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We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare.

A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation

drawn i.i.d. from a known distribution. Each item, however, disappears after an a priori unknown amount

of time that we term the horizon for that item. The seller knows the (possibly different) distribution of the

horizon for each item, but not its realization till the item actually disappears. As with the classic prophet

inequalities, the goal is to design an online pricing scheme that competes with the prophet that knows the

horizon and extracts full social surplus (or welfare).

Our main results are for the setting where items have independent horizon distributions satisfying the

monotone-hazard-rate (MHR) condition. Here, for any number of items, we achieve a constant-competitive

bound via a conceptually simple policy that balances the rate at which buyers are accepted with the rate at

which items are removed from the system. We implement this policy via a novel technique of matching via

probabilistically simulating departures of the items at future times. Moreover, for a single item and MHR

horizon distribution with mean µ, we show a tight result: There is a fixed pricing scheme that has competitive

ratio at most 2 − 1/µ, and this is the best achievable in this class.

We further show that our results are best possible. First, we show that the competitive ratio is unbounded

without the MHR assumption even for one item. Further, even when the horizon distributions are i.i.d.MHR

and the number of items becomes large, the competitive ratio of any policy is lower bounded by a constant

greater than 1, which is in sharp contrast to the setting with identical deterministic horizons.
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1 INTRODUCTION
Online posted pricing problems are one of the canonical examples in online decision-making

and optimal control. The basic model comprises of a fixed supply of non-replenishable items;

buyers (demand) arrive in an online fashion over a fixed time interval, and the platform sets

prices to maximize some objective such as social surplus (welfare) or revenue. Another variant

of this setting is found in internet advertising, where the number of advertisements (supply) is
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assumed to be fixed (for example, based on contracts between the publisher and advertisers), while

keywords/impressions (demand) arrive online, and are matched to ads via some policy. The demand

is typically assumed to obey some underlying random process, which allows the problem to be cast

as a Markov Decision Process (MDP); however, in many settings, such a formulation suffers from a

“curse of dimensionality”, making it infeasible to solve optimally.

An important idea for circumventing the computational intractability of optimal pricing is that of

prophet inequalities — heuristics with performance guarantees with respect to the optimal policy in

hindsight (i.e., the performance of a prophet with full information of future arrivals). The simplest

prophet inequality has its origins in the statistics community [23] — given a single item and T
arriving buyers with values drawn from known distributions, there is a pricing scheme using only a

single price that extracts at least half the social surplus earned by the prophet (moreover, this is tight).

More recently, there has been a long line of work generalizing this setting to incorporate multiple

(possibly non-identical) items, as well as combinatorial buyer valuations [1, 6, 9–11, 13, 17, 22, 25].

The aim of our work is to develop a theory of prophet inequalities for settings with uncertainty

in future supply. This is a natural extension of the basic posted-price setting, and indeed special

cases of our framework have been considered before [17, 27] (in the context of optimal secretary

problems with a random “freeze” on hiring). What makes these problems of greater relevance

today is the rise of online ‘sharing economy’ marketplaces, such as those for transportation (Lyft,

Uber), labor (Taskrabbit, Upwork), lodging (Airbnb), medical services (PlushCare), etc. The novelty

in such marketplaces arises because of their two-sided nature: in addition to buyers who arrive

online, the supply is now controlled by “sellers” who can arrive and depart in an online fashion. For

example, in the case of ridesharing/lodging platforms, the units of supply (empty vehicles/vacant

listings) arrive over time, and have some patience interval after which they abandon the system

(get matched to rides on other platforms/remove their listings). Supply uncertainty also arises in

other settings, for instance, if items are perishable and last for a priori random amounts of time.

Our work aims to understand the design of pricing policies for such settings, and characterize how

the resulting prophet inequalities depend on the characteristics of the supply uncertainty.

1.1 Model
We introduce “supply uncertainty” into the basic prophet inequality setting as follows: There arem
items present initially, but these do not last till the end of the buyer arrivals, but instead, depart

after an a priori unknown amount of time. Formally, we assume each item i samples a horizon from

a distribution Hi , at which time it departs. We assume the horizon lengths for items are mutually

independent, and also independent of the valuation distribution of the buyers. Note though that the

items can have different horizon distributions. We denote the maximum possible horizon length

for any item as n.
On the demand side, we assume there is an infinite stream of unit-demand buyers arriving

online, where the valuation of the h-th arriving buyer is a random variable Xh drawn i.i.d. from

a distribution V . From the perspective of a buyer, all items are interchangeable, and hence being

matched to any item that has not yet departed yields value Xh . Note that assuming an infinite

stream of buyers is without loss of generality, because we can encode any upper bound on the

number of buyers in the horizon distributions.

The algorithm designer knows the horizon distribution Hi for each item, and the buyer value

distribution V , but not the realized horizons for each item (until the item actually departs), or the

value for any buyer. The goal is to design an online pricing scheme that competes with a prophet

that knows the realized horizons of each item and the valuation sequence of buyers, and extracts

full social surplus (or welfare).
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The main outcome of the standard prophet inequality is that there are constant-competitive

algorithms for maximizing welfare, even when buyers are heterogeneous and arrive in arbitrary

order. This however turns out to be impossible in the presence of item horizons without additional

assumptions. First, even with i.i.d. horizons, achieving a constant factor turns out to be impossible

for general horizon distributions (cf. Theorem 1.6); thus to make progress, we need more structure

on the horizons. One natural assumption is that each item is more and more likely to depart as

time goes on, which can be formalized as follows.

Definition 1.1. A horizon distribution H satisfies the monotone-hazard-rate (MHR) condition if:

Pr
h∼H
[h ≥ h∗ + 2 | h ≥ h∗ + 1] ≤ Pr

h∼H
[h ≥ h∗ + 1 | h ≥ h∗], ∀h∗ ≥ 1.

Several distributions satisfy the MHR condition, including uniform, geometric, deterministic,

and Poisson; note also that truncating an MHR distribution preserves the condition.

Finally, even with MHR horizons, buyer heterogeneity is a barrier for obtaining a constant-

competitive algorithm, as demonstrated by the following example, with deterministic valuations

and known order of arrivals.

Example 1.2. Givenm = 1 item with horizon following a geometric distribution with parameter

0.5, consider a sequence of n buyers with vh = 2
h
for h = 1, 2, . . . ,n. The expected value of the

prophet is Θ(n) while any algorithm can only achieve a constant value in expectation.

1.2 Main Result: Prophet Inequalities under Uncertain Supply
The above discussion motivates us to study settings with i.i.d. buyers, and items with MHR horizons.

Our main result is that these two assumptions are sufficient to obtain a constant-competitive ap-

proximation to the prophet welfare. In particular, our main technical result is the following theorem,

which we prove in Section 2.

Theorem 1.3. There is a constant-competitive online policy for social surplus for anym ≥ 1 items

with independent and possibly non-identical MHR horizon distributions, and unit-demand buyers

arriving with i.i.d. valuations.

Though the complete algorithm is somewhat involved, at a high level, it is based on a simple

underlying idea: to be constant-competitive against the prophet, we need to choose prices so as to

balance the rate of matches and departures. Achieving this in the general case is non-trivial, and

requires some new technical ideas. However, for the special case of a single item, balancing can be

achieved via a simple fixed pricing scheme. In Section 3, we use this to obtain the following tight

result for them = 1 setting (this also serves as a primitive for our overall algorithm):

Theorem 1.4. There is a fixed pricing scheme for a single item with an MHR horizon distribution

with mean µ that has competitive ratio 2 − 1/µ. Further, this bound is tight for the geometric horizon

distribution with mean µ.

Intuitively, the factor of two in the above theorem corresponds to the prophet considering

matching and departures as the same, which an algorithm cannot do. The surprising aspect is that

this simple policy is worst-case optimal within the class of instances with MHR horizons — this is

in contrast to deterministic horizons, where fixed pricing is known to be suboptimal for the special

case of one item with known (deterministic) horizon and i.i.d. buyers [11, 18].

1.3 Lower Bounds
We complement our positive results by showing several lower bounds that establish their tightness.

As mentioned above, in Section 3, we show a (tight) lower bound of 2 − 1/µ form = 1 items with

MHR horizons. Our main lower bounds in Section 4 generalizes this tom ≥ 1 items.
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Theorem 1.5. For the multi-item setting with i.i.d. geometric horizons:

• For any number of items, there is a lower bound of 1.57 on the competitive ratio of any dynamic

pricing scheme; in the limit when the number of items goes to infinity, this improves to 2.

