that passes through the poles) or else a sphere. Note that by
4D-rotating our system of mirrors we can make up to three great hypercircles pass through the
poles.

The projections of all the points are Pi, i = 1, . . . , |g|. The projection of A′ is a 3D region bounded
by segments of Si’s, and it contains P1. Note that although Pi, i = 2, . . . , |g| were obtained via the
stereographic projection of P ′

i ’s from 4D, we could obtain them in a different way, entirely within
3D. Namely, we just iteratively sphere-invert P1 relative to the spheres Si (for any Si that is a plane,
we just reflect as usual). Below, we will in fact refer to this procedure to figure out how to assign
the values to the image charges.

Indeed, we need not have started with 4D points (such as P ′

1). We may first use the stereographic
projection to generate the 3D region bounded by segments of the Si’s. Now we pick a point P1 in
that region (this will be the location of our charge) and iteratively sphere-invert it to obtain the
other points Pi (these will be the locations of our image charges). Note that since the stereographic
projection is reversible, all those points are images of some points P ′

i , i = 1, . . . , |g|, on the 4D
hypersphere; and all of these P ′

i ’s are images of each other under the reflection through the mirrors
of the 4D finite reflection group.

Note that the above implies that we can use the stereographic projection to generate a finite
group of sphere inversions (possibly supplemented by plane reflections). In fact, our original
motivation for this project was to find out what concept plays the same role for sphere inversions as
finite reflection groups do for plane reflections; it just turned out that sphere inversions are simply
related to plane reflections (in one spatial dimension higher) through the stereographic projection.

6.1. Comparison to the Kelvin transform

At this point, we should mention the well-known Kelvin transform [13], which, given any
problem solvable by images, can be used to generate a different solvable problem. Physics sources
tend to refer to the Kelvin transform as the ‘method of inversion’ [1,5,6], but since sphere inversions
appear in our procedure in a different way, we will not use that name. The Kelvin transform involves
sphere-inverting the geometry of the original problem relative to an arbitrary inversion sphere,
and adjusting the resulting charges in a particular way. Sphere inversion transforms planes and
spheres to planes and spheres, and in particular can transform planes into spheres. Indeed, the
Kelvin transform is the origin of the spherical surfaces in Maxwell’s list of solvable problems.

These properties of spherical inversions sound remarkably similar to those of stereographic
projections. This is not an accident: the stereographic projection of a sphere s is equivalent to a
spherical inversion of s relative to an inversion sphere S, whose radius is the diameter of s, centered
at the North Pole of s. In general, under spherical inversion, a sphere that passes through the origin

of the inversion sphere gets mapped to a plane. If it is further true that the radius of S is twice
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the radius of s, simple geometry shows that the spherical inversion is equivalent to a stereographic
projection.

Since our 4D procedure also generates solvable problems involving intersecting spheres and
planes, one might suspect that our construction and the construction using the Kelvin transform
are closely related. However, we will now show that neither is reducible to the other.

To see that the Kelvin transform construction cannot treat all the cases that our 4D construction
can, note that Kelvin transform requires a solvable 3D problem as input. If we do not use our
4D construction, all solvable problems must ultimately come from reflection groups of rank 3 or
lower (via the methods described in Section 4). The geometries that result from applying the Kelvin
ransform to those cannot be equivalent to those that are obtained (via our 4D procedure) from
rreducible reflection groups of rank 4. To see this, recall that both the spherical inversion and the
tereographic projection are conformal, i.e. angle-preserving. On the other hand, reflection groups
are completely determined by the dihedral angles between their generating mirrors (as encoded
in their Coxeter diagrams). After transformation (be it a spherical inversion or a stereographic
projection), whatever spheres and planes we obtain will still cross each other at those same angles.
So a spherical inversion of a 3D system of generating mirrors cannot produce the same angles as a
stereographic projection of an irreducible rank-4 system.