• No fixed pricing scheme can be o(log logm)-competitive wherem is the number of items.

The above theorem implies that the MHR horizon setting, even with i.i.d. horizons, is significantly

different from the setting with multiple items and a single deterministic horizon (where fixed pricing

extracts

(
1 −O

(
1√
m

))
-fraction of surplus [2]). Put differently, the lower bound emphasizes that

even with i.i.d. horizons, to obtain a constant-competitive algorithm, it is not sufficient to replace the

horizon distributions by their expectations and use standard prophet inequalities — the stochastic

nature of the horizons allows for significant deviations in the order of departures of the items, and

a policy that knows this ordering can potentially extract much more welfare. Given this, it is quite

surprising that a simple dynamic pricing scheme achieves a constant approximation.

Finally, we consider the general case where there is no restriction on the horizon distribution.

In this setting, the presence of supply uncertainty severely limits the performance of any non-

anticipatory dynamic pricing scheme in comparison to the omniscient prophet. In particular, we

show that for any number of items and i.i.d. buyer valuations, the ratio between the welfare of

any algorithm and the prophet grows with the horizon, even if the algorithm knows the realized

valuations.

Theorem 1.6. For anym ≥ 1 items, there exists a family of instances such that the prophet has

welfare Ω
(

logn
log logn

)
-factor larger than any online policy, even if the policy knows all the realized

values, but not the realized horizons. Here, n = maxi {supp(Hi )}.

This generalizes similar lower bounds for settings where the horizon is unknown [17, 19]. The

proof of this result is provided in Appendix A.1.

1.4 Technical Highlights
At a high level, we achieve our results via a conceptually simple and natural class of balancing

policies that generalizes policies for the deterministic-horizon case:

Balancing Policy. Balance the rate at which buyers are accepted to the rate at which

items depart the system because their horizon is reached.

Converting this high-level description of balancing into a concrete policy requires new technical

ideas. We first note the technical challenges we encounter. In the setting with deterministic identical

horizons [13, 23], we can achieve constant-competitive algorithms (or even better) via a global

expected value relaxation that yields a fixed pricing scheme. Indeed, such an argument can safely

assume buyers are non-identical with adversarial arrival order. However, the setting with stochastic

horizons is very different. First, as Example 1.2 shows, even form = 1 item with geometric horizon,

there is an Ω(n) lower bound when buyer valuations are not identically distributed. Secondly, for

m > 1 items, we need dynamic pricing even in the simplest settings — when horizons are i.i.d.

geometric (see Theorem 1.5), or when they are deterministic. This precludes the use of a global

one-shot analysis.

At this point, we could try using techniques from stochastic optimization, particularly stochastic

matchings [5, 7] and multi-armed bandits [14, 16]. Here, the idea is to come up with aweakly coupled

relaxation, say one policy per item, and devise a feasible policy by combining these. However,

these algorithms crucially require the state of the system to only change via policy actions, and our

problem more is similar to a restless bandit problem [15] where item departures cause the state of
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the system can change regardless of policy actions taken. Indeed, the actual departure process itself

may significantly deviate from its expected values, making it non-trivial to use a global relaxation.

Simulating Departures. This brings up our technical highlight: Instead of encoding the departure

process in a fine-grained way into a relaxation, we simulate its behavior in our final policy. In more

detail, we first write a weak relaxation of the prophet’s welfare separately in a sequence of stages

with geometrically decreasing number of items. This only uses the expected number of items that

survive in the stage, and not the identity of these items. The advantage of such a weak relaxation is

that it yields a solution with nice structure: this policy non-adaptively sets a fixed price in each

stage to balance the departure rate with the rate of matches. However, it is non-trivial to construct

a feasible policy from this relaxation, since the relaxation decouples the allocations of the prophet

across different stages, while any feasible algorithm’s allocations are clearly coupled. Indeed, the

optimal feasible policy is the solution to a dynamic program with state space exponential inm, and

the prophet is further advantaged by knowing which items depart earlier in the future.

Surprisingly, we show that our simple relaxation is still enough to achieve a constant-competitive

algorithm. We do so by simulating the departure process, that is, by choosing items for matching

with the same probability that they would have departed at a future point in time. This couples

the stochastic process that dictates the number of items available in the policy with that in the

prophet’s upper bound, albeit with a constant-factor speedup in time. This yields a non-adaptive

policy that makes its pricing decisions for the entire horizon, as well as the (randomized) sequence

in which to sell the items, in advance. We believe such a policy construction that simulates the

evolution of state of the system may find further applications in the analysis of restless MDPs.

Lower Bounds from Time-Reversal. Our lower bounds are all based on demonstrating particular

bad settings as in Example 1.2. From a technical perspective, the most interesting construction is

that in Theorem 1.5 — here, we first consider a canonical, asymptotic regime where the horizon

distribution is geometric with mean approaching infinity, and show that we can closely approximate

the behavior of the prophet and the algorithm via an appropriate Markov chain. We then define

and analyze a novel time-reversed Markov chain encoding the prophet’s behavior, that captures

matching a departing item to the optimal buyer that arrived previously.

1.5 Related Work
The first prophet inequalities are due to Krengel and Sucheston [23, 24]. It was subsequently

shown [26], there is a 2-competitive fixed pricing scheme that is oblivious to the order in which

the buyers arrive, and this ratio is tight in the worst case over the arrival order. Motivated by

applications to online auctions, since then there have been several extensions to multiple items [2,

17, 20], matching setting [3, 28], matroid constraints [22] and general combinatorial valuation

functions [13, 25].

Our work is a generalization of the single-item setting where buyer valuations are i.i.d. and the

horizon is known, to the case where the horizon is stochastic and there are multiple items. The

setting with known horizons was first considered in Hill and Kertz [18]. In this case, the optimal

pricing scheme can be computed by a dynamic program, and a sequence of results [1, 9, 21] show a

tight competitive ratio of 1.342 for this dynamic program against the prophet. In contrast, we show

that when the horizon is MHR, a simple fixed pricing scheme has optimal competitive ratio of 2.

A generalization of the i.i.d. setting is the recently-introduced prophet secretary problemwhere the

buyers are not identical, but the order of arrival is a random permutation. In this case, fixed pricing

is a tight
e

e−1 -approximation [11, 12]; and a dynamic pricing scheme can beat this bound [4, 8] by a

slight amount. Though our results extend to this setting, it is not the focus of our paper since the

i.i.d.-valuations case is sufficient to bring out our conceptual message.
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The random horizon setting has been extensively studied in the context of the classic secretary

problem. When the horizon is unknown (that is, no distributional information at all), no constant-

competitive algorithm is possible [19]. In the context of prophet inequalities, the unknown-horizon

setting was considered by Hajiaghayi et al. [17], who show again that no constant-competitive

algorithm is possible. We use a similar example to extend this lower bound to the case where the

horizon is stochastic from a known distribution.

2 PROPHET INEQUALITY FOR HETEROGENEOUS ITEMSWITH MHR HORIZONS
In this section, we present the proof of Theorem 1.3. We first give an overview of our algorithm. At

a high level, this scheme attempts to balance the rate that items are assigned to buyers and the rate

that items naturally depart. In Section 2.1, we first introduce a way to divide the entire time horizon

into disjoint stages in a way such that during the k-th stage,
m
2
k items depart in expectation. We

then bound the prophet’s welfare separately for each stage (Section 2.2) — we do so via a relaxation

that ignores the identity of the items, and only captures the constraint that the expected number of

matches in a stage is at most the expected number of items present at the beginning of that stage.

The key technical hurdle at this point is that when we make a matching, we do so without

knowing exactly when items depart in the future. This changes the distribution of the items available

in subsequent stages. To get around this, in each stage, we first simulate the future departure of

items, and use this to select items available for matching in the current stage. In more detail, in

Section 2.3, we split the stages alternately into even and odd stages, and develop an algorithm whose

welfare approximates the welfare of the relaxed prophet from the odd stages (and by symmetry,

another algorithm that approximates the welfare from the even stages).

For approximating the welfare from the odd stages, the algorithm re-divides time into a new set

of stages corresponding to the odd stages under the old division (See Figure 1). We then use each

new stage to approximate the welfare generated in the corresponding odd stage in the old division;

to do so, we sample candidate items for matching in the current stage with the probability they

would leave in the subsequent even stage under the old division. Consequently, for every item,

the probability of departure during an even stage under the old division is the same as of being

selected for matching in the current stage. We show that this process couples the behavior of the

algorithm and the benchmark, assuming the departure processes are MHR. Using concentration

bounds, we show that this approach yields a constant approximation.

In addition to the above process, our algorithm needs to separately handle any stage of length 1

(i.e., any single time period where the expected number of available items reduces by at least half),

as well as a final stage where the expected number of available items is constant. We show that

the welfare in the length 1 phases is approximated by a blind matching algorithm which matches

all incoming buyers (Section 2.4), while the welfare of the final period is approximated by an

algorithm that randomly selects only one item for matching at the beginning, and discards the rest

(Section 2.5). For the latter setting (i.e., for a single item setting), we present a tight 2-competitive

fixed pricing scheme for the m = 1 setting in Section 3. Finally, the overall algorithm is based

on randomly choosing one of the four candidate algorithms (i.e., for approximating the prophet

welfare in odd stages, even stages, short stages, and the final stage), with an appropriately chosen

distribution.

2.1 Splitting Time into Stages
As a first step, we divide the time horizon into s +1 stages. The k-th stage corresponds to an interval

[ℓk , rk ). For k = 1, 2, . . . , s , we define rk by

rk:= min

{
t+1 : E[number of remaining items after time t] ≤

m

2
k

}
.
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Also ℓk+1 := rk for k = 1, 2, . . . , s; ℓ1 = 1 and rs+1 = ∞.
We set s to be the smallest non-negative integer so that

m
2
s ≤ 10, i.e., s := max

(
0,

⌈
log

2

m
10

⌉)
.

Within the first s stages, we separate stages of length rk − ℓk = 1 from the rest. We term the stages

of length at least 2 as Long stages, and those of length 1 as Short stages. We term the stage s + 1
as the Final stage. Note that based on our choice of s , the expected number of items which remain

in the final stage is at most 10, and unless s = 0, at least 5 items in expectation survive at one time

step earlier into the final stage.

2.2 Upper Bound on Prophet’s Welfare
In this section, we develop a tractable upper bound for the prophet. Let Pro denote the optimal

welfare obtainable by the prophet. We term the total welfare of Pro in the Long stages as ProLong,

the total welfare in the Short stages as ProShort, and the welfare in the Final stage as ProFinal.

Clearly, we have:

Lemma 2.1. Pro = ProLong + ProShort + ProFinal.

We bound ProLong and ProShort separately for each stage. Let Prok denote the welfare from

stage k , so that ProLong + ProShort =
∑s

k=1 Prok .

Lemma 2.2. For 1 ≤ k ≤ s , we have:

Prok ≤ min

(
rk − ℓk ,

m

2
k−1

)
· E
v∼V
[v | v ≥ pk ],

where pk satisfies Prv∼V [v ≥ pk ] = min

(
1, m/2

k−1

rk−ℓk

)
.
1

Proof. Fix a stage k . LetWi be the expected welfare that the prophet gets from buyer i , and let

yi be the probability that buyer i is matched by the prophet (ℓk ≤ i < rk ).
Notice that in expectation, at most

m
2
k−1 items have horizons of at least ℓk by the definition of

stages. Therefore,

∑rk
i=ℓk

yi ≤
m
2
k−1 .

Let FV be the CDF of the distribution V . We haveWi ≤ yi · Ev∼V
[
v

�� v ≥ F−1V (1 − yi )
]
, since

when buyer i is matched with probability yi , the prophet cannot do better than getting the top

yi -percentile of the distribution V from the buyer. With these constraints, we write a relaxation for

the welfare of the prophet during stage k :

max

rk−1∑
i=ℓk

Wi

s.t. Wi ≤ yi · E
v∼V

[
v

�� v ≥ F−1V (1 − yi )
]
, ∀i=ℓk , ℓk+1, . . . , rk−1,

rk−1∑
i=ℓk

yi ≤
m

2
k−1
,

yi ∈ [0, 1], ∀i=ℓk , ℓk+1, . . . , rk−1.
Clearly yi ’s should be equal in the optimal solution. Therefore,

rk−1∑
i=ℓk

Wi ≤ (rk − ℓk ) ·min

(
1,
m/2k−1

rk − ℓk

)
· E
v∼V
[v | v ≥ pk ],

1
The existence of such p is without loss of generality: Let t = min

(
1,

m/2k−1
rk−ℓk

)
. When there exists some p∗ such that

Pr[v ≥ p∗] > t and Pr[v > p∗] < t , we could accept all values greater than p∗ and accept p∗ with probability
t−Pr[v>p∗]
Pr[v=p∗] .
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where Prv∼V [v ≥ pk ] = min

(
1, m/2

k−1

rk−ℓk

)
. Summing over the s stages finishes the proof. □

Notice that in our upper bound for

∑s
k=1 Prok , if an item departs during stage k , we allow it to

be matched once in stage 1, once in stage 2, . . . , and once in stage k . However, since the expected
number of departures in each stage exponentially decreases, only a constant factor is lost comparing

with the finer relaxation where we enforce the constraint that each item is only matched once

across the stages. Our coarser relaxation enables a cleaner benchmark to work on.

We next bound ProFinal. Let ProSinglei be the optimal welfare of the prophet (from all stages)

if item i is the only item available in the system, i.e., the single-item setting. We consider this setting

in detail in Section 3.

Lemma 2.3. ProFinal ≤
∑m

i=1 Prhi∼Hi [hi ≥ ℓs+1] · ProSinglei .

Proof. LetWi be the welfare that the prophet can get from item i during the final stage. We

have

Wi ≤ Pr
hi∼Hi

[hi reaches the final stage]·

E
hi∼Hi

[welfare from item i in the final stage | hi reaches the final stage]

≤ Pr
hi∼Hi

[hi reaches the final stage] · E[welfare from item i]

= Pr
hi∼Hi

[hi ≥ ℓs+1] · ProSinglei ,

where the second inequality comes from the MHR condition of Hi : Prhi∼Hi [hi ≥ ℓs+1 + k | hi ≥
ℓs+1 − 1 + k] ≤ Prhi∼Hi [hi ≥ 1 + k | hi ≥ k] — item i would depart faster if it started at time ℓs+1.

Summing up the items, we have:

ProFinal ≤

m∑
i=1

Wi ≤

m∑
i=1

Pr
hi∼Hi

[hi ≥ ℓs+1] · ProSinglei . □

Lemmas 2.1, 2.2 and 2.3 together give an upper bound for our benchmark as:

Pro ≤


∑

k≤s, rk−ℓk>1

Prok

 +


∑
k≤s, rk−ℓk=1

Prok

 +[
m∑
i=1

Pr
hi∼Hi

[hi ≥ ℓs+1] · ProSinglei

]
where the three term correspond to an upper bound on the prophet’s welfare in the Long, Short

and Final stages respectively (i.e., ProLong, ProShort, and ProFinal). In the next three sections,

we describe three separate algorithms, each one of which, if run independently, provides an

approximation to one of the terms. Our overall algorithm is then based on randomly choosing

between the three algorithms with appropriately chosen distribution.

2.3 Approximating ProLong: The DepartureSimulation Algorithm
We first approximate upper bound given in Lemma 2.2. Within this, we approximate ProLong and

ProShort separately. We first focus on ProLong, since this is technically the most interesting,

and postpone approximating ProShort to Section 2.4.

We approximate ProLong by Algorithm 1. We divide all the s stages into alternate odd and

even stages. We focus on illustrating the approximation for odd stages, and that for even stages is

identical. We then re-divide time into stages corresponding to the original odd stages, as illustrated
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OLD: · · ·

NEW: · · ·

S1 S2 S3 S4 S5 S6

S ′
1

S ′
3

S ′
5

Fig. 1. Redivision of the Time Horizon

in Figure 1, where Sk stands for the old stage k and S ′k stands for the new stage k . At each odd

stage, we sample items according to their departure rates during the next (fictitious) even stage.

During the new process when items become unavailable by being sampled, each item is as least as

likely to survive a stage as before, since the sampling is only as frequent as the natural departures

during the original even stages.