And to see, conversely, that our 4D construction cannot treat all the cases that the Kelvin
ransform can, note that when our construction maps the principal chamber to an area completely
nclosed by spherical or planar surfaces, the original charge should be placed within this area. On
he other hand, the Kelvin transform can be used to produce problems where the charge is on the
utside: just start with a π/n wedge (with a point charge inside of it) and choose an inversion
ircle inside this wedge. After a spherical inversion, the half-planes that define the wedge will
ecome intersecting spheres, with the appropriate parts of them missing so that the result is a
ingle ‘double bubble’ surface, which completely encloses a finite region of space. In this case, it is
he image charges (of the original solvable-wedge problem) whose Kelvin transforms will end up
n the inside, while the Kelvin transform of the original charge will be on the outside.
In our 4D construction, after we stereographically project the great hypercircles to ordinary

D spheres and planes, we have the locations of all the conducting surfaces and all the charges,
he original one and the image charges. However, we still do not know which values we need to
ssign to the image charges. To determine these values, we will need to use sphere inversions. Note
hat these sphere inversions are not Kelvin transforms, because neither the bounding walls not the
riginal charge are transformed. Let us describe this type of spherical inversion quantitatively.

. Sphere inversion for a single spherical conducting cavity

Consider a point charge q1 at a position p1 inside an empty spherical cavity of radius R centered
at a point O, surrounded by a grounded conductor (Fig. 4). Consider a point p2 related to the point
p1 through a sphere inversion, with the cavity wall playing the role of the inversion sphere:

p2 = O +

(
R

|p1 − O|

)2

(p1 − O) . (1)

Let r1 and r2 be the distances between a point on the cavity surface and the points p1 and p2,
respectively. For any point on the cavity surface, it can be proven that

r21
|p1 − O|

=
r22

|p2 − O|
. (2)

From this property, it follows immediately that if the value of the image charge is assigned as

q2 = −

√
|p2 − O|

|p1 − O|
q1 , (3)

then the electrostatic potential created by the physical charge and its image on any point on the
wall will vanish: q1/r1 + q2/r2 = 0 The resulting field will be the correct solution of the Poisson
quation with (zero) Dirichlet boundary conditions, thus solving the problem of the field induced
y a charge.
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Fig. 4. A charge inside a conducting spherical cavity: notations and definitions. O is the center of the cavity. The vector p1
s the position of the physical charge and r1 is the distance between a particular point on the cavity wall and the physical
harge, while p2 and r2 are the corresponding quantities for the image charge. The distances |p1 − O| and |p2 − O| govern
the assignment of the value of the image charge.

8. Piecewise-spherical conducting cavities solvable with the method of images

As we have been saying, our solvable problems will involve regions (cavities) bounded by seg-
ments of spheres and planes, where the latter coincide with the 4D→3D stereographic projections
of great hypercircles associated with a finite reflection group in 4D. Let us, however, first explicitly
write down the conditions that must be satisfied in order for any problem involving regions
bounded by grounded conducting segments of spheres and planes to be solvable by the method
of (finitely many) images.

Imagine an empty cavity surrounded by a grounded conductor. Assume that its walls are formed
by segments of spherical surfaces. The field induced by a point charge placed inside the cavity can
be constructed using the method of images if the system satisfies the following conditions, which
are spherical-geometry analogs of the requirements described in Section 4.2. Note that if a surface
is a plane rather than a sphere, in what follows, a sphere inversion should be replaced by a simple
reflection.
Solvability conditions:

I. Consider the set of image charge locations produced via chains of inversions from Eq. (1) with
respect all the spheres, one sphere at each link of the chain. For any starting location, there
should be a finite number of image locations such that once they are all in the set, further
inversions of its elements will only produce locations that are already in the set.

II. One should be able to unambiguously assign the values of the image charges via a sequential
application of the rule in Eq. (3). The assigned charge value should not depend on the particular
sequence of inversions that produced its location.

III. The sphere inversions should not produce any image charges within the cavity of interest.

Let us show that these conditions are indeed sufficient. Consider one of the spherical surfaces
defining the cavity. According to condition I., any charge – regardless of whether it is the physical
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charge or an image charge – will have a counterpart linked to it, in both directions, by an inversion
with respect to the surface of interest. According to condition II., the two will create a zero potential
on the cavity surface. The rest of the charges will form similar pairs, with similar results. Finally,
condition III. guarantees that no ‘ghost’ charges are required by the solution obtained, i.e. that inside
the cavity there is only the charge that is present in the statement of the problem.

9. Generation of piecewise-spherical conducting cavities using a 4D reflection group and a
4D→3D stereographic projection

9.1. The setup

As we have been suggesting, a fruitful way to construct a set of spherical surfaces that satisfy
the solvability conditions outlined in the previous section is to use the construction described in
Section 6. That construction involves a 4D→3D stereographic projection of great hypercircles on
the surface of a 4D hypersphere, so let us describe this transformation quantitatively; see Fig. 5. A
4D→3D stereographic projection takes a point p′ on a hypersphere centered at O and of radius R,

p
′
≡

⎛⎜⎜⎝
p′
x

p′
y

p′
z

p′
w

⎞⎟⎟⎠ =

⎛⎜⎜⎝
sin(Θp′ ) sin(θp′ ) cos(φp′ )R
sin(Θp′ ) sin(θp′ ) sin(φp′ )R

sin(Θp′ ) cos(θp′ )R
cos(Θp′ )R

⎞⎟⎟⎠ . (4)

and converts it to a point p on the tangential ‘horizontal’ 4D hyperplane – identified with
the physical 3D space – that is tangent to the hypersphere at the ‘South Pole’ (x, y, z, w) =

(0, 0, 0, −R). In Cartesian coordinates, (p′
x, p′

y, p′
z, p′

w) on the surface of the hypersphere gets
mapped to (px, py, pz, pw) =

2R
R−p′

w
(p′

x, p′
y, p′

z, 0) + (0, 0, 0, −R). In spherical coordinates,

p ≡

⎛⎜⎝px
py
pz
pw

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
2 cot(

Θp′

2 ) sin(θp′ ) cos(φp′ )R

2 cot(
Θp′

2 ) sin(θp′ ) sin(φp′ )R

2 cot(
Θp′

2 ) cos(θp′ )R

−R

⎞⎟⎟⎟⎟⎟⎠ . (5)

The final step is an orthogonal projection Pr to the 3D space, which is accomplished by simply
deleting the final (w) coordinate: Pr (x, y, z, w) = (x, y, z). Since it is unlikely to cause confusion,
we will not always carefully distinguish the points before and after the orthogonal projection.

The stereographic projection is invertible: the 3D point (px, py, pz) has the inverse image⎛⎜⎝p′
x

p′
y

p′
z

p′
w

⎞⎟⎠ =
4R2

4R2 + p2x + p2y + p2z

⎛⎜⎝ px
py
pz

−2R

⎞⎟⎠ +

⎛⎜⎝0
0
0
R

⎞⎟⎠ .

A great hypercircle on our hypersphere is the set of 4D points that satisfy

(p′)2 = R
2 (6)

p
′
· n = 0 , (7)

here

n ≡

⎛⎜⎝nx
ny
nz

⎞⎟⎠ =

⎛⎜⎝sin(Θn) sin(θn) cos(φn)
sin(Θn) sin(θn) sin(φn)

sin(Θn) cos(θn)

⎞⎟⎠ . (8)
nw cos(Θn)
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Fig. 5. An artistic rendering of the relationship between a 4D reflection on a hypersphere and a 3D sphere inversion,
through a 4D stereographic projection. The points p′

1 and p′

2 are on a hypersphere of radius R whose center is at O.
These two points are related by a 4D reflection with respect to a hyperplane through O whose unit normal vector is
. The 3D points p1 and p2 are the images of p′