Note that we set each S ′k to be 1 time step shorter than the corresponding Sk and make each

fictitious even stage 1 time step longer (unless the length of Sk is 0). We do this to ensure enough

items will be sampled: Because of integrality constraints, an even stage may be too short (e.g., of

length 0) and if so, little (or nothing if the stage has length 0) can be sampled there. This is also the

reason why Short stages are separately considered.

Algorithm 1: DepartureSimulation: Odd Stages Version

1 A← {1, 2, . . . ,m} // A = Set of available items

2 for each odd stage k = 1, 3, . . . , till stage s do
3 Ck ← ∅ // Ck = Set of items considered in this stage

4 For each i ∈ A, with probability Prhi∼Hi [hi < rk+1 | hi ≥ ℓk+1 − 1], place in Ck

5 A← A \Ck

6 if rk − ℓk ≥ 2 then
7 pk ← F−1V

(
max

(
0, 1 − m/2k−1

rk−ℓk

))
8 For each of the next rk − ℓk − 1 arriving buyers, if this buyer has valuation ≥ pk ,

match to any item in Ck and remove this item from Ck

9 If any item departs, remove it from A and Ck

Note that Algorithm 1 can be easily modified to work with even stages instead of odd stages,

and will yield the corresponding version of the theorem below with “odd” replaced by “even”. In

order to show Theorem 1.3, we will use either the odd stages or even stages algorithm depending

on which yields larger expected welfare. Note that it is entirely possible that one of these stages

yields very low welfare compared to the other.

Theorem 2.4. Algorithm 1 is a 15.1-approximation to the sum of Prok over odd stages k ≤ s with
rk − ℓk ≥ 2.

Proof. We use y+ to denote max(0,y). For any odd k with rk − ℓk ≥ 2, let the random variable

Mk be the number of items in the set Ck that has horizon of at least

∑(k+1)/2
k ′=1 (r2k ′−1 − ℓ2k ′−1 − 1)

+
,

i.e., the end of (new) stage k . We denote

∑j
k ′=1(r2k ′−1 − ℓ2k ′−1 − 1)

+
by Sj in the rest of the proof.
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Mk is the sum ofm independent Bernoulli random variables, where the i-th one denotes whether

item i is in Ck and has horizon of at least S(k+1)/2. We have

E[Mk ] =

m∑
i=1

Pr
[
item i is in Ck and has horizon of at least S(k+1)/2

]
=

m∑
i=1

Pr
hi∼Hi

[
hi ≥ S(k+1)/2

]
·(

(k−1)/2∏
j=1

(
1 − Pr

hi∼Hi
[hi < r2j | hi ≥ ℓ2j − 1]

))
·

Pr
hi∼Hi

[hi < rk+1 | hi ≥ ℓk+1 − 1],

where we calculate the probability that item i has horizon of at least

∑(k+1)/2
k ′=1 (r2k ′−1 − ℓ2k ′−1 − 1)

+
,

was never selected intoC2j−1’s during previous stages 2j − 1 < k , and was selected intoCk . Further

simplifying it, we have

E[Mk ] =

m∑
i=1

(
(k+1)/2∏
j=1

Pr
hi∼Hi

[
hi ≥ Sj

�� hi ≥ Sj−1] ) ·(
(k−1)/2∏
j=1

Pr
hi∼Hi

[hi ≥ r2j | hi ≥ ℓ2j − 1]

)
·

Pr
hi∼Hi

[hi < rk+1 | hi ≥ ℓk+1 − 1]

Since the MHR condition implies the item is more likely to survive in earlier time steps, we have:

E[Mk ] ≥

m∑
i=1

(
(k+1)/2∏
j=1

Pr
hi∼Hi

[
hi ≥ r2j−1 − 1

�� hi ≥ ℓ2j−1] ) ·(
(k−1)/2∏
j=1

Pr
hi∼Hi

[hi ≥ r2j | hi ≥ ℓ2j − 1]

)
·

Pr
hi∼Hi

[hi < rk+1 | hi ≥ ℓk+1 − 1]

=

m∑
i=1

(
(k+1)/2∏
j=1

Pr
hi∼Hi

[
hi ≥ ℓ2j − 1

�� hi ≥ ℓ2j−1] ) ·(
(k−1)/2∏
j=1

Pr
hi∼Hi

[hi ≥ l2j+1 | hi ≥ ℓ2j − 1]

)
·

Pr
hi∼Hi

[hi < rk+1 | hi ≥ ℓk+1 − 1]

=

m∑
i=1

Pr
hi∼Hi

[ℓk+1 − 1 ≤ hi < rk+1]

Now,

∑m
i=1 Prhi∼Hi [hi ≥ ℓk+1 − 1] ≥

m
2
k and

∑m
i=1 Prhi∼Hi [hi ≥ rk+1] ≤

m
2
k+1 . Thus,

E[Mk ] ≥

(
m∑
i=1

Pr
hi∼Hi

[hi ≥ ℓk+1 − 1]

)
−

(
m∑
i=1

Pr
hi∼Hi

[hi ≥ rk+1]

)
≥

m

2
k+1
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Note that
m
2
k+1 ≥

m
2
s for k < s . For k = s , E[Mk ] ≥

∑m
i=1 Prhi∼Hi [hi ≥ ℓk+1 − 1] ≥

m
2
k =

m
2
s . Thus,

E[Mk ] ≥
m
2
s > 5 for any k ≤ s . By Chernoff bound,

Pr
[
Mk ≥

1

4

·
m

2
k

]
≥ 1 −

(
e−0.5

0.50.5

)
5

> 0.535.

Now let pk be F−1V

(
max

(
0, 1 − m/2k−1

rk−ℓk

))
where FV is the CDF of distribution V , just as in Algo-

rithm 1. Let the random variable Nk denote the number of buyers with valuation of at least pk
among the next rk − ℓk − 1 buyers. We have

E[Nk ] = (rk − ℓk − 1) ·min

(
1,
m/2k−1

rk − ℓk

)
.

If
m/2k−1
rk−ℓk

≥ 1, then pk = −∞ and Nk = rk −ℓk −1 with probability 1. In this case, Algorithm 1 gets

at least min(Mk , rk − ℓk − 1)E[V ] ≥ min

(
Mk ,

1

2
(rk − ℓk )

)
E[V ] in this stage. Since Mk ≥

1

4
· m
2
k ≥

1

8
· (rk − ℓk ) with probability at least 0.535, we know Algorithm 1 gets at least

0.535
4
· (rk − ℓk ) · E[V ]

and thus is an
4

0.535 < 8-approximation during the stage.

If
m/2k−1
rk−ℓk

< 1, then rk − ℓk > 10 and E[Nk ] = (rk − ℓk − 1) ·
m/2k−1
rk−ℓk

> 0.9 · m
2
k−1 = 1.8 · m

2
k > 9. By

Chernoff bound,

Pr
[
Nk ≥

1

4

·
m

2
k

]
≥ 1 −

©­« e−(1−
1

4×1.8 )(
1

4×1.8

) 1

4×1.8

ª®¬
9

> 0.994.

When min(Nk ,Mk ) ≥
1

4
· m
2
k , Algorithm 1 gets at least

1

8
the benchmark during the stage. Therefore,

it is an
8

0.535·0.994 < 15.1-approximation. □

2.4 Approximating ProShort

In this section, we deal with length-1 stages using Algorithm BlindMatch, that simply matches

each arriving buyer i to any available item.

Theorem 2.5. Algorithm BlindMatch is a 2.3-approximation to

∑s
k=1 Prok · 1(rk−ℓk=1) = E[V ] ·

|{k ∈ {1, 2, . . . , s} | rk − ℓk = 1}|.

Proof. Let z = |{k ∈ {1, 2, . . . , s} | rk − ℓk = 1}|, the number of length-1 stages. Consider the

time t =
⌈ z
2

⌉
. Since there are still at least

⌊ z
2

⌋
length-1 stages after time t , at least 5 · 2⌊

z
2
⌋ ≥ 5 ·

⌈ z
2

⌉
items in expectation have horizons of at least t , by the definition of the stages. Using Chernoff bound,

the probability that at least

⌈ z
2

⌉
items with horizons of at least t is greater than 1 −

(
e−0.8
0.20.2

)
5

> 0.9.

If this happens, the first t items will be matched. Therefore, Algorithm BlindMatch is a
2

0.9 < 2.3-
approximation to E[V ] · z, completing the proof. □

2.5 Approximating ProFinal

We now approximate ProFinal from Lemma 2.3.

∑m
i=1 Prhi∼Hi [hi ≥ ℓs+1] ≤ 10 by the definition of

the stages. We run Algorithm 2.We randomly sample an item and focus on the item in our algorithm.

The probability that item i is sampled is proportional to Prhi∼Hi [hi ≥ ℓs+1]. If item i is sampled, we

run an algorithm for the single-item setting (lines 3 and 4 in Algorithm 2). The single-item policy

is analyzed in Section 3 where it is shown to achieve welfare at least
1

2
· ProSinglei .

Theorem 2.6. Algorithm 2 is a 20-approximation of ProFinal in expectation.
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Algorithm 2: SingleItem
1 For i = 1, 2, . . . ,m, set qi ← Prhi∼Hi [hi ≥ ℓs+1]

2 i∗ ← item i ∈ {1, 2, . . . ,m} with probability
qi∑m
i=1 qi

3 Set the reserve price p so that Prv∼V [v ≥ p] = 1

E[Hi∗ ]

4 For each arriving buyer, try selling item i∗ with reserve price p

Proof. By Theorem 3.1 and Theorem 3.2, if item i∗ = i , the algorithm gets
1

2
·Proi in expectation.

Thus, the expected welfare achieved by algorithm 2 is at least

m∑
i=1

Prhi∼Hi [hi ≥ ℓs+1]∑
j Prhj∼Hj [hj ≥ ℓs+1]

·
1

2

· ProSinglei

≥

m∑
i=1

Prhi∼Hi [hi ≥ ℓs+1]

10

·
1

2

· ProSinglei ≥
1

20

· ProFinal. □

2.6 Proof of Theorem 1.3
Now we are ready to prove our main theorem.

Proof of Theorem 1.3. To summarize our previous discussion:

(1) Theorem 2.4 yields a 15.1-approximation to

∑
k Prok , where the sum is over odd stages k ≤ s

with rk − ℓk ≥ 2.

(2) If we replace “odd” with “even” in Theorem 2.4 and the corresponding algorithm, we have a

15.1-approximation

∑
k Prok over even stages k with rk − ℓk ≥ 2.

(3) Theorem 2.5 is a 2.3-approximation to

∑
k Prok over stages k ≤ s with rk − ℓk = 1.

(4) Theorem 2.6 yields a 20-approximation to ProFinal.

An algorithm can do one of (1) to (4) with probability
15.1
52.5 ,

15.1
52.5 ,

2.3
52.5 and

20

52.5 respectively, yielding

a 52.5-approximation to Pro. □

3 PROPHET INEQUALITY FOR SINGLE ITEMWITH MHR HORIZON
In this section, we consider the case where there ism = 1 item, and present a proof of Theorem 1.4.

The algorithm also serves as our approximation for ProSingle, which we use for the overall

algorithm with multiple items

We show that the following fixed-price balancing scheme is a 2-approximation, and this bound

is tight for geometric distributions:

Pretend the item departs uniformly over time at rate 1/µ, where µ = E[H ]. Choose a
price p s.t. the rate of acceptance of buyers matches the rate of departure of the item.

We bound the performance of this policy by using a simple linear programming upper bound on

Pro that only uses expected values. Though the relaxation is simple, just as in Section 2.2, it brings

out the key insight that the upper bound also behaves like a balancing scheme, except it assumes

the item lasts forever when performing the matching. Surprisingly, such a simple relaxation yields

the worst-case optimal bound over all MHR distributions.

Theorem 3.1. Let α = 1 − Eh∼H [(1 − µ−1)h]. Then form = 1 items, there is a fixed pricing policy

that is
1

α -competitive. This policy sets the price p such that PrX∼V [X ≥ p] = 1

µ where µ = E[H ].
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Proof. First we find an upper bound for Pro. Let X be a random variable with distribution V .
Consider the following LP:

maximize

∑
v

y(v) · v

subject to

∑
v

y(v) ≤ 1,

y(v) ≤ µ · Pr
X∼V
[X = v], ∀v .

Variable y(v) is the probability that a buyer with realized value v is chosen by prophet. The first

constraint requires the item to be sold at most once in expectation. The second constraint says each

value can be chosen only when it appears. Both of the constraints are relaxations as they should

hold for any realization while the constraints are in expectation. The optimal objective is thus an

upper bound for the expected value of the prophet.

Let λ be the Lagrange multiplier associated with the first constraint. The partial Lagrangian of

the LP is:

L(λ) = λ +
∑
v

y(v) · (v − λ),

y(v) ≤ µ · Pr
X∼V
[X = v], ∀v .

The partial Lagrangian is decoupled for each valuev and is maximized wheny(v) = µ ·PrX∼V [X =
v] for any v ≥ λ and y(v) = 0 otherwise. For any λ, this gives us an upper bound on the prophet’s

welfare. Let p be the value such that PrX∼V [X ≥ p] = 1

µ . If we set λ = p, we get the following upper

bound for the prophet’s value:

Pro ≤
∑
v≥p

µ · v · Pr[X = v] = E
X∼V
[X | X ≥ p].

Essentially, the prophet pretends that the horizon is infinite and it can always find a buyer with

value at least p. Now we look at Alg which is an algorithm with a single price p. The algorithm
has to also consider the event that the horizon ends before the item is matched.

Alg = E
X∼V
[X | X ≥ p]·

Pr[a value at least p was seen during the time horizon]

= E
X∼V
[X | X ≥ p] · E

h∼H
[1 − (1 − µ−1)h].

Therefore,

Pro

Alg

≤ E
h∼H
[1 − (1 − µ−1)h]−1. □

Now, we show that for MHR horizons, this algorithm is (2 − µ−1)-competitive. The key idea is to

use second order stochastic dominance to show that the upper bound is maximized for geometric

distributions with the same mean. Somewhat surprisingly, we also show in Theorem 3.5 that this

result is tight in the sense that for geometric distributions, no online policy can do better.

Theorem 3.2. For any MHR distribution with mean µ, Eh∼H [1 − (1 − µ−1)h]−1 ≤ 2 − µ−1.

In order to prove the above theorem, we use second-order stochastic dominance.
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Definition 3.3. Let A and B be two probability distributions on R. Let FA be the cumulative

distribution function of A and FB be the CDF of B. We say A is second-order stochastically dominant

over B if for all x ∈ R, ∫ x

−∞

(FB (t) − FA(t))dt ≥ 0.

Proposition 1. If distribution A is second-order stochastically dominant over B, and A and B have

the same mean, then for any convex function f : R→ R, Ex∼B [f (x)] ≥ Ex∼A[f (x)].

We now use second order stochastic dominance to show the following.

Lemma 3.4. Geometric distribution with mean µ is second-order stochastically dominated by any

other MHR horizon distribution with the same mean.

Proof. Let ϕc (x) : N
+ → R be the following convex function:

ϕc (x) =

{
c − x if x ≤ c

0 if x > c

where c is a positive integer. Let G be the geometric distribution with mean µ. From Definition 3.3,

the lemma holds if and only if Ex∼D [ϕc (x)] ≤ Ex∼G [ϕc (x)] for any c and any MHR distribution D
with the same mean µ.

We prove this by contradiction. Let D be an MHR distribution with mean µ which satisfies

Ex∼D [ϕc (x)] > Ex∼G [ϕc (x)] for some c . The set of MHR distributions with the same tail after c
(the same Prx∼D [x = x∗ | x > c] for any x∗ > c) is homeomorphic to a closed and bounded

set in Rc , which means it’s compact. The function Ex∼D [ϕc (x)] is continuous in D under L1-
norm, so there is a D = D∗ maximizing Ex∼D [ϕc (x)] among MHR distributions with the same

tail after c . This D∗ differs from G at some x ≤ c . Define qi = Prx∼D∗ [x ≥ i + 1 | x ≥ i] and
q = Prx∼G [x ≥ i + 1 | x ≥ i] = 1 − µ−1. Because D∗ is MHR, qi ’s are decreasing. Also q1 > q as

otherwise the mean cannot be µ, and qc < q as otherwise Ex∼D∗ [ϕc (t)] > Ex∼G [ϕc (x)] cannot hold.
Thus there is some i∗ < c such that qi∗ > q and qi∗+1 ≤ q.