1 and p′

2 under the stereographic projection from the hypersphere to a
horizontal’ hyperplane. The latter hyperplane is identified with the physical 3D space. It can be shown that p1 and p2
re then related via a 3D sphere inversion with respect to a sphere whose center is O and whose radius is R. This sphere
s the stereographic image of the great hypercircle formed at the intersection of the hyperplane characterized by n and
he hypersphere.

e may interpret n as the unit vector normal to a hyperplane that passes through O, the center of
he hypersphere. The intersection of this hyperplane and the hypersphere is the great hypercircle
f interest.
Under the stereographic projection described by Eqs. (4) and (5), the great hypercircle defined

y Eqs. (6)–(8) transforms to a 3D sphere of radius

R = 2|sec(Θn)|R (9)

entered at

O ≡

⎛⎜⎝Ox
Oy
Oz
Ow

⎞⎟⎠ =

⎛⎜⎝−2 tan(Θn) sin(θn) cos(φn)R
−2 tan(Θn) sin(θn) sin(φn)R

−2 tan(Θn) cos(θn)R
−R

⎞⎟⎠ . (10)

otice that all the spheres produced this way satisfy the relation

R2
= O2

+ 4R2 , (11)

ith O being the 3D version of the corresponding 4D vector O, i.e. its orthogonal projection Pr to
the xyz space:

O ≡ Pr O = (Ox, Oy, Oz) . (12)

Let p′

1, 4D and p′

2, 4D be two points on the hypersphere. Suppose they are related by a reflection
ia a 4D mirror defined by the unit normal vector n, in other words that

p′

2, 4D = p′

1, 4D − 2(n · p′

1, 4D)n .

As we already mentioned, it can be explicitly shown that the stereographic images of p′

1, 4D and
p′

2, 4D are related by a sphere inversion. To apply Eq. (1), we take p1 = Pr p1, 4D = (p1, x, p1, y, p1, z)
and similarly p = Pr p . The inversion sphere parameters R and O are as in Eqs. (9) and (12).
2 2, 4D



18 M. Olshanii, Y. Styrkas, D. Yampolsky et al. / Annals of Physics 421 (2020) 168291

I

w
c
p
c
l
i
c

Let us finally consider the 3D spheres forming the cavity of interest. Let us assume that these
3D spheres stereographically originate from great hypercircles that are, in turn, produced by the
generating mirrors of a 4D reflection group, as explained in Section 6.

9.2. Solvability condition I: finite number of image charges

Let us place a charge q at the location p inside the cavity described above. Let p′ be the
stereographic inverse image of p (so that p is the stereographic image of p′). Start iteratively
reflecting p′ through the generating mirrors of the 4D finite reflection group. For each pair of 4D
positions related by a reflection, their stereographic projections are related by a sphere inversion,
and vice versa. Since we know there are only finitely many images produced by the 4D reflections,
it follows that the iterative sphere inversions can produce only a finite number of image charges
(the same number as the 4D reflections produce).

9.3. Solvability condition II: consistency of charge assignment

This is a sphere-inversion analog of the discussion in Section 6 about how to assign charge
values to the image charges in the case of mirror reflections. But this is one place where the
sphere inversion is noticeably more complicated than its 4D mirror-reflection counterpart, because
while the reflections only affect the signs of the image charges, sphere inversions also affect their
magnitudes.

If an inversion sphere is a stereographic image of a great hypercircle on a hypersphere of radius
R, then any two points p1 and p2 related by the inversion obey

|p1 − O|

|p2 − O|
=

F (p1)
F (p2)

, (13)

with

F (p) = p2
+ 4R2 . (14)