We are going to show for a pair of small enough ε and ε ′, decreasing qi∗ by ε and increasing qi∗+1
by ε ′ such that the mean is preserved will increase Et∼D∗ [ϕc (x)]. Let r = 1 + qi∗+2 + qi∗+2qi∗+3 +
qi∗+2qi∗+3qi∗+4+ · · · . When ε → 0, we have ε(1+qi+1r ) = ε ′qir . This implies ε ′qi −εqi+1 > 0, which

means Ex∼D∗ [ϕc (x)] is increased. It contradicts with the fact that D∗ maximizes Ex∼D∗ [ϕc (x)]. □

Proof. (of Theorem 3.2) From Theorem 3.1, we know
Pro

Alg
≤ 1/Eh∼H [ϕ(h)] where ϕ(h) = 1− (1−

µ−1)h is a concave function. From Lemma 3.4 and Proposition 1, among all MHR distributions H
with mean µ, Eh∼H [ϕ(h)] is minimized by a geometric one. For geometric departure with mean µ,
Eh∼H [ϕ(h)] = 2 − µ−1. □

Theorem 3.5. No online algorithm is better than (2 − µ−1)-competitive form = 1 items when the

horizon distribution H is geometric with mean µ.

Proof. Let q ∈ [0, 1) be the probability that the process continues after each step. We have

q = 1 − µ−1.
Define Alg* as the expected value of the optimal algorithm and Pro as that of the prophet. Let

the valuation distribution be: vL with probability 1 − p and vH with probability p, vL < vH. At each
step, Alg* will set the price to vH if it expects to get more than vL afterwards. Otherwise it will
set the price to vL. Randomizing over vL and vH cannot help Alg*. Also, because the geometric

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 4. Publication date: March 2020.



Predict and Match: Prophet Inequalities with Uncertain Supply 4:15

distribution is memoryless, Alg* will make the same decision every time, i.e., the optimal algorithm

is single-threshold. We have

Alg* = max

{
vL · (1 − p) +vH · p, vH ·

p

1 − q(1 − p)

}
and

Pro = vH ·
p

1 − q(1 − p)
+vL ·

(
1 −

p

1 − q(1 − p)

)
.

When µ = 1 and q = 0, the theorem holds because 2 − µ−1 = 1. Otherwise, we set vH so that

Alg* is indifferent between its two options. In that case,

lim

p→0

Pro

Alg*

= lim

p→0

(
1 +

vL
vH
·
1 − q(1 − p)

p

)
= lim

p→0

(
1 +

(
p

1 − q(1 − p)
− p

)
·
1 − q(1 − p)

p

)
= 1 + q = 2 − µ−1. □

4 LOWER BOUNDS FOR MHR HORIZONS (PROOF OF THEOREM 1.5)
Next we provide a proof of Theorem 1.5. For this, we first show a lower bound of 2 for any dynamic

pricing scheme in the limit whenm becomes large, and 1.57 for any finitem. We will subsequently

show that no fixed pricing scheme can extract constant fraction of the welfare form > 1 items.

For showing these results, we consider a special family of i.i.d. MHR horizon distributions, which

we call low-rate geometric: Let H be a geometric distribution with mean µ, so the probability of

survival at each step is q = 1 − µ−1. We call H low-rate geometric when q → 1
−
. Let λ = 1 − q be

the rate of departure for each item. This goes to 0
+
when H is low-rate geometric.

Low-rate geometric distributions correspond to the canonical setting where items are long-

lasting, yet their departures are memoryless. In addition to being canonical, the reason we consider

this setting is its analytic tractability: It allows us to ignore events where multiple items depart

simultaneously, leading to tractable Markov chains for both the prophet and the algorithm. The

proof of lower bound of 2 for largem involves analyzing an interesting time-reversed Markov chain

for the prophet’s welfare.

4.1 Tractable Approximation
Denote by Alg

∗
m(λ) the optimal online policy when there arem items and the rate of departures is

λ. Similarly, we define Prom(λ) to denote the prophet. Since we are considering the limit as λ→ 0
+
,

we will assume throughout that λ < 1

m .

Define the state of the system to be k if there are k items in the system. Note that since departures

are geometric, any online policy will use a fixed price in each state. The state of the system therefore

decreases over time. For both of the processes (corresponding to prophet and the optimal algorithm)

given the current state is k , there is a positive probability that the next state will be k ′ for any
k ′ ≤ k . However, the probability that multiple items depart together (or a match and departures

happen together for the algorithm) is extremely small when λ→ 0
+
. In light of this, we introduce

alternative processes for the ease of analysis.

In an alternative process, we will assume two events (departures, matches) do not simultaneously

happen. In other words, for the prophet, given state k , the state transitions to k − 1 with probability

kλ per time step. We do not consider state changes due to matching. Instead and equivalently, we

will assume that in hindsight, the prophet can optimally match arriving buyers to items that had
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not departed by that time. Call this prophet Pro
′
m(λ). For the algorithm, we assume that if the state

is k , the price is set so that the rate at which a buyer is matched is πk = βkλk . Since items also

depart at rate λk , we will assume the state transitions from k to k − 1 at rate (1+ βk )λk . Denote the
optimal such algorithm as Alg

′
m(λ).

Lemma 4.1. (Proved in Appendix A.2) For anym ≥ 1:
Prom (λ)
Pro
′
m (λ)
→ 1 and

Alg
∗
m (λ)

Alg
′
m (λ)
→ 1 as λ→ 0

Therefore, we will analyze the quantity cm(λ) =
Pro

′
m (λ)

Alg
′
m (λ)

as the competitive ratio of the algorithm

against prophet for anym, λ and subsequently take the limit as λ→ 0
+
. In the remainder of this

section, without creating ambiguity we omit them and λ in notation and use Alg
′
and Pro

′
instead.

4.2 Lower Bound Construction for Dynamic Pricing
To show the lower bounds, we consider the valuation distribution V such that for any x ∈ [1,∞),
Prv∼V [v ≥ x] = x−α where α ∈ (1,+∞) is a constant that will be determined later. Note that

Ev∼V [v] is finite. We first give an upper bound for Alg
′
for this valuation distribution:

Alg
′ ≤

m∑
k=1

max

βk

βkkλ

(1 + βk )kλ
· E[v | v ≥ F−1V (1 − βkkλ)]

where FV is the cumulative distribution function for V . The probability of accepting a buyer in

state k is at most
βkkλ
(1+βk )kλ

(because acceptance and departure are disjoint events in the alternative

process).

Simplifying it, we have:

Alg
′ ≤

m∑
k=1

max

βk

βkkλ

(1 + βk )kλ
· E
v∼V
[v | v ≥ (βkkλ)

− 1

α ]

=

m∑
k=1

max

βk

βkkλ

(1 + βk )kλ
·

α

α − 1
· (βkkλ)

− 1

α

=

m∑
k=1

(kλ)−
1

α ·
α

α − 1
·max

βk

β
1− 1

α
k

1 + βk

Optimizing over βk , we have:

Alg
′ =

m∑
k=1

(kλ)−
1

α · (α − 1)−
1

α . (1)

Now we solve for Pro
′
. Note that for the prophet, we assume the state only changes due to

departure of items. Let pk (v) denote the probability that the item departing in state k is matched

to a buyer with valuation at least v by the prophet. In the rest of this section, we call the item

departing at state k to be item k . We have:

Pro
′ =

m∑
k=1

∫ +∞

0

pk (v)dv (2)

We now present different bounds for the above quantity depending on whetherm is finite, or we

are considering the limitm →∞.
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4.2.1 Lower Bound for Dynamic Pricing: Finitem. This bound is simpler. Clearly, if a buyer with

value at least v arrives at state k , Pro′ always can assign the item k to a buyer with value at least v .
Therefore,

Pro
′≥

m∑
k=1

∫ +∞

0

Pr[some buyer with valuation at least v arrives in state k]dv

=

m∑
k=1

(
1 +

∫ +∞

1

(1 − kλ)v−α

v−α + kλ − kλv−α
dv

)
.

Therefore, we have:

lim inf

λ→0
+

Pro
′

Alg
′
≥ lim

λ→0
+

∫ +∞
1

1

1+kλvα dv

(kλ)−
1

α (α − 1)−1/α
=

∫ +∞
0

1

1+uα du

(α − 1)−1/α

=

1

α · B(
1

α , 1 −
1

α )

(α − 1)−1/α
=

π
α /sin(

π
α )

(α − 1)−1/α
,

where B(·, ·) is the beta function. Comparing to Equation (1), we have that lim infλ→0
+

Pro
′

Alg
′ is

maximized at α = 2 and in that case,

Pro
′

Alg
′
≥ π/2 ≈ 1.5708

The bound holds for anym ∈ N+.

4.2.2 Lower Bound for Dynamic Pricing: Largem. We now consider the more interesting case

whenm →∞. We present a tighter lower bound for Equation (2). To achieve this goal, we need

to to analyze pk (v) more carefully. Previously, we used the fact that if a buyer with value at least

v arrives during state k , then a buyer with value at least v will be assigned to the item k by the

prophet. However, the prophet might assign a buyer with value at least v to item k even if no such

buyer arrives in state k .
It is easy to see that the optimal policy for the prophet is the following: It considers the items

in increasing order of realized horizon, and matches each item to the highest valued unmatched

buyer arriving no later than the horizon of the item. A buyer with value at least v is matched to

the item k if and only if there is an i ≥ 0 such that between beginning of the state k + i and end of

state k , at least i + 1 buyers with value at least v arrive. Note that in the previous section, we only

considered the case of i = 0 to give a lower bound for pk (v).

Time-reversed Markov Chain. In order to analyze the new process, we start from the end of state

k and go back in time. There are two possible types of events:

• An item departs, so that the state increases by 1 (note we are going back in time); or

• A buyer with valuation at least v arrives.

We maintain a counter q initially set to 1. Each time an item departs, we increase q by 1, and

each time a buyer with valuation at least v arrives, we decrease q by 1. It is easy to see that the

item k is matched to a buyer with valuation at least v by the prophet if and only if q reaches 0, i.e.,

pk (v) = Pr[q = 0 at some time].

Note that as we are going back in time, when the state is k + j − 1, the probability an item departs

is (k + j)λ. Similarly, the probability a buyer with valuation at least v arrives is v−α . This yields a
Markov chain in which when the state is the (k + j,q), the former event causes the state to become

(k + j + 1,q + 1) and the latter causes the state to become (k + j,q − 1).
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As pk (v)’s themselves are hard to analyze, we approximate them by a sequence of functions

{ fj (x)}
∞
j=0. Each fj (x) is defined on [0, 1], and it represents the probability that the following

random walk ever reaches 0 in j steps: A point starts at 1 on the number line. Independently in

each step, it goes left by 1 with probability x , and goes right by 1 otherwise. Note that as j →∞,
fj (x) → min

(
1, x

1−x

)
. That is, the point-wise limit of { fj (x)}

∞
j=1 as j →∞ is f (x) = min(1,x/(1−x)).

(We slightly abuse notation at x = 1 and f (1) = 1.)

Lemma 4.2. pk (v) ≥ fj (v
−α /(v−α + (k + j)λ)) for any integer j ∈ [1,m − k].

Proof. From state k to state k + j, exactly j departures happen so the process for pk (v) has at
least j moves in this period. For each move, the probability that the counter q decreases is at least

v−α /(v−α + (k + j)λ). Therefore, we can couple these two processes so that if the random walk ever

reaches 0, the counter must have visited 0 too. □

We now show that these functions uniformly converge.

Lemma 4.3. {log fj (x)}
∞
j=1 uniformly converges to log f (x) on (0, 1]. This implies ∀ε > 0,∃k,∀j >

k,∀x , fj (x) > (1 − ε)f (x).

Proof. Notice fj (x) is continuous on x and increasing in j. For any c > 0, on the compact set

[c, 1], each log fj (x) is continuous in x , and their limit log f (x) is continuous too. Further, log fj (x)
is increasing in j. By Dini’s theorem, the convergence on [c, 1] is uniform.

For any ε > 0, for any x ∈ (0, ε) and any j ≥ 1, fj (x) ≥ x > x
1−x · (1 − ε) = (1 − ε)f (x). Because

{log fj (x)}
∞
j=1 uniformly converges on [ε, 1], there is a k so that for any j > k and any x ∈ [ε, 1],

fj (x) > (1 − ε)f (x). This completes the proof. □

Now we are ready to explicitly compute a lower bound for Pro
′
as m → ∞. We start with

Equation (2).

Pro
′ =

m∑
k=1

∫ +∞

0

pk (v)dv

≥

m−
√
m∑

k=1

∫ +∞

0

pk (v)dv

≥

m−
√
m∑

k=1

∫ +∞

0

f√m(v
−α /(v−α + (k +

√
m)λ))dv

where the final inequality follows from Lemma 4.2.
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Let ck = infx ∈(0,1] fk (x)/f (x). Then we have:

Pro
′ ≥ c√m

m−
√
m∑

k=1

∫ +∞

0

f (v−α /(v−α + (k +
√
m)λ))dv

= c√m

m−
√
m∑

k=1

∫ +∞

0

min(1,v−α /((k +
√
m)λ))dv

= c√m

m∑
k=
√
m

∫ +∞

0

min(1,v−α /(kλ))dv

= c√m

m∑
k=
√
m

(
(kλ)−

1

α +

∫ +∞

(kλ)−
1

α
v−α /(kλ)dv

)
= c√m

m∑
k=
√
m

α

α − 1
· (kλ)−

1

α .

Whenm →∞, c√m goes to 1 by Lemma 4.3, and

∑m
k=
√
m k−

1

α∑m
k=1 k

− 1

α
goes to 1 too. Thus,

lim inf

m→∞

(
lim inf

λ→0
+

Pro
′∑m

k=1
α

α−1 · (kλ)
− 1

α

)
≥ 1.

Together with the bound for Alg
′
from Equation (1), this gives us:

lim inf

m→∞

(
lim inf

λ→0
+

Pro
′

Alg
′

)
≥

α
α−1

(α − 1)−
1

α
,

which reaches its maximum of 2 at α = 2. This completes the proof of Theorem 1.5.

4.3 Lower Bound for Fixed Pricing Schemes
A natural question is whether there is a single-threshold algorithm that is a constant approximation.

Note that this is indeed the case when the horizons Hi ’s are identical and deterministic; in fact,

in this case, the competitive ratio approaches 1 asm → ∞. In contrast, when the horizons are

not deterministic — even if they are i.i.d geometric, we show that no fixed pricing scheme can be

constant-competitive. This shows the second part of Theorem 1.5.

Theorem 4.4. There exists a family of instances with i.i.d geometric horizons, such that any fixed

pricing algorithm is Ω(log logm)-competitive, wherem is the number of items.

Proof. For anym ≥ 2
5
such that log

2
m is an integer, consider a geometric horizon distribution

H whose mean is m: Let qm be the probability that the horizon is greater than the mean, i.e.

qm = Prh∼H [h > m]. It is easy to verify 1

4
≤ qm ≤

1

e since H is geometric. Let the value distribution

V satisfy: supp(V ) = {1/(qtmt
2) | t = 3, 4, . . . , log

2
m} and Prv∼V [v ≥ 1/(qtmt

2)] = qtm for t =
3, 4, . . . , log

2
m. Straightforward calculation shows

E
v∼V
[v | v ≥ 1/(qtmt

2)] = Θ(1) ·
1

qtm
·

log
2
m∑

k=t

qkm ·
1

qkmk2

= Θ(1) ·
1

qtm
·

(
1

t
−

1

(log
2
m) + 1

)
.
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Without loss of generality, for any single-threshold algorithm Sing, assume the threshold is 1/(qtmt
2).

We know in time interval [jm + 1, (j + 1)m], the expected number of transactions is at most the

minimum of the expected number of buyers with valuations at least 1/(qtmt
2), and the expected

number of items alive at the start of the interval. Therefore,

Sing ≤ E
v∼V
[v | v ≥ 1/(qtmt

2)] ·

∞∑
j=0

min(mqtm ,mq jm)

≤ m · E
v∼V
[v | v ≥ 1/(qtmt

2)] · (t + 1)qtm/(1 − qm) = O(m).

We know from previous discussion that the upper bound from Lemma 2.2 is at most 53 · Pro.