Notice that F (p1) depends neither on the other point p2, nor on the center O of the inversion sphere,
nor on the radius R of the inversion sphere. The same holds for F (p2), upon a p1 ↔ p2 substitution.
The charge assignment rule in Eq. (3) becomes

q2 = −

√
F (p2)
F (p1)

q1 . (15)

t is easy to show that this relationship will become

q1+m = (−1)m
√

F (p2)
F (p1)

q1 (16)

if q1+m and q1 are linked by a chain of m inversions (instead of a single inversion). In particular, any
image charge qimage will be related to the original physical charge qphysical as

qimage = (−1)mimage

√
F (pimage)
F (pphysical)

qphysical , (17)

here (−1)mimage is the parity of the number of inversions linking the physical charge and the image
harge in question. As we already mentioned in Section 6, it is known that for reflection groups, the
arity of the number of reflections leading to a particular member of the group is the same for any
hain of reflections. Hence, the same will be true for sphere inversions that are stereographically
inked to the members of a 4D reflection group, and the charge value assigned using Eq. (17) is
ndeed independent of the sequence of inversions used to get from the original charge to the image
harge.
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.4. Solvability condition III: no image charges outside of the conductor

Consider again p′, the stereographic inverse image of p, where the latter is the location of
he physical charge. We have already seen above that there will be one image charge per non-
rincipal chamber, and so in particular all the 4D mirror-reflection images of p′ will lie outside of

the principal chamber. The intersection of the principal chamber with the hypersphere will, under
the stereographic projection, become the 3D cavity of interest. Likewise, the 4D reflection images
will become the locations of the 3D image charges, and none of them will be located inside the
cavity of interest.

10. An example: a solvable cavity associated with the reflection group D4

According to Table 1, the 4D reflection group D4 has the Coxeter diagram . Thus it has

four simple roots (and so four generating mirrors), three of which are mutually orthogonal, while
the fourth one makes an angle of π/3 with each of the first three. The total number of group
elements is 192, of which 12 are pure reflections. Once the mutual orientation of the generating
mirrors is fixed (basically by the Coxeter diagram), we have to choose the orientation of the mirrors
as a group. The point where all the generating mirrors meet should be fixed at the origin, so
the allowed transformations are 4D rotations. In four dimensions, rotations are parametrized by
6 real parameters. Indeed, the full reflection group can be parametrized as a product six rotation
matrices [14], each describing a rotation in one of six pairs of Cartesian planes: xy, xz, yz, xw, yw, and
w. We will refer to these as elementary rotations. For example, the matrix describing an elementary
otation of a 4D vector (x, y, z, w) that takes place in the yw-plane is

Ryw(θyw) =

⎛⎜⎝1 0 0 0
0 cos θyw 0 sin θyw
0 0 1 0
0 − sin θyw 0 cos θyw

⎞⎟⎠ .

he other elementary rotations work similarly, where each one gets its own angle (e.g. θxy, θxz , etc.).
ll six angles can be set independently.
Note that the concept of a rotation axis is not useful in dimensions higher than three, where

he dimensionality of what is left fixed by a rotation in general depends on the rotation—unlike in
D, where every rotation leaves fixed a line through the origin. In 4D there are rotations that, like
ur elementary ones, leave a whole 2D plane fixed. But the most general 4D rotation is a double
otation, a simultaneous rotation in two perpendicular planes, which leaves only the origin fixed.

Recall that our stereographic projection maps into the xyz space. Let us parametrize an arbitrary
4D rotation by first performing elementary rotations in planes involving the fourth dimension w,
and then performing the rotations that take place wholly within the xyz space. For example, we can
use the matrix RyzRxzRxyRzwRywRxw , where Rxw is a function of θxw , Ryw of θyw , etc. In this case, the
final three rotations (RyzRxzRxy) will have the effect of simply 3D-rotate the final system of spheres
and planes. The 3D→2D analog is a rotation of the sphere in Fig. 3(b) about the z-axis. In Fig. 3(c)
and (d), this would have the effect of rigidly rotating the whole plane about the South Pole.

The first three rotations, however, can be used to control which great hypercircles stereographi-
cally map into planes and which into spheres, and what are the radii of the spheres and the locations
of spheres and planes. The 3D→2D analog is rotating the sphere in Fig. 3(b) about the x or y axis.
This will generally deform the patterns we get in the plane, changing the radii of the spheres and
possibly even transforming them into planes.

As an example, we choose the following set of the generating mirror normals:

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)

(18)(
1
,
1
,
1
,
1
)

. (19)

2 2 2 2
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The corresponding angles are then given by Eq. (8), which gives

Θ =
π
2 ; θ =

π
2 ; φ = 0

Θ =
π
2 ; θ =

π
2 ; φ =

π
2

Θ =
π
2 ; θ = 0; φ = any

(20)

Θ =
π
3 ; θ = arg

(
1+i

√
2

√
3

)
; φ =

π
4 . (21)

Under a stereographic projection in Eqs. (4) and (5), Eq. (9) says that the first three great
hypercircles transform to 3D spheres of infinite radius, i.e. to 3D planes. These planes will cross
the origin. The fourth hypercircle becomes a sphere. The resulting cavity is given by the following
set of inequalities:

x > 0, y > 0, z > 0 , (22)

and (
x +

R
2

)2

+

(
y +

R
2

)2

+

(
z +

R
2

)2

< R2 , (23)

with

R = 4R , (24)

where R is the radius of the hypersphere the stereographic projection originates from; see Eqs. (12),
(10), and (9) for the formulae for the center and the radius of the ball defined by Eq. (23). Notice that
since the stereographic projection is a conformal transformation, the angles between the resulting
3D surfaces are the same as the angles between the 4D hyperplanes from Eqs. (18) and (19) that
generate them. In particular, the spherical segment of the cavity surface crosses each of the three
planar segments at an angle of 60◦.

We can use the method of images to find the electrostatic potential created by a point charge
placed anywhere inside the cavity bounded by the surfaces defined in Eqs. (22) and (23), where
the surfaces are grounded conducting walls. The image charge locations will be given by sequential
applications of the reflections about the planar cavity boundaries and sphere inversions in Eq. (1).
The number of image charges, all situated outside the cavity, is 191. The charge values can be
unambiguously assigned using the rule in Eqs. (17) and (14), indeed the original rule in Eq. (3).
or the reflections, when an inversion sphere degenerates into a plane, the rules in Eqs. (17), (14)
nd (3) become qimage = (−1)mqphysical and q2 = −q1, respectively, with m still being the total
umber of the inversions and reflections linking qimage and qphysical.
In Fig. 6(a), we show a cubic segment of space, centered at the origin, of a linear size 0.6R. The

etrahedron-like shape in the middle of the subfigure represents the shape of an electrostatic cavity
with grounded conducting walls – solvable using the method of images. A sample charge (red) is
laced at the grand diagonal, at a distance 0.05R away from the spherical segment of the surface of
he cavity. (Solvability persists for any position of the charge inside the cavity.) There are 191 image
harges, but only a subset of them are visible (white) in the subfigure. The total number of charges,
orresponding to the one physical charge supplemented by all the image charges, is 192, which is
lso the total number of group elements – both reflections and rotations – in the reflection group
4. Together with the sample (physical) charge, the image charges generate a potential inside the
avity that vanishes at the cavity walls.
Fig. 6(b) presents the surfaces of zero potential for the electrostatic potential induced by the

ample charge of the previous subfigure. Shown there is a cubic segment of space, centered at the
rigin, of a linear size 0.36R. A part of this zero-potential surface coincides with the surface of the
avity. The view of that part is partially obscured by the eight additional spheres (additional to the
our surfaces forming the cavity) on which the potential vanishes as well. There must be a total of
2 surfaces, each either a sphere or a plane, because D4 has a total of 12 mirrors, and the symmetry
f the problem guarantees they all must have the same potential. The potential also vanishes on

he continuations of the surface fragments forming the cavity of interest.
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Fig. 6. A solvable electrostatic problem associated with the four-dimensional reflection group D4 (a subgroup of the full
symmetry group of the tesseract). (a) A cubic segment of space, centered at the origin, of a linear size 0.6R. (b) The
surfaces of zero potential for the electrostatic potential induced by the sample charge of the previous subfigure. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