Previously, we set the stages so that about
1

2
of items depart in each stage. The factor of

1

2
is not

essential and we can change it to any constant strictly between 0 and 1, e.g. qm . Doing this only
costs us a constant.

If we set the reserve price in the interval [jm + 1, (j + 1)m] to be q jm j2, we have:

Pro = Ω(1) ·m ·

(log
2
m)−5∑

j=3

q jm · E
v∼V
[v | v ≥ 1/(q jm j2)]

= Ω(1) ·m ·

(log
2
m)−5∑

j=3

1/j = Ω(m log logm).

Therefore, Pro = Ω(log logm) · Sing for the constructed family of instances. □

5 CONCLUSIONS
In this paper, we consider the setting when items have stochastic horizons. We show a constant-

approximation against the prophet when the horizons satisfy the MHR condition. Unlike the classic

multi-choice prophet inequalities where the approximation ratio goes to 1 when the number of

items becomes large, we show a 1.57 (improves to 2 when the number of items becomes large)

approximation lower bound even when the horizons are i.i.d. geometric. Our constant is tight for

the single-item setting.

We now list several open questions. First, our constant factor for the upper bound (53) in the

multi-item setting does not match the lower bound (2). Closing the gap would be interesting as a

future direction. Next, is it possible to have stochastic horizons in more general prophet-inequality

settings such as [10]? Finally, it would be interesting to extend our work to the case where items

arrive and depart in a stochastic fashion.
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A OMITTED PROOFS
A.1 Lower Bound for non-MHR Horizons (Proof of Theorem 1.6)
We assumem = 1 in this proof. The same ideas apply to anym ≥ 1. Without loss of generality,

assume n = 2
ck

for c that will be fixed later. The horizon is 2
ci

with probability 2
−i−1

for i =
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0, 1, 2, . . . ,k − 1, and is n with probability 2
−k
. Intuitively, there are k + 1 possible horizons, where

each one is exponentially longer, yet exponentially less probable than the previous one. Denote the

valuation distribution by: a1 with probability p1, a2 with probability p2, . . . , am with probability pm
where a1 < a2 < · · · < am . Here we setm = ck , ai = 2

i/c
and pi = 2

−i
except pck = 2

−ck+1
.

Let VPro be any policy that knows realized valuations but not realized horizon, and Pro be the

omniscient prophet. The only information VPro does not know beforehand is the realized horizon,

and during execution it cannot do anything once the horizon ends. Therefore it should aim for a

specific buyer in advance:

VPro = E
v1, ...,vn

[
max

i

(∑
j≥i

πj

)
Mi (v1, . . . ,vn)

]
≤ 2 E

v1, ...,vn

[
max

i
πiMi (v1, . . . ,vn)

]
,

where πi is the probability for the horizon to be 2
ci
andMi (v1, . . . ,vn) is the maximum of the first

2
ci
values. Then we have

VPro ≤ 4 ·

k∑
i=0

2
i Pr
v1, ...,vn

[∃j,πjMj ≥ 2
i ]

≤ 4

k∑
i=0

2
i
min

(
1,

∑
j

Pr
v1, ...,vn

[πjMj ≥ 2
i ]

)
≤ 4

k∑
i=0

2
i
min

(
1,

∑
j

2
c j Pr

v1, ...,vn
[2−jv1 ≥ 2

i ]

)
≤ 4

k∑
i=0

2
i
min

(
1, 2

∑
j

2
c j
2
−ci−c j

)
≤ 4

k∑
i=0

2
i
min

(
1, 2(k + 1)2−ci

)
= O(1)

when k = 2
c
. Here the first inequality is an approximation of the Lebesgue integral of VPro. The

second and third inequalities are union bounds.

On the other hand, we have

Pro ≥
1

2

·

k∑
i=0

2
i

k∑
j=0

πj · Pr
v1, ...,vn

[Mj ≥ 2
i ]

≥
1

2

·

k∑
i=0

2
i

k∑
j=0

2
−j ·min

(
(1 − e−1), (1 − e−1)2c j · Pr

v1, ...,vn
[v1 ≥ 2

i ]

)
≥

1

2

·

k∑
i=0

2
i

k∑
j=0

2
−j ·min

(
(1 − e−1), (1 − e−1)2c j−ci

)
≥

1

2

·

k∑
i=0

2
i
2
−i ·min

(
(1 − e−1), (1 − e−1)2ci−ci

)
= Ω(k).
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Here the first inequality is an approximation of the Lebesgue integral of Pro. The second inequality

uses the fact that: if sum of the probabilities of several independent events is p ≤ 1, then the union of

them happens with probability at least (1− e−1) ·p. As n = 2
ck = 2

k log
2
k
, we know k = Θ

(
logn

log logn

)
.

A.2 Proof of Lemma 4.1
We only show that

Prom (λ)
Pro

′
m (λ)
→ 1. The proof of the second part that

Alg
∗
m (λ)

Alg
′
m (λ)
→ 1 uses a similar

argument. We consider the following two processes: the main process based on the actual departure

of items in which two departures might happen simultaneously and the alternative process in

which at each time step at most one item can depart. The alternative process might modify the

number of items in the system at some point during the process with a very small probability. In

that case, states of the two processes differ at some point and the two corresponding prophets

might achieve different values. Otherwise, they are always at the same state during the process

and their values are exactly the same.

There exist two sources of differences (only consider the first time step that they are not at the

same state during the process). The first one which we call type 1 is as follows: If two departures

happen at the same time, alternative process will only consider one of them. In other words, if the

main process goes from state k to k ′ such that k ′ < k − 1, the alternative process will go from k to

k − 1 and will assume there are still k − 1 items in the system at the next time step. The probability

of such a difference for a state k is not more than
2
k (1−q)2

kqk−1(1−q) which goes to 0 as q approaches 1.

Therefore, using the union bound and the fact thatm is finite, the probability of such a difference

during the process at some state k denoted by p1 also approaches 0.

The second source of differences (type 2) is: If the current state of the main process is k and

it remains unchanged after a time step (no departures happens) with a very small probability

(
qk−1+k (1−q)

qk ), the state of the alternative process will change to state k − 1 at this time step. The

probability of such a difference at state k is
qk−1+k (1−q)
k (1−q)qk−1 . We can see that this probability goes to 0

as q approaches 1 and sincem is finite, using the union bound, the probability of such a difference

during the process denoted by p2 goes to 0 as q approaches 1.

Note that the value of Pro
′
(alternative prophet) can only be greater than Pro (main prophet) if

two departures happen at the same time step during the actual departure process (type 1 difference).

However, note that the conditional expectation of Pro
′
given that such a difference exists is not

greater than Pro
′
(the expected welfare of Pro

′
). Therefore, we have:

Pro ≥ (1 − p1)Pro
′.

In addition, Pro can be only greater then Pro
′
if a type 2 difference exists. Similarly, the conditional

expectation of Pro given that a type 2 difference exists is not greater than Pro. Therefore, we also

have:

Pro
′ ≥ (1 − p2)Pro.

Using the last two inequalities,

1 − p1 ≤
Pro

Pro
′
≤

1

1 − p2
.

Using that p1 and p2 both go to 0, we have
Pro

Pro
′ → 1.

Received October 2019; revised December 2019; accepted January 2020

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 4. Publication date: March 2020.


	Abstract
	1 Introduction
	1.1 Model
	1.2 Main Result: Prophet Inequalities under Uncertain Supply
	1.3 Lower Bounds
	1.4 Technical Highlights
	1.5 Related Work

	2 Prophet Inequality for Heterogeneous Items with MHR Horizons
	2.1 Splitting Time into Stages
	2.2 Upper Bound on Prophet's Welfare
	2.3 Approximating ProLong: The DepartureSimulation Algorithm
	2.4 Approximating ProShort
	2.5 Approximating ProFinal
	2.6 Proof of Theorem 1.3

	3 Prophet Inequality for Single Item with MHR Horizon
	4 Lower Bounds for MHR Horizons (Proof of Theorem 1.5)
	4.1 Tractable Approximation
	4.2 Lower Bound Construction for Dynamic Pricing
	4.3 Lower Bound for Fixed Pricing Schemes

	5 Conclusions
	Acknowledgments
	References
	A Omitted Proofs
	A.1 Lower Bound for non-MHR Horizons (Proof of Theorem 1.6)
	A.2 Proof of Lemma 4.1