11. Summary and outlook

In all branches of physical science, problems whose solution is expressible in closed form are
invaluable for the development of physical insight, while also serving as benchmarks on which
numerical or approximate (but more generally applicable) methods of solution can be tested [3,11,
15,16]. In some dynamical cases, exact solvability is itself the mechanism underlying important
physical effects (such as lack of thermalization [17]) and distinct physical phenomena (such as
solitons [16]). This is due to the fact that exactly solvable (also known as integrable) time-dependent
systems have a great (often infinite) number of dynamical conservation laws.

We have shown that in electrostatics, the class of problems solvable by the method of images is
considerably larger than what was previously known. In particular, we showed that the solution
of a classic electrostatic problem – finding the field induced by a point charge placed inside a
spherical cavity with grounded conducting walls – can be generalized to any cavity whose walls
are represented by 4D stereographic projections of great hypercircles formed by the intersections
of a 4D hypersphere and the mirrors of any known finite 4D reflection group of rank 4 or lower.
We used the group D4 as a worked example.

In the process, we pointed out that every known problem that is solvable by adding finitely
image charges is based on some finite reflection group. Starting with such a group, one may use
its mirrors as they are or apply further transformations to them: either a 4D→3D stereographic
projection, which we introduced in this work, or the well-known Kelvin transform. In this way we
obtain all presently known solvable problems.

The scope of problems solvable by our construction is as follows:

• Any finite reflection group of rank 4 or less can be used, including groups that are
reducible and those that are lower-dimensional but embedded in 4D; see Tables 1 and
2.

• For each of the reflection groups listed in Tables 1 and 2, there will be a three-parametric
family of orientations of the mirrors in the 4D space, leading to a three-parametric
family of 3D sphere radii and positions. The remaining three parameters of the six-
parametric family of the 4D rotations will control the trivial 3D rotation of the resulting

3D cavity.
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A 2D generalization of our scheme (a 3D stereographic projection from a sphere to a plane) is
worth considering. There, one obtains a family of solvable problems involving cylindrical conducting
cavities and charged wires. The problem of assigning the values of charges is expected to disappear
(as one trivially gets a set of sign-alternating charges). However, this property alone only guarantees
that the electrostatic potential will be a non-zero constant on each of the cylindrical segments; it
is still in principle possible that the potential will not be given by the same constant on each of the
cylinders. However, we expect that a relationship analogous to Eqs. (13) and (14) can be proven in
the 2D case as well. If so, then it will be possible to prove that the potential in fact has the same
value at every point on the cavity surface.

The property in Eqs. (13) and (14) – that so far seems completely accidental – may prove to be a
consequence of a deeper connection. One may conjecture that a map exists between the solutions
of the Poisson equation on the hypersphere and the solutions of the Poisson equation on a plane
stereographically connected to that hypersphere. In this case, the solutions for the class of problems
we considered will become images of the hyperspherical solutions which were obtained via pure
reflections, obviating the need to go through sphere inversion procedure in 3D. The charges on the
hypersphere will have the same magnitude and an alternating sign. The relationship between a
hyperspherical charge q′ and the 3D charge q will be then given by q = const ×

√
F (p) q′, where p

s the location of the charge q, and the function F is given by Eq. (14). The proof of this conjecture
ay involve (a) the fact that the 3D sphere-, and, potentially, 4D hypersphere inversions convert
olutions of the Poisson equation to solutions of the Poisson equation and (b) the fact that a 4D
tereographic projection can be reinterpreted as a 4D hypersphere inversion.
Finally, it is hard to believe that our construction is not in some way connected to the Kelvin

ransform after all. A progress regarding the program from the previous paragraph might help
lucidate this connection, and perhaps the other way around as well.
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